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FIELD THEORY

General Field Theory

1. Prove or disprove each of the following statements.

(a) If K is a subfield of F and F is isomorphic to K, then F = K.

(b) The field C of complex numbers is an algebraic closure of the field Q of rational numbers.

(c) If K is a finitely generated extension of F , then [K : F ] is finite.

(d) If K is a finitely generated algebraic extension of F , then [K : F ] is finite.

(e) If F ⊆ E ⊆ K is a tower of fields and K is normal over F , then E is normal over F .

(f) If F ⊆ E ⊆ K is a tower of fields and K is normal over F , then K is normal over E.

(g) If F ⊆ E ⊆ K is a tower of fields, E is normal over F and K is normal over E, then K
is normal over F .

(h) If F ⊆ E ⊆ K is a tower of fields and K is separable over F , then E is separable over F .

(i) If F ⊆ E ⊆ K is a tower of fields and K is separable over F , then K is separable over E.

(j) If F ⊆ E ⊆ K is a tower of fields, E is separable over F and K is separable over E,
then K is separable over F .

2. Give an example of an infinite chain Ω1 ⊂ Ω2 ⊂ Ω3 ⊂ · · · of algebraically closed fields.

3. Let E be an extension field of a field F and f(x), g(x) ∈ F [x]. Prove that a greatest common
divisor of f and g in F [x] is also a greatest common divisor of f and g in E[x].

4. Let F be a field and F ∗ its multiplicative group. Show that the abelian groups (F,+) and
(F ∗, ·) are not isomorphic.

5. Prove that a finite subgroup of the multiplicative group of a field must be cyclic.

6. (a) Prove that a finite integral domain is a field.

(b) Prove that if R is an integral domain that is finite dimensional over a subfield F ⊆ R,
then R is a field.

7. Show that if F is a finite extension of Q, then the torsion subgroup of F ∗ is finite. [Hint: The
torsion subgroup consists of roots of unity.]

8. Suppose F ⊂ E ⊂ K is any tower of fields and [K : F ] is finite.
Show that [K : F ] = [K : E][E : F ].

9. Let K be a field extension of F of degree n and let f(x) ∈ F [x] be an irreducible polynomial
of degree m > 1. Show that if m is relatively prime to n, then f has no root in K.

10. Let f(x) = anx
n+ · · ·+a1x+a0 ∈ Q[x] be an irreducible polynomial of degree greater than 1

in which all roots lie on the unit circle of C. Prove that ai = an−i for all i.

11. Let F be a field extension of the rational numbers.

(a) Show that {a+ b
√

2 | a, b ∈ F} is a field.

(b) Give necessary and sufficient conditions for {a+ b 3
√

2 | a, b ∈ F} to be a field.
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12. Let K be a field extension of a field F and let α be an element of K. Give necessary and
sufficient conditions for {a+ bα | a, b ∈ F} to be a field.

13. Let K be an extension field of F with a, b ∈ K. Let [F (a) : F ] = m and [F (b) : F ] = n and
assume (m,n) = 1. Show that F (a) ∩ F (b) = F and [F (a, b) : F ] = mn.

14. Let F , L, and K be subfields of a field M , with F ⊆ K and F ⊆ L. Let [K : F ] = k and
[L : F ] = `.

(a) Show that [KL : F ] 6 k`.

(b) Show that if (k, `) = 1 then [KL : F ] = k`.

(c) Give an example where [KL : F ] < k`.

15. Let K be a finite dimensional extension field of a field F and let G be a group of F -
automorphisms of K. Prove that |G| 6 [K : F ].

16. Let E be a finite dimensional extension of a field F and let G be a group of F -automorphisms
of E such that [E : F ] = |G|. Show that F is the fixed field of G.

17. Let E be a finite dimensional extension of a field F and let G be a group of F -automorphisms
of E. Show that if F is the fixed field of G, then [E : F ] = |G|.

18. Let F be a field with the property
(*) If a, b ∈ F and a2 + b2 = 0, then a = 0 and b = 0.

(a) Show that x2 + 1 is irreducible in F [x].

(b) Which of the fields Z3, Z5 satisfy (*)?

19. Show that p(x) = x3 + x− 6 is irreducible over Q[i].

20. In each case below a field F and a polynomial f(x) ∈ F [x] are given. Either prove that f is
irreducible over f or factor f(x) into irreducible polynomials in F [x]. Find [K : F ], where K
is a splitting field for f over F .

(a) F = Q, f(x) = x4 − 5.

(b) F = Q(
√
−3), f(x) = x3 − 3.

(c) F = Q, f(x) = x3 − x2 − 5x+ 5.

21. Let Q be the field of rational numbers. Show that the group of automorphisms of Q is trivial.

22. Let R be the field of real numbers. Show that the group of automorphisms of R is trivial.

23. Let R be the field of real numbers. Show that if f(x) is an irreducible polynomial over R,
then f is of degree 1 or 2.

24. Let F be a field and p a prime. Let G = {c ∈ F | cpn = 1 for some positive integer n}.
(a) Show that G is a subgroup of the multiplicative group of F .

(b) Prove that either G is a cyclic group or G is isomorphic to Z(p∞), the Prüfer group for
the prime p.
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25. Let E be a finite dimensional extension of a field F and let G be a group of F -automorphisms
of E. Show the following.

(a) If e ∈ E then Ge = {σ ∈ G | σ(e) = e} is a subgroup of G.

(b) [G : Ge] 6 [F (e) : F ].

(c) If F is the fixed field of G and e1, e2, . . . , en are the distinct images of e under G, then
f(x) = (x− e1)(x− e2) · · · (x− en) is the minimal polynomial of e over F .

26. Show that Q(
√

2,
√

3) is a simple extension of Q.

27. Find the minimal polynomial of α =
√

3 +
√

7 over the field Q of rational numbers, and prove
it is the minimal polynomial.

28. Find the minimal polynomial of α =
√

5 +
√

3 over the field Q of rational numbers, and prove
it is the minimal polynomial.

29. Find the minimal polynomial of α =
√

11 +
√

3 over the field Q of rational numbers, and
prove it is the minimal polynomial.

30. Find the minimal polynomial of α =
√

3 + 2
√

2 over the field Q of rational numbers, and
prove it is the minimal polynomial.

31. Find the minimal polynomial of α =
3
√

2 +
√

2 over the field Q of rational numbers, and prove
it is the minimal polynomial.

32. Let F be a field. Show that F is algebraically closed if and only if every maximal ideal of
F [x] has codimension 1.

Algebraic Extensions

33. Let α belong to some field extension of the field F . Prove that F (α) = F [α] if and only if α
is algebraic over F .

34. Show that p(x) = x3 + 2x + 1 is irreducible over Q. Let θ be a root of p(x) in an extension
field and find the mutiplicative inverse of 1 + θ in Q[θ].

35. Let F ⊆ K be fields and let α ∈ K be algebraic over F with minimal polynomial f(x) ∈ F [x]
of degree n. Show that {1, α, . . . , αn−1} is a basis for F (α) over F .

36. Show that if K is finite dimensional field extension of F , then K is algebraic over F .

37. Let F be a field, let E = F (α) be a simple extension field of F , and let β ∈ E − F . Prove
that α is algebraic over F (β).

38. Show that if |F : Q| = 2, then there exists a square free integer m different from 1 so that
F = Q(

√
m).

39. Let K be an extension field of the field F such that [K : F ] is odd. Show that if u ∈ K then
F (u) = F (u2).

40. (a) Let α be algebraic over a field F and set E = F (α). Prove that if |E : F | is odd, then
E = F (α2).

(b) Give an example of a simple algebraic extension E = F (α) where |E : F | is not divisible
by 3 but F (α3) is strictly contained in E.
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41. Let K be a finite degree extension of the field F such that [K : F ] is relatively prime to 6.
Show that if u ∈ K then F (u) = F (u3).

42. Let F be a field, f(x) an irreducible polynomial in F [x], and α a root of f in some extension
of F . Show that if some odd degree term of f(x) has a non-zero coefficient, then F (α) =
F (α2).

43. Let f(x) and g(x) be irreducible polynomials in F [x] of degrees m and n, respectively, where
(m,n) = 1. Show that if α is a root of f(x) in some field extension of F , then g(x) is
irreducible in F (α)[x].

44. Let K be an extension field of F and let α be an element of K. Show that if F (α) = F (α2),
then α is algebraic over F .

45. Let K be an extension field of F and let α be an element of K. Show that the following are
equivalent:

(i) α is algebraic over F ,

(ii) F (α) is a finite dimensional extension of F ,

(iii) α is contained in a finite dimensional extension of F .

46. Let α be algebraic over Q with [Q(α) : Q] = 2 and set F = Q(α). Prove that if f(x) ∈ Q[x]
is irreducible over Q, then one of the following occurs:

(i) f(x) remains irreducible in F [x];

(ii) f(x) is a product of two irreducible polynomials in F [x] of equal degree.

47. Let F ⊂ E ⊂ K be a tower of fields such that K = F (α) with α algebraic over F. Prove that
if f(x) ∈ F [x] is the minimal polynomial of α over F and F 6= E, then f(x) is not irreducible
in E[x].

48. Let E be an extension field of F and A = {e ∈ E | e is algebraic over F}.
(a) Show that A is a subfield of E containing F .

(b) Show that if σ : E → E is a one-to-one F -homomorphism, then σ(A) = A.

49. Let p and q be distinct primes. Show that
√
q is not an element of Q(

√
p).

50. Show that if p1, . . . , pn, pn+1 are distinct prime numbers, then
√
pn+1 is not an element of the

field Q(
√
p1, . . . ,

√
pn).

51. Let α1, α2, and α3 be real numbers such that (αi)
2 ∈ Q for each i, and let K = Q(α1, α2, α3).

Show that 3
√

2 is not in K.

52. (a) Prove that if E is a finite dimensional field extension of F that is generated over F by
a subset S of E satisfying a2 ∈ F for all a ∈ S, then |E : F | is a power of 2.

(b) Give an example that shows 2 cannot be replaced by 3 in part (a).

53. Let F ⊆ L ⊆ K with [L : F ] finite, and let α be an element of K. Show that α is algebraic
over L if and only if α is algebraic over F .

54. Show that if K is algebraic over F and σ : K → K is an F -monomorphism, then σ is onto.
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55. Suppose K is an algebraic extension field of a field F such that there are only finitely many
intermediate fields between F and K. Show that K is a simple extension of F .

56. Let K be a simple algebraic extension of a field F . Show that there are only finitely many
intermediate fields between F and K.

57. Suppose E is an algebraic extension of F and Ē is an algebraic closure of E. Show that Ē is
an algebraic closure of F .

58. Let α be algebraic over the field F with minimal polynomial f(x) ∈ F [x] and let K = F [α].
Show that if σ : F → L is a field monomorphism and β ∈ L is a root of fσ(x) ∈ L[x], then σ
has a unique extension σ̂ : K → L satisfying σ̂(α) = β.

59. Suppose E1 and E2 are algebraic closures of a field F . Show that there is an F -isomorphism
σ : E1 → E2.

60. (a) Show that for every prime p and every positive integer n there is an irreducible polyno-
mial of degree n over the field Fp of p elements.

(b) Show that for every positive integer n there is an irreducible polynomial of degree n over
the field Q of rational numbers.

Normality and Splitting Fields

61. Let K be an extension field of F . Show that the following are equivalent.

(i) Each irreducible polynomial in F [x] with one root in K has all its roots in K.

(ii) K is obtained from F by adjoining all roots of a set of polynomials in F [x].

(iii) Every F -isomorphism of K in a fixed algebraic closure is an F -automorphism.

62. Let K be the splitting field of x2 + 2 over Q. Prove or disprove that i =
√
−1 is an element

of K.

63. Let K be the splitting field of x3 − 5 over Q. Prove or disprove that i =
√
−1 is an element

of K.

64. Let Ω be a fixed algebraic closure of F and K ⊆ Ω an algebraic extension of F . Show
that K is a normal extension of F if and only if every F -isomorphism ϕ : K → K ′ ⊆ Ω is an
F -automorphism.

65. Let F be a field and E a splitting field of the irreducible polynomial f(x) ∈ F [x]. Show that
if c, d ∈ F and c 6= 0, then the polynomial f(cx+ d) splits in E[x].

Separability

66. Show that if K is a separable extension of F and L is a field with F ⊆ L ⊆ K, then L is a
separable extension of F and K is a separable extension of L.

67. Let f(x) ∈ F [x] be a polynomial, and let f ′(x) denote its formal derivative in F [x]. Prove
that f(x) has distinct roots in any extension field of F if and only if gcd(f(x), f ′(x)) = 1.

68. Show that if K is a finite dimensional separable extension of F , then K = F (u) for some u
in K.
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69. Let F be a field and let f(x) = xn − x ∈ F [x]. Show that if charF = 0 or if charF = p and
p - n− 1, then f has no multiple root in any extension of F .

70. Show that if F is a field of characteristic 0 then every algebraic extension of F is separable.
(Provide an argument; do not just state that every field of characteristic 0 is perfect and
every algebraic extension of a perfect field is separable.)

71. Show that if F is a finite field then every algebraic extension of F is separable.

72. Let F be a field of characteristic p and let x be an indeterminate over F .

(a) Show that F (xp) is a proper subfield of F (x).

(b) Show that F (x) is a splitting field for some polynomial over F (xp).

(c) Show that the only automorphism of F (x) fixing F (xp) is the identity automorphism.

73. Let F be a field and f(x) ∈ F [x] an irreducible polynomial. Prove that there is a prime p,
an integer a > 0 and a separable polynomial g(x) ∈ F [x] such that f(x) = g(xp

a
).

74. Let K be an arbitrary separable extension of F . Show that if every element of K is a root of
a polynomial in F [x] of degree less than or equal to n, then K is a simple extension of F of
degree less than or equal to n.

75. Let F be a field and let f(x) ∈ F [x] have splitting field K. Show that if the degree of f is a
prime p and [K : F ] = tp for some integer t, then

(a) f(x) is irreducible over F and

(b) if t > 1 then K is a separable extension of F .

76. Let x and y be independent indeterminates over Zp, K = Zp(x, y), and F = Zp(xp, yp).
(a) Show that [K : F ] = p2

(b) Show that K is not a simple extension of F .

77. A field F is called perfect if every element of an algebraic closure of F is separable over F .
Let F be a field of characteristic p. Show that the following are equivalent.

(i) The field F is perfect.

(ii) For every ε ∈ F there exists a δ ∈ F such that δp = ε.

(iii) The map a 7→ ap is an automorphism of F .

78. Show that every field of characteristic 0 is perfect.

79. Show that every finite field is perfect.

80. Let F ⊆ K be fields having characteristic p and assume that K is a normal algebraic extension
of F . Prove that there exists a field E with F ⊆ E ⊆ K, E/F purely inseparable, and K/E
separable.

81. Let E be a field and let G be a finite group of automorphisms of E. Let F be the fixed field
of G. Prove that E is a separable algebraic extension of F .

82. Let G be a finite group of automorphisms of the field K and set

F = {α ∈ K | ασ = α for all σ ∈ G}.

Show that every element of K is separably algebraic over F of degree at most |G|.
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83. Let p be a prime and let F = Zp(x) be the field of fractions of Zp[x]. Let E be the splitting
field of f(y) = yp − x over F .

(a) Show that [E : F ] = p.

(b) Show that |AutF (E)| = 1.

(c) What conclusion can you draw from (a) and (b)?

84. Let K = F (u) be a separable extension of F with um ∈ F for some positive integer m. Show
that if the characteristic of F is p and m = ptr, then ur ∈ F .

85. If K is an extension of a field F of characteristic p 6= 0, then an element u of K is called
purely inseparable over F if up

t ∈ F for some t. Show that the following are equivalent.

(i) u is purely inseparable over F .

(ii) u is algebraic over F with minimal polynomial xp
n − a for some a ∈ F and integer n.

(iii) u is algebraic over F and its minimal polynomial factors as (x− u)m.

86. Show that every purely inseparable field extension is a normal extension.

87. Let K be an extension of a field F of characteristic p 6= 0. Show that an element u of K is
both separable and purely inseparable if and only if u ∈ F .

88. Let Z2(x) be the field of fractions of the polynomial ring Z2[x]. Construct an extension of
Z2(x) that is neither separable nor purely inseparable.

Galois Theory

89. State the Fundamental Theorem of Galois Theory.

90. Let K be a finite Galois extension of F with Galois group G. Suppose that E1 and E2 are
intermediate extensions satisfying E1 ⊂ E2, and let H1 ⊃ H2 be the corresponding subgroups
of G. Prove that E2 is a normal extension of E1 if and only if H2 is a normal subgroup of H1,
and when this happens, the Galois group of E2 over E1 is isomorphic to H1/H2.

91. Let K be a finite Galois extension of F with Galois group G = Gal(K/F ). Let E be an
intermediate field that is normal over F . Prove that Gal(K/E) E G and G/Gal(K/E) ∼=
Gal(E/F ).

92. Let K be a finite algebraic extension of F and let G be the group of all F -automorphisms
of K. Let F(G) = {u ∈ K | σ(u) = u for all σ ∈ G}. Show that K is both separable and
normal (i.e. Galois) over F if and only if F(G) = F .

93. Let K be a Galois extension of the field F with Galois group G. Let g(x) be a monic
polynomial over F that splits over K (that is, K contains a splitting field for g(x) over F )
and let ∆ ⊆ K be the set of roots of g(x). Prove that g(x) is a power of a polynomial that
is irreducible over F if and only if G is transitive on ∆.

94. Let K be a finite dimensional extension field of L and let σ : L → F be an embedding of L
into a field F . Prove that there are at most [K : L] extensions of σ to embeddings of K
into F .
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95. If S is any semi-group (written multiplicatively) and F any field, a homomorphism from S
into the multiplicative group of nonzero elements of F is called an F -character of S.

Prove that any set {σ1, σ2, . . . , σn} of F -characters of S is linearly independent in the vector
space over F of functions S → F .

96. Let K be an extension field of F and let F ′ be the fixed field of the group of F -automorphisms
of K. Show that K is a Galois extension of F ′.

97. Let K be a finite normal extension of F and let E be the fixed field of the group of all
F -automorphisms of K. Show that the minimal polynomial over F of each element of E has
only one distinct root.

98. Let E be a splitting field over F of a separable polynomial f(x) in F [x] and G = Gal(E/F ).
Show that {e ∈ E | σ(e) = e for all σ ∈ G} = F .

99. [NEW]
Let F be a field, f(x) ∈ F [x] irreducible and separable over F , and K the splitting field of
f(x) over F . Prove that if the Galois group of K over F is abelian, then K = F (α), where
α is a root of f(x).

100. Let K be a Galois extension of F with |Gal(K/F )| = 12. Prove that there exists a subfield
E of K containing F with [E : F ] = 3. Does a subextension L necessarily exist satisfying
[L : F ] = 2? Explain.

101. Suppose K = F (α) is a proper Galois extension of F and assume there exists an element σ
of Gal(K/F ) satisfying σ(α) = α−1. Show that [K : F ] is even and that [F (α + α−1) : F ] =
1
2 [K : F ].

102. Let K be a finite Galois extension of F of characteristic 0. Show that if Gal(K/F ) is a
non-trivial 2-group, then there is a quadratic extension of F contained in K.

103. Let G be a finite group. Show that there is an algebraic extension F of the field Q of rational
numbers and a Galois extension K of F such that G ∼= Gal(K/F ).

104. (a) Find the Galois group of x3 − 2 over Q and demonstrate the Galois correspondence
between the subgroups of the Galois group and the subfields of the splitting field.

(b) Find all automorphisms of Q( 3
√

2). Is there an f(x) ∈ Q[x] with splitting field Q( 3
√

2)?
Explain.

105. Let F be any field and let f(x) = xn − 1 ∈ F [x]. Show that if K is the splitting field of f(x)
over F , then K is separable over F (hence Galois) and that Gal(K/F ) is abelian.

106. Let η7 be a complex primitive 7th root of unity and let K = Q(η7). Find Gal(K/Q) and
express each intermediate field F between Q and K as F = Q(β) for some β ∈ K.

107. Let η be a complex primitive 7th root of unity and let K = Q(η), where Q is the field of
rational numbers. Show that there is a unique extension F of degree 2 of Q contained in K
and find q ∈ Q such that F = Q(

√
q).

108. Let Q be the field of rational numbers and η a complex primitive 8th root of unity. Determine
Gal(Q(η)/Q) and all the intermediate fields between Q and Q(η).
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109. (a) Determine the Galois group of x4 − 4 over the field Q of rational numbers.

(b) How many intermediate fields are there between Q and the splitting field of x4 − 4?

110. Let f(x) = (x2− 2)(x2− 3) and let K be the splitting field of f(x) over Q. Find, with proof,
all elements of Gal(K/Q) and all intermediate subfields of K.

111. Determine the Galois group of x4 − 4 over the field Q of rational numbers and identify all
of the intermediate fields between Q and the splitting field of x4 − 4. Use the Fundamental
Theorem.

112. Determine the Galois group of x4 − 3 over the field Q of rational numbers.

113. Determine the Galois group of x4 + 2 over the field Q of rational numbers.

114. Determine the Galois group of x3 + 3x2 − 1 over Q.

115. Show that the Galois group of x3−5 over Q is S3 and demonstrate the Galois correspondence
between the subgroups of S3 and the subfields of the splitting field. Which subfields are
normal over Q?

116. Let K be the splitting field of x3 − 3 over Q. Use Galois Theory to identify Gal(K/Q) and
find explicitly all of the intermediate subfields.

117. Let K be a splitting field for x5 − 2 over Q.

(a) Determine [K : Q].

(b) Show that Gal(K/Q) is non-abelian.

(c) Find all normal intermediate extensions F and express as F = Q(α) for appropriate α.

118. Let Q be the field of rational numbers and E the splitting field (in the field of complex
numbers) of x4 − 2.

(a) Find |Gal(E/Q)|.
(b) Let σ ∈ Gal(E/Q) be such that σ(α) = ᾱ for all α ∈ E (where ᾱ is the complex conjugate

of α). Find Inv(〈σ〉) = {α ∈ E | σ(α) = α}.
(c) Is 〈σ〉 a normal subgroup of Gal(E/Q)?

119. Let f(x) = x4 + 4x2 + 2 and let K be the splitting field of f over Q. Show that the Galois
group of K over Q is cyclic of order 4.

120. [NEW]
Find, with proof, the Galois group of the splitting field over the rational numbers of the
polynomial f(x) where

(a) f(x) = x6 + 3,

(b) f(x) = x6 − 3,

(c) f(x) = x8 + 2,

(d) f(x) = x8 − 2.

121. Let p be a prime number, and let K be the splitting field of f(x) = x6− p over Q, the field of
rational numbers. Determine the Galois group of K over Q as well as all of the intermediate
fields E satisfying |E : Q| = 2.
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122. Let F be the field of 2 elements and K a splitting field of f(x) = x6 + x3 + 1 over F .

(a) Show that if r is a root of f , then r9 = 1 but r3 6= 1.

(b) Show that f is irreducible over F .

(c) Find Gal(K/F ) and express each intermediate field between F and K as F (b) for ap-
propriate b in K.

123. Let K be a Galois extension of Q whose Galois group is isomorphic to S5. Prove that K is
the splitting field of some polynomial of degree 5 over Q.

124. Let f(x) ∈ Q[x] be an irreducible polynomial of degree n with roots α1, . . . , αn. Show that
n∑
i=1

1
αi

is a rational number.

125. Let α =
√

2 +
√

3 and let E = Q(α).

(a) Find the minimal polynomial m(x) of α over Q and |E : Q|.
(b) Find the splitting field of m(x) over Q and all intermediate fields, and find its Galois

group over Q and all its subgroups.

126. Let α =
√

3 +
√

5.

(a) Find the minimal polynomial m(x) of α over Q.

(b) Find, with proof, the Galois group of the splitting field of m(x) over Q.

127. (a) Find the minimal polynomial f(x) of α =
√

8 +
√

15 over Q and prove that your answer
is correct.

(b) Find the Galois group of the splitting field of f(x) over Q.

128. Let u =
√

2 +
√

2, v =
√

2−
√

2, and E = Q(u), where Q is the field of rational numbers.

(a) Find the minimal polynomial f(x) of u over Q.

(b) Show v ∈ E. Hence conclude that E is a splitting field of f(x) over Q.

(c) Determine the Galois group of E over Q.

129. Let F be a field of characteristic 0 and let a ∈ F . Prove that if f(x) = x4 + ax2 + 1 is
irreducible over F and K is a splitting field for f(x) over F , then Gal(K/F ) has order 4 and
is not cyclic. [Hint: If α is a root of f(x), then so are −α and 1/α.]

130. Let α =
√

5 + 2
√

5. Show that Q(α) is a cyclic Galois extension of Q of degree 4. Find all
fields F with Q ⊆ F ⊆ Q(α).
[Hint: Show that f(x) = x4 − 10x2 + 5 is the minimal polynomial of α over Q and that the

roots of f are ±α, ±
√
5
α .]

131. Let p be a prime such that there is a positive integer d with p = 1+d2 and let α =
√
p+ d

√
p.

Show that Q(α) is a cyclic Galois extension of Q of degree 4. Find all fields F with Q ⊆ F ⊆
Q(α).
[Hint: Show that f(x) = x4 − 2px2 + p is the minimal polynomial of α over Q and that the

roots of f are ±α, ±
√
p
α .]

132. Let f(x) ∈ Q[x] be an irreducible polynomial of degree 4 with exactly two real roots. Show
that the Galois group of f over Q has order either 8 or 24.
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133. Let f(x) ∈ Q[x] be an irreducible polynomial of degree 4 with exactly 2 real roots. Show that
the Galois group of f over Q is either S4 or the dihedral group of order 8.

134. Let f(x) ∈ Q[x] be an irreducible polynomial of degree 5. Assume f(x) has exactly 3 distinct
real roots and one complex conjugate pair of roots. Prove that if K is the splitting field of
f(x) over Q, then Gal(K/Q) is S5.

135. Let f(x) ∈ Q[x] be an irreducible polynomial of degree n > 2 that has n − 2 real roots and
exactly one pair of complex conjugate roots. Prove that the Galois group of f(x) over Q is
not a simple group.

136. Let f(x) = x4 + ax3 + bx2 + ax + 1 ∈ Q[x] and let F be a splitting field over Q. Show that
if α is a root of f then 1/α is also a root, and |Gal(F/Q)| 6 8.

137. Let F be a field and let f(x) ∈ F [x] be an irreducible polynomial of degree 4 with distinct
roots α1, α2, α3, and α4. Let K be a splitting field for f over F and assume Gal(K/F ) ∼= S4.
Find Gal(K/F (β)), where β = α1α2 + α3α4.

138. Let E be a finite dimensional Galois extension of a field F and let G = Gal(E/F ). Suppose
that G is an abelian group. Prove that if K is any field between E and F , then K is a Galois
extension of F .

139. Let K be a finite Galois extension of F and let E be an intermediate field which is normal
over F . For an element σ of Gal(K/F ) and g(x) = e0 + e1x + · · · + emx

m in E[x], denote
σg(x) = σ(e0) + σ(e1)x+ · · ·+ σ(em)xm. For a fixed element α of K, let f(x) ∈ E[x] be the
minimal polynomial of α over E. Show the following.

(a) σ(α) is a root of σf(x).

(b) If f1(x), f2(x), . . . , fn(x) are all the distinct elements of {σf(x) | σ ∈ Gal(K/F )}, then
h(x) = f1(x)f2(x) · · · fn(x) is in F [x].

(c) h(x) is the minimal polynomial of α over F .

140. Let K be a Galois extension of k and let k ⊆ F ⊆ K and k ⊆ L ⊆ K.

(a) Show that Gal(K/LF ) = Gal(K/L) ∩Gal(K/F ).

(b) Show that Gal(K/L ∩ F ) = 〈Gal(K/L),Gal(K/F )〉.

141. Let Q be the algebraic closure of Q and let α be an element of Q not in Q.

(a) Show that there is a field M ⊆ Q that is maximal with respect to the property that
α 6∈M .

(b) Show that any finite Galois extension of M has cyclic Galois group.

(c) Show that any finite extension of M is a Galois extension.

142. Let E be a finite dimensional Galois extension of a field F and let G = Gal(E/F ). For e ∈ E
let G(e) = {σ(e) | σ ∈ G}. Let e1, e2, . . . , en be all the distinct elements of G(e).

(a) Prove that f(x) = (x− e1)(x− e2) · · · (x− en) is in F [x].

(b) Prove that f(x) is irreducible in F [x].

143. Let E be a finite dimensional Galois extension of F of characteristic different from 2. Suppose
Gal(E/F ) is a non-cyclic group of order 4. Show that E = F (α, β) for some α, β ∈ E with
α2 ∈ F and β2 ∈ F .
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144. Let E = Q[α, β], where α2, β2 ∈ Q and |E : Q| = 4. Prove that if γ ∈ E − Q and γ2 ∈ Q,
then γ is a rational multiple of one of α, β, or αβ.

Cyclotomic Extensions

145. Find the 6th, 8th, and 12th cyclotomic polynomials over Q.

146. Let α be a complex primitive 43rd root of 1. Prove that there is an extension field F of the
rational numbers such that [F (α) : F ] = 14.

147. Let m be an odd integer and let ηm, η2m be a complex primitive m-th, 2m-th root of unity,
respectively. Show that Q(ηm) = Q(η2m).

148. Let (m,n) = 1, and if i is any positive integer let ηi denote a complex primitive i-th root of
unity. Show that Q(ηmn) = Q(ηm)Q(ηn) and Q(ηm) ∩Q(ηn) = Q.

149. Let ε be the complex number cos(2πn ) + i sin(2πn ), where n is a positive integer. Show

(a) ε is algebraic over the field Q of rational numbers,

(b) if Φn(x) is the minimal polynomial of ε over Q, then Q(ε) is a splitting field of Φn(x)
over Q,

(c) the Galois group of Q(ε) over Q is isomorphic to the group of units of Zn.

150. Let ε be a primitive n-th root of unity over Q, where n > 2, and let α = ε+ ε−1. Prove that α
is algebraic over Q of degree ϕ(n)/2.

Finite Fields

151. Prove that the multiplicative group of a finite field must be cyclic.

152. Prove that any finite extension of a finite field must be a simple extension.

153. Show that any two finite fields of the same order are isomorphic.

154. Let F be an extension of Zp of degree n. Show that F is a Galois extension and Gal(F/Zp)
is cyclic of order n.

155. Show that every finite extension of a finite field is a Galois extension.

156. Show that every algebraic extension of a finite field is separable.

157. Show that every finite field is perfect. (Recall that a field F of characteristic p is called perfect
if the map α 7→ αp is a surjection on F .)

158. Let f(x) ∈ Zp[x] be irreducible of degree m. Show that f(x) | (xpn − x) if and only if m | n.

159. Let p be a prime. Show that the field of pa elements is a subfield of the field of pb elements
if and only if a | b.

160. Let p be a prime and Fp the field of p elements. Show that for every positive integer n, there
is an irreducible polynomial of degree n over Fp.
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161. Let F be a finite field. Prove that the polynomial ring F [x] contains irreducible polynomials
of arbitrarily large degree.

162. Let F be a finite field. Show that the product of all the non-zero elements of F is −1.

163. Let Fq be the field of q elements and let f(x) be a polynomial in Fq[x]. Show that if α is a
root of f(x), then αq is also a root of f(x).

164. Let E and F be subfields of a finite field K. Show that if E is isomorphic to F then E = F .

165. Let E and F be finite subfields of a field K. Show that if E and F have the same number of
elements, then E = F .

166. Let Fp be the field of p elements and let K be an extension of Fp of degree n. Show that the
set of subfields of K is linearly ordered (i.e., for every pair of subfields L1, L2, either L1 ⊆ L2

or L2 ⊆ L1) if and only if n is a prime power.

167. Let f(x) = x2 − 2 ∈ Fp[x], where p > 2 is prime and Fp is the field of p elements. Give an
example of a prime p for which f is irreducible and another example where f reduces.

168. Let α be a root of x2+1 in an extension of Z3, K = Z3(α), and let f(x) = x4+x3+x+2 ∈ Z3[x].

(a) Show that f splits over K.

(b) Find a generator α of the multiplicative group of K and express the roots of f in terms
of α.

169. Let α be a root of x2 + 1 in an extension of Z3, K = Z3(α), and let f(x) = x4 + 1 ∈ Z3[x].

(a) Show that f splits over K.

(b) Find a generator β of the multiplicative group K∗ of K.

(c) Express the roots of f in terms of β.

170. Let K = Z3(
√

2) and let f(x) = x4 + x3 + x+ 2 ∈ Z3[x].

(a) Show that f splits over K.

(b) Find a generator α of the multiplicative group K∗ of K.

(c) Express the roots of f in terms of α.

171. Let F = F81 be the field of 81 elements.

(a) Find all subfields of F.

(b) Determine the number of primitive elements for F over the field F3 of 3 elements (i.e.,
elements α of F such that F = F3(α)).

(c) Find the number of generators for the multiplicative group F∗ of F (i.e., elements β of
F such that 〈β〉 = F∗).

172. Let f(x) = x4 + x3 + 4x− 1 ∈ Z5[x].
Find the Galois group of the splitting field of f over Z5.
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Cyclic Extensions

173. Let K be a field of characteristic p 6= 0 and let Kp = {up − u : u ∈ K}. Show that K has a
cyclic extension of degree p if and only if K 6= Kp.

174. Let p be a prime and F the field of fractions of Zp[x]. If E is the splitting field of yp − y − x
over F , determine the Galois group of E over F .

175. Let n be a positive integer and let F be a field of characteristic 0 containing a primitive n-th
root of unity. Let a be an element of F such that a is not an m-th power of an element of F
for any 1 6= m | n. Show that if α is any root of xn − a, then F (α) is a cyclic extension of F
of degree n.

176. Let F be a field that contains a primitive nth root of unity and let K = F (t), the field of
fractions of the polynomial ring F [t]. Let L = F (tn) ⊆ K. Prove that K is a Galois extension
of L and that the Galois group is cyclic of order n.

177. Let F be a field of characteristic p. Fix c ∈ F and let f(x) = xp − x+ c ∈ F [x]. Prove that
if α is a root of f(x) in some extension field, then so is α+ 1. Use this to prove that if K is
the splitting field of f(x) over F , then either K = F and f(x) splits completely over F , or
[K : F ] = p and f(x) is irreducible over F . (Use Galois groups.)

Radical Extensions and Solvability By Radicals

178. An extension K of F is called a radical extension if there is a tower of fields

F ⊆ F (u1) ⊆ F (u1, u2) ⊆ · · · ⊆ F (u1, . . . , un) = K

such that for i = 1, . . . , n, umi
i ∈ F (u1, . . . , ui−1) for some positive integer mi.

(a) Give an example of a radical extension that is not separable.

(b) Give an example of a radical extension that is not normal.

179. Let F be a radical extension of K. Show that there is a radical extension N of K with
N ⊇ F ⊇ K and N normal over K.

180. Let F be a finite field of characteristic p. Show that if f ∈ F [x] is an irreducible polynomial
and the degree of f is less than p, then f(x) = 0 is solvable by radicals.

181. Let x1, . . . , xn be indeterminates over a field F and let s1, . . . , sn be the elementary symmetric
functions of the xi. Show that [F (x1, . . . , xn) : F (s1, . . . , sn)] = n!.

Transcendental Extensions

182. Let x be an indeterminate over the field F . Show that an element of F (x) is algebraic over F
if and only if it is an element of F .

183. Let F ⊆ E be fields with E = F (α), where α is transcendental over F . Show that if β ∈ E−F ,
then [E : F (β)] is finite.
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184. Let F be a field, F [x] the ring of polynomials over F in the indeterminate x, and E = F (x)
the field of fractions of F [x].

(a) Show that if σ is an automorphism of E such that σ(u) = u for all u ∈ F , then

σ(x) =
ax+ b

cx+ d
for some a, b, c, d ∈ F with ad− bc 6= 0.

(b) Determine the group AutF (E) of F -automorphisms of E.

185. Let K be an extension field of F and let α ∈ K be transcendental over F . Show that if
β ∈ K is algebraic over F (α), then there is a nonzero polynomial p(x, y) ∈ F [x, y] such that
P (α, β) = 0.
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