ALGEBRA QUALIFYING EXAM PROBLEMS FIELD THEORY

Kent State University Department of Mathematical Sciences

Compiled and Maintained by Donald L. White

Version: September 7, 2023

CONTENTS

FIELD THEORY

General Field Theory	. 1
Algebraic Extensions	
Normality and Splitting Fields	
Separability	
Galois Theory	. 7
Cyclotomic Extensions	
Finite Fields	12
Cyclic Extensions	14
Radical Extensions and Solvability by Radicals	14
Transcendental Extensions	14

FIELD THEORY

General Field Theory

- 1. Prove or disprove each of the following statements.
 - (a) If K is a subfield of F and F is isomorphic to K, then F = K.
 - (b) The field \mathbb{C} of complex numbers is an algebraic closure of the field \mathbb{Q} of rational numbers.
 - (c) If K is a finitely generated extension of F, then [K:F] is finite.
 - (d) If K is a finitely generated algebraic extension of F, then [K:F] is finite.
 - (e) If $F \subseteq E \subseteq K$ is a tower of fields and K is normal over F, then E is normal over F.
 - (f) If $F \subseteq E \subseteq K$ is a tower of fields and K is normal over F, then K is normal over E.
 - (g) If $F \subseteq E \subseteq K$ is a tower of fields, E is normal over F and K is normal over E, then K is normal over F.
 - (h) If $F \subseteq E \subseteq K$ is a tower of fields and K is separable over F, then E is separable over F.
 - (i) If $F \subseteq E \subseteq K$ is a tower of fields and K is separable over F, then K is separable over E.
 - (j) If $F \subseteq E \subseteq K$ is a tower of fields, E is separable over F and K is separable over E, then K is separable over F.
- 2. Give an example of an infinite chain $\Omega_1 \subset \Omega_2 \subset \Omega_3 \subset \cdots$ of algebraically closed fields.
- 3. Let E be an extension field of a field F and f(x), $g(x) \in F[x]$. Prove that a greatest common divisor of f and g in F[x] is also a greatest common divisor of f and g in E[x].
- 4. Let F be a field and F^* its multiplicative group. Show that the abelian groups (F, +) and (F^*, \cdot) are not isomorphic.
- 5. Prove that a finite subgroup of the multiplicative group of a field must be cyclic.
- 6. (a) Prove that a finite integral domain is a field.
 - (b) Prove that if R is an integral domain that is finite dimensional over a subfield $F \subseteq R$, then R is a field.
- 7. Show that if F is a finite extension of \mathbb{Q} , then the torsion subgroup of F^* is finite. [Hint: The torsion subgroup consists of roots of unity.]
- 8. Suppose $F \subset E \subset K$ is any tower of fields and [K : F] is finite. Show that [K : F] = [K : E][E : F].
- 9. Let K be a field extension of F of degree n and let $f(x) \in F[x]$ be an irreducible polynomial of degree m > 1. Show that if m is relatively prime to n, then f has no root in K.
- 10. Let $f(x) = a_n x^n + \dots + a_1 x + a_0 \in \mathbb{Q}[x]$ be an irreducible polynomial of degree greater than 1 in which all roots lie on the unit circle of \mathbb{C} . Prove that $a_i = a_{n-i}$ for all i.
- 11. Let F be a field extension of the rational numbers.
 - (a) Show that $\{a + b\sqrt{2} \mid a, b \in F\}$ is a field.
 - (b) Give necessary and sufficient conditions for $\{a+b\sqrt[3]{2} \mid a,b\in F\}$ to be a field.

- 12. Let K be a field extension of a field F and let α be an element of K. Give necessary and sufficient conditions for $\{a + b\alpha \mid a, b \in F\}$ to be a field.
- 13. Let K be an extension field of F with $a, b \in K$. Let [F(a) : F] = m and [F(b) : F] = n and assume (m, n) = 1. Show that $F(a) \cap F(b) = F$ and [F(a, b) : F] = mn.
- 14. Let F, L, and K be subfields of a field M, with $F \subseteq K$ and $F \subseteq L$. Let [K : F] = k and $[L : F] = \ell$.
 - (a) Show that $[KL:F] \leq k\ell$.
 - (b) Show that if $(k, \ell) = 1$ then $[KL : F] = k\ell$.
 - (c) Give an example where $[KL : F] < k\ell$.
- 15. Let K be a finite dimensional extension field of a field F and let G be a group of F-automorphisms of K. Prove that $|G| \leq [K:F]$.
- 16. Let E be a finite dimensional extension of a field F and let G be a group of F-automorphisms of E such that [E:F]=|G|. Show that F is the fixed field of G.
- 17. Let E be a finite dimensional extension of a field F and let G be a group of F-automorphisms of E. Show that if F is the fixed field of G, then [E:F]=|G|.
- 18. Let F be a field with the property
 - (*) If $a, b \in F$ and $a^2 + b^2 = 0$, then a = 0 and b = 0.
 - (a) Show that $x^2 + 1$ is irreducible in F[x].
 - (b) Which of the fields \mathbb{Z}_3 , \mathbb{Z}_5 satisfy (*)?
- 19. Show that $p(x) = x^3 + x 6$ is irreducible over $\mathbb{Q}[i]$.
- 20. In each case below a field F and a polynomial $f(x) \in F[x]$ are given. Either prove that f is irreducible over f or factor f(x) into irreducible polynomials in F[x]. Find [K:F], where K is a splitting field for f over F.
 - (a) $F = \mathbb{Q}$, $f(x) = x^4 5$.
 - (b) $F = \mathbb{Q}(\sqrt{-3}), f(x) = x^3 3.$
 - (c) $F = \mathbb{Q}$, $f(x) = x^3 x^2 5x + 5$.
- 21. Let \mathbb{Q} be the field of rational numbers. Show that the group of automorphisms of \mathbb{Q} is trivial.
- 22. Let \mathbb{R} be the field of real numbers. Show that the group of automorphisms of \mathbb{R} is trivial.
- 23. Let \mathbb{R} be the field of real numbers. Show that if f(x) is an irreducible polynomial over \mathbb{R} , then f is of degree 1 or 2.
- 24. Let F be a field and p a prime. Let $G = \{c \in F \mid c^{p^n} = 1 \text{ for some positive integer } n\}$.
 - (a) Show that G is a subgroup of the multiplicative group of F.
 - (b) Prove that either G is a cyclic group or G is isomorphic to $\mathbb{Z}(p^{\infty})$, the Prüfer group for the prime p.

- 25. Let E be a finite dimensional extension of a field F and let G be a group of F-automorphisms of E. Show the following.
 - (a) If $e \in E$ then $G_e = \{ \sigma \in G \mid \sigma(e) = e \}$ is a subgroup of G.
 - (b) $[G:G_e] \leq [F(e):F].$
 - (c) If F is the fixed field of G and e_1, e_2, \ldots, e_n are the distinct images of e under G, then $f(x) = (x e_1)(x e_2) \cdots (x e_n)$ is the minimal polynomial of e over F.
- 26. Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ is a simple extension of \mathbb{Q} .
- 27. Find the minimal polynomial of $\alpha = \sqrt{3 + \sqrt{7}}$ over the field \mathbb{Q} of rational numbers, and *prove* it is the minimal polynomial.
- 28. Find the minimal polynomial of $\alpha = \sqrt{5 + \sqrt{3}}$ over the field \mathbb{Q} of rational numbers, and *prove* it is the minimal polynomial.
- 29. Find the minimal polynomial of $\alpha = \sqrt{11 + \sqrt{3}}$ over the field \mathbb{Q} of rational numbers, and prove it is the minimal polynomial.
- 30. Find the minimal polynomial of $\alpha = \sqrt{3 + 2\sqrt{2}}$ over the field \mathbb{Q} of rational numbers, and prove it is the minimal polynomial.
- 31. Find the minimal polynomial of $\alpha = \sqrt[3]{2 + \sqrt{2}}$ over the field \mathbb{Q} of rational numbers, and *prove* it is the minimal polynomial.
- 32. Let F be a field. Show that F is algebraically closed if and only if every maximal ideal of F[x] has codimension 1.

Algebraic Extensions

- 33. Let α belong to some field extension of the field F. Prove that $F(\alpha) = F[\alpha]$ if and only if α is algebraic over F.
- 34. Show that $p(x) = x^3 + 2x + 1$ is irreducible over \mathbb{Q} . Let θ be a root of p(x) in an extension field and find the mutiplicative inverse of $1 + \theta$ in $\mathbb{Q}[\theta]$.
- 35. Let $F \subseteq K$ be fields and let $\alpha \in K$ be algebraic over F with minimal polynomial $f(x) \in F[x]$ of degree n. Show that $\{1, \alpha, \ldots, \alpha^{n-1}\}$ is a basis for $F(\alpha)$ over F.
- 36. Show that if K is finite dimensional field extension of F, then K is algebraic over F.
- 37. Let F be a field, let $E = F(\alpha)$ be a simple extension field of F, and let $\beta \in E F$. Prove that α is algebraic over $F(\beta)$.
- 38. Show that if $|F:\mathbb{Q}|=2$, then there exists a square free integer m different from 1 so that $F=\mathbb{Q}(\sqrt{m})$.
- 39. Let K be an extension field of the field F such that [K:F] is odd. Show that if $u \in K$ then $F(u) = F(u^2)$.
- 40. (a) Let α be algebraic over a field F and set $E = F(\alpha)$. Prove that if |E:F| is odd, then $E = F(\alpha^2)$.
 - (b) Give an example of a simple algebraic extension $E = F(\alpha)$ where |E:F| is not divisible by 3 but $F(\alpha^3)$ is strictly contained in E.

- 41. Let K be a finite degree extension of the field F such that [K : F] is relatively prime to 6. Show that if $u \in K$ then $F(u) = F(u^3)$.
- 42. Let F be a field, f(x) an irreducible polynomial in F[x], and α a root of f in some extension of F. Show that if some odd degree term of f(x) has a non-zero coefficient, then $F(\alpha) = F(\alpha^2)$.
- 43. Let f(x) and g(x) be irreducible polynomials in F[x] of degrees m and n, respectively, where (m,n)=1. Show that if α is a root of f(x) in some field extension of F, then g(x) is irreducible in $F(\alpha)[x]$.
- 44. Let K be an extension field of F and let α be an element of K. Show that if $F(\alpha) = F(\alpha^2)$, then α is algebraic over F.
- 45. Let K be an extension field of F and let α be an element of K. Show that the following are equivalent:
 - (i) α is algebraic over F,
 - (ii) $F(\alpha)$ is a finite dimensional extension of F,
 - (iii) α is contained in a finite dimensional extension of F.
- 46. Let α be algebraic over \mathbb{Q} with $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 2$ and set $F = \mathbb{Q}(\alpha)$. Prove that if $f(x) \in \mathbb{Q}[x]$ is irreducible over \mathbb{Q} , then one of the following occurs:
 - (i) f(x) remains irreducible in F[x];
 - (ii) f(x) is a product of two irreducible polynomials in F[x] of equal degree.
- 47. Let $F \subset E \subset K$ be a tower of fields such that $K = F(\alpha)$ with α algebraic over F. Prove that if $f(x) \in F[x]$ is the minimal polynomial of α over F and $F \neq E$, then f(x) is not irreducible in E[x].
- 48. Let E be an extension field of F and $A = \{e \in E \mid e \text{ is algebraic over } F\}$.
 - (a) Show that A is a subfield of E containing F.
 - (b) Show that if $\sigma: E \to E$ is a one-to-one F-homomorphism, then $\sigma(A) = A$.
- 49. Let p and q be distinct primes. Show that \sqrt{q} is not an element of $\mathbb{Q}(\sqrt{p})$.
- 50. Show that if $p_1, \ldots, p_n, p_{n+1}$ are distinct prime numbers, then $\sqrt{p_{n+1}}$ is not an element of the field $\mathbb{Q}(\sqrt{p_1}, \ldots, \sqrt{p_n})$.
- 51. Let α_1 , α_2 , and α_3 be real numbers such that $(\alpha_i)^2 \in \mathbb{Q}$ for each i, and let $K = \mathbb{Q}(\alpha_1, \alpha_2, \alpha_3)$. Show that $\sqrt[3]{2}$ is not in K.
- 52. (a) Prove that if E is a finite dimensional field extension of F that is generated over F by a subset S of E satisfying $a^2 \in F$ for all $a \in S$, then |E : F| is a power of 2.
 - (b) Give an example that shows 2 cannot be replaced by 3 in part (a).
- 53. Let $F \subseteq L \subseteq K$ with [L:F] finite, and let α be an element of K. Show that α is algebraic over L if and only if α is algebraic over F.
- 54. Show that if K is algebraic over F and $\sigma: K \to K$ is an F-monomorphism, then σ is onto.

- 55. Suppose K is an algebraic extension field of a field F such that there are only finitely many intermediate fields between F and K. Show that K is a simple extension of F.
- 56. Let K be a simple algebraic extension of a field F. Show that there are only finitely many intermediate fields between F and K.
- 57. Suppose E is an algebraic extension of F and \bar{E} is an algebraic closure of E. Show that \bar{E} is an algebraic closure of F.
- 58. Let α be algebraic over the field F with minimal polynomial $f(x) \in F[x]$ and let $K = F[\alpha]$. Show that if $\sigma : F \to L$ is a field monomorphism and $\beta \in L$ is a root of $f^{\sigma}(x) \in L[x]$, then σ has a unique extension $\hat{\sigma} : K \to L$ satisfying $\hat{\sigma}(\alpha) = \beta$.
- 59. Suppose E_1 and E_2 are algebraic closures of a field F. Show that there is an F-isomorphism $\sigma: E_1 \to E_2$.
- 60. (a) Show that for every prime p and every positive integer n there is an irreducible polynomial of degree n over the field \mathbb{F}_p of p elements.
 - (b) Show that for every positive integer n there is an irreducible polynomial of degree n over the field \mathbb{Q} of rational numbers.

Normality and Splitting Fields

- 61. Let K be an extension field of F. Show that the following are equivalent.
 - (i) Each irreducible polynomial in F[x] with one root in K has all its roots in K.
 - (ii) K is obtained from F by adjoining all roots of a set of polynomials in F[x].
 - (iii) Every F-isomorphism of K in a fixed algebraic closure is an F-automorphism.
- 62. Let K be the splitting field of $x^2 + 2$ over \mathbb{Q} . Prove or disprove that $i = \sqrt{-1}$ is an element of K.
- 63. Let K be the splitting field of $x^3 5$ over \mathbb{Q} . Prove or disprove that $i = \sqrt{-1}$ is an element of K.
- 64. Let Ω be a fixed algebraic closure of F and $K \subseteq \Omega$ an algebraic extension of F. Show that K is a normal extension of F if and only if every F-isomorphism $\varphi: K \to K' \subseteq \Omega$ is an F-automorphism.
- 65. Let F be a field and E a splitting field of the irreducible polynomial $f(x) \in F[x]$. Show that if $c, d \in F$ and $c \neq 0$, then the polynomial f(cx + d) splits in E[x].

Separability

- 66. Show that if K is a separable extension of F and L is a field with $F \subseteq L \subseteq K$, then L is a separable extension of F and K is a separable extension of L.
- 67. Let $f(x) \in F[x]$ be a polynomial, and let f'(x) denote its formal derivative in F[x]. Prove that f(x) has distinct roots in any extension field of F if and only if gcd(f(x), f'(x)) = 1.
- 68. Show that if K is a finite dimensional separable extension of F, then K = F(u) for some u in K.

- 69. Let F be a field and let $f(x) = x^n x \in F[x]$. Show that if char F = 0 or if char F = p and $p \nmid n 1$, then f has no multiple root in any extension of F.
- 70. Show that if F is a field of characteristic 0 then every algebraic extension of F is separable. (Provide an argument; do not just state that every field of characteristic 0 is perfect and every algebraic extension of a perfect field is separable.)
- 71. Show that if F is a finite field then every algebraic extension of F is separable.
- 72. Let F be a field of characteristic p and let x be an indeterminate over F.
 - (a) Show that $F(x^p)$ is a proper subfield of F(x).
 - (b) Show that F(x) is a splitting field for some polynomial over $F(x^p)$.
 - (c) Show that the only automorphism of F(x) fixing $F(x^p)$ is the identity automorphism.
- 73. Let F be a field and $f(x) \in F[x]$ an irreducible polynomial. Prove that there is a prime p, an integer $a \ge 0$ and a separable polynomial $g(x) \in F[x]$ such that $f(x) = g(x^{p^a})$.
- 74. Let K be an arbitrary separable extension of F. Show that if every element of K is a root of a polynomial in F[x] of degree less than or equal to n, then K is a simple extension of F of degree less than or equal to n.
- 75. Let F be a field and let $f(x) \in F[x]$ have splitting field K. Show that if the degree of f is a prime p and [K:F] = tp for some integer t, then
 - (a) f(x) is irreducible over F and
 - (b) if t > 1 then K is a separable extension of F.
- 76. Let x and y be independent indeterminates over \mathbb{Z}_p , $K = \mathbb{Z}_p(x,y)$, and $F = \mathbb{Z}_p(x^p,y^p)$.
 - (a) Show that $[K:F] = p^2$
 - (b) Show that K is not a simple extension of F.
- 77. A field F is called *perfect* if every element of an algebraic closure of F is separable over F. Let F be a field of characteristic p. Show that the following are equivalent.
 - (i) The field F is perfect.
 - (ii) For every $\epsilon \in F$ there exists a $\delta \in F$ such that $\delta^p = \epsilon$.
 - (iii) The map $a \mapsto a^p$ is an automorphism of F.
- 78. Show that every field of characteristic 0 is perfect.
- 79. Show that every finite field is perfect.
- 80. Let $F \subseteq K$ be fields having characteristic p and assume that K is a normal algebraic extension of F. Prove that there exists a field E with $F \subseteq E \subseteq K$, E/F purely inseparable, and K/E separable.
- 81. Let E be a field and let G be a finite group of automorphisms of E. Let F be the fixed field of G. Prove that E is a separable algebraic extension of F.
- 82. Let G be a finite group of automorphisms of the field K and set

$$F = \{ \alpha \in K \mid \alpha^{\sigma} = \alpha \text{ for all } \sigma \in G \}.$$

Show that every element of K is separably algebraic over F of degree at most |G|.

- 83. Let p be a prime and let $F = \mathbb{Z}_p(x)$ be the field of fractions of $\mathbb{Z}_p[x]$. Let E be the splitting field of $f(y) = y^p x$ over F.
 - (a) Show that [E:F]=p.
 - (b) Show that $|\operatorname{Aut}_F(E)| = 1$.
 - (c) What conclusion can you draw from (a) and (b)?
- 84. Let K = F(u) be a separable extension of F with $u^m \in F$ for some positive integer m. Show that if the characteristic of F is p and $m = p^t r$, then $u^r \in F$.
- 85. If K is an extension of a field F of characteristic $p \neq 0$, then an element u of K is called purely inseparable over F if $u^{p^t} \in F$ for some t. Show that the following are equivalent.
 - (i) u is purely inseparable over F.
 - (ii) u is algebraic over F with minimal polynomial $x^{p^n} a$ for some $a \in F$ and integer n.
 - (iii) u is algebraic over F and its minimal polynomial factors as $(x-u)^m$.
- 86. Show that every purely inseparable field extension is a normal extension.
- 87. Let K be an extension of a field F of characteristic $p \neq 0$. Show that an element u of K is both separable and purely inseparable if and only if $u \in F$.
- 88. Let $\mathbb{Z}_2(x)$ be the field of fractions of the polynomial ring $\mathbb{Z}_2[x]$. Construct an extension of $\mathbb{Z}_2(x)$ that is neither separable nor purely inseparable.

Galois Theory

- 89. State the Fundamental Theorem of Galois Theory.
- 90. Let K be a finite Galois extension of F with Galois group G. Suppose that E_1 and E_2 are intermediate extensions satisfying $E_1 \subset E_2$, and let $H_1 \supset H_2$ be the corresponding subgroups of G. Prove that E_2 is a normal extension of E_1 if and only if H_2 is a normal subgroup of H_1 , and when this happens, the Galois group of E_2 over E_1 is isomorphic to H_1/H_2 .
- 91. Let K be a finite Galois extension of F with Galois group $G = \operatorname{Gal}(K/F)$. Let E be an intermediate field that is normal over F. Prove that $\operatorname{Gal}(K/E) \subseteq G$ and $G/\operatorname{Gal}(K/E) \cong \operatorname{Gal}(E/F)$.
- 92. Let K be a finite algebraic extension of F and let G be the group of all F-automorphisms of K. Let $\mathcal{F}(G) = \{u \in K \mid \sigma(u) = u \text{ for all } \sigma \in G\}$. Show that K is both separable and normal (i.e. Galois) over F if and only if $\mathcal{F}(G) = F$.
- 93. Let K be a Galois extension of the field F with Galois group G. Let g(x) be a monic polynomial over F that splits over K (that is, K contains a splitting field for g(x) over F) and let $\Delta \subseteq K$ be the set of roots of g(x). Prove that g(x) is a power of a polynomial that is irreducible over F if and only if G is transitive on Δ .
- 94. Let K be a finite dimensional extension field of L and let $\sigma: L \to F$ be an embedding of L into a field F. Prove that there are at most [K:L] extensions of σ to embeddings of K into F.

- 95. If S is any semi-group (written multiplicatively) and F any field, a homomorphism from S into the multiplicative group of nonzero elements of F is called an F-character of S. Prove that any set $\{\sigma_1, \sigma_2, \ldots, \sigma_n\}$ of F-characters of S is linearly independent in the vector space over F of functions $S \to F$.
- 96. Let K be an extension field of F and let F' be the fixed field of the group of F-automorphisms of K. Show that K is a Galois extension of F'.
- 97. Let K be a finite normal extension of F and let E be the fixed field of the group of all F-automorphisms of K. Show that the minimal polynomial over F of each element of E has only one distinct root.
- 98. Let E be a splitting field over F of a separable polynomial f(x) in F[x] and G = Gal(E/F). Show that $\{e \in E \mid \sigma(e) = e \text{ for all } \sigma \in G\} = F$.

99. [**NEW**]

- Let F be a field, $f(x) \in F[x]$ irreducible and separable over F, and K the splitting field of f(x) over F. Prove that if the Galois group of K over F is abelian, then $K = F(\alpha)$, where α is a root of f(x).
- 100. Let K be a Galois extension of F with |Gal(K/F)| = 12. Prove that there exists a subfield E of K containing F with [E:F] = 3. Does a subextension L necessarily exist satisfying [L:F] = 2? Explain.
- 101. Suppose $K = F(\alpha)$ is a proper Galois extension of F and assume there exists an element σ of Gal(K/F) satisfying $\sigma(\alpha) = \alpha^{-1}$. Show that [K : F] is even and that $[F(\alpha + \alpha^{-1}) : F] = \frac{1}{2}[K : F]$.
- 102. Let K be a finite Galois extension of F of characteristic 0. Show that if Gal(K/F) is a non-trivial 2-group, then there is a quadratic extension of F contained in K.
- 103. Let G be a finite group. Show that there is an algebraic extension F of the field \mathbb{Q} of rational numbers and a Galois extension K of F such that $G \cong \operatorname{Gal}(K/F)$.
- 104. (a) Find the Galois group of $x^3 2$ over \mathbb{Q} and demonstrate the Galois correspondence between the subgroups of the Galois group and the subfields of the splitting field.
 - (b) Find all automorphisms of $\mathbb{Q}(\sqrt[3]{2})$. Is there an $f(x) \in \mathbb{Q}[x]$ with splitting field $\mathbb{Q}(\sqrt[3]{2})$? Explain.
- 105. Let F be any field and let $f(x) = x^n 1 \in F[x]$. Show that if K is the splitting field of f(x) over F, then K is separable over F (hence Galois) and that Gal(K/F) is abelian.
- 106. Let η_7 be a complex primitive 7th root of unity and let $K = \mathbb{Q}(\eta_7)$. Find $\operatorname{Gal}(K/\mathbb{Q})$ and express each intermediate field F between \mathbb{Q} and K as $F = \mathbb{Q}(\beta)$ for some $\beta \in K$.
- 107. Let η be a complex primitive 7th root of unity and let $K = \mathbb{Q}(\eta)$, where \mathbb{Q} is the field of rational numbers. Show that there is a unique extension F of degree 2 of \mathbb{Q} contained in K and find $q \in \mathbb{Q}$ such that $F = \mathbb{Q}(\sqrt{q})$.
- 108. Let \mathbb{Q} be the field of rational numbers and η a complex primitive 8th root of unity. Determine $\operatorname{Gal}(\mathbb{Q}(\eta)/\mathbb{Q})$ and all the intermediate fields between \mathbb{Q} and $\mathbb{Q}(\eta)$.

- 109. (a) Determine the Galois group of $x^4 4$ over the field $\mathbb Q$ of rational numbers.
 - (b) How many intermediate fields are there between \mathbb{Q} and the splitting field of $x^4 4$?
- 110. Let $f(x) = (x^2 2)(x^2 3)$ and let K be the splitting field of f(x) over \mathbb{Q} . Find, with proof, all elements of $\operatorname{Gal}(K/\mathbb{Q})$ and all intermediate subfields of K.
- 111. Determine the Galois group of $x^4 4$ over the field \mathbb{Q} of rational numbers and identify all of the intermediate fields between \mathbb{Q} and the splitting field of $x^4 4$. Use the Fundamental Theorem.
- 112. Determine the Galois group of $x^4 3$ over the field \mathbb{Q} of rational numbers.
- 113. Determine the Galois group of $x^4 + 2$ over the field \mathbb{Q} of rational numbers.
- 114. Determine the Galois group of $x^3 + 3x^2 1$ over \mathbb{Q} .
- 115. Show that the Galois group of $x^3 5$ over \mathbb{Q} is S_3 and demonstrate the Galois correspondence between the subgroups of S_3 and the subfields of the splitting field. Which subfields are normal over \mathbb{Q} ?
- 116. Let K be the splitting field of $x^3 3$ over \mathbb{Q} . Use Galois Theory to identify $\operatorname{Gal}(K/\mathbb{Q})$ and find explicitly all of the intermediate subfields.
- 117. Let K be a splitting field for $x^5 2$ over \mathbb{Q} .
 - (a) Determine $[K:\mathbb{Q}]$.
 - (b) Show that $Gal(K/\mathbb{Q})$ is non-abelian.
 - (c) Find all normal intermediate extensions F and express as $F = \mathbb{Q}(\alpha)$ for appropriate α .
- 118. Let \mathbb{Q} be the field of rational numbers and E the splitting field (in the field of complex numbers) of $x^4 2$.
 - (a) Find $|Gal(E/\mathbb{Q})|$.
 - (b) Let $\sigma \in \operatorname{Gal}(E/\mathbb{Q})$ be such that $\sigma(\alpha) = \bar{\alpha}$ for all $\alpha \in E$ (where $\bar{\alpha}$ is the complex conjugate of α). Find $\operatorname{Inv}(\langle \sigma \rangle) = \{\alpha \in E \mid \sigma(\alpha) = \alpha\}$.
 - (c) Is $\langle \sigma \rangle$ a normal subgroup of $\operatorname{Gal}(E/\mathbb{Q})$?
- 119. Let $f(x) = x^4 + 4x^2 + 2$ and let K be the splitting field of f over \mathbb{Q} . Show that the Galois group of K over \mathbb{Q} is cyclic of order 4.
- 120. **[NEW**]

Find, with proof, the Galois group of the splitting field over the rational numbers of the polynomial f(x) where

- (a) $f(x) = x^6 + 3$,
- (b) $f(x) = x^6 3$,
- (c) $f(x) = x^8 + 2$,
- (d) $f(x) = x^8 2$.
- 121. Let p be a prime number, and let K be the splitting field of $f(x) = x^6 p$ over \mathbb{Q} , the field of rational numbers. Determine the Galois group of K over \mathbb{Q} as well as all of the intermediate fields E satisfying $|E:\mathbb{Q}|=2$.

- 122. Let F be the field of 2 elements and K a splitting field of $f(x) = x^6 + x^3 + 1$ over F.
 - (a) Show that if r is a root of f, then $r^9 = 1$ but $r^3 \neq 1$.
 - (b) Show that f is irreducible over F.
 - (c) Find Gal(K/F) and express each intermediate field between F and K as F(b) for appropriate b in K.
- 123. Let K be a Galois extension of \mathbb{Q} whose Galois group is isomorphic to S_5 . Prove that K is the splitting field of some polynomial of degree 5 over \mathbb{Q} .
- 124. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree n with roots $\alpha_1, \ldots, \alpha_n$. Show that $\sum_{i=1}^{n} \frac{1}{\alpha_i}$ is a rational number.
- 125. Let $\alpha = \sqrt{2} + \sqrt{3}$ and let $E = \mathbb{Q}(\alpha)$.
 - (a) Find the minimal polynomial m(x) of α over \mathbb{Q} and $|E:\mathbb{Q}|$.
 - (b) Find the splitting field of m(x) over \mathbb{Q} and all intermediate fields, and find its Galois group over \mathbb{Q} and all its subgroups.
- 126. Let $\alpha = \sqrt{3 + \sqrt{5}}$.
 - (a) Find the minimal polynomial m(x) of α over \mathbb{Q} .
 - (b) Find, with proof, the Galois group of the splitting field of m(x) over \mathbb{Q} .
- 127. (a) Find the minimal polynomial f(x) of $\alpha = \sqrt{8 + \sqrt{15}}$ over $\mathbb Q$ and prove that your answer is correct.
 - (b) Find the Galois group of the splitting field of f(x) over \mathbb{Q} .
- 128. Let $u = \sqrt{2 + \sqrt{2}}$, $v = \sqrt{2 \sqrt{2}}$, and $E = \mathbb{Q}(u)$, where \mathbb{Q} is the field of rational numbers.
 - (a) Find the minimal polynomial f(x) of u over \mathbb{Q} .
 - (b) Show $v \in E$. Hence conclude that E is a splitting field of f(x) over \mathbb{Q} .
 - (c) Determine the Galois group of E over $\mathbb Q.$
- 129. Let F be a field of characteristic 0 and let $a \in F$. Prove that if $f(x) = x^4 + ax^2 + 1$ is irreducible over F and K is a splitting field for f(x) over F, then Gal(K/F) has order 4 and is not cyclic. [Hint: If α is a root of f(x), then so are $-\alpha$ and $1/\alpha$.]
- 130. Let $\alpha = \sqrt{5 + 2\sqrt{5}}$. Show that $\mathbb{Q}(\alpha)$ is a cyclic Galois extension of \mathbb{Q} of degree 4. Find all fields F with $\mathbb{Q} \subseteq F \subseteq \mathbb{Q}(\alpha)$. [Hint: Show that $f(x) = x^4 10x^2 + 5$ is the minimal polynomial of α over \mathbb{Q} and that the roots of f are $\pm \alpha$, $\pm \frac{\sqrt{5}}{\alpha}$.]
- 131. Let p be a prime such that there is a positive integer d with $p=1+d^2$ and let $\alpha=\sqrt{p+d\sqrt{p}}$. Show that $\mathbb{Q}(\alpha)$ is a cyclic Galois extension of \mathbb{Q} of degree 4. Find all fields F with $\mathbb{Q}\subseteq F\subseteq \mathbb{Q}(\alpha)$.
 - [Hint: Show that $f(x) = x^4 2px^2 + p$ is the minimal polynomial of α over $\mathbb Q$ and that the roots of f are $\pm \alpha$, $\pm \frac{\sqrt{p}}{\alpha}$.]
- 132. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 4 with exactly two real roots. Show that the Galois group of f over \mathbb{Q} has order either 8 or 24.

- 133. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 4 with exactly 2 real roots. Show that the Galois group of f over \mathbb{Q} is either S_4 or the dihedral group of order 8.
- 134. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree 5. Assume f(x) has exactly 3 distinct real roots and one complex conjugate pair of roots. Prove that if K is the splitting field of f(x) over \mathbb{Q} , then $Gal(K/\mathbb{Q})$ is S_5 .
- 135. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree n > 2 that has n 2 real roots and exactly one pair of complex conjugate roots. Prove that the Galois group of f(x) over \mathbb{Q} is not a simple group.
- 136. Let $f(x) = x^4 + ax^3 + bx^2 + ax + 1 \in \mathbb{Q}[x]$ and let F be a splitting field over \mathbb{Q} . Show that if α is a root of f then $1/\alpha$ is also a root, and $|\operatorname{Gal}(F/\mathbb{Q})| \leq 8$.
- 137. Let F be a field and let $f(x) \in F[x]$ be an irreducible polynomial of degree 4 with distinct roots α_1 , α_2 , α_3 , and α_4 . Let K be a splitting field for f over F and assume $Gal(K/F) \cong S_4$. Find $Gal(K/F(\beta))$, where $\beta = \alpha_1\alpha_2 + \alpha_3\alpha_4$.
- 138. Let E be a finite dimensional Galois extension of a field F and let G = Gal(E/F). Suppose that G is an abelian group. Prove that if K is any field between E and F, then K is a Galois extension of F.
- 139. Let K be a finite Galois extension of F and let E be an intermediate field which is normal over F. For an element σ of Gal(K/F) and $g(x) = e_0 + e_1x + \cdots + e_mx^m$ in E[x], denote $\sigma g(x) = \sigma(e_0) + \sigma(e_1)x + \cdots + \sigma(e_m)x^m$. For a fixed element α of K, let $f(x) \in E[x]$ be the minimal polynomial of α over E. Show the following.
 - (a) $\sigma(\alpha)$ is a root of $\sigma f(x)$.
 - (b) If $f_1(x)$, $f_2(x)$, ..., $f_n(x)$ are all the distinct elements of $\{\sigma f(x) \mid \sigma \in \operatorname{Gal}(K/F)\}$, then $h(x) = f_1(x)f_2(x)\cdots f_n(x)$ is in F[x].
 - (c) h(x) is the minimal polynomial of α over F.
- 140. Let K be a Galois extension of k and let $k \subseteq F \subseteq K$ and $k \subseteq L \subseteq K$.
 - (a) Show that $Gal(K/LF) = Gal(K/L) \cap Gal(K/F)$.
 - (b) Show that $Gal(K/L \cap F) = \langle Gal(K/L), Gal(K/F) \rangle$.
- 141. Let $\overline{\mathbb{Q}}$ be the algebraic closure of \mathbb{Q} and let α be an element of $\overline{\mathbb{Q}}$ not in \mathbb{Q} .
 - (a) Show that there is a field $M \subseteq \overline{\mathbb{Q}}$ that is maximal with respect to the property that $\alpha \notin M$.
 - (b) Show that any finite Galois extension of M has cyclic Galois group.
 - (c) Show that any finite extension of M is a Galois extension.
- 142. Let E be a finite dimensional Galois extension of a field F and let G = Gal(E/F). For $e \in E$ let $G(e) = {\sigma(e) \mid \sigma \in G}$. Let e_1, e_2, \ldots, e_n be all the distinct elements of G(e).
 - (a) Prove that $f(x) = (x e_1)(x e_2) \cdots (x e_n)$ is in F[x].
 - (b) Prove that f(x) is irreducible in F[x].
- 143. Let E be a finite dimensional Galois extension of F of characteristic different from 2. Suppose $\operatorname{Gal}(E/F)$ is a non-cyclic group of order 4. Show that $E = F(\alpha, \beta)$ for some $\alpha, \beta \in E$ with $\alpha^2 \in F$ and $\beta^2 \in F$.

144. Let $E = \mathbb{Q}[\alpha, \beta]$, where $\alpha^2, \beta^2 \in \mathbb{Q}$ and $|E : \mathbb{Q}| = 4$. Prove that if $\gamma \in E - \mathbb{Q}$ and $\gamma^2 \in \mathbb{Q}$, then γ is a rational multiple of one of α , β , or $\alpha\beta$.

Cyclotomic Extensions

- 145. Find the 6th, 8th, and 12th cyclotomic polynomials over Q.
- 146. Let α be a complex primitive 43rd root of 1. Prove that there is an extension field F of the rational numbers such that $[F(\alpha):F]=14$.
- 147. Let m be an odd integer and let η_m , η_{2m} be a complex primitive m-th, 2m-th root of unity, respectively. Show that $\mathbb{Q}(\eta_m) = \mathbb{Q}(\eta_{2m})$.
- 148. Let (m, n) = 1, and if i is any positive integer let η_i denote a complex primitive i-th root of unity. Show that $\mathbb{Q}(\eta_{mn}) = \mathbb{Q}(\eta_m)\mathbb{Q}(\eta_n)$ and $\mathbb{Q}(\eta_m) \cap \mathbb{Q}(\eta_n) = \mathbb{Q}$.
- 149. Let ϵ be the complex number $\cos(\frac{2\pi}{n}) + i\sin(\frac{2\pi}{n})$, where n is a positive integer. Show
 - (a) ϵ is algebraic over the field \mathbb{Q} of rational numbers,
 - (b) if $\Phi_n(x)$ is the minimal polynomial of ϵ over \mathbb{Q} , then $\mathbb{Q}(\epsilon)$ is a splitting field of $\Phi_n(x)$ over \mathbb{Q} ,
 - (c) the Galois group of $\mathbb{Q}(\epsilon)$ over \mathbb{Q} is isomorphic to the group of units of \mathbb{Z}_n .
- 150. Let ϵ be a primitive *n*-th root of unity over \mathbb{Q} , where n > 2, and let $\alpha = \epsilon + \epsilon^{-1}$. Prove that α is algebraic over \mathbb{Q} of degree $\varphi(n)/2$.

Finite Fields

- 151. Prove that the multiplicative group of a finite field must be cyclic.
- 152. Prove that any finite extension of a finite field must be a simple extension.
- 153. Show that any two finite fields of the same order are isomorphic.
- 154. Let F be an extension of \mathbb{Z}_p of degree n. Show that F is a Galois extension and $\operatorname{Gal}(F/\mathbb{Z}_p)$ is cyclic of order n.
- 155. Show that every finite extension of a finite field is a Galois extension.
- 156. Show that every algebraic extension of a finite field is separable.
- 157. Show that every finite field is perfect. (Recall that a field F of characteristic p is called *perfect* if the map $\alpha \mapsto \alpha^p$ is a surjection on F.)
- 158. Let $f(x) \in \mathbb{Z}_p[x]$ be irreducible of degree m. Show that $f(x) \mid (x^{p^n} x)$ if and only if $m \mid n$.
- 159. Let p be a prime. Show that the field of p^a elements is a subfield of the field of p^b elements if and only if $a \mid b$.
- 160. Let p be a prime and \mathbb{F}_p the field of p elements. Show that for every positive integer n, there is an irreducible polynomial of degree n over \mathbb{F}_p .

- 161. Let F be a finite field. Prove that the polynomial ring F[x] contains irreducible polynomials of arbitrarily large degree.
- 162. Let F be a finite field. Show that the product of all the non-zero elements of F is -1.
- 163. Let \mathbb{F}_q be the field of q elements and let f(x) be a polynomial in $\mathbb{F}_q[x]$. Show that if α is a root of f(x), then α^q is also a root of f(x).
- 164. Let E and F be subfields of a finite field K. Show that if E is isomorphic to F then E = F.
- 165. Let E and F be finite subfields of a field K. Show that if E and F have the same number of elements, then E = F.
- 166. Let \mathbb{F}_p be the field of p elements and let K be an extension of \mathbb{F}_p of degree n. Show that the set of subfields of K is linearly ordered (i.e., for every pair of subfields L_1 , L_2 , either $L_1 \subseteq L_2$ or $L_2 \subseteq L_1$) if and only if n is a prime power.
- 167. Let $f(x) = x^2 2 \in \mathbb{F}_p[x]$, where p > 2 is prime and \mathbb{F}_p is the field of p elements. Give an example of a prime p for which f is irreducible and another example where f reduces.
- 168. Let α be a root of x^2+1 in an extension of \mathbb{Z}_3 , $K=\mathbb{Z}_3(\alpha)$, and let $f(x)=x^4+x^3+x+2\in\mathbb{Z}_3[x]$.
 - (a) Show that f splits over K.
 - (b) Find a generator α of the multiplicative group of K and express the roots of f in terms of α .
- 169. Let α be a root of $x^2 + 1$ in an extension of \mathbb{Z}_3 , $K = \mathbb{Z}_3(\alpha)$, and let $f(x) = x^4 + 1 \in \mathbb{Z}_3[x]$.
 - (a) Show that f splits over K.
 - (b) Find a generator β of the multiplicative group K^* of K.
 - (c) Express the roots of f in terms of β .
- 170. Let $K = \mathbb{Z}_3(\sqrt{2})$ and let $f(x) = x^4 + x^3 + x + 2 \in \mathbb{Z}_3[x]$.
 - (a) Show that f splits over K.
 - (b) Find a generator α of the multiplicative group K^* of K.
 - (c) Express the roots of f in terms of α .
- 171. Let $\mathbb{F} = \mathbb{F}_{81}$ be the field of 81 elements.
 - (a) Find all subfields of \mathbb{F} .
 - (b) Determine the number of primitive elements for \mathbb{F} over the field \mathbb{F}_3 of 3 elements (i.e., elements α of \mathbb{F} such that $\mathbb{F} = \mathbb{F}_3(\alpha)$).
 - (c) Find the number of generators for the multiplicative group \mathbb{F}^* of \mathbb{F} (i.e., elements β of \mathbb{F} such that $\langle \beta \rangle = \mathbb{F}^*$).
- 172. Let $f(x) = x^4 + x^3 + 4x 1 \in \mathbb{Z}_5[x]$. Find the Galois group of the splitting field of f over \mathbb{Z}_5 .

Cyclic Extensions

- 173. Let K be a field of characteristic $p \neq 0$ and let $K_p = \{u^p u : u \in K\}$. Show that K has a cyclic extension of degree p if and only if $K \neq K_p$.
- 174. Let p be a prime and F the field of fractions of $\mathbb{Z}_p[x]$. If E is the splitting field of $y^p y x$ over F, determine the Galois group of E over F.
- 175. Let n be a positive integer and let F be a field of characteristic 0 containing a primitive n-th root of unity. Let a be an element of F such that a is not an m-th power of an element of F for any $1 \neq m \mid n$. Show that if α is any root of $x^n a$, then $F(\alpha)$ is a cyclic extension of F of degree n.
- 176. Let F be a field that contains a primitive nth root of unity and let K = F(t), the field of fractions of the polynomial ring F[t]. Let $L = F(t^n) \subseteq K$. Prove that K is a Galois extension of L and that the Galois group is cyclic of order n.
- 177. Let F be a field of characteristic p. Fix $c \in F$ and let $f(x) = x^p x + c \in F[x]$. Prove that if α is a root of f(x) in some extension field, then so is $\alpha + 1$. Use this to prove that if K is the splitting field of f(x) over F, then either K = F and f(x) splits completely over F, or [K : F] = p and f(x) is irreducible over F. (Use Galois groups.)

Radical Extensions and Solvability By Radicals

178. An extension K of F is called a radical extension if there is a tower of fields

$$F \subseteq F(u_1) \subseteq F(u_1, u_2) \subseteq \cdots \subseteq F(u_1, \dots, u_n) = K$$

such that for $i = 1, ..., n, u_i^{m_i} \in F(u_1, ..., u_{i-1})$ for some positive integer m_i .

- (a) Give an example of a radical extension that is not separable.
- (b) Give an example of a radical extension that is not normal.
- 179. Let F be a radical extension of K. Show that there is a radical extension N of K with $N \supseteq F \supseteq K$ and N normal over K.
- 180. Let F be a finite field of characteristic p. Show that if $f \in F[x]$ is an irreducible polynomial and the degree of f is less than p, then f(x) = 0 is solvable by radicals.
- 181. Let x_1, \ldots, x_n be indeterminates over a field F and let s_1, \ldots, s_n be the elementary symmetric functions of the x_i . Show that $[F(x_1, \ldots, x_n) : F(s_1, \ldots, s_n)] = n!$.

Transcendental Extensions

- 182. Let x be an indeterminate over the field F. Show that an element of F(x) is algebraic over F if and only if it is an element of F.
- 183. Let $F \subseteq E$ be fields with $E = F(\alpha)$, where α is transcendental over F. Show that if $\beta \in E F$, then $[E : F(\beta)]$ is finite.

- 184. Let F be a field, F[x] the ring of polynomials over F in the indeterminate x, and E = F(x) the field of fractions of F[x].
 - (a) Show that if σ is an automorphism of E such that $\sigma(u) = u$ for all $u \in F$, then $\sigma(x) = \frac{ax+b}{cx+d}$ for some $a,b,c,d \in F$ with $ad-bc \neq 0$.
 - (b) Determine the group $\operatorname{Aut}_F(E)$ of F-automorphisms of E.
- 185. Let K be an extension field of F and let $\alpha \in K$ be transcendental over F. Show that if $\beta \in K$ is algebraic over $F(\alpha)$, then there is a nonzero polynomial $p(x,y) \in F[x,y]$ such that $P(\alpha,\beta) = 0$.