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Abstract

Let G and Q be groups with isomorphic tables of marks, and for
each subgroup H of G, let H ′ denote a subgroup of Q assigned to
H under an isomorphism between the tables of marks of G and Q.
We prove that if H is cyclic/elementary abelian/maximal/the Frattini
subgroup/the commutator subgroup, then H ′ has the same property.
However, we give examples where H is abelian and H ′ is not, and
where H is the centre of G and H ′ is not the centre of Q.

Short title: Tables of marks. 1

1 Introduction.

Groups with isomorphic tables of marks may not be isomorphic groups (as
proved by Thévenaz in [5]), but one still expects them to have many at-
tributes in common. Indeed, if G and Q are groups with isomorphic tables
of marks, then they have isomorphic composition factors (see [3]), and they
also have isomorphic Burnside rings (the converse is still an open problem,
put forward also in [3]); if two groups have isomorphic Burnside rings and
one of them is abelian/Hamiltonian/minimal simple, then the two groups
are isomorphic (see [4]), and a similar result is known for several families of
simple groups (see [2]). The key for the previous proofs is that a lot can be
said about a group in terms of its table of marks (or even in terms of its
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Burnside ring). But how much can be said about a group’s subgroups by
its table of marks? Is it possible to tell when a subgroup is cyclic, elementary
abelian or abelian? Can we tell from the table of marks of G which subgroup
is the centre of G, or its Frattini subgroup, or its commutator subgroup?
More generally, if G and Q are groups with isomorphic tables of marks, this
isomorphism establishes a correspondence between the (conjugacy classes of)
subgroups of G and Q. Does this correspondence preserve cyclic/elementary
abelian/abelian subgroups? Does the centre/Frattini subgroup/commutator
subgroup of G correspond with its counterpart in Q? And even if these prop-
erties/subgroups were not preserved by a certain isomorphism, could it be
possible to fix this, that is, find another isomorphism between the tables of
marks that does preserve them? In this paper we answer these and a few
more questions concerning groups with isomorphic tables of marks.

In Section 2 we give the basic definitions and notation we shall use
throughout this paper. In Section 3 we list the easier facts that can be
deduced about a subgroup from the table of marks (such as being cyclic,
maximal, the Frattini subgroup, the commutator subgroup, to name a few),
and which must therefore be preserved by isomorphisms between tables of
marks. In Section 4 we prove that elementary abelian subgroups can be iden-
tified from the table of marks (and must also be preserved by isomorphisms),
including maximal elementary abelian subgroups. In Section 5 we give the
smallest example (order-wise) of two non-isomorphic groups with isomorphic
tables of marks, and conclude from this example that one cannot determine
either abelian subgroups or the center of the group from the table of marks;
we also observe that this problem is impossible to fix, in other words, there
is neither an isomorphism between the tables of marks of these groups that
preserves abelian subgroups, nor an isomorphism that makes the centres of
these groups correspond. The same groups show that one cannot determine
the normalizer of a subgroup from the table of marks, and that normalizers
are not preserved by isomorphisms of tables of marks. In the last Section,
we rely heavily on the data provided by GAP [1].

2 Tables of marks.

Definition 2.1. Let G, Q be finite groups. Let C(G) be the family of all
conjugacy classes of subgroups of G. We usually assume that the elements of
C(G) are ordered non-decreasingly. Let ψ be a function from C(G) to C(Q).
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Given a subgroup H of G, we denote by H ′ any representative of ψ([H ]). We
say that ψ is an isomorphism between the tables of marks of G and Q if ψ is
a bijection and if #((Q/K ′)H′

) = #((G/K)H) for all subgroups H,K of G.

Note that #((G/K)H) = |NG(K)|
|K|

α(H,K) = |NG(H)|
|K|

β(H,K), where we

define α(H,K) as the number of subgroups of G which are G-conjugate to
K and contain H , and β(H,K) equals the number of subgroups of K which
are G-conjugate to H . If ψ is an isomorphism between the tables of marks of
G and Q and we denote ψ(H) by H ′, we have that |H ′| = |H|, |NQ(H ′)| =
|NG(H)|, and α(H,K)) = α(H ′, K ′) for allH,K in C(G); in fact, the previous
conditions are an equivalent definition of an isomorphism between the tables
of marks of G and Q. The matrix whose H,K-entry is #((G/K)H) is called
the table of marks of G (where H,K run through all the elements in C(G)).
Some authors define the table of marks of G as the transpose of the previous
matrix (for instance, that is how GAP defines it). Note that this matrix is
defined up to an ordering of the elements of C(G), so that the groups G and
Q have isomorphic tables of marks if and only if it is possible to rearrange
the elements of C(G) and/or C(Q) so that G and Q have identical tables of
marks.

The Burnside ring of G, denoted B(G), is the subring of Z
C(G) spanned

by the columns of the table of marks of G. It is easy to see that if G and Q
have isomorphic tables of marks, then they have isomorphic Burnside rings;
the converse is an open problem (see [3]).

3 Preserved attributes.

An isomorphism between the tables of marks of two groups preserves many
properties of the parent group and its subgroups. Here we list a few of these
properties.

Theorem 3.1. Let G, Q be finite groups with isomorphic tables of marks. Let
K, H denote subgroups of G, and let K ′, H ′ denote representatives in their
respective conjugacy classes of subgroups under the isomorphism between their
tables of marks. Then we have that:

1. G′ = Q, (1G)′ = 1Q, |G| = |G′|, |H| = |H ′|, α(H,K) = α(H ′, K ′), β(H,K) =
β(H ′, K ′), |NG(H)| = |NQ(H ′)|.
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2. The subgroup H is normal in G if and only if H ′ is normal in Q. In
this case, G/H and Q/H ′ have isomorphic tables of marks.

3. If K ≤ H and at least one of these two subgroups is normal in G, then
K ′ ≤ H ′ for any choice of K ′ and H ′.

4. If K and H are normal subgroups of G, then (K ∩ H)′ = K ′ ∩ H ′

and (KH)′ = K ′H ′. In particular, two normal subgroups with trivial
intersection correspond to two normal subgroups with trivial intersec-
tion. Furthermore, if G = K ×H, then Q = K ′ ×H ′, K and K ′ have
isomorphic tables of marks, and H and H ′ have isomorphic tables of
marks.

5. The subgroup H is maximal in G if and only if H ′ is maximal in Q.

6. If G is a p-group, then socle(Z(G))′ = socle(Z(Q)).

7. The Frattini subgroups correspond, that is, Φ(G)′ = Φ(Q).

8. The group G is nilpotent if and only if Q is nilpotent. However, there
are non-isomorphic p-groups with isomorphic tables of marks.

9. For any divisor d of the order of H, the number of subgroups of H of
order d is preserved; in particular, the total number of subgroups of H
is preserved.

10. The subgroup H is cyclic if and only if H ′ is cyclic.

11. If H is isomorphic to the quaternion group of order 8, then H ′ is iso-
morphic to H.

12. If G is abelian then G ∼= Q.

13. The commutator subgroups correspond, that is, [G,G]′ = [Q,Q]. More-
over, the abelianized groups are isomorphic, that is, G/[G,G] ∼= Q/[Q,Q].

14. If G is isomorphic to Sn for some n ≥ 5, then Q is isomorphic to G.

15. The subgroup H is elementary abelian if and only if H ′ is elementary
abelian.

Proof. 1. This was observed before.
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2. This follows from 1.

3. The normal subgroup corresponds to a unique subgroup; the rest fol-
lows from 1.

4. The intersection of two normal subgroups is the largest normal sub-
group contained in both subgroups, KH is the smallest normal sub-
groups containing both K and H ; the rest is clear.

5. Assume H is a maximal subgroup of G. Let M ′ be a subgroup of Q
between H ′ and Q, and let M be a corresponding subgroup in G. Since
0 6= α(H ′,M ′) = α(H,M), a conjugate of M contains H . But H is
maximal, so this conjugate is either H (so M ′ = H ′) or G (so M ′ = Q).

6. Note that the socle of the centre of a p-group is characterized as the
smallest normal subgroup of G such that has a nontrivial intersection
with each nontrivial normal subgroup of G. This property is preserved
under the correspondence.

7. Let X = Φ(G). By symmetry, it suffices to show thatX ′ ≤ Φ(Q). Note
that X is a normal subgroup of G contained in all maximal subgroups.
Since maximal subgroups correspond, then X ′ is a normal subgroup of
Q contained in all maximal subgroups, so X ′ ≤ Φ(Q).

8. Every Sylow p-subgroup of G is normal, and this property is preserved.

9. The number of subgroups of H of order d equals
∑
β(K,H) for all

K ∈ C(G) of order d.

10. A subgroup H is cyclic if and only if for each divisor d of |H|, H has
exactly one subgroup of order d.

11. The quaternion group is the only group of order eight with three sub-
groups of order four.

12. The group G is a direct product of cyclic subgroups.

13. The commutator subgroup is the smallest normal subgroup of G with
an abelian quotient. This property is preserved under the correspon-
dence.
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14. Sn with n greater than or equal to 5 is characterized by the following
three properties: (1) It has order n!; (2) It only has one proper normal
subgroup, whose order is n!/2; (3) It has a subgroup of index n (the
action on the n cosets gives an isomorphism to Sn). These properties
are preserved by an isomorphism between the tables of marks.

15. This will be done in the next Section.

4 Elementary abelian subgroups.

In this Section we prove that an isomorphism between tables of marks sends
elementary abelian subgroups to elementary abelian subgroups.

Lemma 4.1. Let G be a finite group, p a prime number, a, b two elements
in G of order p, A the subgroup generated by a and b. If A has order p2, then
A is an elementary abelian group and #{(c, d) ∈ G × G |< c, d >= A} =
#{(e, f) ∈ C2

p × C2
p | | < e, f > | = p2}, where C2

p is the elementary abelian
group of order p2.

Proof. The group A is abelian because its order is p2. Since A is generated
by two elements of order p that commute, A cannot be cyclic, so it has to be
elementary abelian. Note that #{(c, d) ∈ G×G |< c, d >= A} = #{(x, y) ∈
A× A |< x, y >= A} = #{(z, w) ∈ C2

p × C2
p |< z,w >= C2

p}.

Proposition 4.2. Let p be a prime number, P, P ′ groups such that |P | =
|P ′| = pn, with n > 1. Assume that P is elementary abelian, that all non-
trivial elements of P ′ have order p, and that P ′ is not abelian. Let µ (re-
spectively, µ′) be the number of subgroups of P (respectively, P ′) of order p2.
Then µ′ < µ.

Proof. Let Λ = {(a, b) ∈ P × P | | < a, b > | = p2},Λ′ = {(a′, b′) ∈ P ′ × P ′ |
| < a′, b′ > | = p2}. Define equivalent relations ,̃̃′ in Λ and Λ′ respectively by:

(a, b)(̃c, d) iff < a, b >=< c, d >, and (a′, b′)̃′(c′, d′) iff < a′, b′ >=< c′, d′ >.
Note that by Lemma 4.1, each equivalence class in Λ has the same cardinality
as each equivalence class in Λ′. Let τ denote this cardinality. Then we have
that µ = #(Λ/)̃ = #Λ/τ , and µ′ = #(Λ′/̃′) = Λ/τ . We must show that
#Λ′ < #Λ. Let Γ = {(a′, b′) ∈ P ′ × P ′ | a′ 6= 0, b′ 6∈< a′ >}. We shall prove
that Λ′ is a proper subset of Γ′ and that Γ′ and Λ have the same cardinality.
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Let (a′, b′) ∈ Λ′. Since | < a′, b′ > | = p2, then a′ 6= 0 (because | <
b′ > | = p), and b′ 6∈< a′ > (because | < a′ > | = p), that is, (a′, b′) ∈ Γ′.
On the other hand, since P ′ is not abelian, there exist a′, b′ in P ′ which do
not commute, so in particular we have that | < a′, b′ > | > p2, a′ 6= 0, and
b′ 6∈< a′ >, that is, (a′, b′) is in Γ′ but not in Λ′.

Finally, note that both the elements of Γ′ and Λ can be counted as follows:
there are pn − 1 ways to choose the first element, and pn − p ways to choose
the second element, so each set has (pn − 1)(pn − p) elements.

Corollary 4.3. Let G and Q be finite groups with isomorphic tables of marks.
If H is an elementary abelian subgroup of G, then H ′ is an elementary abelian
subgroup of Q.

Proof. We have that |H ′| = |H| is a power of a prime p. Since H has no cyclic
subgroups of order p2, neither does H ′, so H ′ is either elementary abelian
or not abelian. If H ′ were not abelian, then H ′ would have strictly fewer
subgroups of order p2 than H .

5 Counterexamples.

We wrote software in GAP to go through the library of SmallGroups search-
ing for the first instance of non-isomorphic groups with isomorphic tables of
marks. The first known example before this computation was Thévenaz’s
pair of groups of order 5 ∗ 112 = 625 (see [5]). The smallest example has
order 96.

Definition 5.1. Let M denote the direct product S3 ×C8 (that is, the sym-
metric group of degree 3, times the cyclic group of order 8). We shall give
two non-isomorphic semidirect products of M with the cyclic group of or-
der 2. Denote the elements of M as (σ, xn), where σ is a permutation in
S3 and x is the generator of C8. The group M is generated by the ele-
ments ((1, 2, 3), 1), ((1, 2), 1), ((1), x). Consider the following two automor-
phisms of order 2 of M , α and β, given by: α((1, 2, 3), 1) = β((1, 2, 3), 1) =
((1, 2, 3), 1), α((1, 2), 1) = β((1, 2), 1) = ((1, 2), x4), α((1), x) = ((1), x) and
β((1), x) = ((1), x5). Let G be the semidirect product of M with C2 using
α, and let Q be the semidirect product of M with C2 using β. Both G and
Q are groups of order 96, but they are not isomorphic; in fact, in GAP G is
SmallGroup(96,108), and Q is SmallGroup(96,114).
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Consider the following file written in GAP:

G := SmallGroup(96,108);

Q := SmallGroup(96,114);

#------------------------------

testlattice := function(g,h)

# Explore the lattices of subgroups of the groups g and h.

local lat, conj, ans, subg, lath, conjh, n, subh;

lat := LatticeSubgroups(g);

conj := ConjugacyClassesSubgroups(lat);

lath := LatticeSubgroups(h);

conjh := ConjugacyClassesSubgroups(lath);

for n in [1..Size(conj)] do

subg := ClassElementLattice(conj[n],1);

subh := ClassElementLattice(conjh[n],1);

if not(IsAbelian(subg)=IsAbelian(subh)) then

Print("Subgroup number ",n,", Order ",Order(subg),

" ",IsAbelian(subg)," ",IsAbelian(subh),"\n");

fi;

od;

end;

#----------------------------------------

subn := function(g,n)

# Return a representative of the n-th conjugcy class of subgroups

# of g.

return ClassElementLattice(ConjugacyClassesSubgroups

(LatticeSubgroups(g))[n],1);

end;

After loading this file, we checked that the tables of marks of G and Q
are identical:

gap> Read("testiso");

gap> MatTom(TableOfMarks(G))=MatTom(TableOfMarks(Q));

true
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This means that there is an isomorphism between the tables of marks of
G and Q. Moreover, with the default tables of marks assigned by GAP, this
isomorphism maps the n-th conjugacy class of subgroups of G to the n-th
conjugacy class of subgroups of Q. We wonder whether the centres of G and
Q correspond under this isomorphism.

gap> Size(Centre(G));

8

gap> Size(Centre(Q));

4

This proves that the centres of G and Q cannot correspond under this
or any other isomorphism between their tables of marks (since such isomor-
phisms must preserve the order of the subgroups). Next we wonder whether
abelian subgroups of G must necessarily correspond with abelian subgroups
of Q.

The function testlattice(G,Q) runs through all the conjugacy classes
of subgroups of G and Q (which are the same length), and it tests whether
the corresponding subgroups are both abelian or both non-abelian. When it
finds a pair of corresponding subgroups that do not match, it prints them on
the screen, displaying their order and whether they are abelian or not.

gap> testlattice(G,Q);

Subgroup number 36, Order 16 true false

Subgroup number 37, Order 16 false true

Subgroup number 38, Order 16 false true

Subgroup number 40, Order 16 true false

Subgroup number 58, Order 48 true false

gap>

These are the only corresponding subgroups which are neither both abelian
nor both non-abelian. Notice that there is exactly one abelian subgroup of G
of order 48 which does not correspond to an abelian subgroup of Q (in fact,
according to GAP, Q has no abelian subgroups of order 48). This means that
G has exactly one more abelian subgroup of order 48 than Q, so there is no
isomorphism between the tables of marks of G and Q that preserves abelian
subgroups.

Finally, we show that the table of marks cannot provide enough infor-
mation to determine the normalizer of a subgroup. Consider the function
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subn(g,n), which returns a representative of the n-th conjugacy class of
subgroups of the group g.

gap> Normalizer(G,subn(G,2))=subn(G,58);

true

gap> Normalizer(Q,subn(Q,2))=subn(Q,58);

false

In both cases we had a subgroup in the second conjugacy class of sub-
groups; in G, its normalizer was the (only normal) subgroup in the 58-th
conjugacy class, but in Q, the corresponding subgroup is not the normalizer.

We can summarize all this in the following result.

Theorem 5.2. Let G and Q be finite groups with isomorphic tables of marks,
and let H 7→ H ′ denote an isomorphism between their tables of marks. We
have that

1. H and H ′ may not be isomorphic.

2. Even if H is abelian, H ′ need not be abelian.

3. H and H ′ may have different tables of marks.

4. Even if K × L = H, it may not be possible to find K ′, L′ and H ′ such
that K ′ × L′ = H ′.

5. Even if K is normal in H, it may not be possible to choose K ′ and H ′

such that K ′ is normal in H ′

6. Given H, the table of marks does not determine which subgroup of G
is the normalizer of H in G.

Proof. Let G be SmallGroup(96,108) and Q be SmallGroup(96,114).

1. This was known since Thévenaz’s example, but it is also a consequence
of our counterexample.

2. This is immediate.

3. This follows from the previous item and the fact that the table of marks
determines an abelian group up to isomorphism.
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4. If this were true, since cyclic subgroups correspond, it would follow
that abelian subgroups map to abelian subgroups.

5. The subgroup subn(G,2) is a counterexample.

6. The subgroup subn(G,2) is again a counterexample.
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Universidad Michoacana de San Nicolás de Hidalgo
Edificio “B”, Planta Baja, Ciudad Universitaria

C.P. 58060, Morelia, Mich, MEXICO
E-mail: lhuerta@fismat.umich.mx, ariel@zarzamora.com.mx,

valero@fismat.umich.mx

References

[1] The GAP Group. GAP – Groups, Algorithms and Programming, Version
4.4, 2006. (http:www.gap-system.org).

[2] W. Kimmerle, Florian Luca, and Alberto G. Raggi-Cardenas. Irreducible
components and isomorphisms of the Burnside ring. Submitted.

[3] Florian Luca and Alberto G. Raggi-Cárdenas. Composition factors from
the table of marks. Journal of Algebra, 244:737–743, 2001.

[4] Alberto G. Raggi-Cárdenas and Luis Valero-Elizondo. Groups with iso-
morphic Burnside rings. Archiv der Mathematik, 84(3):193–197, 2005.
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