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Tables of marks.

Definition 1. Let G, Q be finite groups. Let

C(G) be the family of all conjugacy classes of

subgroups of G. We usually assume that the

elements of C(G) are ordered non-decreasingly.

Let ψ be a function from C(G) to C(Q). Given

a subgroup H of G, we denote by H ′ any rep-

resentative of ψ([H]). We say that ψ is an

isomorphism between the tables of marks of G

and Q if ψ is a bijection and if #((Q/K ′)H
′
) =

#((G/K)H) for all subgroups H,K of G.

The matrix whose H,K-entry is #((G/K)H) is

called the table of marks of G (where H,K

run through all the elements in C(G)). Some

authors define the table of marks of G as the

transpose of the previous matrix (for instance,

that is how GAP defines it).



The Burnside ring of G, denoted B(G), is the

subring of ZC(G) spanned by the columns of

the table of marks of G. It is easy to see that

if G and Q have isomorphic tables of marks,

then they have isomorphic Burnside rings; the

converse is an open problem.



Preserved attributes.

Theorem 2. Let G, Q be finite groups with

isomorphic tables of marks. Let K, H denote

subgroups of G, and let K ′, H ′ denote repre-

sentatives in their respective conjugacy classes

of subgroups under the isomorphism between

their tables of marks. Then we have that:

1. G′ = Q, (1G)′ = 1Q, |G| = |G′|, |H| = |H ′|,

α(H,K) = α(H ′,K ′), β(H,K) = β(H ′, K ′),

|NG(H)| = |NQ(H ′)|.

2. The subgroup H is normal in G if and only

if H ′ is normal in Q. In this case, G/H and

Q/H ′ have isomorphic tables of marks.

3. If K ≤ H and at least one of these two

subgroups is normal in G, then K ′ ≤ H ′ for

any choice of K ′ and H ′.



4. If K and H are normal subgroups of G, then

(K ∩H)′ = K ′ ∩H ′ and (KH)′ = K ′H ′. In

particular, two normal subgroups with triv-

ial intersection correspond to two normal

subgroups with trivial intersection. Fur-

thermore, if G = K ×H, then Q = K ′×H ′,

K and K ′ have isomorphic tables of marks,

and H and H ′ have isomorphic tables of

marks.

5. The subgroup H is maximal in G if and

only if H ′ is maximal in Q.

6. If G is a p-group, then socle(Z(G))′ = socle(Z(Q)).

7. The Frattini subgroups correspond, that is,

Φ(G)′ = Φ(Q).



8. The group G is nilpotent if and only if

Q is nilpotent. However, there are non-

isomorphic p-groups with isomorphic tables

of marks.

9. For any divisor d of the order of H, the

number of subgroups of H of order d is

preserved; in particular, the total number

of subgroups of H is preserved.

10. The subgroup H is cyclic if and only if H ′

is cyclic.

11. If H is isomorphic to the quaternion group

of order 8, then H ′ is isomorphic to H.

12. If G is abelian then G ∼= Q.



13. The commutator subgroups correspond, that

is, [G,G]′ = [Q,Q]. Moreover, the abelian-

ized groups are isomorphic, that is, G/[G,G] ∼=

Q/[Q,Q].

14. If G is isomorphic to Sn for some n ≥ 5,

then Q is isomorphic to G.

15. The subgroup H is elementary abelian if

and only if H ′ is elementary abelian.



Counterexamples.

We wrote software in GAP to go through the

library of SmallGroups searching for the first in-

stance of non-isomorphic groups with isomor-

phic tables of marks. The first known example

before this computation was Thévenaz’s pair

of groups of order 5∗112 = 625. The smallest

example has order 96. Let G be SmallGroup(96,108),

and let Q be SmallGroup(96,114)

Consider the following file written in GAP:

G := SmallGroup(96,108);

Q := SmallGroup(96,114);

#-----------------------------



testlattice := function(g,h)

lat := LatticeSubgroups(g);

conj := ConjugacyClassesSubgroups(lat);

lath := LatticeSubgroups(h);

conjh := ConjugacyClassesSubgroups(lath);

for n in [1..Size(conj)] do

subg := ClassElementLattice(conj[n],1);

subh := ClassElementLattice(conjh[n],1);

if not(IsAbelian(subg)=IsAbelian(subh)) then

Print("Subgroup number ",n,", Order ",Order(subg),

" ",IsAbelian(subg)," ",IsAbelian(subh),"\n");

fi;

od;

end;

#----------------------------------------

subn := function(g,n)

# Return a representative of the n-th conjugcy class

# of g.

return ClassElementLattice(ConjugacyClassesSubgroups

(LatticeSubgroups(g))[n],1);

end;



After loading this file, we checked that the ta-

bles of marks of G and Q are identical:

gap> Read("testiso");

gap> MatTom(TableOfMarks(G))=MatTom(TableOfMarks(Q));

true

This means that there is an isomorphism be-

tween the tables of marks of G and Q. More-

over, with the default tables of marks assigned

by GAP, this isomorphism maps the n-th conju-

gacy class of subgroups of G to the n-th con-

jugacy class of subgroups of Q. We wonder

whether the centres of G and Q correspond

under this isomorphism.

gap> Size(Centre(G));

8

gap> Size(Centre(Q));

4



This proves that the centres of G and Q can-

not correspond under this or any other iso-

morphism between their tables of marks (since

such isomorphisms must preserve the order of

the subgroups). Next we wonder whether abelian

subgroups of G must necessarily correspond

with abelian subgroups of Q.

The function testlattice(G,Q) runs through all

the conjugacy classes of subgroups of G and

Q (which are the same length), and it tests

whether the corresponding subgroups are both

abelian or both non-abelian. When it finds a

pair of corresponding subgroups that do not

match, it prints them on the screen, displaying

their order and whether they are abelian or not.



gap> testlattice(G,Q);

Subgroup number 36, Order 16 true false

Subgroup number 37, Order 16 false true

Subgroup number 38, Order 16 false true

Subgroup number 40, Order 16 true false

Subgroup number 58, Order 48 true false

gap>

These are the only corresponding subgroups

which are neither both abelian nor both non-

abelian. Notice that there is exactly one abelian

subgroup of G of order 48 which does not cor-

respond to an abelian subgroup of Q (in fact,

according to GAP, Q has no abelian subgroups

of order 48). This means that G has exactly

one more abelian subgroup of order 48 than Q,

so there is no isomorphism between the tables

of marks of G and Q that preserves abelian

subgroups.



Finally, we show that the table of marks can-

not provide enough information to determine

the normalizer of a subgroup. Consider the

function subn(g,n), which returns a represen-

tative of the n-th conjugacy class of subgroups

of the group g.

gap> Normalizer(G,subn(G,2))=subn(G,58);

true

gap> Normalizer(Q,subn(Q,2))=subn(Q,58);

false

In both cases we had a subgroup in the second

conjugacy class of subgroups; in G, its normal-

izer was the (only normal) subgroup in the 58-

th conjugacy class, but in Q, the corresponding

subgroup is not the normalizer.

We can summarize all this in the following re-

sult.



Theorem 3.Let G and Q be finite groups with

isomorphic tables of marks, and let H 7→ H ′

denote an isomorphism between their tables of

marks. We have that

1. H and H ′ may not be isomorphic.

2. Even if H is abelian, H ′ need not be abelian.

3. H and H ′ may have different tables of marks.

4. Even if K × L = H, it may not be possible

to find K ′, L′ and H ′ such that K ′×L′ = H ′.

5. Even if K is normal in H, it may not be

possible to choose K ′ and H ′ such that K ′

is normal in H ′



6. Given H, the table of marks does not deter-

mine which subgroup of G is the normalizer

of H in G.

7. Z(G)′ may not equal Z(Q).

Proof. Let G be SmallGroup(96,108) and Q be

SmallGroup(96,114).

1. This was known since Thévenaz’s example,

but it is also a consequence of our coun-

terexample.

2. This is immediate.

3. This follows from the previous item and the

fact that the table of marks determines an

abelian group up to isomorphism.



4. If this were true, since cyclic subgroups cor-

respond, it would follow that abelian sub-

groups map to abelian subgroups.

5. The subgroup subn(G,2) is a counterexam-

ple.

6. The subgroup subn(G,2) is again a coun-

terexample.

7. Their orders are different.


