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Abstract

We prove that most groups of order less than 96 cannot have isomor-
phic tables of marks unless the groups are isomorphic. 1

1 Introduction.

We constructed two nonisomorphic groups of order 96 with isomorphic tables
of marks in [3]. According to GAP ([1]), they are the smallest groups with that
property. We are now trying to prove this, that is, that if two groups of order less
than 96 have isomorphic tables of marks, then they are isomorphic groups. In
Section 2 we define tables of marks and list some of their properties. In Section 3
we list the possible number of nonabelian groups for each order less than 96 (we
used GAP for this computation, but later we prove this rigourously). In the
next Sections we prove our claim for all but 16 of these orders. In Section 8
we list the remaining cases and prove a theorem that will help us solve most of
them in a later paper.

2 Tables of marks

Let G be a finite group. Let C(G) be the family of all conjugacy classes of
subgroups of G. We usually assume that the elements of C(G) are ordered non-
decreasingly. The matrix whose H,K-entry is #(G/K)H (that is, the number
of fixed points of the set G/K under the action of H) is called the table of
marks of G (where H,K run through all the elements in C(G)).

The Burnside ring of G, denoted B(G), is the subring of ZC(G) spanned
by the columns of the table of marks of G.

1Keywords: table of marks, group. AMS Classification: 19A22 Frobenius induction, Burn-
side and representation rings.
Partially supported by CIC’s Project Mı́nimos grupos con tablas de marcas isomorfas and
CONACYT’s Project Funtores de tipo Burnside
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Definition 1. Let G and Q be finite groups. Let ψ be a function from C(G) to
C(Q). Given a subgroup H of G, we denote by H ′ any representative of ψ([H]).
We say that ψ is an isomorphism between the tables of marks of G and Q if ψ
is a bijection and if #(Q/K ′)H′ = #(G/K)H for all subgroups H,K of G. We
usually refer to H ′ as the image of H under the isomorphism of table of marks.

An isomorphism between tables of marks preserves the order of the sub-
groups, the order of their normalizers, it sends cyclic groups to cyclic groups
and elementary abelian groups to elementary abelian groups. It also sends the
derived subgroup of G to the derived subgroup of Q, maximal subgroups of G
to maximal subgroups of Q, Sylow p-subgroups to Sylow p-subgroups (same p),
and the Frattini subgroup of G to the Frattini subgroup of Q.

Assume now that G and Q are finite groups with isomorphic tables of marks.
As we mentioned, G and Q must have the same order. It is also easy to check
that if G is abelian or simple, then G and Q must be isomorphic groups. If G is
a direct product, so is Q, and their corresponding factors have isomorphic tables
of marks. If G is a semidirect product N o H then Q is a semidirect product
N ′ oH where H and H ′ have isomorphic tables of marks (although we cannot
say much about N and N ′, other than they correspond under the isomorphism
of tables of marks). Proofs of these claims can be found in [2].

However, an isomorphism of tables of marks may not preserve abelian sub-
groups, and it may not send the centre of G to the centre of Q. This can be
seen in two nonisomorphic groups of order 96 which have isomorphic tables of
marks (see [3]).

3 Proving their minimality.

Let A(n) denote the number of non-abelian groups of order n up to isomorphism.
Using GAP we can list the values of n and A(n) for n from 2 to 95:

2: 0; 3: 0; 4: 0; 5: 0; 6: 1; 7: 0; 8: 2; 9: 0; 10: 1; 11: 0; 12: 3; 13: 0; 14: 1;
15: 0; 16: 9; 17: 0; 18: 3; 19: 0; 20: 3; 21: 1; 22: 1; 23: 0; 24: 12; 25: 0; 26: 1;
27: 2; 28: 2; 29: 0; 30: 3; 31: 0; 32: 44; 33: 0; 34: 1; 35: 0; 36: 10; 37: 0; 38: 1;
39: 1; 40: 11; 41: 0; 42: 5; 43: 0; 44: 2; 45: 0; 46: 1; 47: 0; 48: 47; 49: 0; 50: 3;
51: 0; 52: 3; 53: 0; 54: 12; 55: 1; 56: 10; 57: 1; 58: 1; 59: 0; 60: 11; 61: 0; 62:
1; 63: 2; 64: 256; 65: 0; 66: 3; 67: 0; 68: 3; 69: 0; 70: 3; 71: 0; 72: 44; 73: 0;
74: 1; 75: 1; 76: 2; 77: 0; 78: 5; 79: 0; 80: 47; 81: 10; 82: 1; 83: 0; 84: 13; 85:
0; 86: 1; 87: 0; 88: 9; 89: 0; 90: 8; 91: 0; 92: 2; 93: 1; 94: 1; 95: 0;

A(n) = 0 for the following 40 values of n: 2, 3, 4, 5, 7, 9, 11, 13, 15, 17, 19,
23, 25, 29, 31, 33, 35, 37, 41, 43, 45, 47, 49, 51, 53, 59, 61, 65, 67, 69, 71, 73,
77, 79, 83, 85, 87, 89, 91, 95.

A(n) = 1 for the following 20 values of n: 6, 10, 14, 21, 22, 26, 34, 38, 39,
46, 55, 57, 58, 62, 74, 75, 82, 86, 93, 94.

A(n) = 2 for the following 7 values of n: 8, 27, 28, 44, 63, 76, 92
A(n) = 3 for the following 9 values of n: 12, 18, 20, 30, 50, 52, 66, 68, 70.
A(n) = 5 for n = 42 and n = 78.
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A(n) = 8 for n = 90.
A(n) = 9 for n = 16 and n = 88.
A(n) = 10 for n = 36, n = 56 and n = 81.
A(n) = 11 for n = 40 and n = 60.
A(n) = 12 for n = 24 and n = 54.
A(n) = 13 for n = 84.
A(n) = 44 for n = 32 and n = 72.
A(n) = 47 for n = 48 and n = 80.
A(n) = 256 for n = 64.

4 Some cases are easy:

Theorem 2. Let n be a prime number, or the square of a prime number, or
a number of the form pq where p > q are primes and q does not divide p − 1.
Then all groups of order n are abelian.

This accounts for all the values n such that A(n) = 0 except for n = 45,
which is easy to prove directly.

Theorem 3. Let n be a number of the form pq where p > q are primes and q
divides p−1. Then there is exactly one isomorphism class of non-abelian groups
of order n.

This accounts for all the values n such that A(n) = 1 except for n = 75,
which is easy to prove directly, since the only non-abelian group of order 75
must be the only non-trivial semidirect product (C5 × C5) o C3.
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5 The case A(n) = 2

The seven possible values of n are: 8, 27, 28, 44, 63, 76, 92.
Here we must not only count all possible isomorphism classes of non-abelian

groups, but we must also prove they have non-isomorphic tables of marks.
The case n = 8 is well-known (we can only have the quaternions and the

dihedral group). Their tables of marks are not isomorphic, because all the
subgroups of the quaternions are normal, which is not true of the dihedral
group.

The case n = 27 is in the literature (for example, in Suzuki’s introduction
to the theory of groups). One of the groups has a cyclic subgroup of order 9,
but the other group has no cyclic subgroups of that order.

The cases when n equals 28, 44, 76 and 92 are all of the form 4p with p a
prime number larger than 4 and congruent to 3 modulo 4 (namely, 7, 11, 19
and 23). Here we have that the group must be a semidirect product, either
Cp o C4 or Cp o (C2 × C2). The Sylow 2-subgroups cannot correspond under
an isomorphism of tables of marks.

The case n = 63 must be a semidirect product, either C7 oC9 or C7 o (C3×
C3). The Sylow 3-subgroups cannot correspond under an isomorphism of tables
of marks.

6 The case A(n) = 3

The nine possible values of n are: 12, 18, 20, 30, 50, 52, 66, 68, 70.
The case n = 12 is in the literature. The only non-abelian groups of order

12 are A4, S3×C2 (which is ∼= D12) and the only non-trivial semidirect product
C3 o C4. The third group has a Sylow 2-subgroup isomorphic to C4, and the
second group has a normal subgroup of order 6, so no two of these three groups
have isomorphic tables of marks.

The cases when n = 18 and n = 50 are of the form 2p2 with p = 3 and
p = 5. The group has to be either the only non-trivial semidirect product
Cp2 oC2 or one of the two non-trivial semidirect products (Cp×Cp) oC2. The
first group has a cyclic Sylow p-subgroup. In the case (Cp × Cp) o C2, since
Cp × Cp is a vector space over the field with p elements, its automorphisms
of order 2 are easily computed: one of them has an invariant one-dimensional
subspace, and the other one does not. One possible semidirect product has
Cp as a direct summand, and the other one does not, so their tables of marks
cannot be isomorphic.

The cases when n equals 20, 52 and 68 are all of the form 4p with p a prime
number larger than 4 and congruent to 1 modulo 4 (namely, 5, 13 and 17). Here
the possible groups are the only non-trivial semidirect product Cp o (C2 ×C2),
and the only two non-trivial semidirect products CpoC4. The Sylow 2-subgroup
of the first group cannot correspond to C4 under an isomorphism of tables of
marks. In one of the semidirect products CpoC4, C4 acts on Cp as the involution
x 7→ x−1, so C2 centralizes Cp, so the group has a normal subgroup of order
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2; but in the other semidirect product, C4 acts by an automorphism of CP of
order 4, so C2 cannot centralize Cp, so this groups has no normal subgroup of
order 2.

The cases when n equals 30, 66 and 70 are all of the form 2pq with p, q
primes, p > q > 2 and q does not divide p − 1. First we observe that all
groups of order less than 100 are soluble (except for A5, which has order 60).
By P. Hall’s Theorem, a soluble group G of order 2pq has precisely one normal
subgroup of order pq, so G is a semidirect product H o C2 where H is a group
of order pq. Since q does not divide p− 1, H is abelian, so G is (Cp×Cq) oC2.
The automorphism group of Cp×Cq has three elements of order 2, so there are
at most three non-abelian choices for the group G. Precisely one of these groups
has a direct factor isomorphic to Cq, and precisely another of these groups has
a direct factor isomorphic to Cp, so neither two of the three groups can have
isomorphic tables of marks.

7 The case A(n) = 5

There are two possible values for n, namely, 42 and 78. Both are numbers of
the form 2pq with p > q primes and q divides p − 1 (actually, q = 3 in both
cases). Since these groups are soluble, by Hall’s Theorem there is precisely one
normal subgroup H of order pq. Here we have two possibilities: H could be the
only non-abelian group of order pq, or H could be Cpq (groups from these two
cases cannot have isomorphic tables of marks). If H is cyclic, there are three
elements of order two in its automorphism group, so there are three possible
non-trivial semidirect products H o C2: one has Cp as a direct factor (but not
Cq), the other has Cq as a direct factor (but not Cp), and the other has no such
direct factors, so they cannot have isomorphic tables of marks.

Now assume that H is non-abelian. Note that H has a normal subgroup
Cp and p subgroups Cq. An automorphism σ of H of order two must fix Cp

setwise, and permute the p different Cq, so it fixes one of the Cq setwise, and
acts here and on Cp either as the involution x 7→ x−1 or the identity. Moreover,
the fixed points under σ (which form a normal subgroup of H) are trivial unless
σ equals the identity map. Since H can be generated by a generator of Cp and
a generator of one of the Cq’s, there is only one automorphism of H of order 2,
so one possible group is H×C2, and the other is the only non-trivial semidirect
product H oC2, and these two groups cannot have isomorphic tables of marks.

8 Remaining 16 cases

Sixteen orders remain, namely: 16, 24, 32, 36, 40, 48, 54, 56, 60, 64, 72, 80, 81,
84, 88, 90.

To solve most of these cases, in this section we prove that almost all p-
subgroups with maximal cyclic subgroups can be identified in the table of marks
and are therefore preserved by isomorphisms of tables of marks. The only two
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exceptions are Cpn−1 × Cp and M(pn) (both for p odd and p = 2).
The investigation of finite p-groups provides one of the most powerful meth-

ods in finite group theory. One of the best known results in the study of finite
p-groups is the classification of finite non-abelian p-groups which have a cyclic
maximal subgroup: for odd p there is only one such group, and for p = 2 there
are four possible groups.

The following results are Theorems 4.1 and 4.2 from [4]. Let p denote a
prime number.

Theorem 4. Let G be a p-group of order pn. Assume that G is nonabelian and
that G has a maximal subgroup M which is cyclic. Then n ≥ 3 and if p is odd,
then G is isomorphic to the group M(pn) which has the following presentation:

M(pn) =< x, y | xpq = yp = 1, y−1xy = x1+q >,

where q = pn−2.
If p = 2 and n = 3, then G is isomorphic to either the dihedral group or

the quaternion group. If p = 2 and n ≥ 4, then G is isomorphic to M(2n), the
dihedral group Dg, the generalized quaternion group Qg, or the quasi-dihedral
group Sg.

Theorem 5. The groups G = D2m, Q2m, S2m have the following properties:

1. The group Q2m contains exactly one element of order 2.

2. The groups D2m, Q2m(m > 4), and S2m contain two noncyclic maximal
subgroups, and their isomorphism classes are (Dm, Dm), (Qm, Qm), and
(Dm, Qm), respectively.

In order to tell these groups apart from M(2n) we need the following lemma,
which shows that all the proper subgroups of the group M(2n) are abelian.

Lemma 6. Let G = M(2n), and let H be a proper subgroup of G. Then H is
abelian.

Proof. Note that x2 is in the centre of M(2n). There are two cases. First assume
that y ∈ H. Since H is a proper subgroup, then x 6∈ H, so H can be generated
by y and a power of x2, which implies that H is abelian. Now assume that
y 6∈ H. If H is generated by a power of x then we are finished. Assume that
H contains an element of the form xty. It follows that H contains the element
xtyxty, which is a power of x. Since x 6∈ H, this element must be a power of x2.
In particular, H is contained in the subgroup generated by xy and x2, which is
abelian (since x2 is central).

Theorem 7. Let G be a finite group, and let p be a prime number. Then the
noncyclic p-subgroups of G which have a cyclic maximal subgroup are determined
up to isomorphism by the table of marks, except that it is not possible to deter-
mine which ones are isomorphic to Cpn−1 × Cp and which ones are isomorphic
to M(pn) (with n ≥ 4).
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Proof. If p is odd, note that the only noncyclic groups of order pn with a cyclic
maximal subgroup are Cpn−1 × Cp and M(pn).

Now assume that p = 2. We shall use induction on the order of the 2-
subgroup. Note that the only abelian 2-groups with a cyclic maximal subgroup
are either cyclic or C2n−1 × C2, and the cyclic subgroup can be determined by
the table of marks. If the subgroup is nonabelian, by Theorem 4 we know that
there are only four possible cases: M(2n), D2n , Q2n and S2n .

By Theorem 5, we have that Q2n is the only group which has exactly one
cyclic subgroup of order 2, and this can be seen in the table of marks.

We also know that all maximal subgroups of C2n−1 × C2 and M(2n) are
abelian, whereas D2n and S2n have nonabelian maximal subgroups (which in
turn have cyclic maximal subgroups): D2n has two maximal subgroups isomor-
phic to D2n−1 , whereas S2n has two maximal subgroups isomorphic to D2n−1

and Q2n−1 , which can be distinguished inductively by the table of marks (the
induction starts when we can tell D8 from Q8 by the table of marks).

References

[1] The GAP Group. GAP – Groups, Algorithms and Programming, Version
4.4, 2006. (http:www.gap-system.org).

[2] L. M. Huerta-Aparicio, A. Molina-Rueda, A.G. Raggi-Cárdenas, and
L. Valero-Elizondo. On some invariants preserved by isomorphisms of tables
of marks. To appear in Revista Colombiana de Matemáticas.
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