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TRIANGULAR PARTITIONS WITH AUGMENTED FIRST ROWS
AND WEIGHTS FOR THE SYMMETRIC GROUPS IN

CHARACTERISTIC TWO

LUIS VALERO-ELIZONDO

Abstract. Alperin’s weight conjecture for the symmetric groups has been
proved using an enumeration of the weights and the simple modules (see [2]),
but so far there is no explicit way to associate weights with simple modules.
In this paper we prove that some weights for the symmetric groups in char-
acteristic two can be found inside the Brauer quotients of the simple modules
parameterized by partitions consisting of a triangle with an enlarged first
row. Furthermore, we find subgroups of Sn which are minimal such that their
Brauer quotients have a simple projective summand.

1. Introduction

One of the most important (and difficult) open problems in the representa-
tion theory of finite groups is Alperin’s weight conjecture. Even though this
conjecture has already been established for several families of groups (see Sec-
tion 3), some of these proofs are just enumerations of the sets of weights and
irreducibles, with no explicit correspondence between them. Such is the case
of the symmetric groups.

Alperin and Fong proved in [2] that Alperin’s conjecture holds for the sym-
metric groups, so we know that the number of weights for kSn equals the
number of simple kSn-modules, where k is a field of characteristic p > 0.
In [11] we proved that three infinite families of 2-regular partitions - which, as
is well-known, parameterize the irreducible kSn-modules in characteristic two
- have Brauer quotients which are simple and projective. Hence these Brauer
quotients represent weights for kSn, and at least for the simple modules pa-
rameterized by these special partitions we have a way of assigning explicit
weights.

In this paper we prove that for another family of partitions, the Brauer
quotients of the simple modules parameterized by the partitions in the family
have simple projective summands. Although we cannot guarantee that their
Brauer quotients are themselves simple (and hence projective), the existence
of a simple projective summand is enough to once again assign specific weights
to the simple modules parameterized by the partitions in our family.

We shall work with an algebraically closed field k of characteristic two. The
partitions we shall consider are the ones that can be obtained by addingn nodes
to the first row of a triangular partition of size t. Since triangular partitions
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are the only two-cores, they are the ones that correspond to the blocks of defect
zero of the symmetric groups in characteristic two.

On the other hand, to each triangular partition was appended a horizontal
partition, which parameterizes the trivial representation of kSn. The most
natural way to assign a weight to the trivial kSn-module in general is to choose
(P, k), where P is a Sylow p-subgroup of Sn and k is the trivial NSn (P )/P -
module. It seems reasonable to expect that a partition that can be formed
from a triangle and a horizontal line should correspond to a weight that encodes
this information. In fact, the weight that we assign to this partition - that is,
the weight that is a summand of the Brauer quotient - consists of a Sylow
2-subgroup of Sn and the only simple projective module for kSt. This weight
encapsulates the essential information about the partition.

In Section 2 we give James’ construction of the irreducible kSn-modules in
characteristic p. In Section 3 we define weights and state Alperin’s conjecture.
In Section 4 we define Brauer quotients. As a matter of fact, we shall only work
with the “fixed points Brauer quotients”, a special case of a general construction
that can be used to study Mackey Functors (see [10]).

In Section 5 we prove out main result. We note that when a weight subgroup
of Sm has fixed points on M = {1, . . . ,m}, then the weight breaks down as a
simple projective module for the symmetric group of the fixed points on M and
a weight for the symmetric group of the complement of the fixed points. We
use this idea to chase the simple projective module we want through the whole
process until we reach the Brauer quotient. In other words, if µ denotes the
triangular partition of size t and λ the partition obtained by adding n extra
nodes to the first row of µ, then we prove that the simple projective kSt-module
Dµ is a direct summand of Mλ, Sλ,Dλ, (Dλ)H and of the Brauer quotient of Dλ

with respect toH, whereH is a Sylow 2-subgroup of Sn. We also prove that the
subgroup H is minimal with this property, that is, if K is a proper subgroup of
H, then the Brauer quotient of Dλ with respect to K does not have any simple
projective direct summands.

2. Some important kSn-modules

We define the modules Mλ, Sλ and Dλ following James [5]. The simple kSn-
modules, as is well known, can be parameterized by certain partitions of n
called p-regular, where p is the characteristic of the field k. Moreover, it is
possible to construct each simple module from its associated partition. In this
section n is a natural number, k is a field of characteristic p > 0 and λ is a
partition of n.

Definition (2.1). A λ-tableau is one of the n! arrays of integers obtained
by replacing each node in the partition λ by one of the integers 1, 2, . . . , n,
allowing no repeats. If t is a tableau, its row stabilizer, Rt, is the subgroup
of Sn consisting of the elements which fix all rows of t setwise. The column
stabilizer of t, denoted Ct, is the subgroup of Sn consisting of the elements
which fix all columns of t setwise. The signed column sum of t, denoted κt, is
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the element of kSn given by

κt :=
∑
π∈Ct

(−1)sign(π)π.

We define an equivalence relation on the set of λ-tableaux by t1 ∼ t2 if and only
if πt1 = t2 for some π ∈ Rt1 . The tabloid, {t} containing t is the equivalence
class of t under this relation. The kSn-module Mλ =Mλ

k is the vector space
over k whose basis elements are the various λ-tabloids. The polytabloid, et,
associated with the tableau t is given by

et := κt{t}.
The Specht module, Sλ=Sλ

k for the partition λ is the submodule of Mλ spanned
by polytabloids (this is indeed a kSn-module).

We also define an Sn-invariant, symmetric, non-singular bilinear form <,>
on Mλ, whose values on pairs of tabloids is given by

< t1, t2 >:=

{
1 if t1 = t2,

0 if t1 �= t2.

The partition λ is p-singular if it has at least p rows of the same size;
otherwise, λ is p-regular. The module Dλ=Dλ

k is defined as

Dλ := Sλ/(Sλ ∩ Sλ⊥)

where λ is a p-regular partition.

Theorem (2.2). (James) As λ varies over p-regular partitions of n, Dλ varies
over a complete set of inequivalent irreducible kSn-modules. Each Dλ is self-
dual and absolutely irreducible. Every field is a splitting field for Sn.

For a proof of this result, see [5].

Example (2.3). Let λ = (n) be the partition with just one row of length n.
Then all λ-tableaux are row equivalent, so there is only one λ-tabloid, and
M (n) = k is the one dimensional trivial module. We also have that S(n) =
D(n) = k.

3. Alperin’s Conjecture

We give the definition of weight and formulate Alperin’s Conjecture in its
most general form. We mention some classes of groups for which it is known to
be valid (including the symmetric groups) and we note the possible advantages
of a combinatorial proof, that is, an explicit bijection between weights and
irreducible modules.

Throughout this section, G will be a finite group, p a prime number, and
k a splitting field for G in characteristic p. All our modules will be finite
dimensional over k.

Definition (3.1). A weight for G is a pair (Q,S) where Q is a p-subgroup
and S is a simple module for k[NG(Q)] which is projective when regarded as a
module for k[NG(Q)/Q].
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Remark (3.2). Since S is k[N(Q)]-simple and Q is a p-subgroup of NG(Q),
it follows that Q acts trivially on S, so S is also a k[NG(Q)/Q]-module and the
definition makes sense. Moreover, S is k[NG(Q)/Q]-simple as well.

Remark (3.3). If we replace S by an isomorphic k[NG(Q)]-module we con-
sider this the same weight, and we make the same identification when we
replace Q by a conjugate subgroup (so that the normalizers will be conjugate,
too).

Now we can formulate the main problem that we shall discuss in this section.

Theorem (3.4). (Alperin’s Conjecture) The number of weights for G equals
the number of simple kG-modules.

A stronger version of the preceding statement is that there is a bijection
within each block of the group algebra.

Definition (3.5). If (Q,S) is a weight for G, then S belongs to a block b of
NG(Q) and this block corresponds with a block B of G via the Brauer corre-
spondence; hence we can say that the weight (Q,S) belongs to the block B of
G so the weights are partitioned into blocks.

Theorem (3.6). (Alperin’s Conjecture, Block Form) The number of weights
in a block of G equals the number of simple modules in the block.

This version of the conjecture implies the original one, as it can be obtained
by summing the equalities from the stronger conjecture over the blocks. This
stronger conjecture has been proved when G is a:

• Finite group of Lie type and characteristic p (Cabanes, [3]).
• Solvable group (Okuyama, [8]).
• Symmetric group (Alperin and Fong, [2]).
• GL(n, q) and p does not divide q (Alperin and Fong, [2]).

Alperin and Fong’s proof in the case of symmetric groups was just an ob-
servation of a numerical equality which did not suggest a deeper reason for
the relationship. For finite groups in general one does not expect to have any
canonical bijection between weights and simple modules; as a matter of fact,
Alperin himself says this is unlikely (see [1], p 369). For groups of Lie type
in their defining characteristic there is a canonical bijection (described in [1]).
Since symmetric groups and groups of Lie type have such strong connections
in their representation theory, it is reasonable to ask whether there is some
canonical bijection in the case of symmetric groups.

If true, Alperin’s conjecture would imply a number of known results, until
now unrelated (see [1]). It is also reasonable to expect that if an explicit bijec-
tion can be given to prove it, this may reveal new connections between simple
kG-modules and weights; there are many results known about the former, and
the latter are related to the blocks of defect zero, which are not as easy to
deal with as the simple modules. In fact, this is really the true importance
of Alperin’s conjecture in that it provides a connection between the blocks of
defect zero and the set of all simple modules. More specifically, Alperin’s con-
jecture has been shown by Robinson [7] to be equivalent to a statement which
expresses the number of blocks of defect zero of a group in terms of the number
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of p-modular irreducibles of sections of the group of the form NG(P )/P , P ≤ G
a p-subgroup. These latter numbers are easy to compute, since by a theorem
of Brauer the number of p-modular irreducibles of a group equals the number
of p-regular conjugacy classes.

4. Brauer quotients

We define Brauer quotients, a relatively new tool in the representation the-
ory of groups. In this section k is an arbitrary field,G an arbitrary finite group,
H a subgroup of G, and V a kG-module. We denote by VG the fixed points of
V under G.

Definition (4.1). The map trGH :VH−→VG given by

m �→
(

l∑
i=1

gi

)
m,

where G = �l
i=1giH, is called the relative trace from H to G. The Brauer

quotient of V with respect to H is defined as

FPV (H) := VH/
∑
K<H

trHK (VK ).

This is a k[NG(H)]-module, where H acts trivially, so it is a k[NG(H)/H]-
module. The preceding definition is a particular example of the Brauer quo-
tient of a Mackey functor: in our case we are using the fixed points Mackey
functor. Constructions such as this appear in recent work by various authors
such as Puig and Thévenaz, see [9].

5. Augmented triangular partitions and weights

In this section we prove our main result. Unless otherwise stated, k is an
algebraically closed field of characteristic two, t is a triangular number, µ is
the triangular partition of size t, n a natural number, and λ the partition of
n + t obtained by adjoining n nodes to the first row of µ.

First we recall the fundamental property of triangular partitions. For a
proof of this result, see [6].

Lemma (5.1). We have thatSµ = Dµ is simple and projective as a kSt-module.
Furthermore, kSn has a simple projective module if and only if n is a triangular
number, and in this case there is only one simple projective module.

We remind the reader of some useful facts about the representations of
Cartesian products of groups.

Proposition (5.2). Let k be a splitting field for the finite groupsR and S, let
U, T be finite dimensional modules for kR and kS respectively, and let k(R×S)
act on U ⊗k T via (r, s)(u⊗ t) = ru⊗ st. Then

(i)U⊗k T is a simple k[R×S]-module if and only ifU is a simple kR-module
and T is a simple kS-module.

(ii) U ⊗k T is a projective k[R × S]-module if and only if U is a projective
kR-module and T is a projective kS-module.
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Proof. (i) A proof of this result can be found in [4], Theorem (10.33).
(ii) It is clear that the tensor product of two projective modules is projective.

Assume that U ⊗ T is a projective module for the group R × S. Then its
restriction to the subgroup R = R×{1} is projective, and this is isomorphic to
several copies of the R-module U (as many copies as the dimension of T over
k), which proves that U must be projective. A similar argument proves that T
is a projective kS-module.

This situation arises naturally when a subgroup H of Sn has fixed points on
the set {1, . . . , n}.

Lemma (5.3). Let H be a subgroup of the symmetric group SM with fixed
points F and let Θ be the complement of F in M . Then

NSM (H)/H =
(
NSΘ(H)/H

)× SF

Proof. One containment is immediate. Now let τ ∈ NSM (H). Then τ per-
mutes the fixed points F of H, so τ = αβ with α ∈ SΘ and β ∈ SF . It follows
that α is in NSΘ(H).

As a result, a module for the quotient groupNSM (H)/H is really a module for
the product

(
NSΘ(H)/H

)×SF . In this context, if we refer to a kSF -moduleU as
a k[NSM (H)/H]-module, we mean k ⊗k U, that is, NSΘ(H)/H acts trivially on
U. Notice that the k[NSM (H)/H]-module k⊗k U will be simple and projective
if and only if both k and U are simple and projective modules for NSΘ(H)/H
and SF respectively, that is, if and only if H is a Sylow 2-subgroup of SΘ and
U is a simple and projective kSF -module.

Combining the previous results we have the following.

Corollary (5.4). Let H be a weight subgroup of Sn, with no fixed points
on {1, . . . , n}. For each q > n, regard Sn as the subgroup of Sq that fixes
the points x > n. Then H is a weight subgroup of Sq if and only if q − n
is a triangular number. In this case, the number of isomorphism classes of
simple projectiveNSn (H)/H-modules equals the number of isomorphism classes
of simple projective NSq (H)/H-modules.

Proof. The group NSq (H)/H is isomorphic to
(
NSn (H)/H

) × Sq−n, which
has a simple projective module if and only if q − n is a triangular number.
The last part follows from the fact that the simple projective modules for a
product of groups are the tensor products of their respective simple projective
modules.

We must prove that there is a simple projective kSt-module (the one param-
eterized by µ) inside Mλ, Sλ and Dλ. In order to study the restriction of the
kSn+t-module Mλ to kSt, we must analyse some special subpartitions that can
be obtained from λ.

Lemma (5.5). Let ν be any partition, with rows ν1 ≥ ν2 ≥ · · · ≥ νs. Remove
n symbols and push up, obtaining a composition, ν̂ (the rows of ν̂ need not be
in descending order). Rearrange the rows of ν̂ to get a partition ν̃. Then ν̃ “fits
inside” ν, that is, ν̃i ≤ νi for all i.
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Proof. Induction on n. Let n = 1, and let j be the index of the row where
a node is deleted. Then the j-th row of the composition ν̂ is νj − 1, but all the
other rows coincide with those of ν. Let a be the smallest number such that
νj > νa (possible, since νj > 0). Then we have νj = νj+1 = · · · = νa−1 > νa,
so νj − 1 ≥ νa, and rearranging the rows of ν̂ in decreasing order we get that
ν̃i = νi if i �= a − 1, and ν̃a−1 = νa−1 − 1. Thus ν̃ fits inside ν.

Now assume the result holds for n symbols. Removing n symbols from ν
gives a partition ψ that fits inside ν, and removing one symbol from ψ gives a
partition φ that fits inside ψ, so φ fits inside ν as well.

Remark (5.6). When we remove one node, it suffices to take it from a row
that is strictly larger than the next (no shifting will occur). Note also that
both ν̂ and ν̃ depend on the choice of the rows from which the n symbols are
removed.

Lemma (5.7). Let λ̃ be any partition obtained from λ by removing n nodes as
above. Then λ̃ dominates µ, and λ̃ = µ if and only if the n nodes were removed
from the first row.

Proof. To show
∑r

i=1 λ̃i ≥ ∑r
i=1 µi for all r ≥ 1, we show that

∑
i>r λ̃i ≤∑

i>r µi, and this follows from the previous lemma. The only way to obtain µ
is to remove n nodes from the first row.

Proposition (5.8). The module Mλ restricted to St is a direct sum of Mν,
where each ν is obtained from λ as λ̃, removing the nodes with the symbols
t + 1, . . . , t + n from each λ-tabloid. The module Mµ occurs precisely once.

Proof. The moduleMλ is the permutation module with λ-tabloids as a basis.
Restricting this to St we get again a permutation module. Let α be a λ-tabloid.
We claim that the orbit of α under St gives rise to a permutation module Mλ̃,
where λ̃ is obtained by removing n nodes from λ as described in Lemma (5.5),
the n nodes being deleted from the rows where the numbers t+ 1, . . . , t+n are
placed in the λ-tabloid α. These two kSt-permutation modules are isomorphic
because their underlying St-sets are isomorphic, which in turn follows from the
fact that the stabilizer in St of α coincides with the stabilizer of the λ̃-tabloid
obtained from α by deleting the n nodes from the rows where the symbols
t + 1, . . . , t + n are. The only time that we get Mµ is when we remove all n
nodes from the first row, which can be done in exactly one way, so Mµ appears
exactly once as a summand (α is a tabloid, so the order of the symbols within
each row is irrelevant).

Corollary (5.9). The moduleMλ restricted toSt has exactly one composition
factor isomorphic to Dµ.

Proof. It follows from the previous proposition and the fact (see [5]) that the
composition factors of Mν are all of the form Dα, where α dominates ν (and,
when ν is 2-regular, exactly one composition factor is isomorphic to Dν).

The following result will prove that, as a kSt-module, Dµ is a direct sum-
mand of Sλ, Dλ and even (Dλ)K for any subgroup K of Sn.
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Proposition (5.10). Let ϕ = ϕt,n : Mµ−→Mλ be the map given by adjoining
the numbers t+1, t+2, . . . , t+n to the first row of eachµ-tabloid (and extending
by linearity). Then ϕ is a monomorphism of kSt-modules. Moreover, ϕ sends
Sµ into Sλ, and if π : Sλ−→Dλ is the natural quotient map, then π ◦ ϕ sends
Sµ isomorphically into a summand (as a kSt-module) of the fixed points of Dλ

under the subgroup S{t+1,t+2,...,t+n}. In particular, if K is any subgroup of Sn,
there is a monomorphism of St- modules Dµ−→(Dλ)K .

Proof. We see that ϕ is a monomorphism of St-modules. Let α be a µ-
tableau, and let β be the tableau obtained from α by adjoining the numbers
t + 1, t + 2, . . . , t + n to the first row. Then the column stabilizer in St of α is
the same as the column stabilizer of β in St+n, so the polytabloid generated
by α will be sent by ϕ to the polytabloid generated by β. Since this holds for
any tableau α, we have that ϕ sends Sµ into Sλ. The map ϕ also preserves the
standard bilinear form on Mµ, and since Sµ = Dµ, we have that ϕ(Sµ) ∩ (Sλ)⊥

is contained in ϕ(Sµ) ∩ (ϕ(Sµ))⊥ = ϕ(Sµ ∩ (Sµ)⊥) = 0, so the composition π ◦ ϕ
is injective. The rest follows from the fact that Sµ is St-projective.

Corollary (5.11). The module Sλ restricted to St has exactly one composi-
tion factor isomorphic to Dµ, and so do Dλ and (Dλ)K for any subgroup K of
Sn.

Proof. The module Sλ ↓St is a submodule of Mλ ↓St , so it has at most one Dµ

as composition factor (see Corollary (5.9)). But Dλ ↓St is a quotient module of
Sλ ↓St , and (Dλ)K is a submodule ofDλ ↓St , so these also have at most oneDµ as
a composition factor. Finally, Proposition (5.10) states that (Dλ)K has at least
one composition factor isomorphic to Dµ, hence so do Dλ ↓St and Sλ ↓St .

Corollary (5.12). Let H be a 2-subgroup of Sn, and K a proper subgroup
of H. Let ψ : Dµ−→(Dλ)K be the monomorphism of kSt-modules defined in
Proposition (5.10). Then trHK ◦ ψ = 0.

Proof. We have that ψ(Dµ) is contained in (Dλ)H , so trHK (ψ(v)) = [H :
K]ψ(v) = 0.

We analyse what the relative traces do to this copy of Dµ in the fixed points
(Dλ)H .

Lemma (5.13). If K ≤ H ≤ Sn then

trHK : (Dλ)K−→(Dλ)H

is a morphism of kSt-modules, whereSt is regarded as a subgroup of the quotient
NSt+n (H)/H.

Proof. Let y ∈ St. Then for any x ∈ H we have yx = xy, so ytrHK (v) =
y
∑

xiv =
∑

yxiv =
∑

xi(yv) = trHK (yv), where yv ∈ (Dλ)K .

Corollary (5.14). If K ≤ H ≤ Sn then Im(trHK ) is an St-submodule of
(Dλ)H .

Lemma (5.15). Let V1, . . . , Vr be a family of submodules of a module V . Then∑
Vi is a quotient module of ⊕Vi.
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Proof. The map (v1, . . . , vr) �→ v1 + · · · + vr is surjective.

Corollary (5.16). Let H be a 2-subgroup of Sn, and K a proper subgroup
of H. Then

(i) The kernel of trHK : (Dλ)K−→(Dλ)H has Dµ as a composition factor.
(ii) The image of trHK does not have Dµ as a composition factor.
(iii) No composition factor of

∑
K<H Im(trHK ) is isomorphic to Dµ.

(iv) As a kSt-module (and not necessarily as a k[NSn+t (H)/H]-module), the
Brauer quotient FPDλ (H) has Dµ as a composition factor of multiplicity one.

Proof. (i) follows from Corollary (5.12); (ii) follows from Corollary (5.11) and
(i); (iii) follows from (ii) and Lemma (5.15); (iv) follows from (iii) and Corol-
lary (5.11).

Notice the remark in part (iv). Note also that ifH ≤ Sn, thenNSn+t (H)/H ∼=
St if and only if H is a Sylow 2-subgroup of Sn.

We are almost done. In order to prove the minimality condition, we prove
that there are no simple projective kSd-modules arising from a triangular num-
ber d greater than t.

Lemma (5.17). Let λ be a partition of m, µ a 2-regular partition of t, t < m.
If Dµ is a composition factor of Mλ ↓St , then there exists a partition ν of t such
that ν fits inside λ and µ dominates ν.

Proof. By Proposition (5.8), Mλ ↓St is a direct sum of Mν, where each ν fits
inside α. If one of the Mν has Dµ as a composition factor, we know (see [5])
that µ dominates ν.

Lemma (5.18). Let t be a triangular number, µ the triangular partition of
size t, λ the partition obtained by adding n nodes to the first row of µ. Let ν be
a subpartition of λ (so µi ≥ νi for all i ≥ 2) and α a triangular partition with
|α| = |ν| and that dominates ν. Then µ1 ≥ α1, and hence |µ| ≥ |α|.

Proof. Suppose α1 > µ1. Then α is a larger triangle than µ, so there exists
r such that αr > 0 = µr, so |α| ≥ ∑r

i=1 αi > α1 +
∑r

i=2 µi ≥ ν1 +
∑r

i=2 νi = |ν|,
contradicting the fact that α and ν had the same size.

We can prove our main result.

Theorem (5.19). Let k be an algebraically closed field of characteristic two,
t a triangular number, µ the triangular partition of size t, n a natural number,
and λ the partition of n + t obtained by adjoining n nodes to the first row of µ.
Let H be a Sylow 2-subgroup of Sn. Then NSn+t (H)/H ∼= St, and FPDλ (H) has
a simple projective summand of multiplicity one, given by Dµ. If K is a proper
subgroup of H, then FPDλ (K) contains no simple projective summands.

Proof. The first part follows from Corollary (5.16). Let r be the number of
points in {1, . . . , n} that K moves. We have that NSn+t (K) = Sn+t−r ×NSr (K),
and NSn+t (K)/K ∼= Sn+t−r × NSr (K)/K. Suppose that FPDλ (K) has a simple
projective summand. Then n+ t− r is a triangular number, and its triangular
partition α is such thatDα is a composition factor ofMλ ↓S|α| . By Lemma (5.17),
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there exists a subpartition ν of λ such that |α| = |ν| and α dominates ν. By
Lemma (5.18), |α| ≤ |µ|, i.e. n + t− r ≤ t, so n = r.

We have then thatNSn+t (K) = St×NSn (K), soNSn+t (K)/K ∼= St×NSn (K)/K.
A simple projective module for the latter group must be of the form Dµ ⊗ B,
where B is a simple projective NSn (K)/K-module and Dµ is the only simple
projective St-module. If FPDλ (K) had such a summand, then restricting to
St the Brauer quotient would have a summand (Dµ ⊗ B) ↓St∼= (Dµ)dim(B), so
Dµ would have multiplicity dim(B), and since Dµ appears only once, B must
have dimension 1. Thus B cannot be projective for NSn (K)/K if K is a proper
subgroup of H since then NSn (K)/K has order divisible by 2.
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