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STABLE PARTITIONS AND ALPERIN’S WEIGHT
CONJECTURE FOR THE SYMMETRIC GROUPS IN

CHARACTERISTIC TWO

RADHA KESSAR AND LUIS VALERO-ELIZONDO

Abstract. Alperin’s weight conjecture for the symmetric groups has been
proved using an enumeration of the weights and the simple modules (see [2]),

but so far there is no explicit way to associate weights with simple modules.
Based on data obtained using an algorithm for finding weights for small
symmetric groups in characteristic two (see [16]), we put forward a combi-
natorial conjecture which, if true, would provide explicit bijections between
weights and irreducible modules for the symmetric groups in characteris-
tic two. We prove some results towards the proof of this combinatorial
conjecture.

1. Introduction

Alperin’s weight conjecture is one of the most important and difficult open
problems in the representation theory of finite groups. This conjecture has al-
ready been established for several families of groups, but some of these proofs are
just enumerations of the sets of weights and irreducibles, with no explicit cor-
respondence between them. Such is the case of the symmetric groups. Alperin
and Fong proved in [2] that Alperin’s conjecture holds for the symmetric groups,
so we know that the number of weights for kSn equals the number of simple
kSn-modules, where k is a field of characteristic p > 0. In [16] the second author
used Brauer quotients to assign weights to the simple modules parameterized by
three infinite families of 2-regular partitions. Using computer software written
in GAP (see [9]), he used Brauer quotients to give an explicit bijection bewteen
weights and irreducible modules for kSn for n ≤ 9. This information was gath-
ered in one Table of Partitions, whose rows are indexed by the weight subgroups
of all the symmetric groups, and whose columns are indexed by the triangular
partitions. This table is in Section 4. In this section we also observe some re-
markable properties of this Table of Partitions, and put forward a conjecture.
This conjecture is a stronger version of a reformulation of Alperin’s conjecture
for the symmetric groups in characteristic two.

In Section 2 we define weights and state Alperin’s conjecture. In Section 3 we
give James’ construction of the irreducible kSn-modules in characteristic p. At
the end of this section we also define skew-hooks and cores of partitions, which
are needed to determine the blocks of the irreducibles. Section 4 has the Table
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of Partitions and our proposed conjecture. Section 5 has the results we have
towards a proof of this conjecture.

2. Alperin’s Conjecture

We give the definition of weight and formulate Alperin’s Conjecture in its most
general form. We mention some classes of groups for which it is known to be
valid (including the symmetric groups) and we note the possible advantages of a
combinatorial proof, that is, an explicit bijection between weights and irreducible
modules.

Throughout this section, G will be a finite group, p a prime number, and k a
splitting field for G in characteristic p. All our modules will be finite dimensional
over k.

Definition (2.1). A weight for G is a pair (Q, S) where Q is a p-subgroup
and S is a simple module for k[NG(Q)] which is projective when regarded as a
module for k[NG(Q)/Q].

Remark (2.2). Since S is k[N(Q)]-simple and Q is a p-subgroup of NG(Q), it
follows that Q acts trivially on S, so S is also a k[NG(Q)/Q]-module and the
definition makes sense. Moreover, S is k[NG(Q)/Q]-simple as well.

Remark (2.3). If we replace S by an isomorphic k[NG(Q)]-module we consider
this the same weight, and we make the same identification when we replace Q
by a conjugate subgroup (so that the normalizers will be conjugate, too).

Now we can formulate the main problem that we shall discuss in this section.

Conjecture (2.4) (Alperin’s conjecture). The number of weights for G equals
the number of simple kG-modules.

A stronger version of the preceding statement is that there is a bijection within
each block of the group algebra.

Definition (2.5). If (Q, S) is a weight for G, then S belongs to a block b of
NG(Q) and this block corresponds with a block B of G via the Brauer corre-
spondence; hence we can say that the weight (Q, S) belongs to the block B of G
so the weights are partitioned into blocks.

Conjecture (2.6) (Alperin’s Conjecture, Block Form). The number of weights
in a block of G equals the number of simple modules in the block.

This version of the conjecture implies the original one, as it can be obtained
by summing the equalities from the stronger conjecture over the blocks. This
stronger conjecture has been proved when G is a:

Finite group of Lie type and characteristic p (Cabanes, [8]).
Soluble group (Okuyama, [14]).
Symmetric group (Alperin and Fong, [2]).
GL(n, q), p odd and p does not divide q (Alperin and Fong, [2]).
GL(n, q), p = 2 and q odd (An, [3]).

The conjecture has also been checked in a variety of other cases (see [4], [5],
[6], [7], etc.).
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Alperin and Fong’s proof in the case of symmetric groups was just an ob-
servation of a numerical equality which did not suggest a deeper reason for the
relationship. For finite groups in general one does not expect to have any canon-
ical bijection between weights and simple modules; as a matter of fact, Alperin
himself says this is unlikely (see [1], p 369). For groups of Lie type in their
defining characteristic there is a canonical bijection (described in [1]). Since
symmetric groups and groups of Lie type have such strong connections in their
representation theory, it is reasonable to ask whether there is some canonical
bijection in the case of symmetric groups.

If true, Alperin’s conjecture would imply a number of known results, until now
unrelated (see [1]). It is also reasonable to expect that if an explicit bijection
can be given to prove it, this may reveal new connections between simple kG-
modules and weights; there are many results known about the former, and the
latter are related to the blocks of defect zero, which are not as easy to deal with
as the simple modules. In fact, this is really the true importance of Alperin’s
conjecture in that it provides a connection between the blocks of defect zero
and the set of all simple modules. More specifically, Alperin’s conjecture has
been shown by Knörr and Robinson [13] to be equivalent to a statement which
expresses the number of blocks of defect zero of a group in terms of the number
of p-modular irreducibles of sections of the group of the form NG(P )/P , P ≤ G
a p-subgroup. These latter numbers are easy to compute, since by a theorem of
Brauer the number of p-modular irreducibles of a group equals the number of
p-regular conjugacy classes.

3. Some important kSn-modules

We define the modules Mλ, Sλ and Dλ following James [11]. The simple kSn-
modules, as is well known, can be parameterized by certain partitions of n called
p-regular, where p is the characteristic of the field k. Moreover, it is possible to
construct each simple module from its associated partition. We end this section
with the definition of p-core. In this section n is a natural number, k is a field
of characteristic p > 0 and λ is a partition of n.

Definition (3.1). A λ-tableau is one of the n! arrays of integers obtained by
replacing each node in the partition λ by one of the integers 1, 2, . . . , n, allowing
no repeats. If t is a tableau, its row stabilizer , Rt, is the subgroup of Sn consisting
of the elements which fix all rows of t setwise. The column stabilizer of t, denoted
Ct, is the subgroup of Sn consisting of the elements which fix all columns of t
setwise. The signed column sum of t, denoted κt, is the element of kSn given by

κt :=
∑
π∈Ct

(−1)sign(π)π.

We define an equivalence relation on the set of λ-tableaux by t1 ∼ t2 if and only
if πt1 = t2 for some π∈Rt1 . The tabloid , {t} containing t is the equivalence class
of t under this relation. The kSn-module Mλ =Mλ

k is the vector space over k
whose basis elements are the various λ-tabloids. The polytabloid , et, associated
with the tableau t is given by

et := κt{t}.
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The Specht module, Sλ=Sλ
k for the partition λ is the submodule of Mλ spanned

by polytabloids (this is indeed a kSn-module).
We also define an Sn-invariant, symmetric, non-singular bilinear form 〈 , 〉

on Mλ, whose values on pairs of tabloids is given by

〈t1, t2〉 :=

{
1 if t1 = t2,

0 if t1 �= t2.

The partition λ is p-singular if it has at least p rows of the same size; otherwise,
λ is p-regular . The module Dλ=Dλ

k is defined as

Dλ := Sλ/(Sλ ∩ Sλ⊥)

where λ is a p-regular partition.

Theorem (3.2) (James). As λ varies over p-regular partitions of n, Dλ varies
over a complete set of inequivalent irreducible kSn-modules. Each Dλ is self-dual
and absolutely irreducible. Every field is a splitting field for Sn.

For a proof of this result, see [11].

Definition (3.3). Let λ be a partition. A skew-hook is a connected part of the
rim of λ which can be removed to leave a proper diagram. The r-core of λ is the
partition obtained by removing all possible skew-hooks of size r from λ (this is
a well-defined partition, that is, the order in which we remove the skew-hooks
does not matter). A brick is a skew-hook of size 2 (compare to the definition of
domino in [10]). Recall that if λ = (λ1, . . . , λt) is a 2-regular partition, then its
rows must be of different sizes, i.e. λ1 > λ2 > · · · > λt.

Theorem (3.4) (Nakayama’s Conjecture). Let α and β be p-regular partitions
of n, and let k be a field of characteristic p > 0. Then Dα and Dβ lie in the
same block of kSn if and only if α and β have the same p-cores.

For a proof of this result see [12], Thm 6.1.21.

4. Table of partitions

Since the number of weights for the symmetric group Sn equals the number
of simple kSn-modules, one can define explicit bijections between weights and
irreducibles. Given any such possible bijection, it is natural to ask whether there
is a pattern hidden in its construction. The following table of partitions shows
the pattern in the case of the partial correspondence described in [16].

Notice that the fact that the characteristic is 2 implies that each weight (Q, S)
for Sn is uniquely determined by its weight subgroup Q. Indeed, the quotient
NSn(Q)/Q is in general the semidirect product of some copies of GL(mi, 2)
and Sm (see [2]). Since any simple projective module for the direct product
of GL(mi, 2) is Sm-invariant and since Sm has at most one simple projective
module, Clifford theory tells that (Q, S) is determined by Q.

Each weight subgroup of Sn is used to index one row of the table. In order
to determine the weight associated to a simple Sn-module V , one should first
look up in the table the partition that parameterizes V , and locate the subgroup
Q of Sn that indexes its row. By the previous remark, this subgroup can be
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completed to a unique weight (Q, S) for Sn. This is the weight that corresponds
to the irreducible module V .

The correspondence for these small values of n was determined using Brauer
quotients. For these specific irreducible modules and weight subgroups, we con-
structed their Brauer quotients (see [16] for their definition) and determined
which ones were simple and projective. This algorithm worked for all but one of
the simple modules of kSn for n ≤ 9 and k a field of characteristic two. We used
software written in GAP (see [9]) to make these computations. The routines we
used were written by Peter Webb and Luis Valero-Elizondo.

{1}: ∅

E2:

E2 	 E2:

E2 × (E2 	 E2):

(E2 	 E2) 	 E2:

E4:

E2 × E2 × E2:

E2 	 E4:

E2 × E4:

(E2 	 E2) × E4:

E8:

E4 	 E2:

Two-regular partitions
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Notice the following facts about this table of partitions:
1. The trivial subgroup indexes a row that consists of all triangular partitions

(we included the triangular partitions of size 0 and 1 for completeness).
2. Each weight subgroup Q appears for the first time inside a symmetric

group Sn where n is such that Q has no fixed points on the set {1, . . . , n}.
Moreover, if a 2-regular partition of size m appears in a row indexed by
the group Q, then Q is a weight subgroup of Sm.

3. The first partition of every row has empty 2-core. The second partition has
2-core of size 1, the third has 2-core of size 3 and the fourth has 2-core of
size 6. In other words, the 2-core of every partition along the i-th column
is the i-th triangular partition (where ∅ is the first triangular partition).

4. For every row, all partitions λ in that row are such that the difference of
the size of λ minus the size of its 2-core is constant.

5. Along every row, each partition is contained in the one to its right.
Item 1 is just stating the well-known fact that in characteristic 2, the only

symmetric groups with simple projective modules are the St with t a triangular
number, and that such modules are parameterized by the corresponding trian-
gular partitions. Item 2 is proved implicitly in [2].

It is rather straightforward to come up with the following conjecture:

Conjecture (4.1). It is possible to arrange all 2-regular partitions in an infinite
table satisfying the five conditions mentioned above.

Note that the existence of an infinite table of partitions satisfying conditions
1, 2, 3 and 4 is equivalent to the block version of Alperin’s conjecture for the
symmetric groups in characteristic two. Indeed, all we have to do is choose arbi-
trary bijections between weights (or rather, weight subgroups) and irreducibles
in their blocks, which are parameterized by partitions with appropriate 2-cores.

In this paper we prove that if a table of matrices satisfying all five conditions
exists, then most of its data is completely determined by a few entries.

5. 2-stability

We define the main concept of this paper.

Definition (5.1). Let λ be a partition. We call λ 2-stable if it has the same
number of rows as its 2-core.

Proposition (5.2). Let λ = (λ1, λ2, . . . , λt) be a partition. The following are
equivalent:

(i) λ is 2-stable.
(ii) λt ≡ 1(mod 2) and λi �≡ λi+1(mod 2) for all i = 1, . . . , t − 1.
(iii) λi ≡ t − i + 1(mod 2) for all i = 1, . . . , t.
(iv) λ is obtained from its 2-core by adjoining horizontal bricks to the non-

empty rows of the core.

Proof. (i) implies (ii): If λt were even, then the t-th row would be a string
of horizontal bricks, so we could remove it and the 2-core would have at most
t − 1 rows. Thus λt must be odd. If λt−1 were also odd, then we would be able
to remove all nodes but one from λt, all nodes but one from its neighbour and
then remove a vertical brick, which means the 2-core would have at most t − 2
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rows. Now assume that the parities of λt, λt−1, . . . , λi+1 alternate. We must
show that λi �≡ λi+1(mod 2). Without loss of generality, we may assume that
λt = 1, λt−1 = 2, . . . , λi+1 = t − i (by removing all possible horizontal bricks
from the bottom row λt and working our way up). Note that the 2-core of λ
must have t rows, so it must be the triangular partition (t, t − 1, . . . , 1), and in
particular, its i + 1 row has size t − i. If λi had the same parity as λi+1, then
we would be able to remove horizontal bricks from λi until we have t − i nodes
left, and then we would be able to remove a vertical brick, so that the row i + 1
of the 2-core of λ would have at most t− i− 1 nodes, contradicting the fact that
it had exactly t − i nodes.

(ii) implies (iii): We have λt ≡ 1(mod 2), so (iii) holds when i = t. Now use
induction going down from i = t to i = 1.

(iii) implies (iv): Since λt ≡ 1(mod 2), we can remove horizontal bricks from
the last row to leave one node, then proceed to remove horizontal bricks from the
previous row to leave two nodes, and work our way up until we get the triangular
partition (t, t − 1, . . . , 1), which is the 2-core of λ.

(iv) implies (i): If we remove the horizontal bricks that were adjoined we shall
obtain the 2-core of λ, so both partitions must have the same number of rows
(no bricks were added to form new rows).

Corollary (5.3). If λ is 2-stable, then it is also 2-regular.

Proof. Since λi �≡ λi+1(mod 2), no two consecutive rows can have the same
size.

Corollary (5.4). If λ = (λ1, λ2, . . . , λt) is 2-stable, then the partition given
by (λ1 + 1, λ2 + 1, . . . , λt + 1, 1) is also 2-stable.

Proof. This follows from Proposition (5.2), part (ii).

Remark (5.5). Note that the rows of a 2-stable partition have the same parity
as the rows of its 2-core. A possible way to measure how far a partition is
from being 2-stable is to count the number of its “mismatched rows”, that is,
the rows that have a different parity from the corresponding rows of the 2-core.
The following lemma gives an estimate of how many of these rows an arbitrary
partition can have.

Lemma (5.6). Let µ = (µ1, µ2, . . . , µs) be a partition (not necessarily 2-
regular) with 2-core γ = (γ1, γ2, . . . , γk). Let Λ = {i | γi �≡ µi(mod 2), 1 ≤ i ≤ k}
be the set of “mismatched” rows of µ. Then s ≥ k + 2|Λ|.

Proof. We use induction on |µ|. If |µ| = 0 or 1 then µ is its own 2-core
and Λ = ∅. Now assume the result holds for all partitions of size smaller than
|µ|. If µ is a 2-core, then once again Λ = ∅ and the result holds. If µ is
not a 2-core, let ν be any partition obtained from µ by removing a brick, so
|ν| < |µ| and the 2-core of ν is also γ. Let s1 be the number of rows of ν, and
Λ1 = {i | γi �≡ νi(mod 2), 1 ≤ i ≤ k} the set of mismatched rows of ν. By the
induction hypothesis, s1 ≥ k + 2|Λ1|. There are two cases:

Case 1: We removed a horizontal brick to obtain ν from µ. Then Λ1 = Λ, so
s ≥ s1 ≥ k + 2|Λ1| = k + 2|Λ|.
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Case 2: We removed a vertical brick to obtain ν from µ. Let i, i + 1 be the
rows where the vertical brick was removed. Then νi = νi+1. If νi+1 > νi+2, then
continue to remove all possible vertical bricks from rows i, i + 1 until rows i + 1
and i + 2 have the same size. If νi+2 > νi+3 then remove all possible vertical
bricks from rows i + 1, i + 2, and continue in this manner until you reach the
last two rows, s − 1, s (which could have been the original i, i + 1), and simply
remove them both (using vertical bricks). Let α = (α1, . . . , αs−2) be the resulting
partition. Notice that α and µ have the same 2-core, |α| < |µ| and α has exactly
two fewer rows than µ. Let Λ2 = {i | γi �= αi(mod 2), 1 ≤ i ≤ k}. All vertical
bricks removed from any of the first k rows kept the size of two consecutive rows
equal, so exactly one out of each such pair contributed to the set of mismatched
rows, and the number of mismatched rows remained the same. Similarly, no
vertical bricks removed from any of the rows k + 1 through s changed the size
of the set of mismatched rows (because these rows do not appear in the 2-core).
The only time when the number of mismatched rows could have changed was
while removing vertical bricks from the rows k and k+1, and this number cannot
have been changed by more than one unit (depending on whether the k-th row
kept its mismatched status or not). This means that ||Λ| − |Λ2|| ≤ 1, and since
α satisfies the induction hypothesis, we have

s − 2 ≥ k + 2|Λ2| ≥ k + 2(|Λ| − 1),

and the result is valid for µ.

Now we can prove our main result.

Theorem (5.7). Let λ = (λ1, . . . , λt) be a 2-stable partition, and let µ =
(µ1, µ2, . . . , µs) be a 2-regular partition containing λ. If |µ| = |λ|+ t + 1 and the
2-core of µ is (t + 1, t, . . . , 1), then µ = (λ1 + 1, λ2 + 1, . . . , λt + 1, 1), and µ is
2-stable.

Proof. Since λ is a subpartition of µ, it is possible to write µ = (λ1 +
α1, . . . , λt +αt, αt+1, . . . , αs). It suffices to show that αi ≥ 1 for all 1 ≤ i ≤ t+1
since then the equality |µ|−|λ| = t+1 forces αi = 1 where 1 ≤ i ≤ t+1 = s. Note
that αt+1 ≥ 1 since the 2-core of µ has t+1 rows. Let Γ = {i | αi = 0, 1 ≤ i ≤ t}.
We must show that Γ = ∅. Suppose |Γ| ≥ 1. Note that

t∑
i=1

αi =
∑

i∈{1,...,t}−Γ

αi ≥ t − |Γ|.

Since λ is 2-stable, by Proposition (5.2) (iii) it has no mismatched rows. However,
the 2-core of µ is the next triangle, and all the rows of the smaller triangle must
change parity, so all the rows of λ that kept their parity will be mismatched rows
of µ, so Γ is a subset of the set Λ of mismatched rows of µ. By Lemma (5.6) we
have s ≥ (t + 1) + 2|Λ| ≥ t + 1 + |Γ|, so

s − t ≥ |Γ| + 1 .
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Since µ is 2-regular, 1 ≤ αs < αs−1 < · · · < αt+1, so
∑s

i=t+1 αi ≥ ∑s−t
i=1 i =

(s−t)(s+1−t)
2 , and

t + 1 =
s∑

i=1

αi =
s∑

i=t+1

αi +
∑

i∈{1,...,t}−Γ

αi ≥ (s − t)(s + 1 − t)
2

+ t − |Γ|

≥t +
(|Γ| + 1)(|Γ| + 2)

2
− |Γ| = t +

|Γ|2 + 3|Γ| + 2
2

− |Γ|

=t + 1 +
|Γ|2 + |Γ|

2
> t + 1

which is a contradiction. It is now immediate that µ is 2-stable.

If an infinite table of partitions satisfying the five conditions from Section 4
existed, then by Theorem (5.7) we see that for any 2-stable partition λ in this
table, the partitions on the same row and to the right of λ are completely deter-
mined. Now we shall prove that in any row of such a table of partitions there
are only finitely many partitions which are not 2-stable.

Lemma (5.8). Let λ be a 2-regular partition with 2-core γ, and let t be the
number of rows of γ. If λ is not 2-stable, then |λ| − |γ| ≥ t + 1.

Proof. Let γ = (γ1 > γ2 > · · · > γt > 0 = γt+1), λ = (λ1 > λ2 > · · · > λs).
Since λ is not 2-stable, then λt+1 ≥ 1 = 1 + γt+1. The partition λ is 2-regular,
so λt ≥ λt+1 + 1 ≥ 2 = 1 + γt. Inductively we have that λi ≥ 1 + λi+1 ≥
1+(1+γi+1) = 1+γi for all i = 1, . . . , t+1. Therefore, |λ|−|γ| ≥ ∑t+1

i=1(λi−γi) ≥
t + 1.

Corollary (5.9). Let n be a positive integer. Then there exist only finitely
many non 2-stable partitions λ such that |λ| − |γ| ≤ n, where γ is the 2-core of
λ. In particular, in any table of partitions satisfying condition 4 from Section 4,
in any row of this table there are only finitely many non 2-stable partitions.

Proof. Assume λ and γ are as above. By Lemma (5.8), the number of rows
of γ is less than or equal to n − 1, and since γ is a triangular partition, then
|γ| ≤ (n−1)n/2, so |λ| ≤ |γ|+n ≤ (n−1)n

2 +n = n2+n
2 , and there are only finitely

many partitions whose size is bounded above. The last part follows because for
any row of the table, the difference between the size of any partition in that row
and its 2-core is constant.
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