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Abstract

We prove that if two finite groups G and G′ have isomorphic Burnside
rings, then there is a normalized isomorphism between these rings, that
is, a ring isomorphism θ : B(G) −→ B(G′) such that θ(G/1) = G′/1. We
use this to prove that if two finite groups have isomorphic Burnside rings,
then there is a one-to-one correspondence between their families of soluble
subgroups which preserves order and conjugacy class of subgroups.
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1 Introduction.

A very important algebraic invariant that can be associated to any finite group
G is its Burnside ring B(G), which we define in Section 2. This object has
been studied from many different perspectives. As a commutative ring, much
has been proved about its internal structure (see [14], [15], [22] and [23]). The
Burnside ring encapsulates information about the G-sets of the group, which
carry a lot of combinatorial information, and at a deeper level, it also lends
itself for the analysis of more sophisticated G-sets such as G-posets, or more
generally, simplicial G-sets (see Quillen’s articles [17] and [18]). Many induction
theorems have been proved about the Burnside ring using its prime spectrum
and primitive idempotents (see Dress’s work in [6]). The functoriality of B(G)
has also been exploited, and authors such as Bouc, Thévenaz and Webb have
studied it from the point of view of Mackey functors and Green functors (see [2]
and [21]).

A natural question to ask is whether non-isomorphic groups can have iso-
morphic Burnside rings. Although the answer is negative when at least one
of the groups is abelian, or more generally, Hamiltonian (see [19]), this ques-
tion has been settled by Thévenaz in [20], where he constructs infinitely many
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examples of non-isomorphic groups with isomorphic Burnside rings. More ex-
amples were later provided by Kimmerle and Roggenkamp in [10]. In all the
known examples, the non-isomorphic groups had isomorphic tables of marks
(defined in Section 2). It is easy to prove that groups with isomorphic tables
of marks must have isomorphic Burnside rings, but it is still an open problem
to determine whether groups with isomorphic Burnside rings must have isomor-
phic tables of marks (see [13]). It is a simple computation to prove that two
groups G and G′ have isomorphic tables of marks if and only if there is a ring
isomorphism ψ : B(G) −→ B(G′) such that for every subgroup U of G, ψ(G/U)
is of the form G′/U ′ for some subgroup U ′ of G′; in this case, |U | = |U ′|. One
step towards this direction is to construct a normalized isomorphism between
the Burnside rings, that is, a ring isomorphism θ : B(G) −→ B(G′) such that
θ(G/1) = G′/1, where 1 denotes the trivial subgroup. In this paper we prove
that if two finite groups have isomorphic Burnside rings, then there exists a
normalized isomorphism between them. The existence of a normalized isomor-
phism already implies that several invariants of the groups must be preserved,
for example, the number of soluble subgroups (see Section 5), which are in an
order-preserving correspondence.

In Section 2 we define Burnside rings and introduce all the basic concepts
that we shall later need. In Section 3 we review some results about automor-
phisms of Burnside rings which were developed in Nicolson’s paper [16]. Our
own results are adaptations of Nicolson’s ideas. In Section 4 we prove our main
theorem, and we apply it in Section 5 to generalize a theorem of Kimmerle’s
and Roggenkamp’s (namely, Proposition 2.2 from [11]).

2 Burnside rings.

In this section we introduce the basic concepts and notation that we shall use
in this paper. Our presentation is very terse. For a fuller account of Burnside
rings, we refer the reader to [1], [3], [4], [5] or [9].

Let G be a finite group. A G-set is a finite set X where G acts on the left
via a group homomorphism into the group of permutations of X. Two G-sets
are isomorphic if there exists a bijection between them which preserves the
action of G. The disjoint union and the Cartesian product of G-sets can be
given naturally a structure of G-set. With these operations, the isomorphism
classes of G-sets form a commutative half-ring, B+(G). Its associated ring is
the Burnside ring of the group G, denoted by B(G) (some authors write Ω(G)
for the Burnside ring).

Each transitive G-set is isomorphic to a set of left cosets G/U for a subgroup
U of G, and the G-sets G/U and G/T are isomorphic if and only if U and T are
conjugate subgroups of G. Moreover, the family {G/U} where U ranges over
a set of representatives of conjugacy classes of subgroups of G, is a basis for
B(G) as an abelian group. For each subgroup U of G and every G-set X, let
ϕU (X) denote the number of elements of X which are fixed by all the elements
of U , and use the same notation for the function ϕU : B(G) −→ Z which is its
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natural extension to the Burnside ring. The following formula will be useful:

ϕU (G/T ) =
|NG(U)|
|T |

β(U, T )

where β(U, T ) is the number of subgroups of T which are G-conjugate to U .
We have that ϕU = ϕT if and only if U and T are conjugate. The square
matrix whose entries are the numbers ϕU (G/T ), where U and T range over
representatives of all the conjugacy classes of subgroups of G, is called the
table of marks of the group G. Two groups are said to have isomorphic tables
of marks if there is an ordering of their conjugacy classes of subgroups such that
their resulting tables of marks are identical. Moreover, the functions ϕU induce
an embedding

ϕ : B(G) −→
∏
C(G)

Z

where C(G) is the family of conjugacy classes of subgroups of G. The latter ring
is called the ghost ring of G, and is denoted by B̃(G). Thus, we sometimes
regard the Burnside ring as a subring of the ghost ring. Since the ghost ring
is a product of copies of the ring of integers, its primitive idempotents are in
correspondence with the family C(G); for each subgroup U of G, we denote by
eG
U = eU the primitive idempotent of B̃(G) associated to U . There is an explicit

formula for eG
U in terms of the G/T (see [8]):

eG
U =

1
|NG(U)|

∑
T≤U

µ(T,U)|T |G/T

where µ is the Möbius function of the subgroup lattice of G. We define

xG
U = [U : D(U)]0

|NG(U)|
|U |

eG
U ,

where D(U) is the derived subgroup of U , and n0 denotes the product of all
prime divisors of the integer n. As with ϕU , we have that xG

U = xG
T if and only

if U is conjugate to T in G. It is known that xG
U is the least multiple of eG

U

that belongs to B(G). This fact was proved by Nicolson in 1978 (see [16]), and
later given different proofs by various authors such as Kratzer and Thévenaz
(see [12]), or Dress and Vallejo (see [7]), who gave a very simple proof using
Dress congruences.

Note also that an isomorphism between two Burnside rings B(G) and B(G′)
sends each xG

U to some xG′

U ′ , establishing a bijection U 7→ U ′ between the con-
jugacy classes of subgroups of G and the conjugacy classes of subgroups of G′.
Since for each xG

U we see that (xG
U )2 = |NG(U)|

|U | [U : D(U)]0xG
U , it follows that

in this bijection |NG(U)|
|U | [U : D(U)]0 = |NG′ (U

′)|
|U ′| [U ′ : D(U ′)]0. It is easy to see

that for a subgroup U of G, we have that |NG(U)|
|U | [U : D(U)]0 = |G| if and only

if |NG(U)| = |G| and |U | = [U : D(U)]0, that is, if and only if U is an abelian
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normal subgroup of G and the order of U is square-free. Since groups with
isomorphic Burnside rings must have the same order, it follows that U is an
abelian normal subgroup of G of square-free order if and only if so is U ′, that
is, the families of abelian normal subgroups of square-free order of G and G′

correspond under this bijection.
These special subgroups play a very important role in the study of the iso-

morphisms between two Burnside rings. The trivial subgroup is one of such
special subgroups, which means that an isomorphism from B(G) to B(G′) must
send xG

1 to some xG′

U ′ with U ′ an abelian normal subgroup of G′ of square-free
order. Not any choice of abelian normal subgroup of G′ of square-free order
is possible as the image of xG

1 . In this paper we prove that the only possible
choices are precisely the same U ′ so that xG′

U ′ can be the image of xG′

1 under an
automorphism of B(G′); these subgroups have been characterized by Nicolson
in [16]. Hence, by composing with the inverse of such an automorphism, we
shall be able to create a normalized isomorphism from B(G) to B(G′).

There is a certain kind of reversed duality which we use when we normalize
an isomorphism from B(G) to B(G′). Just as the image of xG

1 is an xG′

U ′ with U ′

a certain abelian normal subgroup of G′ of square-free order, the pre-image of
xG′

1 is an xG
W with W an abelian normal subgroup of G of square-free order. The

correspondence induced by the isomorphism establishes a bijection between the
families of subgroups of W and U ′. Each of these subgroups is characteristic
in its parent (W or U ′) since it is the only subgroup of its order, and so it is
also an abelian normal subgroup (of G or G′ accordingly) of square-free order.
This correspondence between the families of subgroups of W and U ′ reverses
inclusions, which is to be expected, since W corresponds to 1 and 1 corresponds
to U ′.

3 Automorphisms of Burnside rings.

In this section we quote without proof the most important results from Nicol-
son’s paper on automorphisms of Burnside rings [16]. Our own results are
adaptations of Nicolson’s ideas, with the added complication that we have to
work on two different rings. The gist of Nicolson’s paper is to determine when
a subgroup U of a finite group G is in the orbit of the trivial subgroup under
the automorphism group of the Burnside ring, that is, whether there exists an
automorphism σ of B(G) such that σ(xG

1 ) = xG
U . All of these results will later

be used in our proofs.
The following result links divisibility in the Burnside ring with the internal

structure of the lattice of subgroups of G. Denote xUx−1 by xU .

Lemma 3.1. (Proposition 3.1) Let G be a finite group, and let U, T be subgroups
of G. Let p be a prime number. If p divides xG

U +xG
T in B(G) with U 6= T , then

one of the following cases holds:
(i) There exists x ∈ G such that xU is a normal subgroup of T of index p;
(ii) There exists g ∈ G such that gT is a normal subgroup of U of index p;

4



(iii) There exist x, g ∈ G such that U ∩ gT is a normal subgroup of U of
index p, and xU ∩ T is a normal subgroup of T of index p.

Remark 3.2. Note that in the previous Lemma we conclude that p must divide
the order of U or the order of T .

As a special case of the previous Lemma, we can characterize the cyclic
subgroups of order p of G by arithmetic properties.

Corollary 3.3. (Corollary 1) Let G be a finite group, and p a prime number.
Let U be a nontrivial subgroup of G. Then p divides xG

U + xG
1 in B(G) if and

only if U has order p.

The following result explores some of the properties of abelian normal sub-
groups of square-free order.

Lemma 3.4. (Lemma 3.2) Let G be a finite group. Let U be a subgroup of G
such that |U | is square-free. If U has an abelian normal subgroup of prime index,
then the coefficient of G/1 in xG

U is (−1)s, where s is the number of primes in
|U | (that is, the Möbius function µ(|U |)).

Next we encounter one of the “elementary” automorphisms of B(G). Note
that this particular automorphism has order two, and that when restricted to
certain subfamilies of the lattice of subgroups, it is order-preserving with respect
to the partial order given by inclusion of subgroups.

Lemma 3.5. (Proposition 3.4) Let G be a finite group, and let p be a prime
divisor of |G|. If G has a unique subgroup U of order p, then there is an
automorphism σ of the Burnside ring B(G) such that:

σ(xG
T ) =

 xG
TU if p does not divide |T |
xG

R if T = RU and p does not divide |R|
xG

T otherwise

The case when the abelian normal subgroup has square-free order divisible
by two has to be dealt with separately in the following two lemmas.

Lemma 3.6. (Part (b) of the proof of Proposition 3.5) Let G be a finite group,
and U a subgroup of order 4. Then there exist non-trivial subgroups Ti which
are not conjugate to U , and integers ai such that 4 divides 2xG

U +
∑
aix

G
Ti

+ xG
1

and 2 divides xG
Ti

+ xG
1 for all i.

Lemma 3.7. (Part (c) of the proof of Proposition 3.5) Let G be a finite group,
and U a normal subgroup of order 2. If for a subgroup T of G there exist
subgroups Ri of G and integers bi such that 4 divides 2xG

T +
∑
bix

G
Ri

+ xG
U , 2

divides xG
Ri

+ xG
U for all i, and U is not conjugate to any of the Ri, then U is a

subgroup of T and T has order 4.

The following two theorems are the core of Nicolson’s article.
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Theorem 3.8. Let G be a finite group, and let U be an abelian normal subgroup
of G. Assume that the order of U is odd and square-free. Then G has no other
subgroup of the same order as U if and only if there is an automorphism of
B(G) sending xG

U to xG
1 .

Theorem 3.9. Let G be a finite group, and let U be an abelian normal subgroup
of G. Assume that the order of U is even and square-free. Then the following
are equivalent:

(i) G has exactly one subgroup of order p for every odd prime divisor p of
|U |, and the Sylow 2-subgroup of U is contained in every subgroup of G of order
4.

(ii) There is an automorphism of B(G) sending xG
U to xG

1 .

The following result is proved implicitly in Nicolson’s article. We quote it
here with an explicit proof for the reader’s convenience.

Lemma 3.10. Let G be a finite group, let U be an abelian normal subgroup of
G of square-free order, and let p be an odd prime dividing |U |. If T is a subgroup
of G such that p divides xG

U + xG
T , then T = Op(U).

Proof. By Lemma 3.1, we have one of the following three cases:
(i) T is conjugate to a subgroup of U of index p. Since U is an abelian

normal subgroup of G of square-free order, this implies that T is Op(U).
(ii) U is a normal subgroup of T of index p. We notice that p divides the

coefficient of G/U in xG
U , namely, |U |. On the other hand, the coefficient of

G/U in xG
T is −[T : D(T )]0

|U |
|T | = − [T :D(T )]0

p , which is not divisible by p, hence
p cannot divide xG

U + xG
T , which is a contradiction.

(iii) U ∩ T is a normal subgroup of T of index p, and U ∩ T is a normal
subgroup of U of index p (where we may have to replace T by a conjugate).
By Lemma 3.4, the coefficient of G/1 in xG

U and in xG
T is (−1)s, where s is the

number of prime divisors of |U |. But p is an odd prime, which cannot divide
2(−1)s, contradicting the fact that p divides xG

U + xG
T .

4 Isomorphisms between Burnside rings.

In this section we extend Nicolson’s results on automorphisms of Burnside rings
to isomorphisms ψ between Burnside rings of different groups G and G′.

We begin by establishing properties of a subgroup U ′ ofG′ such that ψ(xG
1 ) =

xG′

U ′ . It is curious that the information we obtain from U ′ has an effect on G,
not on G′.

Proposition 4.1. Let G,G′ be finite groups, and ψ : B(G) −→ B(G′) an
isomorphism between their Burnside rings. Assume ψ(xG

1 ) = xG′

U ′ (so that U ′ is
an abelian normal subgroup of G′ and |U ′| is square-free).

(a) If p is a prime number which divides the order of U ′, then there is a
normal subgroup of G of order p.

(b) If p is an odd prime divisor of |U ′|, then G has a unique subgroup of
order p.
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Proof. (a) Let U ′p be the Sylow p-subgroup of U ′, and let T,Up be subgroups
of G such that ψ(xG

T ) = xG′

1 , ψ(xG
Up

) = xG′

U ′p
. Note that U ′p is non-trivial, which

implies that T and Up are not conjugate. Note also that T and Up must be
abelian normal subgroups of G of square-free order. Since U ′p has order p, by
Corollary 3.3 p divides xG′

1 + xG′

U ′p
. The isomorphism ψ−1 preserves divisibility,

and therefore p divides xG
T + xG

Up
. By Remark 3.2 we must have that p divides

the order of T or the order of Up. In either case, the Sylow p-subgroup of the
appropriate subgroup is a normal subgroup of G of order p.

(b) Let Q and R be subgroups of G of order p. By Corollary 3.3, p divides
xG

1 + xG
Q so that p divides xG′

U ′ + xG′

Q′ , where ψ(xG
Q) = xG′

Q′ . By Lemma 3.10 Q′

is Op(U). Similarly, we construct R′ and conclude that it is equal to Q′, which
proves that Q and R are conjugate in G. In (a) we proved that there is at least
one normal subgroup of order p, which must therefore be the unique subgroup
of G of order p.

The following lemma is a partial converse to Lemma 3.1.

Lemma 4.2. Let G be a finite group, U an abelian normal subgroup of G whose
order is square-free, and P a normal subgroup of G of order p, with p a prime
number which does not divide |U |. Then p divides xG

U + xG
UP .

Proof. Note that if U is an abelian group with |U | square-free, then for any
subgroup T of U we have that µ(T,U) = µ(|U |/|T |), where the latter Möbius
function is the usual one defined for the ring of integers. In our case both U
and UP are abelian, with square-free order. Hence, for any subgroup T of
U , it follows that µ(T,UP ) = µ(|UP |/|T |) = µ(|U |p/|T |) = −µ(|U |/|T |) =
−µ(T,U). On the other hand,

xG
U =

∑
T≤U µ(T,U)|T |G/T,

xG
UP =

∑
T≤U µ(T,UP )|T |G/T +

∑
T≤U µ(TP,UP )|TP |G/TP,

xG
U + xG

UP = p
∑

T≤U µ(TP,UP )|T |G/TP,

which is divisible by p.

Remark 4.3. An equivalent way of stating the previous lemma is to say that p
divides xG

U + xG
Op(U), where U is an abelian normal subgroup of G whose order

is square-free, and p is any prime divisor of |U |.
The following proposition establishes a certain symmetry between the image

of xG
1 and the pre-image of xG′

1 under a ring isomorphism. The technique used
here also yields as a side result a property of the Sylow 2-subgroup of the image
U ′ of the trivial subgroup of G.

Proposition 4.4. Let G,G′ be finite groups, and ψ : B(G) −→ B(G′) an
isomorphism between their Burnside rings. If ψ(xG

1 ) = xG′

U ′ and ψ−1(xG′

1 ) = xG
T ,

then |U ′| = |T |. Furthermore, if |U ′| is even, there exists an isomorphism from
B(G) to B(G′) sending xG

1 to xG′

U ′2
where U ′2 is the Sylow 2-subgroup of U ′.
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Proof. Let |U ′| = p1p2 . . . ps be a product of s distinct primes. If |U ′| is even,
assume that p1 = 2. By Proposition 4.1, for each pi there exists a normal
subgroup Upi

of G of order pi. Let R be the abelian normal subgroup of G
generated by the Ui. Note that the order of R is equal to the order of U ′.

Put T0 = R, T1 = Op1(R), T2 = Op2(T1), . . . , Ts = Ops(Ts−1) = 1. Note
that all Ti are abelian normal subgroups of G whose orders are square-free. By
Remark 4.3, pi divides xG

Ti
+ xG

Ti−1
for i = 1, . . . , s, so it also divides its image

under ψ, that is, pi divides xG′

T ′i
+ xG′

T ′i−1
for some abelian normal subgroups T ′i

of G′ of square-free order. Note that T ′s = U ′.
Since ps is an odd prime that divides the order of T ′s and ps divides xG′

T ′s
+

xG′

T ′s−1, by Lemma 3.10 we have that T ′s−1 = Ops(T ′s), and in particular T ′s−1

has order p1p2 . . . ps−1. Now ps−1 is an odd prime dividing both the order of
T ′s−1 and xG′

T ′s−1
+xG′

T ′s−2, so we conclude that T ′s−2 = Ops−1(T ′s−1) and T ′s−2 has
order p1p2 . . . ps−2. Continuing in this fashion, we prove that T ′1 has order p1,
and in fact it is the Sylow p1-subgroup of U ′. If p1 is odd, we can repeat this
step and conclude that T ′0 = 1, so in this case R = T and |T | = |R| = |U ′|.

Assume now that p1 is equal to 2. The subgroup T ′1 of G′ is such that
ψ(xG

T1
) = xG′

T ′1
where T1 = Up2Up3 . . . Ups

. Since these primes are all odd, by
Proposition 4.1 Upi

is the only subgroup of G of that order. For each pi with
i ≥ 2, let σi be an automorphism of B(G) as in Lemma 3.5, and let σ =
σs ◦ σs−1 ◦ · · · ◦ σ2, so that σ(xG

1 ) = xG
T1

. Let Y be a subgroup of G such that
σ(xG

Y ) = xG
T . Consider the composition ψ ◦ σ : B(G) −→ B(G′). Note that

ψ(σ(xG
1 )) = ψ(xG

T1
) = xG′

T ′1
, which proves the last part of the statement.

It remains to show that |T | = |U ′|. We have that ψ(σ(xG
Y )) = ψ(xG

T ) = xG′

1 .
Since |T ′1| = 2, by Corollay 3.3 2 divides xG′

1 + xG′

T ′1
, so 2 divides xG

Y + xG
1 ,

and again by Corollay 3.3 it follows that Y has order 2. But the primes 2 =
p1, p2, . . . , ps are all different, and since σ(xG

Y ) = xG
T , by Lemma 3.5 we have

that T = Y Up2Up3 . . . Ups , so |T | = 2p2p3 . . . ps = |U ′|.

Now we can conclude that the properties that U ′ induced on G carry over
to G′.

Corollary 4.5. Let G,G′ be finite groups, and ψ : B(G) −→ B(G′) an iso-
morphism between their Burnside rings. Assume ψ(xG

1 ) = xG′

U ′ , with U ′ of odd
order. If p is a prime divisor of |U ′|, then G′ has a unique subgroup of order p.
Furthermore, G′ has no other subgroup of the same order as U ′.

Proof. Combining Proposition 4.4 and Proposition 4.1 for ψ−1 we get the first
part. The second part follows easily from the first.

The previous Corollary completes the case when U ′ had odd order (assuming
of course Nicolson’s results on automorphisms of Burnside rings). Our next
proposition deals with the case when |U ′| is even.

Proposition 4.6. Let G,G′ be finite groups, and ψ : B(G) −→ B(G′) an
isomorphism between their Burnside rings. Assume ψ(xG

1 ) = xG′

U ′ . If the order
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of U ′ is even, then the Sylow 2-subgroup of U ′ is a normal subgroup of G′ of
order 2 which is contained in all subgroups of order 4.

Proof. By Proposition 4.4, without loss of generality we may assume that U ′ has
order 2. Let T ′ be a subgroup of G′ of order 4. We must show that T ′ contains
U ′. By Lemma 3.6 there exist nontrivial subgroups R′i which are not conjugate
to T ′, and integers ai such that 4 divides 2xG′

T ′ +
∑
aix

G′

R′i
+ xG′

1 and 2 divides

xG′

R′i
+xG′

1 for all i. Taking ψ−1 we have now that 4 divides 2xG
T +

∑
aix

G
Ri

+xG
R

and 2 divides xG
Ri

+ xG
R for all i, where the subgroups T , Ri and R correspond

to T ′, R′i and 1 respectively. Note that R is a normal subgroup of G, and by
Proposition 4.4 it has the same order as U ′, which is 2, so by Lemma 3.7 it
follows that T has order 4. Since T has order 4, once again by Lemma 3.6
there exist appropriate subgroups Ki of G and integers bi such that 4 divides
2xG

T +
∑
bix

G
Ki

+ xG
1 and 2 divides xG

Ki
+ xG

1 for all i. Taking ψ we have that 4
divides 2xG′

T ′ +
∑
bix

G′

K′i
+ xG′

U ′ and 2 divides xG′

K′i
+ xG′

U ′ for all i. By Lemma 3.7,
T ′ contains U ′.

Now we can prove our main result: any ring isomorphism between two Burn-
side rings can be normalized.

Theorem 4.7. Let G,G′ be finite groups. If their Burnside rings are isomor-
phic, then there exists a normalized isomorphism between them, that is, a ring
isomorphism θ : B(G) −→ B(G′) such that θ(xG

1 ) = xG′

1 .

Proof. Let ψ : B(G) −→ B(G′) be an isomorphism between the two Burnside
rings, and let U ′ be the abelian normal subgroup of G′ of square-free order
such that ψ(xG

1 ) = xG′

U ′ . If the order of U ′ is odd, by Corollary 4.5 G′ has
no other subgroup of the same order as U ′. By Theorem 3.8 there exists an
automorphism α of B(G′) such that α(xG′

U ′) = xG′

1 . Take θ = α ◦ ψ.
If the order of U ′ is even, by Proposition 4.4 there exists an isomorphism ρ

from B(G) to B(G′) sending xG
1 to xG′

U ′2
where U ′2 is the Sylow 2-subgroup of

U ′. By Proposition 4.6 U ′2 is a subgroup of G′ of order 2 which is contained in
all subgroups of order 4 of G′. By Theorem 3.9 there exists an automorphism
β of B(G′) sending xG′

U ′2
to xG′

1 . Take θ = β ◦ ρ.

Remark 4.8. As we said before, normalizing an isomorphism between two Burn-
side rings is only the first step in constructing an isomorphism that preserves
tables of marks. We believe this is the first part of an induction process, and
that by composing with suitable automorphisms we shall reach the desired iso-
morphism.

5 Applications.

In this section we generalize a result about automorphisms of Burnside rings to
isomorphisms thereof. We shall use without proof the following lemma, which
is Claim 2 in the proof of Proposition 2.2. of [11].
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Lemma 5.1. Let G be a finite group. Then the number of maximal subgroups
of index p is a multiple of p if and only if G has no normal subgroups of index
p.

The following is a generalization of Proposition 2.2 from [11]. We use isomor-
phisms instead of automorphisms, and our family SU narrows down the possible
subgroups of G′ that appear in the expression for θ(G/U).

Theorem 5.2. Let G and G′ be finite groups, and θ : B(G) −→ B(G′) a
normalized isomorphism. For any subgroup D of G, let D′ denote a subgroup of
G′ such that θ(xD) = xD′ . Let U be a soluble subgroup of G. Then U ′ is soluble,
|U ′| = |U |, |NG′(U ′)| = |NG(U)|, and θ(G/U) = G′/U ′+

∑
T∈SU

aTG
′/T where

SU is the family of soluble subgroups T of G′ such that |T | is a proper divisor
of |U |.

Proof. We shall use induction on the order of the soluble subgroup U . The case
|U | = 1 is just the fact that θ is normalized. Assume that the result holds for all
groups G and G′, for all isomorphisms and for all soluble subgroups with order
less than |U |. The proof is split into several steps:

Step 1: Using the formula

xU = [U : D(U)]0G/U +
∑

D<U

bDG/D,

a similar formula for xU ′ , and the fact that θ(xU ) = xU ′ , we get

[U : D(U)]0 θ(G/U) = [U ′ : D(U ′)]0G′/U ′ +
∑

R<U ′

cRG
′/R−

∑
D<U

bDθ(G/D).

By induction on the proper subgroups D of U , and using the fact that SD is
contained in SU if |D| divides |U |, we conclude that we can write

[U : D(U)]0 θ(G/U) = [U ′ : D(U ′)]0G′/U ′ +
∑

R<U ′

fRG
′/R+

∑
T∈SU

aTG
′/T,

where the sum over SU absorbs all possible elements from the other sum. In
fact, we shall later prove that it absorbed all elements from that sum.

Step 2: The group U ′ is not in SU , because if it were, then U ′ would be
soluble of order less than |U |, and by induction we would have |U | = |U ′| and
it cannot be a proper divisor of |U |, which is a contradiction. Therefore, the
coefficient of G′/U ′ in the last formula from Step 1 is [U ′ : D(U ′)]0, which must
be divisible by [U : D(U)]0. We can improve that formula to get

θ(G/U) = tG′/U ′ +
∑

R<U ′

fRG
′/R+

∑
T∈SU

aTG
′/T ′,

where t is [U ′ : D(U ′)]0 divided by [U : D(U)]0. Note that this can be applied
in any situation where we have an isomorphism and a soluble subgroup of the
same order as U .
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Step 3: For any prime number p dividing [U : D(U)]0, we shall construct
a subgroup M ′ which is normal of index p in U ′ such that p does not divide
t β(M ′, U ′). Since U is soluble and non-trivial, note that [U : D(U)]0 6= 1.
Moreover, any prime number p dividing [U : D(U)]0 does not divide t, because
the highest power of p dividing [U ′ : D(U ′)]0 is p1. Since [U : D(U)]0 divides
[U ′ : D(U ′)]0, U ′ also has normal subgroups of index p. By Lemma 5.1, the
number of subgroups of U ′ of index p is not divisible by p. Consider the following
two families:

C1 = {T ≤ U ′ | [U ′ : T ] = p, and there exists g ∈ G′ such that T g is normal
in U ′}.

C2 = {T ≤ U ′ | [U ′ : T ] = p, and there does not exist g ∈ G′ such that T g

is normal in U ′}.
As we have seen, |C1|+ |C2| is not divisible by p. Note that p divides |C2|,

since C2 is a union of U ′-orbits, each of which has size p (because NU ′(T ) = T
for all T ∈ C2). Therefore |C1| is not divisible by p. Every element in C1 is
G′-conjugate to a normal subgroup of U ′ of index p, so that we can write |C1|
as a sum of β(M ′, U ′) for certain normal subgroups of U ′ of index p. Since p
does not divide |C1|, then there exists a normal subgroup M ′ of U ′ of index p
such that p does not divide β(M ′, U ′).

Step 4: Let p and M ′ be as in Step 3, and fix them for the rest of the proof.
We shall prove that M ′ ∈ SU , i.e., that M ′ is soluble and |M ′| is a proper
divisor of |U |. Since M ′ is a maximal subgroup of U ′, the only subgroup R of
U ′ containing M ′ is M ′ itself. Evaluating ϕM ′ on both sides of the formula from
Step 2 we get

ϕM (G/U) = ϕM ′(θ(G/U)) = t ϕM ′(G′/U ′)+
+fM ′ϕM ′(G′/M ′) +

∑
T∈SU

aTϕM ′(G′/T ),

which becomes

ϕM (G/U) = t |NG′ (M
′)|

|U ′| β(M ′, U ′) + fM ′
|NG′ (M

′)|
|M ′| +

+
∑

T∈SU
aT
|NG′ (M

′)|
|T | β(M ′, T ).

If ϕM (G/U) 6= 0, then M could be chosen as a proper subgroup of U , so M
would be soluble of smaller order, and by the induction hypothesis M ′ would
be soluble of order |M |, which is a proper divisor of |U |, so M ′ ∈ SU . We may
assume then that ϕM (G/U) = 0 and M ′ 6∈ SU . The previous formula becomes

0 = t
|NG′(M ′)|
|U ′|

β(M ′, U ′) + fM ′
|NG′(M ′)|
|M ′|

.

Multiplying by |U ′| and dividing by |NG′(M ′)| we get

0 = t β(M ′, U ′) + fM ′ p

which contradicts the fact that p does not divide t β(M ′, U ′). Therefore, M ∈
SU .
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Step 5: By the previous step, M ′ is soluble, and since M ′ is normal in U ′

of index p, it follows that U ′ is also soluble.
Step 6: We claim that |U | = |U ′|. If |U | > |U ′|, since U ′ is soluble, by

the induction hypothesis we would have |U | = |U ′|, so we may assume that
|U | ≤ |U ′|. Take the p and M ′ from Step 3. Once again we evaluate ϕM ′ as in
Step 4 to get

|NG(M)|
|U |

β(M,U) = t
|NG′(M ′)|
|U ′|

β(M ′, U ′) +
∑

T∈SU

aT
|NG′(M ′)|
|T |

β(M ′, T )

Recall that the term G′/M ′ appears inside the sum over SU . Using the fact that
|NG(M)| = |NG′(M ′)| (which we know by the induction hypothesis on M ′), we
can cancel this out from all terms, and then multiply by |U | and |U ′| to get

|U ′|β(M,U) = |U | t β(M ′, U ′) +
∑

T∈SU

aT
|U ||U ′|
|T |

β(M ′, T ).

Now divide everything by |M | = |M ′| (which is a common divisor of |U | and
|U ′|, since M ′ ∈ SU and M ′ < U ′) to obtain:

p β(M,U) =
|U |
|M |

t β(M ′, U ′) + p
∑

T∈SU

aT
|U |
|T |

β(M ′, T ).

Note that |T | divides |U |, so all the fractions in the previous formula are integers.
Since p does not divide t β(M ′, U ′), we must have that p divides |U ||M | ≤

|U ′|
|M ′| = p,

so it follows that |U | = |U ′|.
Step 7: Since U and U ′ are both soluble of the same order, we can inter-

change their roles to conclude that [U ′ : D(U ′)]0 = [U : D(U)]0, that is, t = 1
(see the remark at the end of Step 2). Moreover, every proper subgroup R of
U ′ is soluble and its order divides |U ′| = |U |, so R is in SU , and we have the
desired form for θ(G/U).

Step 8: We know that the isomorphism θ is such that

|NG(U)|
|U |

[U : D(U)]0 =
|NG′(U ′)|
|U ′|

[U ′ : D(U ′)]0.

Since |U | = |U ′| and [U : D(U)]0 = [U ′ : D(U ′)]0, we must have that |NG(U)| =
|NG′(U ′)|.

We can combine our main theorem with the previous one to obtain the
following result:

Corollary 5.3. Let G and G′ be finite groups such that their Burnside rings are
isomorphic. Then there is a one-to-one correspondence between the conjugacy
classes of soluble subgroups of G and G′ which preserves order of subgroup and
cardinality of the conjugacy class (so we can also define a bijection between the
families of soluble subgroups of G and G′).
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Proof. By Theorem 4.7 we may assume that there is a normalized isomorphism
from B(G) to B(G′). By Theorem 5.2 the assignment U 7→ U ′ is the desired
correspondence.

Hence groups with isomorphic Burnside rings have “the same soluble sub-
groups”.
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