

Data Structures &
Problem Solving
Using Java

fourth edition

This page intentionally left blank

Data Structures &
Problem Solving
Using Java
fourth edition

mark allen weiss
florida international university

Editor-in-Chief Michael Hirsch
Editorial Assistant Stephanie Sellinger

Managing Editor Jeffrey Holcomb
Senior Production Supervisor Marilyn Lloyd

Marketing Manager Erin Davis
Marketing Coordinator Kathryn Ferranti

Media Producer Katelyn Boller
Senior Manufacturing Buyer Carol Melville

Project Coordination Rebecca Lazure/Laserwords Maine
Composition and Illustration Laserwords Private Ltd.

Cover Designer Elena Sidorova/Suzanne Heiser of Night & Day Design
Cover Image © Whole artichoke: iStockphoto; Inside slice:

Sabine Scheckel/Getty Images

Access the latest information about Addison-Wesley Computer Science titles from our World
Wide Web site: http://www.pearsonhighered.com/cs

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and Addison-Wesley was
aware of a trademark claim, the designations have been printed in initial caps or all caps.

The programs and applications presented in this book have been included for their instructional
value. They have been tested with care but are not guaranteed for any particular purpose. The
publisher does not offer any warranty or representation, nor does it accept any liabilities with
respect to the programs or applications.

The interior of this book was composed in FrameMaker. The basal text font is set in Times;
the chapter titles, headings, running heads, and folios are all set in Akzidenz-Grotesk_BE; the
programming code is set in Lucida Sans Typewriter.

Library of Congress Cataloging-in-Publication Data

Weiss, Mark Allen.
 Data structures & problem solving using Java / Mark Allen Weiss.-- 4th
 ed.
 p. cm.
 ISBN-13: 978-0-321-54140-6
 ISBN-10: 0-321-54140-5
 1. Java (Computer program language) 2. Data structures (Computer science)
 3. Problem solving--Data processing. I. Title.
 QA76.73.J38W45 2010
 005.13'3--dc22
 2009032662

Copyright © 2010 Pearson Education, Inc. All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without the prior written permission
of the publisher. Printed in the United States of America.

For information on obtaining permission for use of material in this work, please submit a written
request to Pearson Education, Inc., Rights and Contracts Department, 501 Boylston Street, Suite
900, Boston, MA 02116, fax your request to 617-671-3447, or e-mail at http://www.pearsoned.com/
legal/permissions.htm.

ISBN-13: 9780321541406
ISBN-10: 0321541405
1 2 3 4 5 6 7 8 9 10⎯CRS⎯12 11 10 09

http://www.pearsonhighered.com/cs
http://www.pearsoned.com/legal/permissions.htm
http://www.pearsoned.com/legal/permissions.htm

To David and David.

This page intentionally left blank

pre faceThis book is designed for a two-semester sequence in computer science,
beginning with what is typically known as Data Structures and continuing
with advanced data structures and algorithm analysis. It is appropriate for the
courses from both the two-course and three-course sequences in “B.1 Intro-
ductory Tracks,” as outlined in the final report of the Computing Curricula
2001 project (CC2001)—a joint undertaking of the ACM and the IEEE.

The content of the Data Structures course has been evolving for some
time. Although there is some general consensus concerning topic coverage,
considerable disagreement still exists over the details. One uniformly
accepted topic is principles of software development, most notably the con-
cepts of encapsulation and information hiding. Algorithmically, all Data
Structures courses tend to include an introduction to running-time analysis,
recursion, basic sorting algorithms, and elementary data structures. Many uni-
versities offer an advanced course that covers topics in data structures, algo-
rithms, and running-time analysis at a higher level. The material in this text
has been designed for use in both levels of courses, thus eliminating the need
to purchase a second textbook.

Although the most passionate debates in Data Structures revolve around
the choice of a programming language, other fundamental choices need to be
made:

n Whether to introduce object-oriented design or object-based
design early

n The level of mathematical rigor

preface

viii preface

n The appropriate balance between the implementation of data struc-
tures and their use

n Programming details related to the language chosen (for instance,
should GUIs be used early)

My goal in writing this text was to provide a practical introduction to data
structures and algorithms from the viewpoint of abstract thinking and prob-
lem solving. I tried to cover all the important details concerning the data
structures, their analyses, and their Java implementations, while staying away
from data structures that are theoretically interesting but not widely used. It is
impossible to cover all the different data structures, including their uses and
the analysis, described in this text in a single course. So I designed the text-
book to allow instructors flexibility in topic coverage. The instructor will need
to decide on an appropriate balance between practice and theory and then
choose the topics that best fit the course. As I discuss later in this Preface, I
organized the text to minimize dependencies among the various chapters.

summary of changes
in the fourth edition

1. This edition provides additional discussion on using classes (Chapter 2),
writing classes (Chapter 3), and interfaces (Chapter 4).

2. Chapter 6 contains additional material discussing the running time of
lists, the use of maps, and the use of views in the Java Collections API.

3. The Scanner class is described, and code throughout the text makes use
of the Scanner class.

4. Chapter 9 describes and implements the 48-bit linear congruential gener-
ator that is part of both the Java and many C++ libraries.

5. Chapter 20 has new material on separate chaining hash tables and the
String hashCode method.

6. There are numerous revisions to the text that improve on the prose in the
previous edition.

7. Many new exercises are provided in Parts I, II, and IV.

a unique approach
My basic premise is that software development tools in all languages come with
large libraries, and many data structures are part of these libraries. I envision an
eventual shift in emphasis of data structures courses from implementation to

preface ix

use. In this book I take a unique approach by separating the data structures into
their specification and subsequent implementation and taking advantage of an
already existing data structures library, the Java Collections API.

A subset of the Collections API suitable for most applications is discussed
in a single chapter (Chapter 6) in Part Two. Part Two also covers basic analy-
sis techniques, recursion, and sorting. Part Three contains a host of applica-
tions that use the Collections API’s data structures. Implementation of the
Collections API is not shown until Part Four, once the data structures have
already been used. Because the Collections API is part of Java, students can
design large projects early on, using existing software components.

Despite the central use of the Collections API in this text, it is neither a book
on the Collections API nor a primer on implementing the Collections API spe-
cifically; it remains a book that emphasizes data structures and basic problem-
solving techniques. Of course, the general techniques used in the design of data
structures are applicable to the implementation of the Collections API, so sev-
eral chapters in Part Four include Collections API implementations. However,
instructors can choose the simpler implementations in Part Four that do not dis-
cuss the Collections API protocol. Chapter 6, which presents the Collections
API, is essential to understanding the code in Part Three. I attempted to use only
the basic parts of the Collections API.

Many instructors will prefer a more traditional approach in which each
data structure is defined, implemented, and then used. Because there is no
dependency between material in Parts Three and Four, a traditional course can
easily be taught from this book.

prerequisites
Students using this book should have knowledge of either an object-oriented
or procedural programming language. Knowledge of basic features, including
primitive data types, operators, control structures, functions (methods), and
input and output (but not necessarily arrays and classes) is assumed.

Students who have taken a first course using C++ or Java may find the first
four chapters “light” reading in some places. However, other parts are definitely
“heavy” with Java details that may not have been covered in introductory courses.

Students who have had a first course in another language should begin at
Chapter 1 and proceed slowly. If a student would like to use a Java reference
book as well, some recommendations are given in Chapter 1.

Knowledge of discrete math is helpful but is not an absolute prerequi-
site. Several mathematical proofs are presented, but the more complex
proofs are preceded by a brief math review. Chapters 7 and 19–24 require

x preface

some degree of mathematical sophistication. The instructor may easily elect
to skip mathematical aspects of the proofs by presenting only the results.
All proofs in the text are clearly marked and are separate from the body of
the text.

java
This textbook presents material using the Java programming language. Java
is a language that is often examined in comparison with C++. Java offers
many benefits, and programmers often view Java as a safer, more portable,
and easier-to-use language than C++.

The use of Java requires that some decisions be made when writing a text-
book. Some of the decisions made are as follows:

1. The minimum required compiler is Java 5. Please make sure you are
using a compiler that is Java 5-compatible.

2. GUIs are not emphasized. Although GUIs are a nice feature in Java,
they seem to be an implementation detail rather than a core Data
Structures topic. We do not use Swing in the text, but because many
instructors may prefer to do so, a brief introduction to Swing is pro-
vided in Appendix B.

3. Applets are not emphasized. Applets use GUIs. Further, the focus of
the course is on data structures, rather than language features. Instruc-
tors who would like to discuss applets will need to supplement this
text with a Java reference.

4. Inner classes are used. Inner classes are used primarily in the imple-
mentation of the Collections API, and can be avoided by instructors
who prefer to do so.

5. The concept of a pointer is discussed when reference variables are
introduced. Java does not have a pointer type. Instead, it has a refer-
ence type. However, pointers have traditionally been an important
Data Structures topic that needs to be introduced. I illustrate the
concept of pointers in other languages when discussing reference
variables.

6. Threads are not discussed. Some members of the CS community
argue that multithreaded computing should become a core topic in the
introductory programming sequence. Although it is possible that this
will happen in the future, few introductory programming courses dis-
cuss this difficult topic.

preface xi

7. Some Java 5 features are not used. Including:

n Static imports, not used because in my opinion it actually makes
the code harder to read.

n Enumerated types, not used because there were few places to
declare public enumerated types that would be usable by clients. In
the few possible places, it did not seem to help the code’s readability.

text organization
In this text I introduce Java and object-oriented programming (particularly
abstraction) in Part One. I discuss primitive types, reference types, and some
of the predefined classes and exceptions before proceeding to the design of
classes and inheritance.

In Part Two, I discuss Big-Oh and algorithmic paradigms, including
recursion and randomization. An entire chapter is devoted to sorting, and a
separate chapter contains a description of basic data structures. I use the Col-
lections API to present the interfaces and running times of the data structures.
At this point in the text, the instructor may take several approaches to present
the remaining material, including the following two.

1. Discuss the corresponding implementations (either the Collections
API versions or the simpler versions) in Part Four as each data struc-
ture is described. The instructor can ask students to extend the classes
in various ways, as suggested in the exercises.

2. Show how each Collections API class is used and cover implementa-
tion at a later point in the course. The case studies in Part Three can
be used to support this approach. As complete implementations are
available on every modern Java compiler, the instructor can use the
Collections API in programming projects. Details on using this
approach are given shortly.

Part Five describes advanced data structures such as splay trees, pairing
heaps, and the disjoint set data structure, which can be covered if time permits
or, more likely, in a follow-up course.

chapter-by-chapter text organization
Part One consists of four chapters that describe the basics of Java used
throughout the text. Chapter 1 describes primitive types and illustrates how to
write basic programs in Java. Chapter 2 discusses reference types and illustrates

xii preface

the general concept of a pointer—even though Java does not have pointers—so
that students learn this important Data Structures topic. Several of the basic
reference types (strings, arrays, files, and Scanners) are illustrated, and the use
of exceptions is discussed. Chapter 3 continues this discussion by describing
how a class is implemented. Chapter 4 illustrates the use of inheritance in
designing hierarchies (including exception classes and I/O) and generic com-
ponents. Material on design patterns, including the wrapper, adapter, and dec-
orator patterns can be found in Part One.

Part Two focuses on the basic algorithms and building blocks. In
Chapter 5 a complete discussion of time complexity and Big-Oh notation
is provided. Binary search is also discussed and analyzed. Chapter 6 is
crucial because it covers the Collections API and argues intuitively what
the running time of the supported operations should be for each data struc-
ture. (The implementation of these data structures, in both Collections
API-style and a simplified version, is not provided until Part Four). This
chapter also introduces the iterator pattern as well as nested, local, and
anonymous classes. Inner classes are deferred until Part Four, where they
are discussed as an implementation technique. Chapter 7 describes recur-
sion by first introducing the notion of proof by induction. It also discusses
divide-and-conquer, dynamic programming, and backtracking. A section
describes several recursive numerical algorithms that are used to imple-
ment the RSA cryptosystem. For many students, the material in the second
half of Chapter 7 is more suitable for a follow-up course. Chapter 8
describes, codes, and analyzes several basic sorting algorithms, including
the insertion sort, Shellsort, mergesort, and quicksort, as well as indirect
sorting. It also proves the classic lower bound for sorting and discusses the
related problems of selection. Finally, Chapter 9 is a short chapter that dis-
cusses random numbers, including their generation and use in randomized
algorithms.

Part Three provides several case studies, and each chapter is organized
around a general theme. Chapter 10 illustrates several important techniques
by examining games. Chapter 11 discusses the use of stacks in computer lan-
guages by examining an algorithm to check for balanced symbols and the
classic operator precedence parsing algorithm. Complete implementations
with code are provided for both algorithms. Chapter 12 discusses the basic
utilities of file compression and cross-reference generation, and provides a
complete implementation of both. Chapter 13 broadly examines simulation by
looking at one problem that can be viewed as a simulation and then at the
more classic event-driven simulation. Finally, Chapter 14 illustrates how data

preface xiii

structures are used to implement several shortest path algorithms efficiently
for graphs.

Part Four presents the data structure implementations. Chapter 15 dis-
cusses inner classes as an implementation technique and illustrates their use
in the ArrayList implementation. In the remaining chapters of Part Four,
implementations that use simple protocols (insert, find, remove variations)
are provided. In some cases, Collections API implementations that tend to
use more complicated Java syntax (in addition to being complex because of
their large set of required operations) are presented. Some mathematics is
used in this part, especially in Chapters 19–21, and can be skipped at the dis-
cretion of the instructor. Chapter 16 provides implementations for both
stacks and queues. First these data structures are implemented using an
expanding array, then they are implemented using linked lists. The Collec-
tions API versions are discussed at the end of the chapter. General linked lists
are described in Chapter 17. Singly linked lists are illustrated with a simple
protocol, and the more complex Collections API version that uses doubly
linked lists is provided at the end of the chapter. Chapter 18 describes trees
and illustrates the basic traversal schemes. Chapter 19 is a detailed chapter
that provides several implementations of binary search trees. Initially, the
basic binary search tree is shown, and then a binary search tree that supports
order statistics is derived. AVL trees are discussed but not implemented, but
the more practical red–black trees and AA-trees are implemented. Then the
Collections API TreeSet and TreeMap are implemented. Finally, the B-tree is
examined. Chapter 20 discusses hash tables and implements the quadratic
probing scheme as part of HashSet and HashMap, after examination of a simpler
alternative. Chapter 21 describes the binary heap and examines heapsort and
external sorting.

Part Five contains material suitable for use in a more advanced course or for
general reference. The algorithms are accessible even at the first-year level.
However, for completeness, sophisticated mathematical analyses that are almost
certainly beyond the reach of a first-year student were included. Chapter 22
describes the splay tree, which is a binary search tree that seems to perform
extremely well in practice and is competitive with the binary heap in some
applications that require priority queues. Chapter 23 describes priority queues
that support merging operations and provides an implementation of the pairing
heap. Finally, Chapter 24 examines the classic disjoint set data structure.

The appendices contain additional Java reference material. Appendix A
lists the operators and their precedence. Appendix B has material on Swing,
and Appendix C describes the bitwise operators used in Chapter 12.

xiv preface

chapter dependencies
Generally speaking, most chapters are independent of each other. However,
the following are some of the notable dependencies.

n Part One (Tour of Java): The first four chapters should be covered in their
entirety in sequence first, prior to continuing on to the rest of the text.

n Chapter 5 (Algorithm Analysis): This chapter should be covered prior
to Chapters 6 and 8. Recursion (Chapter 7) can be covered prior to
this chapter, but the instructor will have to gloss over some details
about avoiding inefficient recursion.

n Chapter 6 (The Collections API): This chapter can be covered prior to
or in conjunction with material in Part Three or Four.

n Chapter 7 (Recursion): The material in Sections 7.1–7.3 should be
covered prior to discussing recursive sorting algorithms, trees, the
Tic-Tac-Toe case study, and shortest-path algorithms. Material such
as the RSA cryptosystem, dynamic programming, and backtracking
(unless Tic-Tac-Toe is discussed) is otherwise optional.

n Chapter 8 (Sorting Algorithms): This chapter should follow Chapters
5 and 7. However, it is possible to cover Shellsort without Chapters 5
and 7. Shellsort is not recursive (hence there is no need for Chapter 7),
and a rigorous analysis of its running time is too complex and is not
covered in the book (hence there is little need for Chapter 5).

n Chapter 15 (Inner Classes and Implementations of ArrayLists):
This material should precede the discussion of the Collections API
implementations.

n Chapters 16 and 17 (Stacks and Queues/Linked Lists): These chapters
may be covered in either order. However, I prefer to cover Chapter 16
first because I believe that it presents a simpler example of linked lists.

n Chapters 18 and 19 (Trees/ Binary Search Trees): These chapters can
be covered in either order or simultaneously.

separate entities
The other chapters have little or no dependencies:

n Chapter 9 (Randomization): The material on random numbers can be
covered at any point as needed.

preface xv

n Part Three (Applications): Chapters 10–14 can be covered in con-
junction with or after the Collections API (in Chapter 6) and in
roughly any order. There are a few references to earlier chapters.
These include Section 10.2 (Tic-Tac-Toe), which refers to a discus-
sion in Section 7.7, and Section 12.2 (cross-reference generation),
which refers to similar lexical analysis code in Section 11.1 (balanced
symbol checking).

n Chapters 20 and 21 (Hash Tables/A Priority Queue): These chapters
can be covered at any point.

n Part Five (Advanced Data Structures): The material in Chapters
22–24 is self-contained and is typically covered in a follow-up course.

mathematics
I have attempted to provide mathematical rigor for use in Data Structures
courses that emphasize theory and for follow-up courses that require more
analysis. However, this material stands out from the main text in the form of
separate theorems and, in some cases, separate sections or subsections. Thus
it can be skipped by instructors in courses that deemphasize theory.

In all cases, the proof of a theorem is not necessary to the understanding
of the theorem’s meaning. This is another illustration of the separation of an
interface (the theorem statement) from its implementation (the proof). Some
inherently mathematical material, such as Section 7.4 (Numerical Applica-
tions of Recursion), can be skipped without affecting comprehension of the
rest of the chapter.

course organization
A crucial issue in teaching the course is deciding how the materials in Parts
Two–Four are to be used. The material in Part One should be covered in
depth, and the student should write one or two programs that illustrate the
design, implementation, testing of classes and generic classes, and perhaps
object-oriented design, using inheritance. Chapter 5 discusses Big-Oh nota-
tion. An exercise in which the student writes a short program and compares
the running time with an analysis can be given to test comprehension.

In the separation approach, the key concept of Chapter 6 is that different
data structures support different access schemes with different efficiency. Any
case study (except the Tic-Tac-Toe example that uses recursion) can be used

xvi preface

to illustrate the applications of the data structures. In this way, the student can
see the data structure and how it is used but not how it is efficiently imple-
mented. This is truly a separation. Viewing things this way will greatly
enhance the ability of students to think abstractly. Students can also provide
simple implementations of some of the Collections API components (some
suggestions are given in the exercises in Chapter 6) and see the difference
between efficient data structure implementations in the existing Collections
API and inefficient data structure implementations that they will write. Stu-
dents can also be asked to extend the case study, but again, they are not
required to know any of the details of the data structures.

Efficient implementation of the data structures can be discussed after-
ward, and recursion can be introduced whenever the instructor feels it is
appropriate, provided it is prior to binary search trees. The details of sorting
can be discussed at any time after recursion. At this point, the course can con-
tinue by using the same case studies and experimenting with modifications to
the implementations of the data structures. For instance, the student can
experiment with various forms of balanced binary search trees.

Instructors who opt for a more traditional approach can simply discuss a
case study in Part Three after discussing a data structure implementation in
Part Four. Again, the book’s chapters are designed to be as independent of
each other as possible.

exercises
Exercises come in various flavors; I have provided four varieties. The basic In
Short exercise asks a simple question or requires hand-drawn simulations of an
algorithm described in the text. The In Theory section asks questions that either
require mathematical analysis or asks for theoretically interesting solutions to
problems. The In Practice section contains simple programming questions,
including questions about syntax or particularly tricky lines of code. Finally,
the Programming Projects section contains ideas for extended assignments.

pedagogical features
n Margin notes are used to highlight important topics.

n The Key Concepts section lists important terms along with definitions
and page references.

preface xvii

n The Common Errors section at the end of each chapter provides a list
of commonly made errors.

n References for further reading are provided at the end of most chapters.

supplements
A variety of supplemental materials are available for this text. The following
resources are available at http://www.aw.com/cssupport for all readers of this
textbook:

n Source code files from the book. (The On the Internet section at the
end of each chapter lists the filenames for the chapter’s code.)

In addition, the following supplements are available to qualified instructors.
To access them, visit http://www.pearsonhighered.com/cs and search our cata-
log by title for Data Structures and Problem Solving Using Java. Once on the cat-
alog page for this book, select the link to Instructor Resources.

n PowerPoint slides of all figures in the book.

n Instructor’s Guide that illustrates several approaches to the material.
It includes samples of test questions, assignments, and syllabi.
Answers to select exercises are also provided.

acknowledgments
Many, many people have helped me in the preparation of this book. Many
have already been acknowledged in the prior edition and the related C++ ver-
sion. Others, too numerous to list, have sent e-mail messages and pointed out
errors or inconsistencies in explanations that I have tried to fix in this edition.

For this edition I would like to thank my editor Michael Hirsch, editorial
assistant Stephanie Sellinger, senior production supervisor Marilyn Lloyd,
and project manager Rebecca Lazure and her team at Laserwords. Thanks
also go to Allison Michael and Erin Davis in marketing and Elena Sidorova
and Suzanne Heiser of Night & Day Design for a terrific cover.

Some of the material in this text is adapted from my textbook Efficient C
Programming: A Practical Approach (Prentice Hall, 1995) and is used with

http://www.aw.com/cssupport
http://www.pearsonhighered.com/cs

xviii preface

permission of the publisher. I have included end-of-chapter references where
appropriate.

My World Wide Web page, http://www.cs.fiu.edu/~weiss, will contain
updated source code, an errata list, and a link for receiving bug reports.

M. A. W.
Miami, Florida

http://www.cs.fiu.edu/~weiss

part one Tour of Java
c h a p t e r 1 primitive java 3

1.1 the general environment 4

1.2 the first program 5
1.2.1 comments 5
1.2.2 main 6
1.2.3 terminal output 6

1.3 primitive types 6
1.3.1 the primitive types 6
1.3.2 constants 7
1.3.3 declaration and initialization of primitive types 7
1.3.4 terminal input and output 8

1.4 basic operators 8
1.4.1 assignment operators 9
1.4.2 binary arithmetic operators 10
1.4.3 unary operators 10
1.4.4 type conversions 10

1.5 conditional statements 11
1.5.1 relational and equality operators 11
1.5.2 logical operators 12
1.5.3 the if statement 13
1.5.4 the while statement 14
1.5.5 the for statement 14
1.5.6 the do statement 15

contents

xx contents

1.5.7 break and continue 16
1.5.8 the switch statement 17
1.5.9 the conditional operator 17

1.6 methods 18
1.6.1 overloading of method names 19
1.6.2 storage classes 20

summary 20
key concepts 20
common errors 22
on the internet 23
exercises 23
references 25

c h a p t e r 2 reference types 27

2.1 what is a reference? 27

2.2 basics of objects and references 30
2.2.1 the dot operator (.) 30
2.2.2 declaration of objects 30
2.2.3 garbage collection 31
2.2.4 the meaning of = 32
2.2.5 parameter passing 33
2.2.6 the meaning of == 33
2.2.7 no operator overloading for objects 34

2.3 strings 35
2.3.1 basics of string manipulation 35
2.3.2 string concatenation 35
2.3.3 comparing strings 36
2.3.4 other String methods 36
2.3.5 converting other types to strings 37

2.4 arrays 37
2.4.1 declaration, assignment, and methods 38
2.4.2 dynamic array expansion 40
2.4.3 ArrayList 42
2.4.4 multidimensional arrays 45
2.4.5 command-line arguments 45
2.4.6 enhanced for loop 46

contents xxi

2.5 exception handling 47
2.5.1 processing exceptions 48
2.5.2 the finally clause 48
2.5.3 common exceptions 49
2.5.4 the throw and throws clauses 51

2.6 input and output 51
2.6.1 basic stream operations 52
2.6.2 the Scanner type 53
2.6.3 sequential files 56

summary 59
key concepts 60
common errors 61
on the internet 62
exercises 62
references 68

c h a p t e r 3 objects and classes 69

3.1 what is object-oriented programming? 69

3.2 a simple example 71

3.3 javadoc 73

3.4 basic methods 76
3.4.1 constructors 76
3.4.2 mutators and accessors 76
3.4.3 output and toString 78
3.4.4 equals 78
3.4.5 main 78

3.5 example: using java.math.BigInteger 78

3.6 additional constructs 79
3.6.1 the this reference 81
3.6.2 the this shorthand for constructors 82
3.6.3 the instanceof operator 82
3.6.4 instance members versus static members 83
3.6.5 static fields and methods 83
3.6.6 static initializers 86

3.7 example: implementing a BigRational class 86

xxii contents

3.8 packages 90
3.8.1 the import directive 91
3.8.2 the package statement 93
3.8.3 the CLASSPATH environment variable 94
3.8.4 package visibility rules 95

3.9 a design pattern: composite (pair) 95

summary 96
key concepts 97
common errors 100
on the internet 100
exercises 101
references 107

c h a p t e r 4 inheritance 109

4.1 what is inheritance? 110
4.1.1 creating new classes 110
4.1.2 type compatibility 115
4.1.3 dynamic dispatch and polymorphism 116
4.1.4 inheritance hierarchies 117
4.1.5 visibility rules 117
4.1.6 the constructor and super 118
4.1.7 final methods and classes 119
4.1.8 overriding a method 121
4.1.9 type compatibility revisited 121
4.1.10 compatibility of array types 124
4.1.11 covariant return types 124

4.2 designing hierarchies 125
4.2.1 abstract methods and classes 126
4.2.2 designing for the future 130

4.3 multiple inheritance 131

4.4 the interface 134
4.4.1 specifying an interface 134
4.4.2 implementing an interface 135
4.4.3 multiple interfaces 135
4.4.4 interfaces are abstract classes 136

contents xxiii

4.5 fundamental inheritance in java 136
4.5.1 the Object class 136
4.5.2 the hierarchy of exceptions 137
4.5.3 i/o: the decorator pattern 138

4.6 implementing generic components using inheritance 142
4.6.1 using Object for genericity 142
4.6.2 wrappers for primitive types 143
4.6.3 autoboxing/unboxing 145
4.6.4 adapters: changing an interface 146
4.6.5 using interface types for genericity 147

4.7 implementing generic components using java 5 generics 150
4.7.1 simple generic classes and interfaces 150
4.7.2 wildcards with bounds 151
4.7.3 generic static methods 152
4.7.4 type bounds 153
4.7.5 type erasure 154
4.7.6 restrictions on generics 154

4.8 the functor (function objects) 157
4.8.1 nested classes 161
4.8.2 local classes 161
4.8.3 anonymous classes 163
4.8.4 nested classes and generics 164

4.9 dynamic dispatch details 164

summary 168
key concepts 168
common errors 171
on the internet 171
exercises 173
references 183

part two Algorithms and
Building Blocks

c h a p t e r 5 algorithm analysis 187

5.1 what is algorithm analysis? 188

5.2 examples of algorithm running times 192

xxiv contents

5.3 the maximum contiguous subsequence sum problem 193
5.3.1 the obvious O(N3) algorithm 194
5.3.2 an improved O(N2) algorithm 197
5.3.3 a linear algorithm 197

5.4 general big-oh rules 201

5.5 the logarithm 205

5.6 static searching problem 207
5.6.1 sequential search 207
5.6.2 binary search 208
5.6.3 interpolation search 211

5.7 checking an algorithm analysis 212

5.8 limitations of big-oh analysis 213

summary 214
key concepts 214
common errors 215
on the internet 216
exercises 216
references 227

c h a p t e r 6 the collections api 229

6.1 introduction 230

6.2 the iterator pattern 231
6.2.1 basic iterator design 232
6.2.2 inheritance-based iterators and factories 234

6.3 collections api: containers and iterators 236
6.3.1 the Collection interface 237
6.3.2 Iterator interface 240

6.4 generic algorithms 242
6.4.1 Comparator function objects 243
6.4.2 the Collections class 243
6.4.3 binary search 246
6.4.4 sorting 246

6.5 the List interface 248
6.5.1 the ListIterator interface 249
6.5.2 LinkedList class 251

contents xxv

6.5.3 running time for Lists 253
6.5.4 removing from and adding to the middle of a List 256

6.6 stacks and queues 258
6.6.1 stacks 258
6.6.2 stacks and computer languages 259
6.6.3 queues 260
6.6.4 stacks and queues in the collections api 261

6.7 sets 261
6.7.1 the TreeSet class 263
6.7.2 the HashSet class 264

6.8 maps 268

6.9 priority queues 274

6.10 views in the collections api 277
6.10.1 the subList method for Lists 277
6.10.2 the headSet, subSet, and tailSet methods for SortedSets 277

summary 278
key concepts 279
common errors 280
on the internet 281
exercises 281
references 292

c h a p t e r 7 recursion 293

7.1 what is recursion? 294

7.2 background: proofs by mathematical induction 295

7.3 basic recursion 297
7.3.1 printing numbers in any base 299
7.3.2 why it works 301
7.3.3 how it works 302
7.3.4 too much recursion can be dangerous 304
7.3.5 preview of trees 305
7.3.6 additional examples 306

7.4 numerical applications 311
7.4.1 modular arithmetic 311
7.4.2 modular exponentiation 312

xxvi contents

7.4.3 greatest common divisor and multiplicative inverses 314
7.4.4 the rsa cryptosystem 317

7.5 divide-and-conquer algorithms 319
7.5.1 the maximum contiguous subsequence sum problem 320
7.5.2 analysis of a basic divide-and-conquer recurrence 323
7.5.3 a general upper bound for divide-and-conquer running times 327

7.6 dynamic programming 329

7.7 backtracking 333

summary 336
key concepts 338
common errors 339
on the internet 339
exercises 340
references 348

c h a p t e r 8 sorting algorithms 351

8.1 why is sorting important? 352

8.2 preliminaries 353

8.3 analysis of the insertion sort and other simple sorts 353

8.4 shellsort 357
8.4.1 performance of shellsort 358

8.5 mergesort 361
8.5.1 linear-time merging of sorted arrays 361
8.5.2 the mergesort algorithm 363

8.6 quicksort 364
8.6.1 the quicksort algorithm 367
8.6.2 analysis of quicksort 369
8.6.3 picking the pivot 372
8.6.4 a partitioning strategy 374
8.6.5 keys equal to the pivot 376
8.6.6 median-of-three partitioning 376
8.6.7 small arrays 377
8.6.8 java quicksort routine 378

8.7 quickselect 380

8.8 a lower bound for sorting 381

contents xxvii

summary 383
key concepts 384
common errors 385
on the internet 385
exercises 385
references 391

c h a p t e r 9 randomization 393

9.1 why do we need random numbers? 393

9.2 random number generators 394

9.3 nonuniform random numbers 402

9.4 generating a random permutation 404

9.5 randomized algorithms 406

9.6 randomized primality testing 409

summary 412
key concepts 412
common errors 413
on the internet 414
exercises 414
references 417

part three Applications
c h a p t e r 1 0 fun and games 421

10.1 word search puzzles 421
10.1.1 theory 422
10.1.2 java implementation 423

10.2 the game of tic-tac-toe 427
10.2.1 alpha–beta pruning 428
10.2.2 transposition tables 431
10.2.3 computer chess 435

summary 438
key concepts 438

xxviii contents

common errors 438
on the internet 438
exercises 439
references 441

c h a p t e r 1 1 stacks and compilers 443

11.1 balanced-symbol checker 443
11.1.1 basic algorithm 444
11.1.2 implementation 445

11.2 a simple calculator 454
11.2.1 postfix machines 456
11.2.2 infix to postfix conversion 457
11.2.3 implementation 459
11.2.4 expression trees 468

summary 469
key concepts 470
common errors 470
on the internet 471
exercises 471
references 472

c h a p t e r 1 2 utilities 473

12.1 file compression 474
12.1.1 prefix codes 475
12.1.2 huffman’s algorithm 477
12.1.3 implementation 479

12.2 a cross-reference generator 495
12.2.1 basic ideas 495
12.2.2 java implementation 495

summary 499
key concepts 500
common errors 500
on the internet 500
exercises 500
references 506

contents xxix

c h a p t e r 1 3 simulation 507

13.1 the josephus problem 507
13.1.1 the simple solution 509
13.1.2 a more efficient algorithm 509

13.2 event-driven simulation 513
13.2.1 basic ideas 513
13.2.2 example: a call bank simulation 514

summary 522
key concepts 522
common errors 523
on the internet 523
exercises 523

c h a p t e r 1 4 graphs and paths 527

14.1 definitions 528
14.1.1 representation 530

14.2 unweighted shortest-path problem 539
14.2.1 theory 539
14.2.2 java implementation 545

14.3 positive-weighted, shortest-path problem 545
14.3.1 theory: dijkstra’s algorithm 546
14.3.2 java implementation 550

14.4 negative-weighted, shortest-path problem 552
14.4.1 theory 552
14.4.2 java implementation 553

14.5 path problems in acyclic graphs 555
14.5.1 topological sorting 555
14.5.2 theory of the acyclic shortest-path algorithm 557
14.5.3 java implementation 557
14.5.4 an application: critical-path analysis 560

summary 562
key concepts 563
common errors 564
on the internet 565

xxx contents

exercises 565
references 569

part four Implementations
c h a p t e r 1 5 inner classes and implementation of ArrayList 573

15.1 iterators and nested classes 574

15.2 iterators and inner classes 576

15.3 the AbstractCollection class 580

15.4 StringBuilder 584

15.5 implementation of ArrayList with an iterator 585

summary 590
key concepts 591
common errors 591
on the internet 591
exercises 591

c h a p t e r 1 6 stacks and queues 595

16.1 dynamic array implementations 595
16.1.1 stacks 596
16.1.2 queues 600

16.2 linked list implementations 605
16.2.1 stacks 606
16.2.2 queues 609

16.3 comparison of the two methods 613

16.4 the java.util.Stack class 613

16.5 double-ended queues 615

summary 615
key concepts 615
common errors 615
on the internet 616
exercises 616

contents xxxi

c h a p t e r 1 7 linked lists 619

17.1 basic ideas 619
17.1.1 header nodes 621
17.1.2 iterator classes 622

17.2 java implementation 624

17.3 doubly linked lists and circularly linked lists 630

17.4 sorted linked lists 633

17.5 implementing the collections api LinkedList class 635

summary 646
key concepts 646
common errors 647
on the internet 647
exercises 647

c h a p t e r 1 8 trees 651

18.1 general trees 651
18.1.1 definitions 652
18.1.2 implementation 653
18.1.3 an application: file systems 654

18.2 binary trees 658

18.3 recursion and trees 665

18.4 tree traversal: iterator classes 667
18.4.1 postorder traversal 671
18.4.2 inorder traversal 675
18.4.3 preorder traversal 675
18.4.4 level-order traversals 678

summary 679
key concepts 680
common errors 681
on the internet 682
exercises 682

xxxii contents

c h a p t e r 1 9 binary search trees 687

19.1 basic ideas 687
19.1.1 the operations 688
19.1.2 java implementation 690

19.2 order statistics 697
19.2.1 java implementation 698

19.3 analysis of binary search tree operations 702

19.4 avl trees 706
19.4.1 properties 707
19.4.2 single rotation 709
19.4.3 double rotation 712
19.4.4 summary of avl insertion 714

19.5 red–black trees 715
19.5.1 bottom-up insertion 716
19.5.2 top-down red–black trees 718
19.5.3 java implementation 719
19.5.4 top-down deletion 726

19.6 aa-trees 728
19.6.1 insertion 730
19.6.2 deletion 732
19.6.3 java implementation 733

19.7 implementing the collections api TreeSet and
TreeMap classes 738

19.8 b-trees 756

summary 762
key concepts 763
common errors 764
on the internet 764
exercises 765
references 769

c h a p t e r 2 0 hash tables 773

20.1 basic ideas 774

20.2 hash function 775
20.2.1 headCode in java.lang.String 777

contents xxxiii

20.3 linear probing 779
20.3.1 naive analysis of linear probing 780
20.3.2 what really happens: primary clustering 781
20.3.3 analysis of the find operation 782

20.4 quadratic probing 784
20.4.1 java implementation 788
20.4.2 analysis of quadratic probing 797

20.5 separate chaining hashing 797

20.6 hash tables versus binary search trees 798

20.7 hashing applications 800

summary 800
key concepts 801
common errors 802
on the internet 802
exercises 802
references 805

c h a p t e r 2 1 a priority queue: the binary heap 807

21.1 basic ideas 808
21.1.1 structure property 808
21.1.2 heap-order property 810
21.1.3 allowed operations 811

21.2 implementation of the basic operations 814
21.2.1 insertion 814
21.2.2 the deleteMin operation 816

21.3 the buildHeap operation: linear-time heap construction 818

21.4 advanced operations: decreaseKey and merge 823

21.5 internal sorting: heapsort 823

21.6 external sorting 826
21.6.1 why we need new algorithms 826
21.6.2 model for external sorting 827
21.6.3 the simple algorithm 827
21.6.4 multiway merge 829
21.6.5 polyphase merge 830
21.6.6 replacement selection 832

xxxiv contents

summary 833
key concepts 834
common errors 834
on the internet 835
exercises 835
references 839

part five Advanced Data
Structures

c h a p t e r 2 2 splay trees 843

22.1 self-adjustment and amortized analysis 844
22.1.1 amortized time bounds 845
22.1.2 a simple self-adjusting strategy (that does not work) 845

22.2 the basic bottom-up splay tree 847

22.3 basic splay tree operations 850

22.4 analysis of bottom-up splaying 851
22.4.1 proof of the splaying bound 854

22.5 top-down splay trees 857

22.6 implementation of top-down splay trees 860

22.7 comparison of the splay tree with other search trees 865

summary 866
key concepts 866
common errors 867
on the internet 867
exercises 867
references 868

c h a p t e r 2 3 merging priority queues 871

23.1 the skew heap 871
23.1.1 merging is fundamental 872
23.1.2 simplistic merging of heap-ordered trees 872

contents xxxv

23.1.3 the skew heap: a simple modification 873
23.1.4 analysis of the skew heap 874

23.2 the pairing heap 876
23.2.1 pairing heap operations 877
23.2.2 implementation of the pairing heap 878
23.2.3 application: dijkstra’s shortest weighted path algorithm 884

summary 888
key concepts 888
common errors 888
on the internet 889
exercises 889
references 890

c h a p t e r 2 4 the disjoint set class 893

24.1 equivalence relations 894

24.2 dynamic equivalence and applications 894
24.2.1 application: generating mazes 895
24.2.2 application: minimum spanning trees 898
24.2.3 application: the nearest common ancestor problem 901

24.3 the quick-find algorithm 904

24.4 the quick-union algorithm 905
24.4.1 smart union algorithms 907
24.4.2 path compression 909

24.5 java implementation 910

24.6 worst case for union-by-rank and path compression 913
24.6.1 analysis of the union/find algorithm 914

summary 921
key concepts 921
common errors 922
on the internet 922
exercises 923
references 925

xxxvi contents

a p p e n d i x A operators 927

a p p e n d i x B graphical user interfaces 929

B.1 the abstract window toolkit and swing 930

B.2 basic objects in swing 931
B.2.1 Component 932
B.2.2 Container 933
B.2.3 top-level containers 933
B.2.4 JPanel 934
B.2.5 important i/o components 936

B.3 basic principles 940
B.3.1 layout managers 941
B.3.2 graphics 945
B.3.3 events 947
B.3.4 event handling: adapters and anonymous inner classes 949
B.3.5 summary: putting the pieces together 951
B.3.6 is this everything i need to know about swing? 952

summary 953
key concepts 953
common errors 955
on the internet 956
exercises 956
references 957

a p p e n d i x C bitwise operators 959

i n d e x 963

par t
one Tour of Java

chapter 1 primitive java

chapter 2 reference types

chapter 3 objects and classes

chapter 4 inheritance

This page intentionally left blank

chap te r 1

primitive java

The primary focus of this book is problem-solving techniques that allow
the construction of sophisticated, time-efficient programs. Nearly all of the
material discussed is applicable in any programming language. Some would
argue that a broad pseudocode description of these techniques could suffice to
demonstrate concepts. However, we believe that working with live code is
vitally important.

There is no shortage of programming languages available. This text uses
Java, which is popular both academically and commercially. In the first four
chapters, we discuss the features of Java that are used throughout the book.
Unused features and technicalities are not covered. Those looking for deeper
Java information will find it in the many Java books that are available.

We begin by discussing the part of the language that mirrors a 1970s pro-
gramming language such as Pascal or C. This includes primitive types, basic oper-
ations, conditional and looping constructs, and the Java equivalent of functions.

In this chapter, we will see

n Some of the basics of Java, including simple lexical elements

n The Java primitive types, including some of the operations that
primitive-typed variables can perform

4 chapter 1 primitive java

n How conditional statements and loop constructs are implemented in
Java

n An introduction to the static method—the Java equivalent of the
function and procedure that is used in non-object-oriented languages

1.1 the general environment
How are Java application programs entered, compiled, and run? The answer,
of course, depends on the particular platform that hosts the Java compiler.

javac compiles
.java files and gen-
erates .class files
containing
bytecode. java
invokes the Java
interpreter (which is
also known as the
Virtual Machine).

Java source code resides in files whose names end with the .java suffix.
The local compiler, javac, compiles the program and generates .class files,
which contain bytecode. Java bytecodes represent the portable intermediate
language that is interpreted by running the Java interpreter, java. The inter-
preter is also known as the Virtual Machine.

For Java programs, input can come from one of many places:

n The terminal, whose input is denoted as standard input

n Additional parameters in the invocation of the Virtual Machine—
command-line arguments

n A GUI component

n A file

Command-line arguments are particularly important for specifying pro-
gram options. They are discussed in Section 2.4.5. Java provides mechanisms
to read and write files. This is discussed briefly in Section 2.6.3 and in more
detail in Section 4.5.3 as an example of the decorator pattern. Many operat-
ing systems provide an alternative known as file redirection, in which the
operating system arranges to take input from (or send output to) a file in a
manner that is transparent to the running program. On Unix (and also from an
MS/DOS window), for instance, the command

java Program < inputfile > outputfile

automatically arranges things so that any terminal reads are redirected to
come from inputfile and terminal writes are redirected to go to outputfile.

1.2 the first program 5

1.2 the first program
Let us begin by examining the simple Java program shown in Figure 1.1. This
program prints a short phrase to the terminal. Note the line numbers shown on the
left of the code are not part of the program. They are supplied for easy reference.

Place the program in the source file FirstProgram.java and then compile
and run it. Note that the name of the source file must match the name of the
class (shown on line 4), including case conventions. If you are using the JDK,
the commands are1

javac FirstProgram.java
java FirstProgram

1.2.1 comments

Java has three forms of comments. The first form, which is inherited from C,
begins with the token /* and ends with */. Here is an example:

/* This is a
 two-line comment */

Comments do not nest.
Comments make
code easier for
humans to read.
Java has three
forms of comments.

The second form, which is inherited from C++, begins with the token //.
There is no ending token. Rather, the comment extends to the end of the line.
This is shown on lines 1 and 2 in Figure 1.1.

The third form begins with /** instead of /*. This form can be used to
provide information to the javadoc utility, which will generate documentation
from comments. This form is discussed in Section 3.3.

1. If you are using Sun’s JDK, javac and java are used directly. Otherwise, in a typical interac-
tive development environment (IDE), such as Netbeans or Eclipse these commands are
executed behind the scenes on your behalf.

figure 1.1

A simple first program

1 // First program
2 // MW, 5/1/10
3
4 public class FirstProgram
5 {
6 public static void main(String [] args)
7 {
8 System.out.println("Is there anybody out there?");
9 }

10 }

6 chapter 1 primitive java

Comments exist to make code easier for humans to read. These humans
include other programmers who may have to modify or use your code, as well
as yourself. A well-commented program is a sign of a good programmer.

1.2.2 main

When the program
is run, the special
method main is
invoked.

A Java program consists of a collection of interacting classes, which contain
methods. The Java equivalent of the function or procedure is the static
method, which is described in Section 1.6. When any program is run, the spe-
cial static method main is invoked. Line 6 of Figure 1.1 shows that the static
method main is invoked, possibly with command-line arguments. The parame-
ter types of main and the void return type shown are required.

1.2.3 terminal output
println is used to
perform output.

The program in Figure 1.1 consists of a single statement, shown on line 8.
println is the primary output mechanism in Java. Here, a constant string is
placed on the standard output stream System.out by applying a println
method. Input and output is discussed in more detail in Section 2.6. For now
we mention only that the same syntax is used to perform output for any entity,
whether that entity is an integer, floating point, string, or some other type.

1.3 primitive types
Java defines eight primitive types. It also allows the programmer great flexi-
bility to define new types of objects, called classes. However, primitive types
and user-defined types have important differences in Java. In this section, we
examine the primitive types and the basic operations that can be performed on
them.

1.3.1 the primitive types
Java’s primitive
types are integer,
floating-point, Bool-
ean, and character.

Java has eight primitive types, shown in Figure 1.2. The most common is the
integer, which is specified by the keyword int. Unlike with many other lan-
guages, the range of integers is not machine-dependent. Rather, it is the same
in any Java implementation, regardless of the underlying computer architec-
ture. Java also allows entities of types byte, short, and long. These are known
as integral types. Floating-point numbers are represented by the types float
and double. double has more significant digits, so use of it is recommended
over use of float. The char type is used to represent single characters. A char
occupies 16 bits to represent the Unicode standard. The Unicode standard
contains over 30,000 distinct coded characters covering the principal written

The Unicode stan-
dard contains over
30,000 distinct
coded characters
covering the princi-
pal written
languages.

1.3 primitive types 7

languages. The low end of Unicode is identical to ASCII. The final primitive
type is boolean, which is either true or false.

1.3.2 constants
Integer constants
can be repre-
sented in either
decimal, octal, or
hexadecimal
notation.

Integer constants can be represented in either decimal, octal, or hexadecimal nota-
tion. Octal notation is indicated by a leading 0; hexadecimal is indicated by a lead-
ing 0x or 0X. The following are all equivalent ways of representing the integer 37:
37, 045, 0x25. Octal integers are not used in this text. However, we must be aware of
them so that we use leading 0s only when we intend to. We use hexadecimals in
only one place (Section 12.1), and we will revisit them at that point.

A string constant
consists of a
sequence of char-
acters enclosed by
double quotes.

A character constant is enclosed with a pair of single quotation marks, as in
'a'. Internally, this character sequence is interpreted as a small number. The output
routines later interpret that small number as the corresponding character. A string
constant consists of a sequence of characters enclosed within double quotation
marks, as in "Hello". There are some special sequences, known as escape sequences,
that are used (for instance, how does one represent a single quotation mark?). In this
text we use '\n', '\\', '\'', and '\"', which mean, respectively, the newline charac-
ter, backslash character, single quotation mark, and double quotation mark.

1.3.3 declaration and initialization
of primitive types

A variable is named
by using an
identifier.

Any variable, including those of a primitive type, is declared by providing its
name, its type, and optionally, its initial value. The name must be an identifier.
An identifier may consist of any combination of letters, digits, and the under-
score character; it may not start with a digit, however. Reserved words, such

Primitive Type What It Stores Range

byte 8-bit integer –128 to 127

short 16-bit integer –32,768 to 32,767

int 32-bit integer –2,147,483,648 to 2,147,483,647

long 64-bit integer –263 to 263 – 1

float 32-bit floating-point 6 significant digits (10–46, 1038)

double 64-bit floating-point 15 significant digits (10–324, 10308)

char Unicode character

boolean Boolean variable false and true

figure 1.2

The eight primitive
types in Java

Escape sequences
are used to repre-
sent certain char-
acter constants.

8 chapter 1 primitive java

as int, are not allowed. Although it is legal to do so, you should not reuse
identifier names that are already visibly used (for example, do not use main as
the name of an entity).

Java is case-
sensitive.

Java is case-sensitive, meaning that Age and age are different identifiers.
This text uses the following convention for naming variables: All variables
start with a lowercase letter and new words start with an uppercase letter. An
example is the identifier minimumWage.

Here are some examples of declarations:

int num3; // Default initialization
double minimumWage = 4.50; // Standard initialization
int x = 0, num1 = 0; // Two entities are declared
int num2 = num1;

A variable should be declared near its first use. As will be shown, the
placement of a declaration determines its scope and meaning.

1.3.4 terminal input and output

Basic formatted terminal I/O is accomplished by nextLine and println. The
standard input stream is System.in, and the standard output stream is
System.out.

The basic mechanism for formatted I/O uses the String type, which is
discussed in Section 2.3. For output, + combines two Strings. If the second
argument is not a String, a temporary String is created for it if it is a prim-
itive type. These conversions to String can also be defined for objects
(Section 3.4.3). For input, we associate a Scanner object with System.in.
Then a String or a primitive type can be read. A more detailed discussion
of I/O, including a treatment of formatted files, is in Section 2.6.

1.4 basic operators
This section describes some of the operators available in Java. These opera-
tors are used to form expressions. A constant or entity by itself is an expres-
sion, as are combinations of constants and variables with operators. An
expression followed by a semicolon is a simple statement. In Section 1.5, we
examine other types of statements, which introduce additional operators.

1.4 basic operators 9

1.4.1 assignment operators

A simple Java program that illustrates a few operators is shown in Figure 1.3.
The basic assignment operator is the equals sign. For example, on line 16 the
variable a is assigned the value of the variable c (which at that point is 6). Sub-
sequent changes to the value of c do not affect a. Assignment operators can be
chained, as in z=y=x=0.

Java provides a
host of assignment
operators, includ-
ing =, +=,
-=, *=, and /=.

Another assignment operator is the +=, whose use is illustrated on line 18
of the figure. The += operator adds the value on the right-hand side (of the +=
operator) to the variable on the left-hand side. Thus, in the figure, c is incre-
mented from its value of 6 before line 18, to a value of 14.

Java provides various other assignment operators, such as -=, *=, and /=,
which alter the variable on the left-hand side of the operator via subtraction,
multiplication, and division, respectively.

figure 1.3

Program that
illustrates operators

1 public class OperatorTest
2 {
3 // Program to illustrate basic operators
4 // The output is as follows:
5 // 12 8 6
6 // 6 8 6
7 // 6 8 14
8 // 22 8 14
9 // 24 10 33

10
11 public static void main(String [] args)
12 {
13 int a = 12, b = 8, c = 6;
14
15 System.out.println(a + " " + b + " " + c);
16 a = c;
17 System.out.println(a + " " + b + " " + c);
18 c += b;
19 System.out.println(a + " " + b + " " + c);
20 a = b + c;
21 System.out.println(a + " " + b + " " + c);
22 a++;
23 ++b;
24 c = a++ + ++b;
25 System.out.println(a + " " + b + " " + c);
26 }
27 }

10 chapter 1 primitive java

The type conversion
operator is used to
generate a tempo-
rary entity of a new
type.

1.4.2 binary arithmetic operators
Java provides sev-
eral binary arith-
metic operators,
including +, -, *,
/, and %.

Line 20 in Figure 1.3 illustrates one of the binary arithmetic operators that
are typical of all programming languages: the addition operator (+). The +
operator causes the values of b and c to be added together; b and c remain
unchanged. The resulting value is assigned to a. Other arithmetic operators
typically used in Java are -, *, /, and %, which are used, respectively, for sub-
traction, multiplication, division, and remainder. Integer division returns only
the integral part and discards any remainder.

As is typical, addition and subtraction have the same precedence, and this
precedence is lower than the precedence of the group consisting of the multi-
plication, division, and mod operators; thus 1+2*3 evaluates to 7. All of these
operators associate from left to right (so 3-2-2 evaluates to –1). All operators
have precedence and associativity. The complete table of operators is in
Appendix A.

1.4.3 unary operators
Several unary oper-
ators are defined,
including -.

In addition to binary arithmetic operators, which require two operands, Java
provides unary operators, which require only one operand. The most familiar
of these is the unary minus, which evaluates to the negative of its operand.
Thus -x returns the negative of x.

Autoincrement and
autodecrement add
1 and subtract 1,
respectively. The
operators for doing
this are ++ and --.
There are two
forms of increment-
ing and decrement-
ing: prefix and
postfix.

Java also provides the autoincrement operator to add 1 to a variable—
denoted by ++ —and the autodecrement operator to subtract 1 from a variable—
denoted by --. The most benign use of this feature is shown on lines 22 and
23 of Figure 1.3. In both lines, the autoincrement operator ++ adds 1 to the
value of the variable. In Java, however, an operator applied to an expression
yields an expression that has a value. Although it is guaranteed that the vari-
able will be incremented before the execution of the next statement, the
question arises: What is the value of the autoincrement expression if it is
used in a larger expression?

In this case, the placement of the ++ is crucial. The semantics of ++x is
that the value of the expression is the new value of x. This is called the prefix
increment. In contrast, x++ means the value of the expression is the original
value of x. This is called the postfix increment. This feature is shown in line 24
of Figure 1.3. a and b are both incremented by 1, and c is obtained by adding
the original value of a to the incremented value of b.

1.4.4 type conversions

The type conversion operator is used to generate a temporary entity of a new
type. Consider, for instance,

1.5 conditional statements 11

double quotient;
int x = 6;
int y = 10;
quotient = x / y; // Probably wrong!

The first operation is the division, and since x and y are both integers, the result is
integer division, and we obtain 0. Integer 0 is then implicitly converted to a double
so that it can be assigned to quotient. But we had intended quotient to be assigned
0.6. The solution is to generate a temporary variable for either x or y so that the
division is performed using the rules for double. This would be done as follows:

quotient = (double) x / y;

Note that neither x nor y are changed. An unnamed temporary is created, and
its value is used for the division. The type conversion operator has higher pre-
cedence than division does, so x is type-converted and then the division is per-
formed (rather than the conversion coming after the division of two ints being
performed).

1.5 conditional statements
This section examines statements that affect the flow of control: conditional
statements and loops. As a consequence, new operators are introduced.

1.5.1 relational and equality operators

The basic test that we can perform on primitive types is the comparison. This
is done using the equality and inequality operators, as well as the relational
operators (less than, greater than, and so on).

In Java, the
equality operators
are == and !=.

In Java, the equality operators are == and !=. For example,

leftExpr==rightExpr

evaluates to true if leftExpr and rightExpr are equal; otherwise, it evaluates to
false. Similarly,

leftExpr!=rightExpr

evaluates to true if leftExpr and rightExpr are not equal and to false
otherwise.

The relational
operators are <, <=,
>, and >=.

The relational operators are <, <=, >, and >=. These have natural meanings
for the built-in types. The relational operators have higher precedence than the
equality operators. Both have lower precedence than the arithmetic operators

12 chapter 1 primitive java

but higher precedence than the assignment operators, so the use of parenthe-
ses is frequently unnecessary. All of these operators associate from left to
right, but this fact is useless: In the expression a<b<6, for example, the first <
generates a boolean and the second is illegal because < is not defined for bool-
eans. The next section describes the correct way to perform this test.

1.5.2 logical operators
Java provides logi-
cal operators that
are used to simu-
late the Boolean
algebra concepts of
AND, OR, and NOT.
The corresponding
operators are &&, ||,
and !.

Java provides logical operators that are used to simulate the Boolean algebra
concepts of AND, OR, and NOT. These are sometimes known as conjunction,
disjunction, and negation, respectively, whose corresponding operators are &&,
||, and !. The test in the previous section is properly implemented as a<b &&
b<6. The precedence of conjunction and disjunction is sufficiently low that
parentheses are not needed. && has higher precedence than ||, while ! is
grouped with other unary operators (and is thus highest of the three). The
operands and results for the logical operators are boolean. Figure 1.4 shows
the result of applying the logical operators for all possible inputs.

Short-circuit evalu-
ation means that if
the result of a logi-
cal operator can be
determined
by examining the
first expression,
then the second
expression is not
evaluated.

One important rule is that && and || are short-circuit evaluation operations.
Short-circuit evaluation means that if the result can be determined by examining
the first expression, then the second expression is not evaluated. For instance, in

x != 0 && 1/x != 3

if x is 0, then the first half is false. Automatically the result of the AND must
be false, so the second half is not evaluated. This is a good thing because
division-by-zero would give erroneous behavior. Short-circuit evaluation
allows us to not have to worry about dividing by zero.2

figure 1.4

Result of logical
operators

x y x && y x || y !x

false false false false true

false true false true true

true false false true false

true true true true false

2. There are (extremely) rare cases in which it is preferable to not short-circuit. In such cases,
the & and | operators with boolean arguments guarantee that both arguments are evaluated,
even if the result of the operation can be determined from the first argument.

1.5 conditional statements 13

A block is a
sequence of state-
ments within
braces.

1.5.3 the if statement
The if statement is
the fundamental
decision maker.

The if statement is the fundamental decision maker. Its basic form is

if(expression)
statement

next statement

If expression evaluates to true, then statement is executed; otherwise, it is
not. When the if statement is completed (without an unhandled error), control
passes to the next statement.

Optionally, we can use an if-else statement, as follows:

if(expression)
statement1

else
statement2

next statement

In this case, if expression evaluates to true, then statement1 is executed; oth-
erwise, statement2 is executed. In either case, control then passes to the next
statement, as in

System.out.print("1/x is ");
if(x != 0)
 System.out.print(1 / x);
else
 System.out.print("Undefined");
System.out.println();

Remember that each of the if and else clauses contains at most one
statement, no matter how you indent. Here are two mistakes:

if(x == 0); // ; is null statement (and counts)
 System.out.println("x is zero ");
else
 System.out.print("x is ");
 System.out.println(x); // Two statements

A semicolon by
itself is the null
statement.

The first mistake is the inclusion of the ; at the end of the first if. This
semicolon by itself counts as the null statement; consequently, this frag-
ment won’t compile (the else is no longer associated with an if). Once
that mistake is fixed, we have a logic error: that is, the last line is not part
of the else, even though the indentation suggests it is. To fix this problem,
we have to use a block, in which we enclose a sequence of statements by
a pair of braces:

14 chapter 1 primitive java

if(x == 0)
 System.out.println("x is zero");
else
{
 System.out.print("x is ");
 System.out.println(x);
}

The if statement can itself be the target of an if or else clause, as can
other control statements discussed later in this section. In the case of nested
if-else statements, an else matches the innermost dangling if. It may be
necessary to add braces if that is not the intended meaning.

1.5.4 the while statement
The while state-
ment is one of
three basic forms
of looping.

Java provides three basic forms of looping: the while statement, for statement,
and do statement. The syntax for the while statement is

while(expression)
statement

next statement

Note that like the if statement, there is no semicolon in the syntax. If one is
present, it will be taken as the null statement.

While expression is true, statement is executed; then expression is reevalu-
ated. If expression is initially false, then statement will never be executed. Gen-
erally, statement does something that can potentially alter the value of expression;
otherwise, the loop could be infinite. When the while loop terminates (nor-
mally), control resumes at the next statement.

1.5.5 the for statement
The for statement
is a looping con-
struct that is used
primarily for simple
iteration.

The while statement is sufficient to express all repetition. Even so, Java
provides two other forms of looping: the for statement and the do statement.
The for statement is used primarily for iteration. Its syntax is

for(initialization; test; update)
statement

next statement

Here, initialization, test, and update are all expressions, and all three are
optional. If test is not provided, it defaults to true. There is no semicolon
after the closing parenthesis.

The for statement is executed by first performing the initialization. Then,
while test is true, the following two actions occur: statement is performed, and

1.5 conditional statements 15

then update is performed. If initialization and update are omitted, then the
for statement behaves exactly like a while statement. The advantage of a for
statement is clarity in that for variables that count (or iterate), the for statement
makes it much easier to see what the range of the counter is. The following frag-
ment prints the first 100 positive integers:

for(int i = 1; i <= 100; i++)
 System.out.println(i);

This fragment illustrates the common technique of declaring a counter in the ini-
tialization portion of the loop. This counter’s scope extends only inside the loop.

Both initialization and update may use a comma to allow multiple expres-
sions. The following fragment illustrates this idiom:

for(i = 0, sum = 0; i <= n; i++, sum += n)
 System.out.println(i + "\t" + sum);

Loops nest in the same way as if statements. For instance, we can find all
pairs of small numbers whose sum equals their product (such as 2 and 2,
whose sum and product are both 4):

for(int i = 1; i <= 10; i++)
 for(int j = 1; j <= 10; j++)
 if(i + j == i * j)
 System.out.println(i + ", " + j);

As we will see, however, when we nest loops we can easily create programs
whose running times grow quickly.

Java 5 adds an “enhanced” for loop. We discuss this addition in Section
2.4 and Chapter 6.

1.5.6 the do statement
The do statement is
a looping construct
that guarantees the
loop is executed at
least once.

The while statement repeatedly performs a test. If the test is true, it then
executes an embedded statement. However, if the initial test is false, the
embedded statement is never executed. In some cases, however, we would
like to guarantee that the embedded statement is executed at least once. This
is done using the do statement. The do statement is identical to the while
statement, except that the test is performed after the embedded statement.
The syntax is

do
statement

while(expression);
next statement

16 chapter 1 primitive java

Notice that the do statement includes a semicolon. A typical use of the do
statement is shown in the following pseudocode fragment:

do
{
 Prompt user;
 Read value;
} while(value is no good);

The do statement is by far the least frequently used of the three looping
constructs. However, when we have to do something at least once, and for
some reason a for loop is inappropriate, then the do statement is the method of
choice.

1.5.7 break and continue

The for and while statements provide for termination before the start of a
repeated statement. The do statement allows termination after execution of a
repeated statement. Occasionally, we would like to terminate execution in the
middle of a repeated (compound) statement. The break statement, which is
the keyword break followed by a semicolon, can be used to achieve this.
Typically, an if statement would precede the break, as in

while(...)
{
 ...
 if(something)

break;
 ...
}

The break state-
ment exits the
innermost loop or
switch statement.
The labeled break
statement exits
from a nested loop.

The break statement exits the innermost loop only (it is also used in conjunc-
tion with the switch statement, described in the next section). If there are several
loops that need exiting, the break will not work, and most likely you have poorly
designed code. Even so, Java provides a labeled break statement. In the labeled
break statement, a loop is labeled, and then a break statement can be applied to the
loop, regardless of how many other loops are nested. Here is an example:

 outer:
 while(...)
 {
 while(...)
 if(disaster)

break outer; // Go to after outer
 }
 // Control passes here after outer loop is exited

1.5 conditional statements 17

The continue state-
ment goes to the
next iteration of the
innermost loop.

Occasionally, we want to give up on the current iteration of a loop and go
on to the next iteration. This can be handled by using a continue statement.
Like the break statement, the continue statement includes a semicolon and
applies to the innermost loop only. The following fragment prints the first 100
integers, with the exception of those divisible by 10:

for(int i = 1; i <= 100; i++)
{
 if(i % 10 == 0)

continue;
 System.out.println(i);
}

Of course, in this example, there are alternatives to the continue statement. However,
continue is commonly used to avoid complicated if-else patterns inside loops.

1.5.8 the switch statement
The switch state-
ment is used to
select among sev-
eral small integer
(or character)
values.

The switch statement is used to select among several small integer (or character)
values. It consists of an expression and a block. The block contains a sequence of
statements and a collection of labels, which represent possible values of the
expression. All the labels must be distinct compile-time constants. An optional
default label, if present, matches any unrepresented label. If there is no applica-
ble case for the switch expression, the switch statement is over; otherwise, control
passes to the appropriate label and all statements from that point on are executed.
A break statement may be used to force early termination of the switch and is
almost always used to separate logically distinct cases. An example of the typical
structure is shown in Figure 1.5.

1.5.9 the conditional operator
The conditional
operator ?: is used
as a shorthand for
simple if-else
statements.

The conditional operator ?: is used as a shorthand for simple if-else statements.
The general form is

testExpr ? yesExpr : noExpr

testExpr is evaluated first, followed by either yesExpr or noExpr, producing
the result of the entire expression. yesExpr is evaluated if testExpr is true;
otherwise, noExpr is evaluated. The precedence of the conditional operator is
just above that of the assignment operators. This allows us to avoid using
parentheses when assigning the result of the conditional operator to a vari-
able. As an example, the minimum of x and y is assigned to minVal as follows:

minVal = x <= y ? x : y;

18 chapter 1 primitive java

1.6 methods
What is known as a function or procedure in other languages is called a method
in Java. A more complete treatment of methods is provided in Chapter 3. This
section presents some of the basics for writing functions, such as main, in a non-
object-oriented manner (as would be encountered in a language such as C)
so that we can write some simple programs.

A method header consists of a name, a (possibly empty) list of parame-
ters, and a return type. The actual code to implement the method, sometimes
called the method body, is formally a block. A method declaration consists of
a header plus the body. An example of a method declaration and a main routine
that uses it is shown in Figure 1.6.

By prefacing each method with the words public static, we can mimic the
C-style global function. Although declaring a method as static is a useful
technique in some instances, it should not be overused, since in general we do
not want to use Java to write “C-style” code. We will discuss the more typical
use of static in Section 3.6.

The method name is an identifier. The parameter list consists of zero or
more formal parameters, each with a specified type. When a method is
called, the actual arguments are sent into the formal parameters using normal

figure 1.5

Layout of a switch
statement

1 switch(someCharacter)
2 {
3 case '(':
4 case '[':
5 case '{':
6 // Code to process opening symbols
7 break;
8
9 case ')':

10 case ']':
11 case '}':
12 // Code to process closing symbols
13 break;
14
15 case '\n':
16 // Code to handle newline character
17 break;
18
19 default:
20 // Code to handle other cases
21 break;
22 }

A method is similar
to a function in
other languages.
The method header
consists of the
name, return type,
and parameter list.
The method decla-
ration includes the
body.

A public static
method is the
equivalent of a
“C-style”
global function.

In call-by-value, the
actual arguments
are copied into the
formal parameters.
Variables are
passed using call-
by-value.

1.6 methods 19

assignment. This means primitive types are passed using call-by-value
parameter passing only. The actual arguments cannot be altered by the
function. As with most modern programming languages, method declara-
tions may be arranged in any order.

The return state-
ment is used to
return a value to
the caller.

The return statement is used to return a value to the caller. If the return
type is void, then no value is returned, and return; should be used.

1.6.1 overloading of method names

Suppose we need to write a routine that returns the maximum of three ints.
A reasonable method header would be

int max(int a, int b, int c)

In some languages, this may be unacceptable if max is already declared. For
instance, we may also have

int max(int a, int b)

Overloading of a
method name
means that several
methods may have
the same name as
long as their
parameter list types
differ.

Java allows the overloading of method names. This means that several
methods may have the same name and be declared in the same class scope as
long as their signatures (that is, their parameter list types) differ. When a call
to max is made, the compiler can deduce which of the intended meanings
should be applied based on the actual argument types. Two signatures may
have the same number of parameters, as long as at least one of the parameter
list types differs.

figure 1.6

Illustration of method
declaration and calls

1 public class MinTest
2 {
3 public static void main(String [] args)
4 {
5 int a = 3;
6 int b = 7;
7
8 System.out.println(min(a, b));
9 }

10
11 // Method declaration
12 public static int min(int x, int y)
13 {
14 return x < y ? x : y;
15 }
16 }

20 chapter 1 primitive java

Note that the return type is not included in the signature. This means it is
illegal to have two methods in the same class scope whose only difference is
the return type. Methods in different class scopes may have the same names,
signatures, and even return types; this is discussed in Chapter 3.

1.6.2 storage classes

Entities that are declared inside the body of a method are local variables and
can be accessed by name only within the method body. These entities are
created when the method body is executed and disappear when the method
body terminates.

static final
variables are
constants.

A variable declared outside the body of a method is global to the class. It
is similar to global variables in other languages if the word static is used
(which is likely to be required so as to make the entity accessible by static
methods). If both static and final are used, they are global symbolic con-
stants. As an example,

static final double PI = 3.1415926535897932;

Note the use of the common convention of naming symbolic constants
entirely in uppercase. If several words form the identifier name, they are sepa-
rated by the underscore character, as in MAX_INT_VALUE.

If the word static is omitted, then the variable (or constant) has a differ-
ent meaning, which is discussed in Section 3.6.5.

summary

This chapter discussed the primitive features of Java, such as primitive
types, operators, conditional and looping statements, and methods that are
found in almost any language.

Any nontrivial program will require the use of nonprimitive types, called
reference types, which are discussed in the next chapter.

key concepts

assignment operators In Java, used to alter the value of a variable. These oper-
ators include =, +=, -=, *=, and /=. (9)

autoincrement (++) and autodecrement (--) operators Operators that add and
subtract 1, respectively. There are two forms of incrementing and decre-
menting prefix and postfix. (10)

key concepts 21

binary arithmetic operators Used to perform basic arithmetic. Java provides
several, including +, -, *, /, and %. (10)

block A sequence of statements within braces. (13)
break statement A statement that exits the innermost loop or switch statement.

(16)
bytecode Portable intermediate code generated by the Java compiler. (4)
call-by-value The Java parameter-passing mechanism whereby the actual

argument is copied into the formal parameter. (18)
comments Make code easier for humans to read but have no semantic meaning.

Java has three forms of comments. (5)
conditional operator (?:) An operator that is used in an expression as a short-

hand for simple if-else statements. (17)
continue statement A statement that goes to the next iteration of the innermost

loop. (17)
do statement A looping construct that guarantees the loop is executed at least

once. (15)
equality operators In Java, == and != are used to compare two values; they

return either true or false (as appropriate). (11)
escape sequence Used to represent certain character constants. (7)
for statement A looping construct used primarily for simple iteration. (14)
identifier Used to name a variable or method. (7)
if statement The fundamental decision maker. (13)
integral types byte, char, short, int, and long. (6)
java The Java interpreter, which processes bytecodes. (4)
javac The Java compiler; generates bytecodes. (4)
labeled break statement A break statement used to exit from nested loops. (16)
logical operators &&, ||, and !, used to simulate the Boolean algebra concepts

of AND, OR, and NOT. (12)
main The special method that is invoked when the program is run. (6)
method The Java equivalent of a function. (18)
method declaration Consists of the method header and body. (18)
method header Consists of the name, return type, and parameter list. (18)
null statement A statement that consists of a semicolon by itself. (13)
octal and hexadecimal integer constants Integer constants can be represented in

either decimal, octal, or hexadecimal notation. Octal notation is indicated
by a leading 0; hexadecimal is indicated by a leading 0x or 0X. (7)

overloading of a method name The action of allowing several methods to have
the same name as long as their parameter list types differ. (19)

22 chapter 1 primitive java

primitive types In Java, integer, floating-point, Boolean, and character. (6)
relational operators In Java, <, <=, >, and >= are used to decide which of two

values is smaller or larger; they return true or false. (11)
return statement A statement used to return information to the caller. (19)
short-circuit evaluation The process whereby if the result of a logical operator

can be determined by examining the first expression, then the second
expression is not evaluated. (12)

signature The combination of the method name and the parameter list types.
The return type is not part of the signature. (18)

standard input The terminal, unless redirected. There are also streams for
standard output and standard error. (4)

static final entity A global constant. (20)
static method Occasionally used to mimic C-style functions; discussed more

fully in Section 3.6. (18)
string constant A constant that consists of a sequence of characters enclosed

by double quotes. (7)
switch statement A statement used to select among several small integral values.

(17)
type conversion operator An operator used to generate an unnamed temporary

variable of a new type. (10)
unary operators Require one operand. Several unary operators are defined,

including unary minus (-) and the autoincrement and autodecrement
operators (++ and --). (10)

Unicode International character set that contains over 30,000 distinct charac-
ters covering the principle written languages. (6)

while statement The most basic form of looping. (14)
Virtual Machine The bytecode interpreter. (4)

common errors

1. Adding unnecessary semicolons gives logical errors because the semi-
colon by itself is the null statement. This means that an unintended
semicolon immediately following a for, while, or if statement is very
likely to go undetected and will break your program.

2. At compile time, the Java compiler is required to detect all instances in
which a method that is supposed to return a value fails to do so. Occasion-
ally, it provides a false alarm, and you have to rearrange code.

3. A leading 0 makes an integer constant octal when seen as a token in
source code. So 037 is equivalent to decimal 31.

exercises 23

4. Use && and || for logical operations; & and | do not short-circuit.

5. The else clause matches the closest dangling if. It is common to forget to
include the braces needed to match the else to a distant dangling if.

6. When a switch statement is used, it is common to forget the break statement
between logical cases. If it is forgotten, control passes through to the next
case; generally, this is not the desired behavior.

7. Escape sequences begin with the backslash \, not the forward slash /.

8. Mismatched braces may give misleading answers. Use Balance, described
in Section 11.1, to check if this is the cause of a compiler error message.

9. The name of the Java source file must match the name of the class being
compiled.

on the internet

Following are the available files for this chapter. Everything is self-contained,
and nothing is used later in the text.

FirstProgram.java The first program, as shown in Figure 1.1.
OperatorTest.java Demonstration of various operators, as shown in

Figure 1.3.
MinTest.java Illustration of methods, as shown in Figure 1.6.

exercises

IN SHORT

1.1 What extensions are used for Java source and compiled files?

1.2 Describe the three kinds of comments used in Java programs.

1.3 What are the eight primitive types in Java?

1.4 What is the difference between the * and *= operators?

1.5 Explain the difference between the prefix and postfix increment
operators.

1.6 Describe the three types of loops in Java.

1.7 Describe all the uses of a break statement. What is a labeled break
statement?

1.8 What does the continue statement do?

1.9 What is method overloading?

1.10 Describe call-by-value.

24 chapter 1 primitive java

IN THEORY

1.11 Let b have the value of 5 and c have the value of 8. What is the value
of a, b, and c after each line of the following program fragment:

a = b++ + c++;
a = b++ + ++c;
a = ++b + c++;
a = ++b + ++c;

1.12 What is the result of true && false || true?

1.13 For the following, give an example in which the for loop on the left is
not equivalent to the while loop on the right:

 init;
for(init; test; update) while(test)
{ {
 statements statements
 update;
} }

1.14 For the following program, what are the possible outputs?

public class WhatIsX
{
 public static void f(int x)
 { /* body unknown */ }

 public static void main(String [] args)
 {
 int x = 0;
 f(x);
 System.out.println(x);
 }
}

IN PRACTICE

1.15 Write a while statement that is equivalent to the following for frag-
ment. Why would this be useful?

for(; ;)
 statement

1.16 Write a program to generate the addition and multiplication tables for
single-digit numbers (the table that elementary school students are
accustomed to seeing).

1.17 Write two static methods. The first should return the maximum of three
integers, and the second should return the maximum of four integers.

references 25

1.18 Write a static method that takes a year as a parameter and returns true
if the year is a leap year, and false otherwise.

PROGRAMMING PROJECTS

1.19 Write a program to determine all pairs of positive integers, ,
such that and is an integer.

1.20 Write a method that prints the representation of its integer parameter
as a Roman numeral. Thus, if the parameter is 1998, the output is
MCMXCVIII.

1.21 Suppose you want to print out numbers in brackets, formatted as
follows: [1][2][3], and so on. Write a method that takes two param-
eters: howMany and lineLength. The method should print out line num-
bers from 1 to howMany in the previous format, but it should not
output more than lineLength characters on any one line. It should
not start a [unless it can fit the corresponding].

1.22 In the following decimal arithmetic puzzle, each of the ten different
letters is assigned a digit. Write a program that finds all possible
solutions (one of which is shown).

 MARK A=1 W=2 N=3 R=4 E=5 9147
 + ALLEN L=6 K=7 I=8 M=9 S=0 + 16653
 ----- -----
 WEISS 25800

references

Some of the C-style material in this chapter is taken from [5]. The complete
Java language specification may be found in [2]. Introductory Java books
include [1], [3] and [4].

1. G. Cornell and C. S. Horstmann, Core Java 2 Volumes 1 and 2, 8th ed.,
Prentice Hall, Upper Saddle River, NJ, 2008.

2. J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Language Specifica-
tion, 3rd ed., Addison-Wesley, Reading, MA, 2006.

3. J. Lewis and W. Loftus, Java Software Solutions, 6th ed., Addison-Wesley,
Boston, MA, 2008.

4. W. Savitch, and F. M. Carrano, Java: An Introduction to Problem Solving &
Programming, 5th ed., Prentice Hall, Upper Saddle River, NJ, 2009.

5. M. A. Weiss, Efficient C Programming: A Practical Approach, Prentice
Hall, Upper Saddle River, NJ, 1995.

a b,()
a b 1000< < a2 b2 1+ +() ab()⁄

This page intentionally left blank

chap te r 2

reference types

Chapter 1 examined the Java primitive types. All types that are not one of
the eight primitive types are reference types, including important entities such
as strings, arrays, and file streams.

In this chapter, we will see

n What a reference type and value is

n How reference types differ from primitive types

n Examples of reference types, including strings, arrays, and streams

n How exceptions are used to signal erroneous behavior

2.1 what is a reference?
Chapter 1 described the eight primitive types, along with some of the opera-
tions that these types can perform. All other types in Java are reference types,
including strings, arrays, and file streams. So what is a reference? A reference
variable (often abbreviated as simply reference) in Java is a variable that
somehow stores the memory address where an object resides.

28 chapter 2 reference types

As an example, in Figure 2.1 are two objects of type Point. It happens, by
chance, that these objects are stored in memory locations 1000 and 1024,
respectively. For these two objects, there are three references: point1, point2,
and point3. point1 and point3 both reference the object stored at memory
location 1000; point2 references the object stored at memory location 1024.
Both point1 and point3 store the value 1000, while point2 stores the value
1024. Note that the actual locations, such as 1000 and 1024, are assigned by
the runtime system at its discretion (when it finds available memory). Thus
these values are not useful externally as numbers. However, the fact that
point1 and point3 store identical values is useful: It means they are referenc-
ing the same object.

A reference will always store the memory address where some object is
residing, unless it is not currently referencing any object. In this case, it will
store the null reference, null. Java does not allow references to primitive
variables.

There are two broad categories of operations that can be applied to refer-
ence variables. One allows us to examine or manipulate the reference value.
For instance, if we change the stored value of point1 (which is 1000), we
could have it reference another object. We can also compare point1 and point3
and determine if they are referencing the same object. The other category of
operations applies to the object being referenced; perhaps we could examine
or change the internal state of one of the Point objects. For instance, we could
examine some of Point’s x and y coordinates.

Before we describe what can be done with references, let us see what is
not allowed. Consider the expression point1*point2. Since the stored values of
point1 and point2 are 1000 and 1024, respectively, their product would be
1024000. However, this is a meaningless calculation that could not have any
possible use. Reference variables store addresses, and there is no logical
meaning that can be associated with multiplying two addresses.

1000

1024

3200

3600

5124

(0, 0)

(5, 12)

point2 = 1024

point1 = 1000

point3 = 1000

point1

point2

point3

(at 1000)

(0, 0)

(at 1024)

(5, 12)

figure 2.1

An illustration of a
reference. The Point
object stored at
memory location
1000 is referenced
by both point1 and
point3. The Point
object stored at
memory location
1024 is referenced
by point2. The
memory locations
where the variables
are stored are
arbitrary.

2.1 what is a reference? 29

Similarly, point1++ has no Java meaning; it suggests that point1—1000—
should be increased to 1001, but in that case it might not be referencing a
valid Point object. Many languages (e.g., C++) define the pointer, which
behaves like a reference variable. However, pointers in C++ are much more
dangerous because arithmetic on stored addresses is allowed. Thus, in C++,
point1++ has a meaning. Because C++ allows pointers to primitive types, one
must be careful to distinguish between arithmetic on addresses and arithmetic
on the objects being referenced. This is done by explicitly dereferencing the
pointer. In practice, C++’s unsafe pointers tend to cause numerous program-
ming errors.

Some operations are performed on references themselves, while other
operations are performed on the objects being referenced. In Java, the only
operators that are allowed for reference types (with one exception made for
Strings) are assignment via = and equality comparison via == or !=.

Figure 2.2 illustrates the assignment operator for reference variables. By
assigning point3 the stored value of point2, we have point3 reference the same
object that point2 was referencing. Now, point2==point3 is true because point2
and point3 both store 1024 and thus reference the same object. point1!=point2
is also true because point1 and point2 reference different objects.

The other category of operations deals with the object that is being ref-
erenced. There are only three basic actions that can be done:

1. Apply a type conversion (Section 1.4.4).
2. Access an internal field or call a method via the dot operator (.)

(Section 2.2.1).
3. Use the instanceof operator to verify that the stored object is of

a certain type (Section 3.6.3).

The next section illustrates in more detail the common reference operations.

1000

1024

3200

3600

5124

(0, 0)

(5, 12)

point2 = 1024

point1 = 1000

point3 = 1024

point1

point2

point3

(at 1000)

(0, 0)

(at 1024)

(5, 12)

figure 2.2

The result of
point3=point2:
point3 now
references the
same object as
point2.

30 chapter 2 reference types

2.2 basics of objects and references
In Java, an object is
an instance of any
of the nonprimitive
types.

In Java, an object is an instance of any of the nonprimitive types. Objects are
treated differently from primitive types. Primitive types, as already shown, are
handled by value, meaning that the values assumed by the primitive variables
are stored in those variables and copied from primitive variable to primitive
variable during assignments. As shown in Section 2.1, reference variables
store references to objects. The actual object is stored somewhere in memory,
and the reference variable stores the object’s memory address. Thus a refer-
ence variable simply represents a name for that part of memory. This means
that primitive variables and reference variables behave differently. This sec-
tion examines these differences in more detail and illustrates the operations
that are allowed for reference variables.

2.2.1 the dot operator (.)

The dot operator (.) is used to select a method that is applied to an object. For
instance, suppose we have an object of type Circle that defines an area
method. If theCircle references a Circle, then we can compute the area of the
referenced Circle (and save it to a variable of type double) by doing this:

double theArea = theCircle.area();

It is possible that theCircle stores the null reference. In this case, applying the
dot operator will generate a NullPointerException when the program runs.
Generally, this will cause abnormal termination.

The dot operator can also be used to access individual components of
an object, provided arrangements have been made to allow internal com-
ponents to be viewable. Chapter 3 discusses how these arrangements are
made. Chapter 3 also explains why it is generally preferable to not allow
direct access of individual components.

2.2.2 declaration of objects

We have already seen the syntax for declaring primitive variables. For objects,
there is an important difference. When we declare a reference variable, we are
simply providing a name that can be used to reference an object that is stored in
memory. However, the declaration by itself does not provide that object. For
example, suppose there is an object of type Button that we want to add into an
existing Panel p, using the method add (all this is provided in the Java library).
Consider the statements

2.2 basics of objects and references 31

Button b; // b may reference a Button object
b.setLabel("No"); // Label the button b refers to "No"
p.add(b); // and add it to Panel p

When a reference
type is declared, no
object is allocated.
At that point, the
reference is to null.
To create the
object, use new.

All seems well with these statements until we remember that b is the name of
some Button object but no Button has been created yet. As a result, after the
declaration of b the value stored by the reference variable b is null, meaning b
is not yet referring to a valid Button object. Consequently, the second line is
illegal because we are attempting to alter an object that does not exist. In this
scenario, the compiler will probably detect the error, stating that “b is unini-
tialized.” In other cases, the compiler will not notice, and a run-time error will
result in the cryptic NullPointerException error message.

The new keyword is
used to construct
an object.

The (only common) way to allocate an object is to use the new keyword.
new is used to construct an object. One way to do this is as follows:

Button b; // b may reference a Button object
b = new Button(); // Now b refers to an allocated object
b.setLabel("No"); // Label the Button b refers to "No"
p.add(b); // and add it to Panel p

Parentheses are
required when new
is used.

Note that parentheses are required after the object name.
It is also possible to combine the declaration and object construction, as in

Button b = new Button();
b.setLabel("No"); // Label the Button b refers to "No"
p.add(b); // and add it to Panel p

The construction
can specify an ini-
tial state of the
object.

Many objects can also be constructed with initial values. For instance, it
happens that the Button can be constructed with a String that specifies the
label:

Button b = new Button("No");
p.add(b); // Add it to Panel p

2.2.3 garbage collection
Java uses garbage
collection. With gar-
bage collection,
unreferenced
memory is auto-
matically reclaimed.

Since all objects must be constructed, we might expect that when they are no
longer needed, we must explicitly destroy them. In Java, when a constructed
object is no longer referenced by any object variable, the memory it consumes
will automatically be reclaimed and therefore be made available. This technique
is known as garbage collection.

The runtime system (i.e., the Java Virtual Machine) guarantees that as
long as it is possible to access an object by a reference, or a chain of refer-
ences, the object will never be reclaimed. Once the object is unreachable by a

32 chapter 2 reference types

chain of references, it can be reclaimed at the discretion of the runtime system
if memory is low. It is possible that if memory does not run low, the virtual
machine will not attempt to reclaim these objects.

2.2.4 the meaning of =
lhs and rhs stand
for left-hand side
and right-hand side,
respectively.

Suppose we have two primitive variables lhs and rhs where lhs and rhs stand for
left-hand side and right-hand side, respectively. Then the assignment statement

lhs = rhs;

has a simple meaning: The value stored in rhs is copied to the primitive
variable lhs. Subsequent changes to either lhs or rhs do not affect the other.

For objects, = is a
reference assign-
ment, rather than
an object copy.

For objects, the meaning of = is the same: Stored values are copied. If lhs
and rhs are references (of compatible types), then after the assignment
statement, lhs will refer to the same object that rhs does. Here, what is being
copied is an address. The object that lhs used to refer to is no longer referred to
by lhs. If lhs was the only reference to that object, then that object is now unref-
erenced and subject to garbage collection. Note that the objects are not copied.

Here are some examples. First, suppose we want two Button objects. Then
suppose we try to obtain them first by creating noButton. Then we attempt to
create yesButton by modifying noButton as follows:

Button noButton = new Button("No");
Button yesButton = noButton;
yesButton.setLabel("Yes");
p.add(noButton);
p.add(yesButton);

This does not work because only one Button object has been constructed. Thus
the second statement simply states that yesButton is now another name for the
constructed Button at line 1. That constructed Button is now known by two
names. On line 3, the constructed Button has its label changed to Yes, but this
means that the single Button object, known by two names, is now labeled Yes.
The last two lines add that Button object to the Panel p twice.

The fact that yesButton never referred to its own object is immaterial in
this example. The problem is the assignment. Consider

Button noButton = new Button("No");
Button yesButton = new Button();
yesButton = noButton;
yesButton.setLabel("Yes");
p.add(noButton);
p.add(yesButton);

2.2 basics of objects and references 33

The consequences are the same. Here, there are two Button objects that
have been constructed. At the end of the sequence, the first object is being
referenced by both noButton and yesButton, while the second object is
unreferenced.

At first glance, the fact that objects cannot be copied seems like a severe
limitation. Actually, it is not, although this does take a little getting used to.
(Some objects do need to be copied. For those, if a clone method is available,
it should be used. However, clone is not used in this text.)

2.2.5 parameter passing
Call-by-value
means that for ref-
erence types, the
formal parameter
references the
same object as
does the actual
argument.

Because of call-by-value, the actual arguments are sent into the formal param-
eters using normal assignment. If the parameter is a reference type, then we
know that normal assignment means that the formal parameter now references
the same object as does the actual argument. Any method applied to the for-
mal parameter is thus also being applied to the actual argument. In other lan-
guages, this is known as call-by-reference parameter passing. Using this
terminology for Java would be somewhat misleading because it implies that
the parameter passing is different. In reality, the parameter passing has not
changed; rather, it is the parameters that have changed, from nonreference
types to reference types.

As an example, suppose we pass yesButton as a parameter to the
clearButton routine that is defined as follows:

 public static void clearButton(Button b)
 {
 b.setLabel("No");
 b = null;
 }

Then, as Figure 2.3 shows, b references the same object as yesButton, and
changes made to the state of this object by methods invoked through b will be
seen when clearButton returns. Changes to the value of b (i.e., which object it
references) will not have any affect on yesButton.

2.2.6 the meaning of ==
For reference
types, == is true
only if the two ref-
erences reference
the same object.

For primitive types, == is true if the stored values are identical. For reference
types, its meaning is different but is perfectly consistent with the previous
discussion.

34 chapter 2 reference types

Two reference types are equal via == if they refer to the same stored object
(or they are both null). Consider, for example, the following:

Button a = new Button("Yes");
Button b = new Button("Yes");
Button c = b;

Here, we have two objects. The first is known by the name a, and the second is
known by two names: b and c. b==c is true. However, even though a and b are
referencing objects that seem to have the same value, a==b is false, since they
reference different objects. Similar rules apply for !=.

The equals method
can be used to test
whether two refer-
ences reference
objects that have
identical states.

Sometimes it is important to know if the states of the objects being refer-
enced are identical. All objects can be compared by using equals, but for
many objects (including Button) equals returns false unless the two references
are referencing the same object (in other words, for some objects equals is no
more than the == test). We will see an example of where equals is useful when
the String type is discussed in Section 2.3.

2.2.7 no operator overloading for objects

Except for the single exception described in the next section, new operators,
such as +, -, *, and / cannot be defined to work for objects. Thus there is no <
operator available for any object. Instead, a named method, such as lessThan,
must be defined for this task.

(a)

(b)

(c)

(d)

yesButton

b

yesButton

b

yesButton

yesButton

b = null

Yes

No

No

No

figure 2.3

The result of call-by-
value. (a) b is a copy
of yesButton; (b) after
b.setLabel("No"):
changes to the state
of the object
referenced by b are
reflected in the object
referenced by
yesButton because
these are the same
object; (c) after
b=null: change to the
value of b does not
affect the value of
yesButton; (d) after
the method returns, b
is out of scope.

2.3 strings 35

2.3 strings
The String behaves
like a reference
type.

Strings in Java are handled with the String reference type. The language does
make it appear that the String type is a primitive type because it provides the +
and += operators for concatenation. However, this is the only reference type
for which any operator overloading is allowed. Otherwise, the String behaves
like any other reference type.

2.3.1 basics of string manipulation
Strings are
immutable; that is, a
String object will
not be changed.

There are two fundamental rules about a String object. First, with the excep-
tion of the concatenation operators, it behaves like an object. Second, the
String is immutable. This means that once a String object is constructed, its
contents may not be changed.

Because a String is immutable, it is always safe to use the = operator with
it. Thus a String may be declared as follows:

String empty = "";
String message = "Hello";
String repeat = message;

After these declarations, there are two String objects. The first is the empty
string, which is referenced by empty. The second is the String "Hello" which is
referenced by both message and repeat. For most objects, being referenced by
both message and repeat could be a problem. However, because Strings are
immutable, the sharing of String objects is safe, as well as efficient. The only
way to change the value that the string repeat refers to is to construct a new
String and have repeat reference it. This has no effect on the String that mes-
sage references.

2.3.2 string concatenation

Java does not allow operator overloading for reference types. However, a spe-
cial language exemption is granted for string concatenation.

String concatena-
tion is performed
with + (and +=).

The operator +, when at least one operand is a String, performs concatenation.
The result is a reference to a newly constructed String object. For example,

"this" + " that" // Generates "this that"
"abc" + 5 // Generates "abc5"
5 + "abc" // Generates "5abc"
"a" + "b" + "c" // Generates "abc"

36 chapter 2 reference types

Single-character strings should not be replaced with character constants;
Exercise 2.7 asks you to show why. Note that operator + is left-associative,
and thus

"a" + 1 + 2 // Generates "a12"
1 + 2 + "a" // Generates "3a"
1 + (2 + "a") // Generates "12a"

Also, operator += is provided for the String. The effect of str+=exp is the
same as str=str+exp. Specifically, this means that str will reference the newly
constructed String generated by str+exp.

2.3.3 comparing strings
Use equals and
compareTo to per-
form string
comparison.

Since the basic assignment operator works for Strings, it is tempting to
assume that the relational and equality operators also work. This is not
true.

In accordance with the ban on operator overloading, relational operators
(<, >, <=, and >=) are not defined for the String type. Further, == and != have the
typical meaning for reference variables. For two String objects lhs and rhs,
for example, lhs==rhs is true only if lhs and rhs refer to the same String
object. Thus, if they refer to different objects that have identical contents,
lhs==rhs is false. Similar logic applies for !=.

To compare two String objects for equality, we use the equals method.
lhs.equals(rhs) is true if lhs and rhs reference Strings that store identical
values.

A more general test can be performed with the compareTo method.
lhs.compareTo(rhs) compares two String objects, lhs and rhs. It returns a neg-
ative number, zero, or a positive number, depending on whether lhs is lexico-
graphically less than, equal to, or greater than rhs, respectively.

2.3.4 other String methods
Use length, charAt,
and substring to
compute string
length, get a single
character, and get
a substring,
respectively.

The length of a String object (an empty string has length zero) can be
obtained with the method length. Since length is a method, parentheses are
required.

Two methods are defined to access individual characters in a String. The
method charAt gets a single character by specifying a position (the first posi-
tion is position 0). The method substring returns a reference to a newly con-
structed String. The call is made by specifying the starting point and the first
nonincluded position.

Here is an example of these three methods:

2.4 arrays 37

String greeting = "hello";
int len = greeting.length(); // len is 5
char ch = greeting.charAt(1); // ch is 'e'
String sub = greeting.substring(2, 4); // sub is "ll"

2.3.5 converting other types to strings
toString converts
primitive types (and
objects) to Strings.

String concatenation provides a lazy way to convert any primitive to a String.
For instance, ""+45.3 returns the newly constructed String "45.3". There are
also methods to do this directly.

The method toString can be used to convert any primitive type to a
String. As an example, Integer.toString(45) returns a reference to the newly
constructed String "45". All reference types also provide an implementation
of toString of varying quality. In fact, when operator + has only one String
argument, the nonString argument is converted to a String by automatically
applying an appropriate toString. For the integer types, an alternative form of
Integer.toString allows the specification of a radix. Thus

System.out.println("55 in base 2: " + Integer.toString(55, 2));

prints out the binary representation of 55.
The int value that is represented by a String can be obtained by calling

the method Integer.parseInt. This method generates an exception if the
String does not represent an int. Exceptions are discussed in Section 2.5.
Similar ideas work for a doubles. Here are some examples:

int x = Integer.parseInt("75");
double y = Double.parseDouble("3.14");

2.4 arrays
An array stores a
collection of identi-
cally typed entities.

An aggregate is a collection of entities stored in one unit. An array is the
basic mechanism for storing a collection of identically typed entities. In Java
the array is not a primitive type. Instead, it behaves very much like an object.
Thus many of the rules for objects also apply to arrays.

The array indexing
operator [] pro-
vides access to any
object in the array.

Each entity in the array can be accessed via the array indexing operator
[]. We say that the [] operator indexes the array, meaning that it specifies
which object is to be accessed. Unlike C and C++, bounds-checking is per-
formed automatically.

In Java, arrays are always indexed starting at zero. Thus an array a of three
items stores a[0], a[1], and a[2]. The number of items that can be stored in an

38 chapter 2 reference types

Arrays are indexed
starting at zero. The
number of items
stored in the array is
obtained by the
length field. No
parentheses are
used.

array a can always be obtained by a.length. Note that there are no parentheses.
A typical array loop would use

for(int i = 0; i < a.length; i++)

2.4.1 declaration, assignment, and methods

An array is an object, so when the array declaration

int [] array1;

To allocate an array,
use new.

is given, no memory is yet allocated to store the array. array1 is simply a name
(reference) for an array, and at this point is null. To have 100 ints, for exam-
ple, we use new:

array1 = new int [100];

Now array1 references an array of 100 ints.
There are other ways to declare arrays. For instance, in some contexts

int [] array2 = new int [100];

is acceptable. Also, initializer lists can be used, as in C or C++, to specify ini-
tial values. In the next example, an array of four ints is allocated and then ref-
erenced by array3.

int [] array3 = { 3, 4, 10, 6 };

The brackets can go either before or after the array name. Placing them before
makes it easier to see that the name is an array type, so that is the style used
here. Declaring an array of reference types (rather than primitive types) uses
the same syntax. Note, however, that when we allocate an array of reference
types, each reference initially stores a null reference. Each also must be set to
reference a constructed object. For instance, an array of five buttons is con-
structed as

Button [] arrayOfButtons;
arrayOfButtons = new Button [5];
for(int i = 0; i < arrayOfButtons.length; i++)
 arrayOfButtons[i] = new Button();

Figure 2.4 illustrates the use of arrays in Java. The program in Figure 2.4
repeatedly chooses numbers between 1 and 100, inclusive. The output is the
number of times that each number has occurred. The import directive at line 1
will be discussed in Section 3.8.1.

2.4 arrays 39

Always be sure to
declare the correct
array size. Off-by-
one errors are
common.

Line 14 declares an array of integers that count the occurrences of each
number. Because arrays are indexed starting at zero, the +1 is crucial if we
want to access the item in position DIFF_NUMBERS. Without it we would have
an array whose indexible range was 0 to 99, and thus any access to index 100
would be out-of-bounds. The loop at lines 15 and 16 initializes the array
entries to zero; this is actually unnecessary, since by default, array elements
are initialized to zero for primitive and null for references.

The rest of the program is relatively straightforward. It uses the Random
object defined in the java.util library (hence the import directive at line 1).
The nextInt method repeatedly gives a (somewhat) random number in the
range that includes zero but stops at one less than the parameter to nextInt;
thus by adding 1, we get a number in the desired range. The results are output
at lines 25 and 26.

Since an array is a reference type, = does not copy arrays. Instead, if lhs
and rhs are arrays, the effect of

figure 2.4

Simple demonstration
of arrays

1 import java.util.Random;
2
3 public class RandomNumbers
4 {
5 // Generate random numbers (from 1-100)
6 // Print number of occurrences of each number
7
8 public static final int DIFF_NUMBERS = 100;
9 public static final int TOTAL_NUMBERS = 1000000;

10
11 public static void main(String [] args)
12 {
13 // Create array; initialize to 0s
14 int [] numbers = new int [DIFF_NUMBERS + 1];
15 for(int i = 0; i < numbers.length; i++)
16 numbers[i] = 0;
17
18 Random r = new Random();
19
20 // Generate the numbers
21 for(int i = 0; i < TOTAL_NUMBERS; i++)
22 numbers[r.nextInt(DIFF_NUMBERS) + 1]++;
23
24 // Output the summary
25 for(int i = 1; i <= DIFF_NUMBERS; i++)
26 System.out.println(i + ": " + numbers[i]);
27 }
28 }

40 chapter 2 reference types

int [] lhs = new int [100];
int [] rhs = new int [100];
 ...
lhs = rhs;

is that the array object that was referenced by rhs is now also referenced by
lhs. Thus changing rhs[0] also changes lhs[0]. (To make lhs an independent
copy of rhs, one could use the clone method, but often making complete cop-
ies is not really needed.)

Finally, an array can be used as a parameter to a method. The rules follow
logically from our understanding that an array name is a reference. Suppose
we have a method methodCall that accepts one array of int as its parameter.
The caller/callee views are

methodCall(actualArray); // method call
void methodCall(int [] formalArray) // method declaration

The contents of an
array are passed by
reference.

In accordance with the parameter-passing conventions for Java reference
types, formalArray references the same array object as actualArray. Thus
formalArray[i] accesses actualArray[i]. This means that if the method modi-
fies any element in the array, the modifications will be observable after the
method execution has completed. Also note that a statement such as

formalArray = new int [20];

has no effect on actualArray. Finally, since array names are simply references,
they can be returned.

2.4.2 dynamic array expansion
Dynamic array
expansion allows us
to allocate arbi-
trary-sized arrays
and make them
larger if needed.

Suppose we want to read a sequence of numbers and store them in an array
for processing. The fundamental property of an array requires us to declare a
size so that the compiler can allocate the correct amount of memory. Also, we
must make this declaration prior to the first access of the array. If we have no
idea how many items to expect, then it is difficult to make a reasonable choice
for the array size. This section shows how to expand arrays if the initial size is
too small. This technique is called dynamic array expansion and allows us to
allocate arbitrary-sized arrays and make them larger or smaller as the program
runs.

The allocation method for arrays that we have seen thus far is

int [] arr = new int[10];

Suppose that we decide, after the declarations, that we really need 12 ints
instead of 10. In this case, we can use the following maneuver, which is illus-
trated in Figure 2.5:

2.4 arrays 41

int [] original = arr; // 1. Save reference to arr
arr = new int [12]; // 2. Have arr reference more memory
for(int i = 0; i < 10; i++) // 3. Copy the old data over
 arr[i] = original[i];
original = null; // 4. Unreference original array

Always expand the
array to a size that
is some multiplica-
tive constant times
as large. Doubling
is a good choice.

A moment’s thought will convince you that this is an expensive opera-
tion. This is because we copy all of the elements from original back to arr.
If, for instance, this array expansion is in response to reading input, it
would be inefficient to reexpand every time we read a few elements. Thus
when array expansion is implemented, we always make it some multiplica-
tive constant times as large. For instance, we might expand it to be twice as
large. In this way, when we expand the array from N items to 2N items, the
cost of the N copies can be apportioned over the next N items that can be
inserted into the array without an expansion.

To make things more concrete, Figures 2.6 and 2.7 show a program that
reads an unlimited number of strings from the standard input and stores the
result in a dynamically expanding array. An empty line is used to signal the
end of input. (The minimal I/O details used here are not important for this
example and are discussed in Section 2.6.) The resize routine performs the
array expansion (or shrinking), returning a reference to the new array. Simi-
larly, the method getStrings returns (a reference to) the array where it will
reside.

arr

arr

original

arr

original

arr

original

(a)

(c)

(d)

(b)

figure 2.5

Array expansion,
internally: (a) At the
starting point, arr
represents 10
integers; (b) after
step 1, original
represents the same
10 integers; (c) after
steps 2 and 3, arr
represents 12
integers, the first 10
of which are copied
from original; and
(d) after step 4, the
10 integers are
available for
reclamation.

42 chapter 2 reference types

At the start of getStrings, itemsRead is set to 0 and we start with an initial
five-element array. We repeatedly read new items at line 23. If the array is full,
as indicated by a successful test at line 26, then the array is expanded by call-
ing resize. Lines 42 to 48 perform the array expansion using the exact strat-
egy outlined previously. At line 28, the actual input item is assigned to the
array and the number of items read is incremented. If an error occurs on input,
we simply stop processing. Finally, at line 36 we shrink the array to match the
number of items read prior to returning.

2.4.3 ArrayList

The ArrayList is
used for expanding
arrays.

The technique used in Section 2.4.2 is so common that the Java library con-
tains an ArrayList type with built-in functionality to mimic it. The basic idea
is that an ArrayList maintains not only a size, but also a capacity; the capacity
is the amount of memory that it has reserved. The capacity of the ArrayList is
really an internal detail, not something that you need worry about.

figure 2.6

Code to read an
unlimited number of
Strings and output
them (part 1)

1 import java.util.Scanner;
2
3 public class ReadStrings
4 {
5 // Read an unlimited number of String; return a String []
6 // The minimal I/O details used here are not important for
7 // this example and are discussed in Section 2.6.
8 public static String [] getStrings()
9 {

10 Scanner in = new Scanner(System.in);
11 String [] array = new String[5];
12 int itemsRead = 0;
13
14 System.out.println("Enter strings, one per line; ");
15 System.out.println("Terminate with empty line: ");
16
17 while(in.hasNextLine())
18 {
19 String oneLine = in.nextLine();
20 if(oneLine.equals(""))
21 break;
22 if(itemsRead == array.length)
23 array = resize(array, array.length * 2);
24 array[itemsRead++] = oneLine;
25 }
26
27 return resize(array, itemsRead);
28 }

2.4 arrays 43

The add method
increases the size
by 1 and adds a
new item to the
array at the appro-
priate position,
expanding capacity
if needed.

The add method increases the size by one, and adds a new item into the
array at the appropriate position. This is a trivial operation if capacity has not
been reached. If it has, the capacity is automatically expanded, using the strat-
egy described in Section 2.4.2. The ArrayList is initialized with a size of 0.

Because indexing via [] is reserved only for primitive arrays, much as was
the case for Strings, we have to use a method to access the ArrayList items. The
get method returns the object at a specified index, and the set method can be
used to change the value of a reference at a specified index; get thus behaves
like the charAt method. We will be describing the implementation details of
ArrayList at several points in the text, and eventually write our own version.

The code in Figure 2.8 shows how add is used in getStrings; it is clearly
much simpler than the getStrings function in Section 2.4.2. As shown at line
19, the ArrayList specifies the type of objects that it stores. Only the speci-
fied type can be added to the ArrayList; other types will cause a compile-
time error. It is important to mention, however, that only objects (which are
accessed by reference variables) can be added into an ArrayList. The eight
primitive types cannot. However, there is an easy workaround for that,
which we will discuss in Section 4.6.2.

The specification of the type is a feature added in Java 5 known as
generics. Prior to Java 5, the ArrayList did not specify the type of objects,
and any type could be added to the ArrayList. For backward compatibility,

29 // Resize a String[] array; return new array
30 public static String [] resize(String [] array,
31 int newSize)
32 {
33 String [] original = array;
34 int numToCopy = Math.min(original.length, newSize);
35
36 array = new String[newSize];
37 for(int i = 0; i < numToCopy; i++)
38 array[i] = original[i];
39 return array;
40 }
41
42 public static void main(String [] args)
43 {
44 String [] array = getStrings();
45 for(int i = 0; i < array.length; i++)
46 System.out.println(array[i]);
47 }
48 }

figure 2.7

Code to read an
unlimited number of
Strings and output
them (part 2)

44 chapter 2 reference types

failure to specify the type of objects in the ArrayList declaration is still
allowed, but its use will generate a warning because it removes the ability of
the compiler to detect type mismatches, forcing those errors to be detected
much later by the Virtual Machine when the program is actually run. Sec-
tions 4.6 and 4.8 describe both the old style and the new style.

1 import java.util.Scanner;
2 import java.util.ArrayList;
3
4 public class ReadStringsWithArrayList
5 {
6 public static void main(String [] args)
7 {
8 ArrayList<String> array = getStrings();
9 for(int i = 0; i < array.size(); i++)

10 System.out.println(array.get(i));
11 }
12
13 // Read an unlimited number of String; return an ArrayList
14 // The minimal I/O details used here are not important for
15 // this example and are discussed in Section 2.6.
16 public static ArrayList<String> getStrings()
17 {
18 Scanner in = new Scanner(System.in);
19 ArrayList<String> array = new ArrayList<String>();
20
21 System.out.println("Enter any number of strings, one per line; ");
22 System.out.println("Terminate with empty line: ");
23
24 while(in.hasNextLine())
25 {
26 String oneLine = in.nextLine();
27 if(oneLine.equals(""))
28 break;
29
30 array.add(oneLine);
31 }
32
33 System.out.println("Done reading");
34 return array;
35 }
36 }

figure 2.8

Code to read an unlimited number of Strings and output them, using an ArrayList

2.4 arrays 45

2.4.4 multidimensional arrays
A multidimensional
array is an array
that is accessed by
more than one
index.

Sometimes arrays need to be accessed by more than one index. A common
example of this is a matrix. A multidimensional array is an array that is
accessed by more than one index. It is allocated by specifying the size of its
indices, and each element is accessed by placing each index in its own pair of
brackets. As an example, the declaration

int [][] x = new int[2][3];

defines the two-dimensional array x, with the first index (representing the
number of rows) ranging from 0 to 1 and the second index (the number of col-
umns) ranging from 0 to 2 (for a total of six ints). Six memory locations are
set aside for these ints.

In the example above, the two-dimensional array is actually an array of
arrays. As such, the number of rows is x.length, which is 2. The number of
columns is x[0].length or x[1].length, both of which are 3.

Figure 2.9 illustrates how to print the contents of a two-dimensional
array. The code works not only for rectangular two-dimensional arrays,
but also for ragged two-dimensional arrays, in which the number of col-
umns varies from row to row. This is easily handled by using m[i].length
at line 11 to represent the number of columns in row i. We also handle the
possibility that a row might be null (which is different than length 0), with
the test at line 7. The main routine illustrates the declaration of two-dimen-
sional arrays for the case where initial values are known. It is simply an
extension of the one-dimensional case discussed in Section 2.4.1. Array a
is a straightforward rectangular matrix, array b has a null row, and array c
is ragged.

2.4.5 command-line arguments
Command-line
arguments are
available by
examining the
parameter to main.

Command-line arguments are available by examining the parameter to main.
The array of strings represents the additional command-line arguments. For
instance, when the program is invoked,

java Echo this that

args[0] references the String "this" and args[1] references the String "that".
Thus the program in Figure 2.10 mimics the standard echo command.

46 chapter 2 reference types

2.4.6 enhanced for loop

Java 5 adds new syntax that allows you to access each element in an array or
ArrayList, without the need for array indexes. Its syntax is

for(type var : collection)
 statement

Inside statement, var represents the current element in the iteration. For
instance, to print out the elements in arr, which has type String[], we can
write:

for(String val : arr)
 System.out.println(val);

figure 2.9

Printing a two-
dimensional array

1 public class MatrixDemo
2 {
3 public static void printMatrix(int [][] m)
4 {
5 for(int i = 0; i < m.length; i++)
6 {
7 if(m[i] == null)
8 System.out.println("(null)");
9 else

10 {
11 for(int j = 0; j < m[i].length; j++)
12 System.out.print(m[i][j] + " ");
13 System.out.println();
14 }
15 }
16 }
17
18 public static void main(String [] args)
19 {
20 int [][] a = { { 1, 2 }, { 3, 4 }, { 5, 6 } };
21 int [][] b = { { 1, 2 }, null, { 5, 6 } };
22 int [][] c = { { 1, 2 }, { 3, 4, 5 }, { 6 } };
23
24 System.out.println("a: "); printMatrix(a);
25 System.out.println("b: "); printMatrix(b);
26 System.out.println("c: "); printMatrix(c);
27 }
28 }

2.5 exception handling 47

The same code works unchanged if arr has type ArrayList<String>, which is a
perk because without the enhanced for loop, the looping code must be rewrit-
ten when the type switches from an array to an ArrayList.

The enhanced for loop has some limitations. First, in many applications
you must have the index, especially if making changes to the array (or
ArrayList) values. Second, the enhanced for loop is useful only if you are
accessing every item, in sequential order. If one item is to be excluded, you
should use the standard for loop. Examples of loops that are not easily
rewritten using an enhanced loop include

for(int i = 0; i < arr1.length; i++)
 arr1[i] = 0;

for(int i = 0; i < args.length – 1; i++)
 System.out.println(args[i] + " ");

In addition to allowing iteration through arrays and ArrayLists, the enhanced for
loop can be used in other types of collections. This use is discussed in Chapter 6.

2.5 exception handling
Exceptions are
used to handle
exceptional
occurrences such
as errors.

Exceptions are objects that store information and are transmitted outside the
normal return sequence. They are propagated back through the calling
sequence until some routine catches the exception. At that point, the informa-
tion stored in the object can be extracted to provide error handling. Such
information will always include details about where the exception was cre-
ated. The other important piece of information is the type of the exception

figure 2.10

The echo command

1 public class Echo
2 {
3 // List the command-line arguments
4 public static void main(String [] args)
5 {
6 for(int i = 0; i < args.length - 1; i++)
7 System.out.print(args[i] + " ");
8 if(args.length != 0)
9 System.out.println(args[args.length - 1]);

10 else
11 System.out.println("No arguments to echo");
12 }
13 }

48 chapter 2 reference types

object. For instance, it is clear that the basic problem is a bad index when an
ArrayIndexOutBoundsException is propagated. Exceptions are used to signal
exceptional occurrences such as errors.

2.5.1 processing exceptions
A try block
encloses code that
might generate an
exception.

The code in Figure 2.11 illustrates the use of exceptions. Code that might
result in the propagation of an exception is enclosed in a try block. The try
block extends from lines 13 to 17. Immediately following the try block are
the exception handlers. This part of the code is jumped to only if an excep-
tion is raised; at the point the exception is raised, the try block in which it
came from is considered terminated. Each catch block (this code has only
one) is attempted in order until a matching handler is found. A
NumberFormatException is generated by parseInt if oneLine is not convertible
to an int.

A catch block
processes an
exception.

The code in the catch block—in this case line 18—is executed if the
appropriate exception is matched. Then the catch block and the try/catch
sequence is considered terminated.1 A meaningful message is printed from
the exception object e. Alternatively, additional processing and more detailed
error messages could be given.

2.5.2 the finally clause
The finally clause
is always executed
prior to completion
of a block, regard-
less of exceptions.

Some objects that are created in a try block must be cleaned up. For instance,
files that are opened in the try block may need to be closed prior to leaving
the try block. One problem with this is that if an exception object is thrown
during execution of the try block, the cleanup might be omitted because the
exception will cause an immediate break from the try block. Although we can
place the cleanup immediately after the last catch clause, this works only if
the exception is caught by one of the catch clauses. And this may be difficult
to guarantee.

The finally clause that may follow the last catch block (or the try block,
if there are no catch blocks) is used in this situation. The finally clause con-
sists of the keyword finally followed by the finally block. There are three
basic scenarios.

1. Note that both try and catch require a block and not simply a single statement. Thus braces
are not optional. To save space, we often place simple catch clauses on a single line with
their braces, indented two additional spaces, rather than use three lines. Later in the text we
will use this style for one-line methods.

2.5 exception handling 49

1. If the try block executes without exception, control passes to
the finally block. This is true even if the try block exits prior to
the last statement via a return, break, or continue.

2. If an uncaught exception is encountered inside the try block,
control passes to the finally block. Then, after executing the
finally block, the exception propagates.

3. If a caught exception is encountered in the try block, control
passes to the appropriate catch block. Then, after executing the
catch block, the finally block is executed.

2.5.3 common exceptions
Runtime excep-
tions do not have to
be handled.

There are several types of standard exceptions in Java. The standard run-
time exceptions include events such as integer divide-by-zero and illegal
array access. Since these events can happen virtually anywhere, it would
be overly burdensome to require exception handlers for them. If a catch
block is provided, these exceptions behave like any other exception. If a
catch block is not provided for a standard exception, and a standard excep-
tion is thrown, then it propagates as usual, possibly past main. In this case,
it causes an abnormal program termination, with an error message. Some
of the common standard runtime exceptions are shown in Figure 2.12.
Generally speaking, these are programming errors and should not be

figure 2.11

Simple program to
illustrate exceptions

1 import java.util.Scanner;
2
3 public class DivideByTwo
4 {
5 public static void main(String [] args)
6 {
7 Scanner in = new Scanner(System.in);
8 int x;
9

10 System.out.println("Enter an integer: ");
11 try
12 {
13 String oneLine = in.nextLine();
14 x = Integer.parseInt(oneLine);
15 System.out.println("Half of x is " + (x / 2));
16 }
17 catch(NumberFormatException e)
18 { System.out.println(e); }
19 }
20 }

50 chapter 2 reference types

caught. A notable violation of this principle is NumberFormatException, but
NullPointerException is more typical.

Checked excep-
tions must be han-
dled or listed in a
throws clause.

Most exceptions are of the standard checked exception variety. If a
method is called that might either directly or indirectly throw a standard
checked exception, then the programmer must either provide a catch block
for it, or explicitly indicate that the exception is to be propagated by use
of a throws clause in the method declaration. Note that eventually it should
be handled because it is terrible style for main to have a throws
clause. Some of the common standard checked exceptions are shown in
Figure 2.13.

Errors are unrecov-
erable exceptions.

Errors are virtual machine problems. OutOfMemoryError is the most com-
mon error. Others include InternalError and the infamous UnknownError, in
which the virtual machine has decided that it is in trouble, does not know
why, but does not want to continue. Generally speaking, an Error is unre-
coverable and should not be caught.

figure 2.12

Common standard
runtime exceptions

Standard Runtime Exception Meaning

ArithmeticException Overflow or integer division by zero.

NumberFormatException Illegal conversion of String to numeric type.

IndexOutOfBoundsException Illegal index into an array or String.

NegativeArraySizeException Attempt to create a negative-length array.

NullPointerException Illegal attempt to use a null reference.

SecurityException Run-time security violation.

NoSuchElementException Failed attempt to obtain “next” item

figure 2.13

Common standard
checked exceptions

Standard Checked Exception Meaning

java.io.EOFException End-of-file before completion of input.

java.io.FileNotFoundException File not found to open.

java.io.IOException Includes most I/O exceptions.

InterruptedException Thrown by the Thread.sleep method.

2.6 input and output 51

2.5.4 the throw and throws clauses
The throw clause is
used to throw an
exception.

The programmer can generate an exception by use of the throw clause. For
instance, we can create and then throw an ArithmeticException object by

throw new ArithmeticException("Divide by zero");

Since the intent is to signal to the caller that there is a problem, you
should never throw an exception only to catch it a few lines later in the same
scope. In other words, do not place a throw clause in a try block and then han-
dle it immediately in the corresponding catch block. Instead, let it leave
unhandled, and pass the exception up to the caller. Otherwise, you are using
exceptions as a cheap go to statement, which is not good programming and is
certainly not what an exception—signaling an exceptional occurrence—is to
be used for.

Java allows programmers to create their own exception types. Details on
creating and throwing user-defined exceptions are provided in Chapter 4.

The throws clause
indicates propa-
gated exceptions.

As mentioned earlier, standard checked exceptions must either be caught or
explicitly propagated to the calling routine, but they should, as a last resort, even-
tually be handled in main. To do the latter, the method that is unwilling to catch
the exception must indicate, via a throws clause, which exceptions it may propa-
gate. The throws clause is attached at the end of the method header. Figure 2.14
illustrates a method that propagates any IOExceptions that it encounters; these
must eventually be caught in main (since we will not place a throws clause in
main).

2.6 input and output
Input and output (I/O) in Java is achieved through the use of the java.io pack-
age. The types in the I/O package are all prefixed with java.io, including, as
we have seen, java.io.IOException. The import directive allows you to avoid
using complete names. For instance, with

import java.io.IOException;

you can use IOException as a shorthand for java.io.IOException at the top of
your code. (Many common types, such as String and Math, do not require
import directives, as they are automatically visible by the shorthands by virtue
of being in java.lang.)

52 chapter 2 reference types

The Java library is very sophisticated and has a host of options. Here, we
examine only the most basic uses, concentrating entirely on formatted I/O. In
Section 4.5.3, we will discuss the design of the library.

2.6.1 basic stream operations

Like many languages, Java uses the notion of streams for I/O. To perform I/O
to the terminal, a file, or over the Internet, the programmer creates an associ-
ated stream. Once that is done, all I/O commands are directed to that stream.
A programmer defines a stream for each I/O target (for instance, each file
requiring input or output).

Three streams are predefined for terminal I/O: System.in, the stan-
dard input; System.out, the standard output; and System.err, the standard
error.

figure 2.14

Illustration of the
throws clause

1 import java.io.IOException;
2
3 public class ThrowDemo
4 {
5 public static void processFile(String toFile)
6 throws IOException
7 {
8 // Omitted implementation propagates all
9 // thrown IOExceptions back to the caller

10 }
11
12 public static void main(String [] args)
13 {
14 for(String fileName : args)
15 {
16 try
17 { processFile(fileName); }
18 catch(IOException e)
19 { System.err.println(e); }
20 }
21 }
22 }

2.6 input and output 53

The predefined
streams are
System.in,
System.out, and
System.err.

As already mentioned, the print and println methods are used for for-
matted output. Any type can be converted to a String suitable for printing by
calling its toString method; in many cases, this is done automatically.
Unlike with C and C++, which have an enormous number of formatting
options, output in Java is done almost exclusively by String concatenation,
with no built-in formatting.

2.6.2 the Scanner type
The simplest method for reading formatted input is to use a Scanner. A Scanner
allows the user to read lines one at a time using nextLine, Strings one at a time
using next, or primitive types one at a time using methods such as nextInt and
nextDouble. Prior to attempting to perform a read, it is customary to verify that
the read can succeed by using methods such as hasNextLine, hasNext, hasNextInt,
and hasNextDouble, which yield boolean results; as such there is typically less
need to deal with exception handling. When using a Scanner it is customary to
provide the import directive

import java.util.Scanner;

To use a Scanner that reads from the standard input we must first construct
a Scanner object from System.in. This was illustrated in Figure 2.11 at line 7.
In Figure 2.11, we see that nextLine is used to read a String, and then the
String is converted to an int. From the discussion of Scanner in the previous
paragraph, we know there are several other options.

An alternative option, which is perhaps the cleanest, is the follow-
ing replacement, which avoids exceptions entirely, and uses nextInt and
hasNextInt:

System.out.println("Enter an integer: ");
 if(in.hasNextInt())
 {
 x = in.nextInt();
 System.out.println("Half of x is " + (x / 2));
 }
 else
 { System.out.println("Integer was not entered." }

54 chapter 2 reference types

Using the various next and hasNext combinations from the Scanner gener-
ally works well, but can have some limitations. For instance suppose we want
to read two integers and output the maximum.

Figure 2.15 shows one idea that is cumbersome if we want to do proper
error checking, without using exceptions. Each call to nextInt is preceded by
a call to hasNextInt, and an error message is reached unless there are actually
two ints available on the standard input stream.

Figure 2.16 shows an alternative that does not use calls to hasNextInt.
Instead, calls to nextInt will throw a NoSuchElementException if the int is not
available, and this makes the code read cleaner. The use of the exception is
perhaps a reasonable decision because it would be considered unusual for the
user to not input two integers for this program.

Both options, however, are limited because in many instances, we might
insist that the two integers be entered on the same line of text. We might even
insist that there be no other data on that line. Figure 2.17 shows a different
option. A Scanner can be constructed by providing a String. So we can first
create a Scanner from System.in (line 7) to read a single line (line 12), and
then create a second Scanner from the single line (line 13) to extract the two

figure 2.15

Read two integers
and output
maximum using
Scanner and no
exceptions

1 import java.util.Scanner;
2
3 class MaxTestA
4 {
5 public static void main(String [] args)
6 {
7 Scanner in = new Scanner(System.in);
8 int x, y;
9

10 System.out.println("Enter 2 ints: ");
11
12 if(in.hasNextInt())
13 {
14 x = in.nextInt();
15 if(in.hasNextInt())
16 {
17 y = in.nextInt();
18 System.out.println("Max: " + Math.max(x, y));
19 return;
20 }
21 }
22
23 System.err.println("Error: need two ints");
24 }
25 }

2.6 input and output 55

figure 2.16

Read two integers
and output maximum
using Scanner and
exceptions

1 class MaxTestB
2 {
3 public static void main(String [] args)
4 {
5 Scanner in = new Scanner(System.in);
6
7 System.out.println("Enter 2 ints: ");
8
9 try

10 {
11 int x = in.nextInt();
12 int y = in.nextInt();
13
14 System.out.println("Max: " + Math.max(x, y));
15 }
16 catch(NoSuchElementException e)
17 { System.err.println("Error: need two ints"); }
18 }
19 }

figure 2.17

Read two integers
from the same line
and output maximum
using two Scanners

1 import java.util.Scanner;
2
3 public class MaxTestC
4 {
5 public static void main(String [] args)
6 {
7 Scanner in = new Scanner(System.in);
8
9 System.out.println("Enter 2 ints on one line: ");

10 try
11 {
12 String oneLine = in.nextLine();
13 Scanner str = new Scanner(oneLine);
14
15 int x = str.nextInt();
16 int y = str.nextInt();
17
18 System.out.println("Max: " + Math.max(x, y));
19 }
20 catch(NoSuchElementException e)
21 { System.err.println("Error: need two ints"); }
22 }
23 }

56 chapter 2 reference types

integers (lines 15 and 16). If anything goes wrong, a NoSuchElementException
will be handled.

The use of the second Scanner in Figure 2.17 can work well and is conve-
nient; however, if it is important to ensure that there are no more than two
integers per line, we would need additional code. In particular, we would need
to add a call to str.hasNext(), and if it returned true, we would know that
there is a problem. This is illustrated in Figure 2.18. There are other options,
such as the split method in String, as described in the exercises.

2.6.3 sequential files
FileReader is used
for file input.

One of the basic rules of Java is that what works for terminal I/O also works
for files. To deal with a file, we do not construct a BufferedReader object from
an InputStreamReader. Instead, we construct it from a FileReader object, which
itself can be constructed by providing a filename.

An example that illustrates these basic ideas is shown in Figure 2.19.
Here, we have a program that will list the contents of the text files that are
specified as command-line arguments. The main routine simply steps
through the command-line arguments, passing each one to listFile. In

figure 2.18

Read exactly two
integers from the
same line and output
maximum using two
Scanners

1 class MaxTestD
2 {
3 public static void main(String [] args)
4 {
5 Scanner in = new Scanner(System.in);
6
7 System.out.println("Enter 2 ints on one line: ");
8 try
9 {

10 String oneLine = in.nextLine();
11 Scanner str = new Scanner(oneLine);
12
13 int x = str.nextInt();
14 int y = str.nextInt();
15
16 if(!str.hasNext())
17 System.out.println("Max: " + Math.max(x, y));
18 else
19 System.err.println("Error: extraneous data on the line.");
20 }
21 catch(NoSuchElementException e)
22 { System.err.println("Error: need two ints"); }
23 }
24 }

2.6 input and output 57

listFile, we construct the FileReader object at line 22, and then use it to
construct a Scanner object, fileIn. At that point, reading is identical to what
we have already seen.

After we are done with the file, we must close it; otherwise, we could
eventually run out of streams. Note that this cannot be done at the end of the
try block, since an exception could cause a premature exit from the block.
Thus we close the file in a finally block, which is guaranteed to be started

figure 2.19

Program to list
contents of a file

1 import java.util.Scanner;
2 import java.io.FileReader;
3 import java.io.IOException;
4
5 public class ListFiles
6 {
7 public static void main(String [] args)
8 {
9 if(args.length == 0)

10 System.out.println("No files specified");
11 for(String fileName : args)
12 listFile(fileName);
13 }
14
15 public static void listFile(String fileName)
16 {
17 Scanner fileIn = null;
18
19 System.out.println("FILE: " + fileName);
20 try
21 {
22 fileIn = new Scanner(new FileReader(fileName));
23 while(fileIn.hasNextLine())
24 {
25 String oneLine = fileIn.nextLine();
26 System.out.println(oneLine);
27 }
28 }
29 catch(IOException e)
30 { System.out.println(e); }
31 finally
32 {
33 // Close the stream
34 if(fileIn != null)
35 fileIn.close();
36 }
37 }
38 }

58 chapter 2 reference types

1 // Double space files specified on command line.
2
3 import java.io.FileReader;
4 import java.io.FileWriter;
5 import java.io.PrintWriter;
6 import java.io.IOException;
7 import java.util.Scanner;
8
9 public class DoubleSpace

10 {
11 public static void main(String [] args)
12 {
13 for(String fileName : args)
14 doubleSpace(fileName);
15 }
16
17 public static void doubleSpace(String fileName)
18 {
19 PrintWriter fileOut = null;
20 Scanner fileIn = null;
21
22 try
23 {
24 fileIn = new Scanner(new FileReader(fileName));
25 fileOut = new PrintWriter(new FileWriter(fileName + ".ds"));
26
27 while(fileIn.hasNextLine())
28 {
29 String oneLine = fileIn.nextLine();
30 fileOut.println(oneLine + "\n");
31 }
32 }
33 catch(IOException e)
34 { e.printStackTrace(); }
35 finally
36 {
37 if(fileOut != null)
38 fileOut.close();
39 if(fileIn != null)
40 fileIn.close();
41 }
42 }
43 }

figure 2.20

A program to double-space files

summary 59

whether there are no exceptions, handled exceptions, or unhandled excep-
tions. The code to handle the close is complex because

1. fileIn must be declared outside of the try block in order to be
visible in the finally block.

2. fileIn must be initialized to null to avoid compiler complaints
about a possible uninitialized variable.

3. Prior to calling close, we must check that fileIn is not null to
avoid generating a NullPointerException (fileIn would be null
if the file was not found, resulting in an IOException prior to its
assignment).

4. In some instances, but not in our example, close might itself
throw a checked exception, and would then require an additional
try/catch block.

FileWriter is used
for file output.

Formatted file output is similar to file input. FileWriter, PrintWriter, and
println replace FileReader, Scanner, and nextLine, respectively. Figure 2.20
illustrates a program that double-spaces files that are specified on the com-
mand line (the resulting files are placed in a file with a .ds extension).

This description of Java I/O, while enough to do basic formatted I/O,
hides an interesting object-oriented design that is discussed in more detail in
Section 4.5.3.

summary

This chapter examined reference types. A reference is a variable that stores
either the memory address where an object resides or the special reference
null. Only objects may be referenced; any object can be referenced by several
reference variables. When two references are compared via ==, the result is
true if both references refer to the same object. Similarly, = makes a reference
variable reference another object. Only a few other operations are available.
The most significant is the dot operator, which allows the selection of an
object’s method or access of its internal data.

Because there are only eight primitive types, virtually everything of con-
sequence in Java is an object and is accessed by a reference. This includes
Strings, arrays, exception objects, data and file streams, and a string tokenizer.

The String is a special reference type because + and += can be used for con-
catenation. Otherwise, a String is like any other reference; equals is required to
test if the contents of two Strings are identical. An array is a collection of iden-
tically typed values. The array is indexed starting at 0, and index range checking
is guaranteed to be performed. Arrays can be expanded dynamically by using

60 chapter 2 reference types

new to allocate a larger amount of memory and then copying over individual ele-
ments. This process is done automatically by the ArrayList.

Exceptions are used to signal exceptional events. An exception is signaled
by the throw clause; it is propagated until handled by a catch block that is asso-
ciated with a try block. Except for the run-time exceptions and errors, each
method must signal the exceptions that it might propagate by using a throws list.

StringTokenizers are used to parse a String into other Strings. Typically,
they are used in conjunction with other input routines. Input is handled by
Scanner and FileReader objects.

The next chapter shows how to design new types by defining a class.

key concepts

aggregate A collection of objects stored in one unit. (37)
array Stores a collection of identically typed objects. (37)
array indexing operator [] Provides access to any element in the array. (37)
ArrayList Stores a collection of objects in array-like format, with easy expan-

sion via the add method. (42)
call-by-reference In many programming languages, means that the formal

parameter is a reference to the actual argument. This is the natural effect
achieved in Java when call-by-value is used on reference types. (33)

catch block Used to process an exception. (48)
checked exception Must be either caught or explicitly allowed to propagate by

a throws clause. (50)
command-line argument Accessed by a parameter to main. (45)
construction For objects, is performed via the new keyword. (31)
dot member operator (.) Allows access to each member of an object. (30)
dynamic array expansion Allows us to make arrays larger if needed. (40)
enhanced for loop Added in Java 5, allows iteration through a collection of

items. (46)
equals Used to test if the values stored in two objects are the same. (34)
Error An unrecoverable exception. (50)
exception Used to handle exception occurrences, such as errors. (47)
FileReader Used for file input. (56)
FileWriter Used for file output. (59)
finally clause Always executed prior to exiting a try/catch sequence. (48)
garbage collection Automatic reclaiming of unreferenced memory. (31)

common errors 61

immutable Object whose state cannot change. Specifically, Strings are
immutable. (35)

input and output (I/O) Achieved through the use of the java.io package. (51)
java.io Package that is used for nontrivial I/O. (51)
length field Used to determine the size of an array. (38)
length method Used to determine the length of a string. (36)
lhs and rhs Stand for left-hand side and right-hand side, respectively. (32)
multidimensional array An array that is accessed by more than one index. (45)
new Used to construct an object. (31)
null reference The value of an object reference that does not refer to any

object. (28)
NullPointerException Generated when attempting to apply a method to a null

reference. (31)
object A nonprimitive entity. (30)
reference type Any type that is not a primitive type. (30)
runtime exception Does not have to be handled. Examples include

ArithmeticException and NullPointerException. (49)
Scanner Used for line-at-a-time input. Also used to extract lines, strings, and

primitive types from a single character source such as an input stream or
String. Found in the java.util package. (52, 53)

String A special object used to store a collection of characters. (35)
string concatenation Performed with + and += operators. (35)
System.in, System.out, and System.err The predefined I/O streams. (53)
throw clause Used to throw an exception. (51)
throws clause Indicates that a method might propagate an exception. (51)
toString method Converts a primitive type or object to a String. (37)
try block Encloses code that might generate an exception. (48)

common errors

1. For reference types and arrays, = does not make a copy of object values.
Instead, it copies addresses.

2. For reference types and strings, equals should be used instead of == to test
if two objects have identical states.

3. Off-by-one errors are common in all languages.

62 chapter 2 reference types

4. Reference types are initialized to null by default. No object is constructed
without calling new. An “uninitialized reference variable” or NullPointer-
Exception indicates that you forgot to allocate the object.

5. In Java, arrays are indexed from 0 to N-1, where N is the array size. How-
ever, range checking is performed, so an out-of-bounds array access is
detected at run time.

6. Two-dimensional arrays are indexed as A[i][j], not A[i,j].

7. Checked exceptions must either be caught or explicitly allowed to propa-
gate with a throws clause.

8. Use " " and not ' ' for outputting a blank.

on the internet

Following are the available files for this chapter. Everything is self-contained,
and nothing is used later in the text.

RandomNumbers.java Contains the code for the example in Figure 2.4.
ReadStrings.java Contains the code for the example in Figures 2.6

and 2.7.
ReadStringsWithArrayList.java

Contains the code for the example in Figure 2.8.
MatrixDemo.java Contains the code for the example in Figure 2.9.
Echo.java Contains the code for the example in

Figure 2.10.
ForEachDemo.java Illustrates the enhanced for loop.
DivideByTwo.java Contains the code for the example in Figure 2.11.
MaxTest.java Contains the code for the example in Figures 2.15–2.18.
ListFiles.java Contains the code for the example in Figure 2.19.
DoubleSpace.java Contains the code for the example in Figure 2.20.

exercises

IN SHORT

2.1 List the major differences between reference types and primitive
types.

2.2 List five operations that can be applied to a reference type.

2.3 What are the differences between an array and ArrayList?

2.4 Describe how exceptions work in Java.

exercises 63

2.5 List the basic operations that can be performed on Strings.

2.6 Explain the role of next and hasNext in the Scanner type.

IN THEORY

2.7 If x and y have the values of 5 and 7, respectively, what is output by
the following?

System.out.println(x + ' ' + y);
System.out.println(x + " " + y);

2.8 The finally block introduces complications in the Java language
specification. Write a program to determine what value is returned by
foo and what exception is thrown by bar in Figure 2.21.

IN PRACTICE

2.9 A checksum is the 32-bit integer that is the sum of the Unicode char-
acters in a file (we allow silent overflow, but silent overflow is
unlikely if all the characters are ASCII). Two identical files have the
same checksum. Write a program to compute the checksum of a file
that is supplied as a command-line argument.

figure 2.21

Complications caused
by the finally block.

public static void foo()
{
 try
 {
 return 0;
 }
 finally
 {
 return 1;
 }
}

public static void bar()
{
 try
 {
 throw new NullPointerException();
 }
 finally
 {
 throw new ArithmeticException();
 }
}

64 chapter 2 reference types

2.10 Modify the program in Figure 2.19 so that if no command-line argu-
ments are given, then the standard input is used.

2.11 Write a method that returns true if String str1 is a prefix of String str2.
Do not use any of the general string searching routines except charAt.

2.12 Write a routine that prints the total length of the Strings in a String[]
passed as a parameter. Your routine must work unchanged if the
parameter is changed to an ArrayList<String>.

2.13 What is wrong with this code?

public static void resize(int [] arr)
 {
 int [] old = arr;
 arr = new int[old.length * 2 + 1];

 for(int i = 0; i < old.length; i++)
arr[i] = old[i];

 }

2.14 Implement the following methods, that accept an array of double and
return the sum, average, and mode (most common item) in the array.

public static double sum(double [] arr)
public static double average(double [] arr)
public static double mode(double [] arr)

2.15 Implement the following methods, that accept a two-dimensional
array of double and return the sum, average, and mode (most common
item) in the two-dimensional array.

public static double sum(double [][] arr)
public static double average(double [][] arr)
public static double mode(double [][] arr)

2.16 Implement the following methods that reverse an array or ArrayList
of String.

public static void reverse(String [] arr)
public static void reverse(ArrayList<String> arr)

2.17 Implement the following methods that return the minimum of the group
of items passed as the parameter. In the case of Strings, the minimum is
the alphabetically smallest, as determined by compareTo.

public static int min(int [] arr)
public static int min(int [][] arr)
public static String min(String [] arr)
public static String min(ArrayList<String> arr)

exercises 65

2.18 Implement the following method that returns the index of the row that
contains the most zeros.

public static int rowWithMostZeros(int [] [] arr)

2.19 Implement the various hasDuplicates methods, which all return true if
there are any duplicate entries in the specified group of elements.

public static boolean hasDuplicates(int [] arr)
public static boolean hasDuplicates(int [][] arr)
public static boolean hasDuplicates(String [] arr)
public static boolean hasDuplicates(ArrayList<String> arr)

2.20 Implement both howMany methods, which return the number of occur-
rences of val in arr.

public static int howMany(int [] arr, int val)
public static int howMany(int [][] arr, int val)

2.21 Implement both countChars methods, which return the number of
occurrences of ch in str.

public static int countChars(String str, char ch)
public static int countChars(String [] str, char ch)

2.22 Using the String method toLowerCase, which creates a new String that is
the lower case equivalent of an existing String (i.e., str.toLowerCase()
returns a lower case equivalent of str, while leaving str unchanged), imple-
ment the getLowerCase and makeLowerCase methods below. getLowerCase
returns a new collection of Strings, while makeLowerCase modifies the
existing collection.

public static String [] getLowerCase(String [] arr)
public static void makeLowerCase(String [] arr)
public static ArrayList<String> getLowerCase(ArrayList<String> arr)
public static void makeLowerCase(ArrayList<String> arr)

2.23 Method isIncreasing returns true if in each row of the two-dimensional
array, all entries monotonically increase, and in each column all entries
also monotonically increase. Implement isIncreasing.

public static boolean isIncreasing(int [] [] arr)

2.24 Implement method startsWith which returns an ArrayList containing
all the Strings in arr that begin with character ch.

public ArrayList<String> startsWith(String [] arr, char ch)

66 chapter 2 reference types

2.25 Implement a split method that returns an array of String contain-
ing the tokens of the String. Use a Scanner. The method signature
for split is

public static String [] split(String str)

2.26 An alternative to using a Scanner is to use the split method for a
String. Specifically, in the statement below:

String [] arr = str.split("\\s");

if str is "this is a test", then arr will be an array of length four stor-
ing the Strings "this", "is", "a", and "test". Modify the code in
Section 2.6.2 to use split instead of a Scanner.

2.27 Both a Scanner and split can be configured to use delimiters that are
different than the normal whitespace. For instance, in a comma sepa-
rated file, the only delimiter is the comma. For split, use "[,]" as
the parameter, and for Scanner, at the statement

scan.useDelimiter("[,]")

Armed with this information, modify the code in Section 2.6.2 to work
for a comma separated line of input.

PROGRAMMING PROJECTS

2.28 Create a data file double1.txt containing floating point numbers and
suitable for use in Exercise 2.14. Write a method that invokes the
functions in that exercise on the data in your file. Make sure there is
only 1 item per line and handle all problems.

2.29 Create a data file double2.txt containing floating point numbers in a
two dimensional array suitable for use in Exercise 2.15. Write a
method that invokes the functions in that exercise on the data in your
file. If your code in Exercise 2.15 requires that the two-dimensional
array be rectangular, then throw an exception if the data file does not
represent a rectangular array, prior to invoking your method.

2.30 Create a data file double3.txt containing floating point numbers in a
two dimensional array suitable for use in Exercise 2.15. The numbers
in each row should be comma separated. Write a method that invokes
the functions in that exercise on the data in your file. If your code in
Exercise 2.15 requires that the two-dimensional array be rectangular,
then throw an exception if the data file does not represent a rectangu-
lar array, prior to invoking your method.

exercises 67

2.31 Write a program that outputs the number of characters, words, and
lines in the files that are supplied as command-line arguments.

2.32 In Java, floating-point divide-by-zero is legal and does not result in an
exception (instead, it gives a representation of infinity, negative infin-
ity, or a special not-a-number symbol).
a. Verify the above description by performing some floating-point

divisions.
b. Write a static divide method that takes two parameters and

returns their quotient. If the divisor is 0.0, throw an
ArithmeticException. Is a throws clause needed?

c. Write a main program that calls divide and catches the
ArithmeticException. In which method should the catch clause be
placed?

2.33 Implement a text file copy program. Include a test to make sure that
the source and destination files are different.

2.34 Each line of a file contains a name (as a string) and an age (as an integer).
a. Write a program that outputs the oldest person; in case of ties,

output any person.
b. Write a program that outputs the oldest person; in case of ties,

output all oldest people (Hint: Maintain the current group of old-
est people in an ArrayList.)

2.35 Write a program that calculates the grades for a course. Your program
should prompt the user for the name of a file that stores exam scores.
Each line of the file has the following format:

LastName:FirstName:Exam1:Exam2:Exam3

The exams are to be weighted 25% for the first exam, 30% for the second
exam, and 45% for the third exam. Based on that, a final grade is to be
assigned: A if the total is at least 90, B if it is at last 80, C if it is at least
70, D if it is at least 60, and F otherwise. The highest grade based on the
total points is always assigned, so a 75 gets a C.

Your program should output to the terminal a list of students with the let-
ter grade, as follows:

LastName FirstName LetterGrade

It should also output to a file, whose name is provided by the user, lines
of the form

LastName FirstName Exam1 Exam2 Exam3 TotalPoints LetterGrade

68 chapter 2 reference types

After it is done, it will output the grade distribution. If the input is

Doe:John:100:100:100
Pantz:Smartee:80:90:80

Then the terminal output is

Doe John A
Pantz Smartee B

And the output file will contain

Doe John 100 100 100 100 A
Pantz Smartee 80 90 80 83 B
A 1
B 1
C 0
D 0
F 0

2.36 Modify Exercise 2.35 to use a vary generous scoring scale in which this
high exam score is weighted 45%, the next highest score is 30%, and
the low exam score is 25%. Otherwise, the specification is identical.

references

More information can be found in the references at the end of Chapter 1.

chap te r 3

objects and classes

This chapter begins the discussion of object-oriented programming. A funda-
mental component of object-oriented programming is the specification, imple-
mentation, and use of objects. In Chapter 2, we saw several examples of objects,
including strings and files, that are part of the mandatory Java library. We also
saw that these objects have an internal state that can be manipulated by applying
the dot operator to select a method. In Java, the state and functionality of an
object is given by defining a class. An object is then an instance of a class.

In this chapter, we will see

n How Java uses the class to achieve encapsulation and information
hiding

n How classes are implemented and automatically documented

n How classes are grouped into packages

3.1 what is object-oriented
programming?

Object-oriented programming emerged as the dominant paradigm of the mid-
1990s. In this section we discuss some of the things that Java provides in the way

70 chapter 3 objects and classes

of object-oriented support and mention some of the principles of object-oriented
programming.

Objects are enti-
ties that have struc-
ture and state.
Each object defines
operations that may
access or manipu-
late that state.

At the heart of object-oriented programming is the object. An object is a
data type that has structure and state. Each object defines operations that
may access or manipulate that state. As we have already seen, in Java an
object is distinguished from a primitive type, but this is a particular feature
of Java rather than the object-oriented paradigm. In addition to performing
general operations, we can do the following:

n Create new objects, possibly with initialization

n Copy or test for equality

n Perform I/O on these objects

An object is an
atomic unit: Its
parts cannot be
dissected by the
general users of
the object.

Also, we view the object as an atomic unit that the user ought not to dis-
sect. Most of us would not even think of fiddling around with the bits that
represent a floating-point number, and we would find it completely ridicu-
lous to try to increment some floating-point object by altering its internal
representation ourselves.

The atomicity principle is known as information hiding. The user does
not get direct access to the parts of the object or their implementations; they
can be accessed only indirectly by methods supplied with the object. We can
view each object as coming with the warning, “Do not open —no user-
serviceable parts inside.” In real life, most people who try to fix things that
have such a warning wind up doing more harm than good. In this respect,
programming mimics the real world. The grouping of data and the opera-
tions that apply to them to form an aggregate, while hiding implementation
details of the aggregate, is known as encapsulation.

Encapsulation is
the grouping of
data and the oper-
ations that apply to
them to form an
aggregate, while
hiding the imple-
mentation of the
aggregate.

An important goal of object-oriented programming is to support code
reuse. Just as engineers use components over and over in their designs, pro-
grammers should be able to reuse objects rather than repeatedly reimple-
menting them. When we have an implementation of the exact object that we
need to use, reuse is a simple matter. The challenge is to use an existing
object when the object that is needed is not an exact match but is merely
very similar.

Object-oriented languages provide several mechanisms to support this
goal. One is the use of generic code. If the implementation is identical
except for the basic type of the object, there is no need to completely
rewrite code: Instead, we write the code generically so that it works for
any type. For instance, the logic used to sort an array of objects is inde-
pendent of the types of objects being sorted, so a generic algorithm could
be used.

Information hiding
makes implementa-
tion details, includ-
ing components of
an object, inacces-
sible.

3.2 a simple example 71

The inheritance mechanism allows us to extend the functionality of an object.
In other words, we can create new types with restricted (or extended) properties of
the original type. Inheritance goes a long way toward our goal of code reuse.

Another important object-oriented principle is polymorphism. A polymor-
phic reference type can reference objects of several different types. When
methods are applied to the polymorphic type, the operation that is appropriate
to the actual referenced object is automatically selected. In Java, this is imple-
mented as part of inheritance. Polymorphism allows us to implement classes
that share common logic. As is discussed in Chapter 4, this is illustrated in the
Java libraries. The use of inheritance to create these hierarchies distinguishes
object-oriented programming from the simpler object-based programming.

In Java, generic algorithms are implemented as part of inheritance. Chapter 4
discusses inheritance and polymorphism. In this chapter, we describe how Java
uses classes to achieve encapsulation and information hiding.

A class in Java
consists of fields
that store data and
methods that are
applied to
instances of the
class.

An object in Java is an instance of a class. A class is similar to a C struc-
ture or Pascal/Ada record, except that there are two important enhancements.
First, members can be both functions and data, known as methods and fields,
respectively. Second, the visibility of these members can be restricted.
Because methods that manipulate the object’s state are members of the class,
they are accessed by the dot member operator, just like the fields. In object-
oriented terminology, when we make a call to a method we are passing a mes-
sage to the object. Types discussed in Chapter 2, such as String, ArrayList,
Scanner, and FileReader, are all classes implemented in the Java library.

3.2 a simple example
Functionality is
supplied as addi-
tional members;
these methods
manipulate the
object’s state.

Recall that when you are designing the class, it is important to be able to hide
internal details from the class user. This is done in two ways. First, the class
can define functionality as class members, called methods. Some of these
methods describe how an instance of the structure is created and initialized,
how equality tests are performed, and how output is performed. Other meth-
ods would be specific to the particular structure. The idea is that the internal
data fields that represent an object’s state should not be manipulated directly
by the class user but instead should be manipulated only through use of the
methods. This idea can be strengthened by hiding members from the user. To
do this, we can specify that they be stored in a private section. The compiler
will enforce the rule that members in the private section are inaccessible by
methods that are not in the class of the object. Generally speaking, all data
members should be private.

72 chapter 3 objects and classes

Public members
are visible to non-
class routines; pri-
vate members are
not.

Figure 3.1 illustrates a class declaration for an IntCell object.1 The decla-
ration consists of two parts: public and private. Public members represent the
portion that is visible to the user of the object. Since we expect to hide data,
generally only methods and constants would be placed in the public section.
In our example, we have methods that read from and write to the IntCell
object. The private section contains the data; this is invisible to the user of the
object. The storedValue member must be accessed through the publicly visible
routines read and write; it cannot be accessed directly by main. Another way of
viewing this is shown in Figure 3.2.

Members that are
declared private
are not visible to
nonclass routines.

Figure 3.3 shows how IntCell objects are used. Since read and write are
members of the IntCell class, they are accessed by using the dot member
operator. The storedValue member could also be accessed by using the dot
member operator, but since it is private, the access at line 14 would be illegal
if it were not commented out.

A field is a member
that stores data; a
method is a mem-
ber that performs
an action.

Here is a summary of the terminology. The class defines members, which
may be either fields (data) or methods (functions). The methods can act on the
fields and may call other methods. The visibility modifier public means that the
member is accessible to anyone via the dot operator. The visibility modifier
private means that the member is accessible only by other methods of this class.

1. Public classes must be placed in files of the same name. Thus IntCell must be in file
IntCell.java. We will discuss the meaning of public at line 5 when we talk about packages.

figure 3.1

A complete
declaration of an
IntCell class

1 // IntCell class
2 // int read() --> Returns the stored value
3 // void write(int x) --> x is stored
4
5 public class IntCell
6 {
7 // Public methods
8 public int read() { return storedValue; }
9 public void write(int x) { storedValue = x; }

10
11 // Private internal data representation
12 private int storedValue;
13 }

read write storedValue

figure 3.2

IntCell members:
read and write are
accessible, but
storedValue is hidden.

3.3 javadoc 73

With no visibility modifier, we have package-visible access, which is discussed in
Section 3.8.4. There is also a fourth modifier known as protected, which is dis-
cussed in Chapter 4.

3.3 javadoc
The class specifica-
tion describes what
can be done to an
object. The imple-
mentation repre-
sents the internals
of how the specifi-
cations are met.

When designing a class, the class specification represents the class design and
tells us what can be done to an object. The implementation represents the inter-
nals of how this is accomplished. As far as the class user is concerned, these
internal details are not important. In many cases, the implementation repre-
sents proprietary information that the class designer may not wish to share.
However, the specification must be shared; otherwise, the class is unusable.

In many languages, the simultaneous sharing of the specification and
hiding of the implementation is accomplished by placing the specification
and implementation in separate source files. For instance, C++ has the class
interface, which is placed in a .h file and a class implementation, which is in
a .cpp file. In the .h file, the class interface restates the methods (by provid-
ing method headers) that are implemented by the class.

The javadoc pro-
gram automatically
generates docu-
mentation for
classes.

Java takes a different approach. It is easy to see that a list of the methods in a
class, with signatures and return types, can be automatically documented from the
implementation. Java uses this idea: The program javadoc, which comes with all
Java systems, can be run to automatically generate documentation for classes. The
output of javadoc is a set of HTML files that can be viewed or printed with a
browser.

figure 3.3

A simple test routine
to show how IntCell
objects are accessed

1 // Exercise the IntCell class
2
3 public class TestIntCell
4 {
5 public static void main(String [] args)
6 {
7 IntCell m = new IntCell();
8
9 m.write(5);

10 System.out.println("Cell contents: " + m.read());
11
12 // The next line would be illegal if uncommented
13 // because storedValue is a private member
14 // m.storedValue = 0;
15 }
16 }

74 chapter 3 objects and classes

The Java implementation file can also add javadoc comments that begin
with the comment starter token /**. Those comments are automatically added
in a uniform and consistent manner to the documentation produced by javadoc.

javadoc tags
include @author,
@param, @return,
and @throws. They
are used in
javadoc comments.

There also are several special tags that can be included in the javadoc com-
ments. Some of these are @author, @param, @return, and @throws. Figure 3.4 illustrates
the use of the javadoc commenting features for the IntCell class. At line 3, the
@author tag is used. This tag must precede the class definition. Line 10 illustrates the
use of the @return tag, line 19 the @param tag. These tags must appear prior to a
method declaration. The first token that follows the @param tag is the parameter
name. The @throws tag is not shown, but it has the same syntax as @param.

Some of the output that results from running javadoc is shown in
Figure 3.5. Run javadoc by supplying the name (including the .java exten-
sion) of the source file.

The output of javadoc is purely commentary except for the method headers.
The compiler does not check that these comments are implemented. Nonetheless,
the importance of proper documentation of classes can never be overstated. javadoc
makes the task of generating well-formatted documentation easier.

figure 3.4

The IntCell
declaration with
javadoc comments

1 /**
2 * A class for simulating an integer memory cell
3 * @author Mark A. Weiss
4 */
5
6 public class IntCell
7 {
8 /**
9 * Get the stored value.

10 * @return the stored value.
11 */
12 public int read()
13 {
14 return storedValue;
15 }
16
17 /**
18 * Store a value.
19 * @param x the number to store.
20 */
21 public void write(int x)
22 {
23 storedValue = x;
24 }
25
26 private int storedValue;
27 }

3.3 javadoc 75

figure 3.5

javadoc output for Figure 3.4 (partial output)

76 chapter 3 objects and classes

3.4 basic methods
Some methods are common to all classes. This section discusses mutators,
accessors, and three special methods: the constructors, toString, and equals.
Also discussed is main.

3.4.1 constructors
A constructor tells
how an object is
declared and
initialized.

As mentioned earlier, a basic property of objects is that they can be defined,
possibly with initialization. In Java, the method that controls how an object is
created and initialized is the constructor. Because of overloading, a class may
define multiple constructors.

The default con-
structor is a mem-
ber-by-member
application of a
default initialization.

If no constructor is provided, as in the case for the IntCell class in
Figure 3.1, a default constructor is generated that initializes each data mem-
ber using the normal defaults. This means that primitive fields are initialized
to zero and reference fields are initialized to the null reference. (These defaults
can be replaced by inline field initialization, which is executed prior to exe-
cution of constructor bodies.) Thus, in the case of IntCell, the storedValue
component is 0.

To write a constructor, we provide a method that has the same name as the
class and no return type (it is crucial that the return type is omitted; a common
error is placing void as a return type, resulting in the declaration of a method
that is not a constructor). In Figure 3.6, there are two constructors: one begins
at line 7 and the other at line 15. Using these constructors, we can construct
Date objects in either of the following ways:

Date d1 = new Date();
Date d2 = new Date(4, 15, 2010);

Note that once a constructor is written, a default zero-parameter construc-
tor is no longer generated. If you want one, you have to write it. Thus the con-
structor at line 7 is required in order to allow construction of the object that d1
references.

3.4.2 mutators and accessors
A method that
examines but does
not change the
state of an object
is an accessor. A
method that
changes the state
is a mutator.

Class fields are typically declared private. Thus they cannot be directly
accessed by nonclass routines. Sometimes, however, we would like to
examine the value of a field. We may even want to change it.

One alternative for doing this is to declare the fields public. This is
typically a poor choice, however, because it violates information-hiding-
principles. Instead, we can provide methods to examine and change each
field. A method that examines but does not change the state of an object is

3.4 basic methods 77

an accessor. A method that changes the state is a mutator (because it
mutates the state of the object).

Special cases of accessors and mutators examine only a single field.
These accessors typically have names beginning with get, such as getMonth,
while these mutators typically have names beginning with set, such as
setMonth.

figure 3.6

A minimal Date class
that illustrates
constructors and the
equals and toString
methods

1 // Minimal Date class that illustrates some Java features
2 // No error checks or javadoc comments
3
4 public class Date
5 {
6 // Zero-parameter constructor
7 public Date()
8 {
9 month = 1;

10 day = 1;
11 year = 2010;
12 }
13
14 // Three-parameter constructor
15 public Date(int theMonth, int theDay, int theYear)
16 {
17 month = theMonth;
18 day = theDay;
19 year = theYear;
20 }
21
22 // Return true if two equal values
23 public boolean equals(Object rhs)
24 {
25 if(! (rhs instanceof Date))
26 return false;
27 Date rhDate = (Date) rhs;
28 return rhDate.month == month && rhDate.day == day &&
29 rhDate.year == year;
30 }
31
32 // Conversion to String
33 public String toString()
34 {
35 return month + "/" + day + "/" + year;
36 }
37
38 // Fields
39 private int month;
40 private int day;
41 private int year;
42 }

78 chapter 3 objects and classes

The advantage of using a mutator is that the mutator can ensure that
changes in the state of the object are consistent. Thus a mutator that changes
the day field in a Date object can make sure that only legal dates result.

3.4.3 output and toString
The toString
method can be pro-
vided. It returns a
String based on
the object state.

Typically, we want to output the state of an object using print. This is done by
writing the class method toString. This method returns a String suitable for
output. As an example, Figure 3.6 shows a bare-bones implementation of the
toString method for the Date class.

3.4.4 equals

The equals method
can be provided to
test if two refer-
ences are referring
to the same value.

The equals method is used to test if two objects represent the same value. The
signature is always

public boolean equals(Object rhs)

Notice that the parameter is of reference type Object rather than the class
type (the reason for this is discussed in Chapter 4). Typically, the equals
method for class ClassName is implemented to return true only if rhs is an
instance of ClassName, and after the conversion to ClassName, all the primitive
fields are equal (via ==) and all the reference fields are equal (via member-by-
member application of equals).

The parameter to
equals is of type
Object.

An example of how equals is implemented is provided in Figure 3.6 for
the Date class. The instanceof operator is discussed in Section 3.6.3.

3.4.5 main

When the java command is issued to start the interpreter, the main method in
the class file referenced by the java command is called. Thus each class can
have its own main method, without problem. This makes it easy to test the
basic functionality of individual classes. However, although functionality can
be tested, placing main in the class gives main more visibility than would be
allowed in general. Thus calls from main to nonpublic methods in the same
class will compile even though they will be illegal in a more general setting.

3.5 example: using java.math.BigInteger

Section 3.3 describes how to generate documentation from a class, and
Section 3.4 describes some typical components of a class, such as construc-
tors, accessors, mutators, and in particular equals and toString. In this

3.6 additional constructs 79

Section we show the parts of the documentation most typically used by
programmers.

Figure 3.7 shows one section of the online documentation for the library
class java.math.BigInteger. Missing is the section that provides an overview
of the class in something resembling English (compare with Figure 3.5 to see
this missing preamble). The missing preamble tells us, among other things,
that BigIntegers, like Strings are immutable: once we create a BigInteger, its
value cannot change.

Next is a list of fields, which in our case are constants ZERO and ONE. If we
were to click on the hyperlink for ZERO or ONE, we would get a more complete
description that tells us these are public static final entities.

The next section lists the available constructors. There are actually six,
but only one is shown in our abbreviated listing, and it requires a String.
Again, if one clicks on the constructor name, the hyperlink takes us to a more
complete description, shown in Figure 3.8. Among other things, we find that
if the String contains extraneous whitespace, the constructor will fail and
throw an exception. These are the kinds of details that are always worth
knowing about.

Next we see a host of methods (again, this is an abbreviated list). Two
important methods are equals and toString; since they are specifically listed
here, we can be sure that BigIntegers can be safely compared with equals
and output with a reasonable representation. Also present is a compareTo
method, and if we click on the hyperlink, we find that the general behavior
for compareTo is identical to the compareTo method in the String class. This is
not an accident, as we will see in Chapter 4. Also notice that by looking at
the signatures and the brief descriptions we can see that methods such as
add and multiply return newly created BigInteger objects, leaving the origi-
nals untouched. This is of course required, since BigInteger is an immutable
class.

Later in this Chapter we will use the BigInteger class as a component to
implement our own BigRational class⎯a class that will represent rational
numbers.

3.6 additional constructs
Three additional keywords are this, instanceof, and static. The keyword
this has several uses in Java; two are discussed in this section. The key-
word instanceof also has several general uses; it is used here to ensure that
a type-conversion can succeed. Likewise, static has several uses. We have
already discussed static methods. This section covers the static field and
static initializer.

80 chapter 3 objects and classes

figure 3.7

Simplified Javadoc for java.math.BigInteger

3.6 additional constructs 81

3.6.1 the this reference
this is a reference
to the current
object. It can be
used to send the
current object, as a
unit, to some other
method.

The first use of this is as a reference to the current object. Think of the
this reference as a homing device that, at any instant in time, tells you
where you are. An important use of the this reference is in handling the
special case of self-assignment. An example of this use is a program that
copies one file to another. A normal algorithm begins by truncating the
target file to zero length. If no check is performed to make sure the source
and target file are indeed different, then the source file will be truncated—
hardly a desirable feature. When dealing with two objects, one of which is
written and one of which is read, we first should check for this special
case, which is known as aliasing.

Aliasing is a spe-
cial case that
occurs when the
same object
appears in more
than one role.

For a second example, suppose we have a class Account that has a
method finalTransfer. This method moves all the money from one account
into another. In principle, this is an easy routine to write:

// Transfer all money from rhs to current account
public void finalTransfer(Account rhs)
{

dollars += rhs.dollars;
rhs.dollars = 0;

}

figure 3.8

Details of the
BigInteger
constructor

BigInteger
public BigInteger(String val)

Translates the decimal String representation of a BigInteger into a
BigInteger. The String representation consists of an optional minus
sign followed by a sequence of one or more decimal digits. The
character-to-digit mapping is provided by Character.digit. The String
may not contain any extraneous characters (whitespace, for example).

Parameters:
val - decimal String representation of BigInteger.

Throws:
NumberFormatException - val is not a valid representation of a
BigInteger.

See Also:
Character.digit(char, int)

82 chapter 3 objects and classes

However, consider the result:

Account account1;
Account account2;

...
account2 = account1;
account1.finalTransfer(account2);

Since we are transferring money between the same account, there should be
no change in the account. However, the last statement in finalTransfer
assures that the account will be empty. One way to avoid this is to use an
alias test:

// Transfer all money from rhs to current account
public void finalTransfer(Account rhs)
{

if(this == rhs) // Alias test
return;

dollars += rhs.dollars;
rhs.dollars = 0;

 }

3.6.2 the this shorthand for constructors
this can be used to
make a call to
another construc-
tor in the same
class.

Many classes have multiple constructors that behave similarly. We can use
this inside a constructor to call one of the other class constructors. An
alternative to the zero-parameter Date constructor in Figure 3.6 would be

public Date()
{

this(1, 1, 2010); // Call the 3-param constructor
}

More complicated uses are possible, but the call to this must be the first
statement in the constructor; thereafter more statements may follow.

3.6.3 the instanceof operator
The instanceof
operator is used to
test if an expression
is an instance of
some class.

The instanceof operator performs a runtime test. The result of

exp instanceof ClassName

is true if exp is an instance of ClassName, and false otherwise. If exp is null,
the result is always false. The instanceof operator is typically used prior
to performing a type conversion and is true if the type conversion can
succeed.

3.6 additional constructs 83

3.6.4 instance members versus static members
Instance members
are fields or meth-
ods declared with-
out the static
modifier.

Fields and methods declared with the keyword static are static members. If
they are declared without the keyword static, we will refer to them as instance
members. The next subsection explains the distinction between instance and
static members.

3.6.5 static fields and methods
A static method is a
method that does
not need a control-
ling object.

A static method is a method that does not need a controlling object, and thus
is typically called by supplying a class name instead of the controlling object.
The most common static method is main. Other static methods are found in the
Integer and Math classes. Examples are the methods Integer.parseInt,
Math.sin, and Math.max. Access to a static method uses the same visibility
rules as do static fields. These methods mimic global functions found in
non-object-oriented languages.

Static fields are
essentially global
variables with class
scope.

Static fields are used when we have a variable that all the members of
some class need to share. Typically, this is a symbolic constant, but it need not
be. When a class variable is declared static, only one instance of the variable
is ever created. It is not part of any instance of the class. Instead, it behaves
like a single global variable but with the scope of the class. In other words, in
the declaration

public class Sample
{

private int x;
private static int y;

}

each Sample object stores its own x, but there is only one shared y.
A common use of a static field is as a constant. For instance, the class

Integer defines the field MAX_VALUE as

public static final int MAX_VALUE = 2147483647;

If this constant was not a static field, then each instance of an Integer would
have a data field named MAX_VALUE, thus wasting space and initialization
time. Instead, there is only a single variable named MAX_VALUE. It can be
accessed by any of the Integer methods by using the identifier MAX_VALUE. It
can also be accessed via an Integer object obj using obj.MAX_VALUE, as would
any field. Note that this is allowed only because MAX_VALUE is public. Finally,
MAX_VALUE can be accessed by using the class name as Integer.MAX_VALUE
(again allowable because it is public). This would not be allowed for a nonstatic

84 chapter 3 objects and classes

field. The last form is preferable, because it communicates to the reader that
the field is indeed a static field. Another example of a static field is the con-
stant Math.PI.

Even without the final qualifier, static fields are still useful. Figure 3.9
illustrates a typical example. Here we want to construct Ticket objects, giving
each ticket a unique serial number. In order to do this, we have to have some
way of keeping track of all the previously used serial numbers; this is clearly
shared data, and not part of any one Ticket object.

A static field is
shared by all
(possibly zero)
instances of the
class.

Each Ticket object will have its instance member serialNumber; this is
instance data because each instance of Ticket has its own serialNumber field.
All Ticket objects will share the variable ticketCount, which denotes the
number of Ticket objects that have been created. This variable is part of the
class, rather than object-specific, so it is declared static. There is only
one ticketCount, whether there is 1 Ticket, 10 Tickets, or even no Ticket
objects. The last point—that the static data exists even before any
instances of the class are created—is important, because it means the static
data cannot be initialized in constructors. One way of doing the initializa-
tion is inline, when the field is declared. More complex initialization is
described in Section 3.6.6.

In Figure 3.9, we can now see that construction of Ticket objects is done
by using ticketCount as the serial number, and incrementing ticketCount. We
also provide a static method, getTicketCount, that returns the number of tick-
ets. Because it is static, it can be invoked without providing an object refer-
ence, as shown on lines 36 and 41. The call on line 41 could have been made
using either t1 or t2, though many argue that invoking a static method using
an object reference is poor style, and we would never do so in this text. How-
ever, it is significant that the call on line 36 clearly could not be made through
an object reference, since at this point there are no valid Ticket objects. This is
why it is important for getTicketCount to be declared as a static method; if it
was declared as an instance method, it could only be called through an object
reference.

A static method
has no implicit
this reference, and
can be invoked
without an object
reference.

When a method is declared as a static method, there is no implicit this ref-
erence. As such, it cannot access instance data or call instance methods, without
providing an object reference. In other words, from inside getTicketCount,
unqualified access of serialNumber would imply this.serialNumber, but since
there is no this, the compiler will issue an error message. Thus, a nonstatic
field, which is part of each instance of the class, can be accessed by a static
class method only if a controlling object is provided.

3.6 additional constructs 85

figure 3.9

The Ticket class: an
example of static
fields and methods

1 class Ticket
2 {
3 public Ticket()
4 {
5 System.out.println("Calling constructor");
6 serialNumber = ++ticketCount;
7 }
8
9 public int getSerial()

10 {
11 return serialNumber;
12 }
13
14 public String toString()
15 {
16 return "Ticket #" + getSerial();
17 }
18
19 public static int getTicketCount()
20 {
21 return ticketCount;
22 }
23
24 private int serialNumber;
25 private static int ticketCount = 0;
26 }
27
28 class TestTicket
29 {
30 public static void main(String [] args)
31 {
32 Ticket t1;
33 Ticket t2;
34
35 System.out.println("Ticket count is " +
36 Ticket.getTicketCount());
37 t1 = new Ticket();
38 t2 = new Ticket();
39
40 System.out.println("Ticket count is " +
41 Ticket.getTicketCount());
42
43 System.out.println(t1.getSerial());
44 System.out.println(t2.getSerial());
45 }
46 }

86 chapter 3 objects and classes

3.6.6 static initializers

Static fields are initialized when the class is loaded. Occasionally, we need a
complex initialization. For instance, suppose we need a static array that stores
the square roots of the first 100 integers. It would be best to have these values
computed automatically. One possibility is to provide a static method and
require the programmer to call it prior to using the array.

A static initializer is
a block of code that
is used to initialize
static fields.

An alternative is the static initializer. An example is shown in Figure 3.10.
There, the static initializer extends from lines 5 to 9. The simplest use of the
static initializer places initialization code for the static fields in a block that
is preceded by the keyword static. The static initializer must follow the dec-
laration of the static member.

3.7 example: implementing
a BigRational class

In this section, we write a class that illustrates many of the concepts that have
been described in this chapter, including

n public static final constants

n use of an existing class, namely BigInteger

n multiple constructors

n throwing exceptions

n implementing a set of accessors

n implementing equals and toString

figure 3.10

An example of a
static initializer

1 public class Squares
2 {
3 private static double [] squareRoots = new double[100];
4
5 static
6 {
7 for(int i = 0; i < squareRoots.length; i++)
8 squareRoots[i] = Math.sqrt((double) i);
9 }

10 // Rest of class
11 }

3.7 example: implementing a BigRational class 87

The class that we write will represent rational numbers. A rational num-
ber stores a numerator and denominator, and we will use BigIntegers to repre-
sent the numerator and denominator. Thus our class will be aptly named
BigRational.

Figure 3.11 shows the BigRational class. The online code is fully com-
mented; we have omitted comments in order to allow the code to fit in the text
pages. Lines 5 and 6 are constants BigRational.ZERO and BigRational.ONE. We
also see that the data representation is two BigIntegers, num and den, and our
code will be implemented in a manner that guarantees that the denominator is
never negative. We provide four constructors, and two of the constructors are
implemented by using the this idiom. The other two constructors have more
complicated implementations shown in Figure 3.12. There we see that the
two-parameter BigRational constructor initializes the numerator and denomi-
nator as specified, but then must ensure that the denominator is not negative
(which is done by calling private method fixSigns) and then reducing out
common factors (which is done by calling private method reduce). We also
provide a check to ensure that 0/0 is not accepted as a BigRational, and this is
done in check00 which will throw an exception if there is an attempt to con-
struct such a BigRational. The details of check00, fixSigns, and reduce are less
important than the fact that their use in a constructor and other methods
allows the designer of the class to guarantee that objects are always placed in
valid states.

The BigRational class also includes methods to return absolute values and
a negative. These are simple and shown in lines 24–27 of Figure 3.11. Note
that these methods return new BigRational objects, leaving the original intact.

add, subtract, multiply, and divide are listed in lines 29–36 of Figure 3.11
and implemented in Figure 3.13. The math is less interesting than a funda-
mental concept that because each of the four routines ends by creating a new
BigRational, and the BigRational constructor has calls to check00, fixSigns,
and reduce, the resulting answers are always in correct reduced form, and an
attempt to do a zero divide by zero would automatically be caught by check00.

Finally, equals and toString are implemented in Figure 3.14. The signa-
ture for equals, as discussed earlier, requires a parameter of type Object. After
a standard instanceof test and type cast, we can compare numerators and
denominators. Notice that we use equals (not ==) to compare the numerators
and denominators, and also notice that since BigRationals are always in
reduced form, the test is relatively simple. For toString, which returns a
String representation of the BigRational, the implementation could be one
line, but we add code to handle infinity and -infinity, and also to not output the
denominator if it is 1.

88 chapter 3 objects and classes

figure 3.11

BigRational class,
with partial
implementation

1 import java.math.BigInteger;
2
3 public class BigRational
4 {
5 public static final BigRational ZERO = new BigRational();
6 public static final BigRational ONE = new BigRational("1");
7
8 public BigRational()
9 { this(BigInteger.ZERO); }

10 public BigRational(BigInteger n)
11 { this(n, BigInteger.ONE); }
12 public BigRational(BigInteger n, BigInteger d)
13 { /* Implementation in Figure 3.12 */ }
14 public BigRational(String str)
15 { /* Implementation in Figure 3.12 */ }
16
17 private void check00()
18 { /* Implementation in Figure 3.12 */ }
19 private void fixSigns()
20 { /* Implementation in Figure 3.12 */ }
21 private void reduce()
22 { /* Implementation in Figure 3.12 */ }
23
24 public BigRational abs()
25 { return new BigRational(num.abs(), den); }
26 public BigRational negate()
27 { return new BigRational(num.negate(), den); }
28
29 public BigRational add(BigRational other)
30 { /* Implementation in Figure 3.13 */ }
31 public BigRational subtract(BigRational other)
32 { /* Implementation in Figure 3.13 */ }
33 public BigRational multiply(BigRational other)
34 { /* Implementation in Figure 3.13 */ }
35 public BigRational divide(BigRational other)
36 { /* Implementation in Figure 3.13 */ }
37
38 public boolean equals(Object other)
39 { /* Implementation in Figure 3.14 */ }
40 public String toString()
41 { /* Implementation in Figure 3.14 */ }
42
43 private BigInteger num; // only this can be neg
44 private BigInteger den; // never negative
45 }

3.7 example: implementing a BigRational class 89

1 public BigRational(BigInteger n, BigInteger d)
2 {
3 num = n; den = d;
4 check00(); fixSigns(); reduce();
5 }
6
7 public BigRational(String str)
8 {
9 if(str.length() == 0)

10 throw new IllegalArgumentException("Zero-length string");
11
12 // Check for '/'
13 int slashIndex = str.indexOf('/');
14 if(slashIndex == -1)
15 {
16 num = new BigInteger(str.trim());
17 den = BigInteger.ONE; // no denominator... use 1
18 }
19 else
20 {
21 num = new BigInteger(str.substring(0, slashIndex).trim());
22 den = new BigInteger(str.substring(slashIndex + 1).trim());
23 check00(); fixSigns(); reduce();
24 }
25 }
26
27 private void check00()
28 {
29 if(num.equals(BigInteger.ZERO) && den.equals(BigInteger.ZERO))
30 throw new ArithmeticException("ZERO DIVIDE BY ZERO");
31 }
32
33 private void fixSigns()
34 {
35 if(den.compareTo(BigInteger.ZERO) < 0)
36 {
37 num = num.negate();
38 den = den.negate();
39 }
40 }
41
42 private void reduce()
43 {
44 BigInteger gcd = num.gcd(den);
45 num = num.divide(gcd);
46 den = den.divide(gcd);
47 }

figure 3.12

BigRational constructors, check00, fixSigns, and reduce

90 chapter 3 objects and classes

Observe that the BigRational class has no mutators: routines such as add
simply return a new BigRational that represents a sum. Thus BigRational is an
immutable type.

3.8 packages
A package is used
to organize a col-
lection of classes.

Packages are used to organize similar classes. Each package consists of a set of
classes. Two classes in the same package have slightly fewer visibility restric-
tions among themselves than they would if they were in different packages.

Java provides several predefined packages, including java.io, java.lang,
and java.util. The java.lang package includes the classes Integer, Math,
String, and System, among others. Some of the classes in the java.util package

figure 3.13

BigRational add,
subtract, multiply,
divide

1 public BigRational add(BigRational other)
2 {
3 BigInteger newNumerator =
4 num.multiply(other.den).add(
5 other.num.multiply(den));
6 BigInteger newDenominator = den.multiply(other.den);
7
8 return new BigRational(newNumerator, newDenominator);
9 }

10
11 public BigRational subtract(BigRational other)
12 {
13 return add(other.negate());
14 }
15
16 public BigRational multiply(BigRational other)
17 {
18 BigInteger newNumer = num.multiply(other.num);
19 BigInteger newDenom = den.multiply(other.den);
20
21 return new BigRational(newNumer, newDenom);
22 }
23
24 public BigRational divide(BigRational other)
25 {
26 BigInteger newNumer = num.multiply(other.den);
27 BigInteger newDenom = den.multiply(other.num);
28
29 return new BigRational(newNumer, newDenom);
30 }

3.8 packages 91

The import directive
is used to provide a
shorthand for a fully
qualified class
name.

are Date, Random, and Scanner. Package java.io is used for I/O and includes the
various stream classes seen in Section 2.6.

Class C in package p is specified as p.C. For instance, we can have a Date
object constructed with the current time and date as an initial state using

java.util.Date today = new java.util.Date();

By convention, class
names are capital-
ized and package
names are not.

Note that by including a package name, we avoid conflicts with identically named
classes in other packages (such as our own Date class). Also, observe the typical
naming convention: Class names are capitalized and package names are not.

3.8.1 the import directive

Using a full package and class name can be burdensome. To avoid this, use
the import directive. There are two forms of the import directive that allow the
programmer to specify a class without prefixing it with the package name.

import packageName.ClassName;
import packageName.*;

figure 3.14

BigRational equals
and toString

1 public boolean equals(Object other)
2 {
3 if(! (other instanceof BigRational))
4 return false;
5
6 BigRational rhs = (BigRational) other;
7
8 return num.equals(rhs.num) && den.equals(rhs.den);
9 }

10
11 public String toString()
12 {
13 if(den.equals(BigInteger.ZERO))
14 if(num.compareTo(BigInteger.ZERO) < 0)
15 return "-infinity";
16 else
17 return "infinity";
18
19 if(den.equals(BigInteger.ONE))
20 return num.toString();
21 else
22 return num + "/" + den;
23 }

92 chapter 3 objects and classes

In the first form, ClassName may be used as a shorthand for a fully qualified
class name. In the second, all classes in a package may be abbreviated with
the corresponding class name.

For example, with the import directives

import java.util.Date;
import java.io.*;

we may use

Date today = new Date();
FileReader theFile = new FileReader(name);

Careless use of the
import directive can
introduce naming
conflicts.

Using the import directive saves typing. And since the most typing is
saved by using the second form, you will see that form used often. There are
two disadvantages to import directives. First, the shorthand makes it hard to
tell, by reading the code, which class is being used when there are a host of
import directives. Also, the second form may allow shorthands for unintended
classes and introduce naming conflicts that will need to be resolved by fully
qualified class names.

Suppose we use

import java.util.*; // Library package
import weiss.util.*; // User-defined package

with the intention of importing the java.util.Random class and a package that
we have written ourselves. Then, if we have our own Random class in
weiss.util, the import directive will generate a conflict with weiss.util.Random
and will need to be fully qualified. Furthermore, if we are using a class in one
of these packages, by reading the code we will not know whether it originated
from the library package or our own package. We would have avoided these
problems if we had used the form

import java.util.Random;

and for this reason, we use the first form only in the text and avoid “wildcard”
import directives.

java.lang.*
is automatically
imported.

The import directives must appear prior to the beginning of a class decla-
ration. We saw an example of this in Figure 2.19. Also, the entire package
java.lang is automatically imported. This is why we may use shorthands such
as Math.max, Integer.parseInt, System.out, and so on.

In versions of Java prior to Java 5, static members such as Math.max
and Integer.MAX_VALUE could not be shortened to simply max and MAX_VALUE.

3.8 packages 93

Programmers who made heavy use of the math library had long hoped for
a generalization of the import directive that would allow methods such as
sin, cos, tan to be used rather than the more verbose Math.sin, Math.cos,
Math.tan. In Java 5, this feature was added to the language via the static
import directive. The static import directive allows static members (meth-
ods and fields) to be accessed without explicitly providing the class name.
The static import directive has two forms: the single member import, and
the wildcard import. Thus,

import static java.lang.Math.*;
import static java.lang.Integer.MAX_VALUE;

allows the programmer to write max instead of Math.max, PI instead of Math.PI,
and MAX_VALUE instead of Integer.MAX_VALUE.

3.8.2 the package statement
The package state-
ment indicates that
a class is part of a
package. It must
precede the class
definition.

To indicate that a class is part of a package, we must do two things. First, we
must include the package statement as the first line, prior to the class defini-
tion. Second, we must place the code in an appropriate subdirectory.

In this text, we use the two packages shown in Figure 3.15. Other pro-
grams, including test programs and the application programs in Part Three of
this book, are stand-alone classes and not part of a package.

figure 3.15

Packages defined in
this text

Package Use

weiss.util A reimplementation of a subset of the java.util package
containing various data structures.

weiss.nonstandard Various data structures, in a simplified form, using nonstand-
ard conventions that are different from java.util.

figure 3.16

Moving the
BigRational class to
package weiss.math.

1 package weiss.math;
2
3 import java.math.BigInteger;
4
5 public class BigRational
6 {
7 /* Entire class shown in online code */
8 }

94 chapter 3 objects and classes

An example of how the package statement is used is shown in Figure 3.16,
where we move the BigRational class to a new package, weiss.math.

3.8.3 the CLASSPATH environment variable
The CLASSPATH vari-
able specifies files
and directories that
should be searched
to find classes.

Packages are searched for in locations that are named in the CLASSPATH vari-
able. What does this mean? Here are possible settings for CLASSPATH, first for a
Windows system and second for a Unix system:

SET CLASSPATH=.;C:\bookcode\
setenv CLASSPATH .:$HOME/bookcode/

In both cases, the CLASSPATH variable lists directories (or jar files2) that
contain the package’s class files. For instance, if your CLASSPATH is corrupted,
you will not be able to run even the most trivial program because the current
directory will not be found.

A class in package
p must be in a
directory p that will
be found by
searching through
the CLASSPATH list.

A class in package p must be in a directory p that will be found by
searching through the CLASSPATH list; each . in the package name repre-
sents a subdirectory. Starting with Java 1.2, the current directory (directory .)
is always scanned if CLASSPATH is not set at all, so if you are working
from a single main directory, you can simply create subdirectories in it
and not set CLASSPATH. Most likely, however, you’ll want to create a sep-
arate Java subdirectory and then create package subdirectories in
there. You would then augment the CLASSPATH variable to include . and
the Java subdirectory. This was done in the previous Unix declaration
when we added $HOME/bookcode/ to the CLASSPATH. Inside the bookcode direc-
tory, you create a subdirectory named weiss, and in that subdirectory, math,
util and nonstandard. In the math subdirectory, you place the code for the
BigRational class.

An application, written in any directory at all, can then use the BigRational
class either by its full name

 weiss.math.BigRational;

or simply using BigRational, if an appropriate import directive is provided.
Moving a class from one package to another can be tedious because it

may involve revising a sequence of import directives. Many development tools
will do this automatically, as one of the options for refactoring.

2. A jar file is basically a compressed archive (like a zip file) with extra files containing Java-
specific information. The jar tool, supplied with the JDK, can be used to create and expand
jar files.

3.9 a design pattern: composite (pair) 95

Non-public classes
are visible only to
other classes in the
same package.

3.8.4 package visibility rules
Fields with no visi-
bility modifiers are
package visible,
meaning that they
are visible only to
other classes in the
same package.

Packages have several important visibility rules. First, if no visibility
modifier is specified for a field, then the field is package visible. This
means that it is visible only to other classes in the same package. This is
more visible than private (which is invisible even to other classes in the
same package) but less visible than public (which is visible to nonpackage
classes, too).

Second, only public classes of a package may be used outside the pack-
age. That is why we have often used the public qualifier prior to class. Classes
may not be declared private.3 Package-visible access extends to classes, too.
If a class is not declared public, then it may be accessed by other classes in the
same package only; this is a package-visible class. In Part IV, we will see that
package-visible classes can be used without violating information-hiding
principles. Thus there are some cases in which package-visible classes can be
very useful.

All classes that are not part of a package but are reachable through the
CLASSPATH variable are considered part of the same default package. As a
result, package-visible applies between all of them. This is why visibility is
not affected if the public modifier is omitted from nonpackage classes. How-
ever, this is poor use of package-visible member access. We use it only to
place several classes in one file, because that tends to make examining and
printing the examples easier. Since a public class must be in a file of the same
name, there can be only one public class per file.

3.9 a design pattern: composite (pair)
Although software design and programming are often difficult chal-
lenges, many experienced software engineers will argue that software
engineering really has only a relatively small set of basic problems. Per-
haps this is an understatement, but it is true that many basic problems are
seen over and over in software projects. Software engineers who are
familiar with these problems, and in particular, the efforts of other pro-
grammers in solving these problems, have the advantage of not needing
to “reinvent the wheel.”

The idea of a design pattern is to document a problem and its solution
so that others can take advantage of the collective experience of the entire

3. This applies to top-level classes shown so far; later we will see nested and inner classes,
which may be declared private.

96 chapter 3 objects and classes

A design pattern
describes a prob-
lem that occurs
over and over in
software engineer-
ing, and then
describes the solu-
tion in a suffi-
ciently generic
manner as to be
applicable in a wide
variety of contexts.

software engineering community. Writing a pattern is much like writing a
recipe for a cookbook; many common patterns have been written and,
rather than expending energy reinventing the wheel, these patterns can be
used to write better programs. Thus a design pattern describes a problem
that occurs over and over in software engineering, and then describes the
solution in a sufficiently generic manner as to be applicable in a wide vari-
ety of contexts.

Throughout the text we will discuss several problems that often arise in a
design, and a typical solution that is employed to solve the problem. We start
with the following simple problem.

A common design
pattern is to return
two objects as a
pair.

In most languages, a function can return only a single object. What do we
do if we need to return two or more things? The easiest way to do this is to
combine the objects into a single object using either an array or a class. The
most common situation in which multiple objects need to be returned is the
case of two objects. So a common design pattern is to return the two objects
as a pair. This is the composite pattern.

Pairs are useful for
implementing key-
value pairs in maps
and dictionaries.

In addition to the situation described above, pairs are useful for imple-
menting maps and dictionaries. In both of these abstractions, we maintain
key-value pairs: The pairs are added into the map or dictionary, and then
we search for a key, returning its value. One common way to implement a
map is to use a set. In a set, we have a collection of items, and search for a
match. If the items are pairs, and the match criterion is based exclusively
on the key component of the pair, then it is easy to write a class that con-
structs a map on the basis of a set. We will see this idea explored in more
detail in Chapter 19.

summary

This chapter described the Java class and package constructs. The class is the
Java mechanism that is used to create new reference types; the package is
used to group related classes. For each class, we can

n Define the construction of objects

n Provide for information hiding and atomicity

n Define methods to manipulate the objects

The class consists of two parts: the specification and the implementation.
The specification tells the user of the class what the class does; the implemen-
tation does it. The implementation frequently contains proprietary code and in
some cases is distributed only as a .class file. The specification, however, is

key concepts 97

public knowledge. In Java, a specification that lists the class methods can be
generated from the implementation by using javadoc.

Information-hiding can be enforced by using the private keyword. Initial-
ization of objects is controlled by the constructors, and the components of the
object can be examined and changed by accessor and mutator methods,
respectively. Figure 3.17 illustrates many of these concepts, as applied to a
simplified version of ArrayList. This class, StringArrayList, supports add, get,
and size. A more complete version that includes set, remove, and clear is in
the online code.

The features discussed in this chapter implement the fundamental aspects
of object-based programming. The next chapter discusses inheritance, which
is central to object-oriented programming.

key concepts

accessor A method that examines an object but does not change its state. (76)
aliasing A special case that occurs when the same object appears in more than

one role. (81)
atomic unit In reference to an object, its parts cannot be dissected by the gen-

eral users of the object. (70)
class Consists of fields and methods that are applied to instances of the class.

(71)
class specification Describes the functionality, but not the implementation. (73)
CLASSPATH variable Specifies directories and files that should be searched to

find classes. (94)
composite pattern The pattern in which we store two or more objects in one

entity. (96)
constructor Tells how an object is declared and initialized. The default con-

structor is a member-by-member default initialization, with primitive
fields initialized to zero and reference fields initialized to null. (76)

design pattern Describes a problem that occurs over and over in software
engineering, and then describes the solution in a sufficiently generic man-
ner as to be applicable in a wide variety of contexts. (96)

encapsulation The grouping of data and the operations that apply to them to
form an aggregate while hiding the implementation of the aggregate.
(70)

equals method Can be implemented to test if two objects represent the same
value. The formal parameter is always of type Object. (78)

field A class member that stores data. (72)

98 chapter 3 objects and classes

figure 3.17

Simplified
StringArrayList with
add, get, and size

1 /**
2 * The StringArrayList implements a growable array of Strings.
3 * Insertions are always done at the end.
4 */
5 public class StringArrayList
6 {
7 /**
8 * Returns the number of items in this collection.
9 * @return the number of items in this collection.

10 */
11 public int size()
12 {
13 return theSize;
14 }
15
16 /**
17 * Returns the item at position idx.
18 * @param idx the index to search in.
19 * @throws ArrayIndexOutOfBoundsException if index is bad.
20 */
21 public String get(int idx)
22 {
23 if(idx < 0 || idx >= size())
24 throw new ArrayIndexOutOfBoundsException();
25 return theItems[idx];
26 }
27
28 /**
29 * Adds an item to this collection at the end.
30 * @param x any object.
31 * @return true (as per java.util.ArrayList).
32 */
33 public boolean add(String x)
34 {
35 if(theItems.length == size())
36 {
37 String [] old = theItems;
38 theItems = new String[theItems.length * 2 + 1];
39 for(int i = 0; i < size(); i++)
40 theItems[i] = old[i];
41 }
42
43 theItems[theSize++] = x;
44 return true;
45 }
46
47 private static final int INIT_CAPACITY = 10;
48
49 private int theSize = 0;
50 private String [] theItems = new String[INIT_CAPACITY];
51 }

key concepts 99

implementation Represents the internals of how the specifications are met. As
far as the class user is concerned, the implementation is not important.
(73)

import directive Used to provide a shorthand for a fully qualified class name.
Java 5 adds the static import that allows a shorthand for a static member.
(91)

information hiding Makes implementation details, including components of an
object, inaccessible. (70)

instance members Members declared without the static modifier. (83)
instanceof operator Tests if an expression is an instance of a class. (82)
javadoc Automatically generates documentation for classes. (73)
javadoc tag Includes @author, @param, @return, and @throws. Used inside of

javadoc comments. (74)
method A function supplied as a member that, if not static, operates on an

instance of the class. (71)
mutator A method that changes the state of the object. (76)
object An entity that has structure and state and defines operations that may

access or manipulate that state. An instance of a class. (70)
object-based programming Uses the encapsulation and information-hiding

features of objects but does not use inheritance. (71)
object-oriented programming Distinguished from object-based programming

by the use of inheritance to form hierarchies of classes. (69)
package Used to organize a collection of classes. (90)
package statement Indicates that a class is a member of a package. Must pre-

cede the class definition. (93)
package-visible access Members that have no visibility modifiers are only

accessible to methods in classes in the same package. (95)
package-visible class A class that is not public and is accessible only to other

classes in the same package. (95)
pair The composite pattern with two objects. (96)
private A member that is not visible to nonclass methods. (72)
public A member that is visible to nonclass methods. (72)
static field A field that is shared by all instances of a class. (83)
static initializer A block of code that is used to initialize static fields. (86)
static method A method that has no implicit this reference and thus can be

invoked without a controlling object reference. (83)
this constructor call Used to make a call to another constructor in the same

class. (82)

100 chapter 3 objects and classes

this reference A reference to the current object. It can be used to send the cur-
rent object, as a unit, to some other method. (79)

toString method Returns a String based on the object state. (78)

common errors

1. Private members cannot be accessed outside of the class. Remember that,
by default, class members are package visible: They are visible only
within the package.

2. Use public class instead of class unless you are writing a throw-away
helper class.

3. The formal parameter to equals must be of type Object. Otherwise,
although the program will compile, there are cases in which a default
equals (that simply mimics ==) will be used instead.

4. Static methods cannot access nonstatic members without a controlling
object.

5. Classes that are part of a package must be placed in an identically named
directory that is reachable from the CLASSPATH.

6. this is a final reference and may not be altered.

7. Constructors do not have return types. If you write a “constructor” with
return type void, you have actually written a method with the same name
as the class, but this is NOT a constructor.

on the internet

Following are the files that are available:

TestIntCell.java Contains a main that tests IntCell, shown in
Figure 3.3.

IntCell.java Contains the IntCell class, shown in Figure 3.4.
The output of javadoc can also be found as
IntCell.html.

Date.java Contains the Date class, shown in Figure 3.6.
BigRational.java Contains the BigRational class, shown in Section 3.7

and found in package weiss.math.
Ticket.java Contains the Ticket static member example in

Figure 3.9.
Squares.java Contains the static initializer sample code in

Figure 3.10.

exercises 101

StringArrayList.java Contains a more complete version of
StringArrayList code in Figure 3.17.

ReadStringsWithStringArrayList.java
Contains a test program for StringArrayList.

exercises

IN SHORT

3.1 What is information hiding? What is encapsulation? How does Java
support these concepts?

3.2 Explain the public and private sections of the class.

3.3 Describe the role of the constructor.

3.4 If a class provides no constructor, what is the result?

3.5 Explain the uses of this in Java.

3.6 What happens if when attempting to write a constructor, a void return
type is included?

3.7 What is package-visible access?

3.8 For a class ClassName, how is output performed?

3.9 Give the two types of import directive forms that allow BigRational to
be used without providing the weiss.math package name.

3.10 What is the difference between an instance field and a static field?

3.11 Under what circumstances can a static method refer to an instance
field in the same class?

3.12 What is a design pattern?

3.13 For the code in Figure 3.18, which resides entirely in one file,
a. Line 17 is illegal, even though line 18 is legal. Explain why.
b. Which of lines 20 to 24 are legal and which are not? Explain why.

IN THEORY

3.14 A class provides a single private constructor. Why would this be useful?

3.15 Suppose that the main method in Figure 3.3 was part of the IntCell class.
a. Would the program still work?
b. Could the commented-out line in main be uncommented without

generating an error?

102 chapter 3 objects and classes

3.16 Is the following import directive, which attempts to import virtually
the entire Java library, legal?

import java.*.*;

3.17 Suppose the code in Figures 3.3 (TestIntCell) and 3.4 (IntCell) are
both compiled. Then, the IntCell class in Figure 3.4 is modified by
adding a one-parameter constructor (thus removing the default zero-
parameter constructor). Of course if TestIntCell is recompiled, there
will be a compilation error. But if TestIntCell is not recompiled, and
IntCell is recompiled by itself, there is no error. What happens when
TestIntCell is then run?

IN PRACTICE

3.18 A combination lock has the following basic properties: the combina-
tion (a sequence of three numbers) is hidden; the lock can be opened
by providing the combination; and the combination can be changed,
but only by someone who knows the current combination. Design a

1 class Person
2 {
3 public static final int NO_SSN = -1;
4
5 private int SSN = 0;
6 String name = null;
7 }
8
9 class TestPerson

10 {
11 private Person p = new Person();
12
13 public static void main(String [] args)
14 {
15 Person q = new Person();
16
17 System.out.println(p); // illegal
18 System.out.println(q); // legal
19
20 System.out.println(q.NO_SSN); // ?
21 System.out.println(q.SSN); // ?
22 System.out.println(q.name); // ?
23 System.out.println(Person.NO_SSN); // ?
24 System.out.println(Person.SSN); // ?
25 }
26 }

figure 3.18

Code for
Exercise 3.13

exercises 103

class with public methods open and changeCombo and private data
fields that store the combination. The combination should be set in
the constructor.

3.19 Wildcard import directives are dangerous because ambiguities and
other surprises can be introduced. Recall that both java.awt.List and
java.util.List are classes. Starting with the code in Figure 3.19:
a. Compile the code; you should get an ambiguity.
b. Add an import directive to explicitly use java.awt.List. The code

should now compile and run.
c. Uncomment the local List class and remove the import directive

you just added. The code should compile and run.
d. Recomment the local List, reverting back to the situation at the

start. Recompile to see the surprising result. What happens if you
add the explicit import directive from step (b)?

3.20 Move class IntCell (Figure 3.3) into package weiss.nonstandard, and
revise TestIntCell (Figure 3.4) accordingly.

3.21 Add the following methods to the BigRational class, making sure to
throw any appropriate exceptions:

 BigRational pow(int exp) // exception if exp<0
 BigRational reciprocal()
 BigInteger toBigInteger() // exception if denominator is not 1
 int toInteger() // exception if denominator is not 1

3.22 For the BigRational class, add an additional constructor that takes two
BigIntegers as parameters, making sure to throw any appropriate
exceptions.

figure 3.19

Code for Exercise
3.19 illustrates why
wildcard imports are
bad.

1 import java.util.*;
2 import java.awt.*;
3
4 class List // COMMENT OUT THIS CLASS TO START EXPERIMENT
5 {
6 public String toString() { return "My List!!"; }
7 }
8
9 class WildCardIsBad

10 {
11 public static void main(String [] args)
12 {
13 System.out.println(new List());
14 }
15 }

104 chapter 3 objects and classes

3.23 Modify the BigRational class so that 0/0 is legal and is interpreted as
“Indeterminate” by toString.

3.24 Write a program that reads a data file containing rational numbers,
one per line, stores the numbers in an ArrayList, removes any dupli-
cates, and then outputs the sum, arithmetic mean, and harmonic mean
of the remaining unique rational numbers.

3.25 Suppose you would like to print a two dimensional array in which all
numbers are between 0 and 999. The normal way of outputting each
number might leave the array misaligned. For instance:

54 4 12 366 512
756 192 18 27 4
14 18 99 300 18

Examine the documentation for the format method in the String class
and write a routine that outputs the two-dimensional array in a nicer
format, such as

 54 4 12 366 512
756 192 18 27 4
 14 18 99 300 18

3.26 Package java.math contains a class BigDecimal, used to represent an
arbitrary-precision decimal number. Read the documentation for
BigDecimal and answer the following questions:
a. Is BigDecimal an immutable class?
b. If bd1.equals(bd2) is true, what is bd1.compareTo(bd2)?
c. If bd1.compareTo(bd2) is 0, when is bd1.equals(bd2) false?
d. If bd1 represents 1.0 and bd2 represents 5.0, by default what is

bd1.divide(bd2)?
e. If bd1 represents 1.0 and bd2 represents 3.0, by default what is

bd1.divide(bd2) ?
f. What is MathContext.DECIMAL128?
g. Modify the BigRational class to store a MathContext that can be

initialized from an additional BigRational constructor (or which
defaults to MathContext.UNLIMITED). Then add a toBigDecimal
method to the BigRational class.

3.27 An Account class stores a current balance, and provides getBalance,
deposit, withdraw, and toString methods in addition to at least one
constructor. Write and test an Account class. Make sure your withdraw
method throws an exception if appropriate.

exercises 105

3.28 A BinaryArray represents arbitrarily long sequences of binary variables.
The private data representation is an array of Boolean variables. For
instance, the representation of the BinaryArray “TFTTF” would be an array
of length five storing true, false, true, true, false in array indices 0, 1, 2, 3,
and 4, respectively. The BinaryArray class has the following functionality:

n A one-parameter constructor that contains a String. Throw an
IllegalArgumentException if there are illegal characters.

n A toString method.

n A get and set method to access or change a variable at a particu-
lar index.

n A size method that returns the number of binary variables in
the BinaryArray.

Implement the BinaryArray class, placing it in a package of your choosing.

PROGRAMMING PROJECTS

3.29 Implement a simple Date class. You should be able to represent any date
from January 1, 1800, to December 31, 2500; subtract two dates; incre-
ment a date by a number of days; and compare two dates using both
equals and compareTo. A Date is represented internally as the number of
days since some starting time, which, here, is the start of 1800. This
makes all methods except for construction and toString trivial.

The rule for leap years is a year is a leap year if it is divisible by 4 and
not divisible by 100 unless it is also divisible by 400. Thus 1800, 1900,
and 2100 are not leap years, but 2000 is. The constructor must check the
validity of the date, as must toString. The Date could be bad if an incre-
ment or subtraction operator caused it to go out of range.

Once you have decided on the specifications, you can do an imple-
mentation. The difficult part is converting between the internal and exter-
nal representations of a date. What follows is a possible algorithm.

Set up two arrays that are static fields. The first array, daysTillFirst-
OfMonth, will contain the number of days until the first of each month in a
nonleap year. Thus it contains 0, 31, 59, 90, and so on. The second array,
daysTillJan1, will contain the number of days until the first of each year,
starting with firstYear. Thus it contains 0, 365, 730, 1095, 1460, 1826,
and so on because 1800 is not a leap year, but 1804 is. You should have
your program initialize this array once using a static initializer. You can
then use the array to convert from the internal representation to the exter-
nal representation.

106 chapter 3 objects and classes

3.30 A PlayingCard represents a card used in games such as poker and black
jack, and stores the suit value (hearts, diamonds, clubs, or spades) and
the rank value (2 through 10, or jack, queen, king, or ace). A Deck rep-
resents a complete 52-card collection of PlayingCards. A MultipleDeck
represents one or more Decks of cards (the exact number is specified
in the constructor). Implement the three classes PlayingCard, Deck, and
MultipleDeck, providing reasonable functionality for PlayingCard, and
for both Deck and MultipleDeck, minimally provide the ability to shuf-
fle, deal a card, and check if there are remaining cards.

3.31 A complex number stores a real part and an imaginary part. Provide
an implementation of a BigComplex class, in which the data representa-
tion is two BigDecimals representing the real and imaginary parts.

3.32 Sometimes a complex number is represented as a magnitude and an angle
(in the half-open range of 0 to 360 degrees). Provide an implementation
of a BigComplex class, in which the data representation is one BigDecimal
representing the magnitude and a double representing the angle.

3.33 Implement a class, Polynomial, to represent single-variable polynomi-
als and write a test program. The functionality of the Polynomial class
is as follows:

n Provide at least three constructors: a zero-parameter constructor
that makes the polynomial zero, a constructor that makes a sepa-
rate independent copy of an existing polynomial, and a construc-
tor that creates a polynomial based on a String specification. The
last constructor can throw an exception if the String specification
is invalid, and you can make a design decision on what a valid
specification is.

n negate returns the negative of this polynomial.

n add, subtract, and multiply return a new polynomial that is the
sum, difference, or product, respectively, of this polynomial and
another polynomial, rhs. None of these methods change either of
the original polynomials.

n equals and toString follow the standard contract for these func-
tions. For toString make the String representation look as nice as
you can.

n The polynomial is represented by two fields. One, degree, repre-
sents the degree of the polynomial. Thus x2+2x +1 is degree 2,
3x + 5 is degree 1, and 4 is degree 0. Zero is automatically
degree 0. The second field, coeff, represents the coefficients
(coeff[i] represents the coefficient of xi).

references 107

3.34 Modify the class in the previous exercise to store the coefficients as
BigRationals.

3.35 Implement a complete IntType class that supports a reasonable set of
constructors, add, subtract, multiply, divide, equals, compareTo, and
toString. Maintain an IntType as a sufficiently large array. For this
class, the difficult operation is division, followed closely by
multiplication.

references

More information on classes can be found in the references at the end of
Chapter 1. The classic reference on design patterns is [1]. This book describes
23 standard patterns, some of which we will discuss later.

1. E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Elements of Reusable
Object-Oriented Software, Addison-Wesley, Reading, MA, 1995.

This page intentionally left blank

chap te r 4

inheritance

As mentioned in Chapter 3, an important goal of object-oriented pro-
gramming is code reuse. Just as engineers use components over and over in
their designs, programmers should be able to reuse objects rather than repeat-
edly reimplement them. In an object-oriented programming language, the
fundamental mechanism for code reuse is inheritance. Inheritance allows us
to extend the functionality of an object. In other words, we can create new
types with restricted (or extended) properties of the original type, in effect
forming a hierarchy of classes.

Inheritance is more than simply code reuse, however. By using inherit-
ance correctly, it enables the programmer to more easily maintain and update
code, both of which are essential in large commercial applications. Under-
standing of the use of inheritance is essential in order to write significant Java
programs, and it is also used by Java to implement generic methods and
classes.

In this chapter, we will see

n General principles of inheritance, including polymorphism

n How inheritance is implemented in Java

n How a collection of classes can be derived from a single abstract
class

n The interface, which is a special kind of a class

110 chapter 4 inheritance

n How Java implements generic programming using inheritance

n How Java 5 implements generic programming using generic classes

4.1 what is inheritance?
In an IS-A relation-
ship, we say the
derived class is a
(variation of the)
base class.

Inheritance is the fundamental object-oriented principle that is used to
reuse code among related classes. Inheritance models the IS-A relation-
ship. In an IS-A relationship, we say the derived class is a (variation of
the) base class. For example, a Circle IS-A Shape and a Car IS-A Vehicle.
However, an Ellipse IS-NOT-A Circle. Inheritance relationships form hier-
archies. For instance, we can extend Car to other classes, since a Foreign-
Car IS-A Car (and pays tariffs) and a DomesticCar IS-A Car (and does not
pay tariffs), and so on.

In a HAS-A relation-
ship, we say the
derived class has a
(instance of the)
base class. Compo-
sition is used to
model HAS-A
relationships.

Another type of relationship is a HAS-A (or IS-COMPOSED-OF) rela-
tionship. This type of relationship does not possess the properties that would
be natural in an inheritance hierarchy. An example of a HAS-A relationship is
that a car HAS-A steering wheel. HAS-A relationships should not be modeled
by inheritance. Instead, they should use the technique of composition, in
which the components are simply made private data fields.

As we will see in forthcoming chapters, the Java language itself makes
extensive use of inheritance in implementing its class libraries.

4.1.1 creating new classes

Our inheritance discussion will center around an example. Figure 4.1 shows a
typical class. The Person class is used to store information about a person; in
our case we have private data that includes the name, age, address, and phone
number, along with some public methods that can access and perhaps change
this information. We can imagine that in reality, this class is significantly
more complex, storing perhaps 30 data fields with 100 methods.

Now suppose we want to have a Student class or an Employee class or both.
Imagine that a Student is similar to a Person, with the addition of only a few
extra data members and methods. In our simple example, imagine that the
difference is that a Student adds a gpa field and a getGPA accessor. Similarly,
imagine that the Employee has all of the same components as a Person but also
has a salary field and methods to manipulate the salary.

One option in designing these classes is the classic copy-and-paste: We
copy the Person class, change the name of the class and constructors, and then
add the new stuff. This strategy is illustrated in Figure 4.2.

4.1 what is inheritance? 111

Copy-and-paste is a weak design option, fraught with significant liabili-
ties. First, there is the problem that if you copy garbage, you wind up with
more garbage. This makes it very hard to fix programming errors that are
detected, especially when they are detected late.

Second is the related issue of maintenance and versioning. Suppose we
decide in the second version that it is better to store names in last name, first
name format, rather than as a single field. Or perhaps it is better to store
addresses using a special Address class. In order to maintain consistency, these
should be done for all classes. Using copy-and-paste, these design changes
have to be done in numerous places.

Third, and more subtle, is the fact that using copy-and-paste, Person,
Student, and Employee are three separate entities with zero relationship between

figure 4.1

The Person class
stores name, age,
address, and phone
number.

1 class Person
2 {
3 public Person(String n, int ag, String ad, String p)
4 { name = n; age = ag; address = ad; phone = p; }
5
6 public String toString()
7 { return getName() + " " + getAge() + " "
8 + getPhoneNumber(); }
9

10 public String getName()
11 { return name; }
12
13 public int getAge()
14 { return age; }
15
16 public String getAddress()
17 { return address; }
18
19 public String getPhoneNumber()
20 { return phone; }
21
22 public void setAddress(String newAddress)
23 { address = newAddress; }
24
25 public void setPhoneNumber(String newPhone)
26 { phone = newPhone; }
27
28 private String name;
29 private int age;
30 private String address;
31 private String phone;
32 }

112 chapter 4 inheritance

each other, in spite of their similarities. So, for instance, if we have a routine that
accepted a Person as a parameter, we could not send in a Student. We would thus
have to copy and paste all of those routines to make them work for these new
types.

Inheritance solves all three of these problems. Using inheritance, we would
say that a Student IS-A Person. We would then specify the changes that a Student
has relative to Person. There are only three types of changes that are allowed:

figure 4.2

The Student class
stores name, age,
address, phone
number, and gpa via
copy-and-paste.

1 class Student
2 {
3 public Student(String n, int ag, String ad, String p,
4 double g)
5 { name = n; age = ag; address = ad; phone = p; gpa = g; }
6
7 public String toString()
8 { return getName() + " " + getAge() + " "
9 + getPhoneNumber() + " " + getGPA(); }

10
11 public String getName()
12 { return name; }
13
14 public int getAge()
15 { return age; }
16
17 public String getAddress()
18 { return address; }
19
20 public String getPhoneNumber()
21 { return phone; }
22
23 public void setAddress(String newAddress)
24 { address = newAddress; }
25
26 public void setPhoneNumber(String newPhone)
27 { phone = newPhone; }
28
29 public double getGPA()
30 { return gpa; }
31
32 private String name;
33 private int age;
34 private String address;
35 private String phone;
36 private double gpa
37 }

4.1 what is inheritance? 113

1. Student can add new fields (e.g., gpa).

2. Student can add new methods (e.g., getGPA).

3. Student can override existing methods (e.g., toString).

Two changes are specifically not allowed because they would violate the
notion of an IS-A relationship:

1. Student cannot remove fields.

2. Student cannot remove methods.

Finally, the new class must specify its own constructors; this is likely to
involve some syntax that we will discuss in Section 4.1.6.

Figure 4.3 shows the Student class. The data layout for the Person and
Student classes is shown in Figure 4.4. It illustrates that the memory footprint
of any Student object includes all fields that would be contained in a Person

figure 4.3

Inheritance used to
create Student class

1 class Student extends Person
2 {
3 public Student(String n, int ag, String ad, String p,
4 double g)
5 {
6 /* OOPS! Need some syntax; see Section 4.1.6 */
7 gpa = g; }
8
9 public String toString()

10 { return getName() + " " + getAge() + " "
11 + getPhoneNumber() + " " + getGPA(); }
12
13 public double getGPA()
14 { return gpa; }
15
16 private double gpa;
17 }

figure 4.4

Memory layout with
inheritance. Light
shading indicates
fields that are private,
and accessible only by
methods of the class.
Dark shading in the
Student class
indicates fields that
are not accessible in
the Student class but
are nonetheless
present.

Person Class

Student Class

name
address

age
phone

name
address

age
phone

gpa

114 chapter 4 inheritance

object. However, because those fields are declared private by Person, they are
not accessible by Student class methods. That is why the constructor is prob-
lematic at this point: We cannot touch the data fields in any Student method
and instead can only manipulate the inherited private fields by using public
Person methods. Of course, we could make the inherited fields public, but that
would generally be a terrible design decision. It would embolden the imple-
mentors of the Student and Employee classes to access the inherited fields
directly. If that was done, and modifications such as a change in the Person’s
data representation of the name or address were made to the Person class, we
would now have to track down all of the dependencies, which would bring us
back to the copy-and-paste liabilities.

Inheritance allows
us to derive classes
from a base class
without disturbing
the implementation
of the base class.

As we can see, except for the constructors, the code is relatively simple.
We have added one data field, added one new method, and overridden an
existing method. Internally, we have memory for all of the inherited fields,
and we also have implementations of all original methods that have not
been overridden. The amount of new code we have to write for Student would
be roughly the same, regardless of how small or large the Person class was,
and we have the benefit of direct code reuse and easy maintenance. Observe
also that we have done so without disturbing the implementation of the
existing class.

The extends clause
is used to declare
that a class is
derived from
another class.

Let us summarize the syntax so far. A derived class inherits all the proper-
ties of a base class. It can then add data members, override methods, and add
new methods. Each derived class is a completely new class. A typical layout
for inheritance is shown in Figure 4.5 and uses an extends clause. An extends
clause declares that a class is derived from another class. A derived class
extends a base class. Here is a brief description of a derived class:

n Generally all data is private, so we add additional data fields in the
derived class by specifying them in the private section.

figure 4.5

The general layout
of inheritance

1 public class Derived extends Base
2 {
3 // Any members that are not listed are inherited unchanged
4 // except for constructor.
5
6 // public members
7 // Constructor(s) if default is not acceptable
8 // Base methods whose definitions are to change in Derived
9 // Additional public methods

10
11 // private members
12 // Additional data fields (generally private)
13 // Additional private methods
14 }

4.1 what is inheritance? 115

n Any base class methods that are not specified in the derived class
are inherited unchanged, with the exception of the constructor. The
special case of the constructor is discussed in Section 4.1.6.

n Any base class method that is declared in the derived class’s public
section is overridden. The new definition will be applied to objects of
the derived class.

n Public base class methods may not be overridden in the private
section of the derived class, because that would be tantamount to
removing methods and would violate the IS-A relationship.

n Additional methods can be added in the derived class.

4.1.2 type compatibility

The direct code reuse described in the preceding paragraph is a significant
gain. However, the more significant gain is indirect code reuse. This gain
comes from the fact that a Student IS-A Person and an Employee IS-A Person.

Each derived class
is a completely new
class that nonethe-
less has some
compatibility with
the class from
which it was
derived.

Because a Student IS-A Person, a Student object can be accessed by a
Person reference. The following code is thus legal:

 Student s = new Student("Joe", 26, "1 Main St",
 "202-555-1212", 4.0);
 Person p = s;
 System.out.println("Age is " + p.getAge());

This is legal because the static type (i.e., compile-time type) of p is Person.
Thus p may reference any object that IS-A Person, and any method that we
invoke through the p reference is guaranteed to make sense, since once a
method is defined for Person, it cannot be removed by a derived class.

You might ask why this is a big deal. The reason is that this applies not
only to assignment, but also to parameter passing. A method whose formal
parameter is a Person can receive anything that IS-A Person, including Student
and Employee.

So consider the following code written in any class:

 public static boolean isOlder(Person p1, Person p2)
 {
 return p1.getAge() > p2.getAge();
 }

Consider the following declarations, in which constructor arguments are
missing to save space:

 Person p = new Person(...);
 Student s = new Student(...);
 Employee e = new Employee(...);

A derived class
inherits all data
members from the
base class and may
add more data
members.

The derived class
inherits all methods
from the base
class. It may accept
or redefine them.
It also can define
new methods.

116 chapter 4 inheritance

The single isOlder routine can be used for all of the following calls:
isOlder(p,p), isOlder(s,s), isOlder(e,e), isOlder(p,e), isOlder(p,s),
isOlder(s,p), isOlder(s,e), isOlder(e,p), isOlder(e,s).

All in all, we now have leveraged one non-class routine to work for nine dif-
ferent cases. In fact there is no limit to the amount of reuse this gets us. As soon as
we use inheritance to add a fourth class into the hierarchy, we now have 4 times 4,
or 16 different methods, without changing isOlder at all! The reuse is even more
significant if a method were to take three Person references as parameters. And
imagine the huge code reuse if a method takes an array of Person references.

Thus, for many people, the type compatibility of derived classes with their
base classes is the most important thing about inheritance because it leads to
massive indirect code reuse. And as isOlder illustrates, it also makes it very
easy to add in new types that automatically work with existing methods.

4.1.3 dynamic dispatch and polymorphism

There is the issue of overriding methods: If the type of the reference and the
class of the object being referenced (in the example above, these are Person
and Student, respectively) disagree, and they have different implementations,
whose implementation is to be used?

As an example, consider the following fragment:

 Student s = new Student("Joe", 26, "1 Main St",
 "202-555-1212", 4.0);
 Employee e = new Employee("Boss", 42, "4 Main St.",
 "203-555-1212", 100000.0);
 Person p = null;
 if(getTodaysDay().equals("Tuesday"))
 p = s;
 else
 p = e;
 System.out.println("Person is " + p.toString());

A polymorphic vari-
able can reference
objects of several
different types.
When operations
are applied to the
polymorphic vari-
able, the operation
appropriate to the
referenced object
is automatically
selected.

Here the static type of p is Person. When we run the program, the dynamic
type (i.e., the type of the object actually being referenced) will be either
Student or Employee. It is impossible to deduce the dynamic type until the
program runs. Naturally, however, we would want the dynamic type to be
used, and that is what happens in Java. When this code fragment is run, the
toString method that is used will be the one appropriate for the dynamic type
of the controlling object reference.

This is an important object-oriented principle known as polymorphism.
A reference variable that is polymorphic can reference objects of several
different types. When operations are applied to the reference, the operation
that is appropriate to the actual referenced object is automatically selected.

4.1 what is inheritance? 117

All reference types are polymorphic in Java. This is also known as dynamic
dispatch or late binding (or sometimes dynamic binding).

A derived class is type-compatible with its base class, meaning that a
reference variable of the base class type may reference an object of the
derived class, but not vice versa. Sibling classes (that is, classes derived from
a common class) are not type-compatible.

4.1.4 inheritance hierarchies
If X IS-A Y, then X
is a subclass of Y
and Y is a super-
class of X. These
relationships are
transitive.

As mentioned earlier, the use of inheritance typically generates a hierarchy of
classes. Figure 4.6 illustrates a possible Person hierarchy. Notice that Faculty
is indirectly, rather than directly, derived from Person⎯so faculty are people
too! This fact is transparent to the user of the classes because IS-A relation-
ships are transitive. In other words, if X IS-A Y and Y IS-A Z, then X IS-A Z.
The Person hierarchy illustrates the typical design issues of factoring out com-
monalities into base classes and then specializing in the derived classes. In
this hierarchy, we say that the derived class is a subclass of the base class and
the base class is a superclass of the derived class. These relationships are tran-
sitive, and furthermore, the instanceof operator works with subclasses. Thus
if obj is of type Undergrad (and not null), then obj instanceof Person is true.

4.1.5 visibility rules

We know that any member that is declared with private visibility is accessible
only to methods of the class. Thus as we have seen, any private members in
the base class are not accessible to the derived class.

figure 4.6

The Person hierarchy

Undergrad

EmployeeStudent

Person

Graduate Faculty Staff

118 chapter 4 inheritance

Occasionally we want the derived class to have access to the base class mem-
bers. There are two basic options. The first is to use either public or package visible
access (if the base and derived classes are in the same package), as appropriate.
However, this allows access by other classes in addition to derived classes.

A protected class
member is visible to
the derived class
and also classes in
the same package.

If we want to restrict access to only derived classes, we can make
members protected. A protected class member is visible to methods in a
derived class and also methods in classes in the same package, but not to
anyone else.1 Declaring data members as protected or public violates the
spirit of encapsulation and information hiding and is generally done only as a
matter of programming expediency. Typically, a better alternative is to write
accessor and mutator methods. However, if a protected declaration allows you
to avoid convoluted code, then it is not unreasonable to use it. In this text, pro-
tected data members are used for precisely this reason. Protected methods are
also used in this text. This allows a derived class to inherit an internal method
without making it accessible outside the class hierarchy. Notice that in toy
code, in which all classes are in the default unnamed package, protected
members are visible.

If no constructor is
written, then a sin-
gle zero-parameter
default constructor
is generated that
calls the base class
zero-parameter
constructor for the
inherited portion,
and then applies
the default initial-
ization for any addi-
tional data fields.

4.1.6 the constructor and super

Each derived class should define its constructors. If no constructor is written,
then a single zero-parameter default constructor is generated. This constructor
will call the base class zero-parameter constructor for the inherited portion
and then apply the default initialization for any additional data fields (mean-
ing 0 for primitive types, and null for reference types).

Constructing a derived class object by first constructing the inherited por-
tion is standard practice. In fact, it is done by default, even if an explicit
derived class constructor is given. This is natural because the encapsulation

1. The rule for protected visibility is quite complex. A protected member of class B is visible to
all methods in any classes that are in the same package as B. It is also visible to methods in
any class D that is in a different package than B if D extends B, but only if accessed through a
reference that is type-compatible with D (including an implicit or explicit this). Specifically,
it is NOT VISIBLE in class D if accessed through a reference of type B. The following example
illustrates this.

1 class Demo extends java.io.FilterInputStream
2 { // FilterInputStream has protected data field named in
3 public void foo()
4 {
5 java.io.FilterInputStream b = this; // legal
6 System.out.println(in); // legal
7 System.out.println(this.in); // legal
8 System.out.println(b.in); // illegal
9 }

10 }

4.1 what is inheritance? 119

viewpoint tells us that the inherited portion is a single entity, and the base
class constructor tells us how to initialize this single entity.

Base class constructors can be explicitly called by using the method super.
Thus the default constructor for a derived class is in reality

 public Derived()
 {
 super();
 }

super is used to call
the base class con-
structor.

The super method can be called with parameters that match a base class
constructor. As an example, Figure 4.7 illustrates the implementation of the
Student constructor.

The super method can be used only as the first line of a constructor. If it is
not provided, then an automatic call to super with no parameters is generated.

4.1.7 final methods and classes
A final method is
invariant over the
inheritance hierar-
chy and may not be
overridden.

As described earlier, the derived class either overrides or accepts the base
class methods. In many cases, it is clear that a particular base class method
should be invariant over the hierarchy, meaning that a derived class should not
override it. In this case, we can declare that the method is final and cannot be
overridden.

Declaring invariant methods final is not only good programming prac-
tice. It also can lead to more efficient code. It is good programming practice
because in addition to declaring your intentions to the reader of the program
and documentation, you prevent the accidental overriding of a method that
should not be overridden.

figure 4.7

A constructor for new
class Student; uses
super

1 class Student extends Person
2 {
3 public Student(String n, int ag, String ad, String p,
4 double g)
5 { super(n, ag, ad, p); gpa = g; }
6
7 // toString and getAge omitted
8
9 private double gpa;

10 }

120 chapter 4 inheritance

To see why using final may make for more efficient code, suppose base
class Base declares a final method f and suppose Derived extends Base. Consider
the routine

 void doIt(Base obj)
 {
 obj.f();
 }

Static binding could
be used when the
method is invariant
over the inheritance
hierarchy.

Since f is a final method, it does not matter whether obj actually refer-
ences a Base or Derived object; the definition of f is invariant, so we know
what f does. As a result, a compile-time decision, rather than a run-time
decision, could be made to resolve the method call. This is known as static
binding. Because binding is done during compilation rather than at run
time, the program should run faster. Whether this is noticeable would
depend on how many times we avoid making the run-time decision while
executing the program.

Static methods
have no controlling
object and thus are
resolved at com-
pile time using
static binding.

A corollary to this observation is that if f is a trivial method, such as a sin-
gle field accessor, and is declared final, the compiler could replace the call to
f with its inline definition. Thus the method call would be replaced by a single
line that accesses a data field, thereby saving time. If f is not declared final,
then this is impossible, since obj could be referencing a derived class object,
for which the definition of f could be different.2 Static methods are not final
methods, but have no controlling object and thus are resolved at compile time
using static binding.

A final class may
not be extended. A
leaf class is a final
class.

Similar to the final method is the final class. A final class cannot be
extended. As a result, all of its methods are automatically final methods. As an
example, the String class is a final class. Notice that the fact that a class has
only final methods does not imply that it is a final class. Final classes are also
known as leaf classes because in the inheritance hierarchy, which resembles a
tree, final classes are at the fringes, like leaves.

In the Person class, the trivial accessors and mutators (those starting with
get and set) are good candidates for final methods, and they are declared as
such in the online code.

2. In the preceding two paragraphs, we say that static binding and inline optimizations “could
be” done because although compile-time decisions would appear to make sense, Section
8.4.3.3 of the language specification makes clear that inline optimizations for trivial final
methods can be done, but this optimization must be done by the virtual machine at run time,
rather than the compiler at compile time. This ensures that dependent classes do not get out
of sync as a result of the optimization.

4.1 what is inheritance? 121

4.1.8 overriding a method
The derived class
method must have
the same return
type and signature
and may not add
exceptions to the
throws list.

Methods in the base class are overridden in the derived class by simply pro-
viding a derived class method with the same signature.3 The derived class
method must have the same return type and may not add exceptions to the
throws list.4 The derived class may not reduce visibility, as that would violate
the spirit of an IS-A relationship. Thus you may not override a public method
with a package-visible method.

Sometimes the derived class method wants to invoke the base class
method. Typically, this is known as partial overriding. That is, we want to do
what the base class does, plus a little more, rather than doing something
entirely different. Calls to a base class method can be accomplished by using
super. Here is an example:

public class Workaholic extends Worker
{
 public void doWork()
 {
 super.doWork(); // Work like a Worker
 drinkCoffee(); // Take a break
 super.doWork(); // Work like a Worker some more
 }
}

A more typical example is the overriding of standard methods, such as
toString. Figure 4.8 illustrates this use in the Student and Employee classes.

4.1.9 type compatibility revisited

Figure 4.9 illustrates the typical use of polymorphism with arrays. At line 17,
we create an array of four Person references, which will each be initialized to
null. The values of these references can be set at lines 19 to 24, and we know
that all the assignments are legal because of the ability of a base type refer-
ence to refer to objects of a derived type.

The printAll routine simply steps through the array and calls the toString
method, using dynamic dispatch. The test at line 7 is important because, as we
have seen, some of the array references could be null.

3. If a different signature is used, you simply have overloaded the method, and now there are
two methods with different signatures available for the compiler to choose from.

4. Java 5 loosens this requirement and allows the return type of the derived class’s method to
be slightly different as long as it is “compatible.” The new rule is discussed in Section
4.1.11.

Partial overriding
involves calling a
base class method
by using super.

122 chapter 4 inheritance

In the example, suppose that prior to completing the printing, we want to
give p[3]—which we know is an employee—a raise? Since p[3] is an
Employee, it might seem that

 p[3].raise(0.04);

would be legal. But it is not. The problem is that the static type of p[3] is a Person,
and raise is not defined for Person. At compile time, only (visible) members of
the static type of the reference can appear to the right of the dot operator.

We can change the static type by using a cast:

 ((Employee) p[3]).raise(0.04);

The above code makes the static type of the reference to the left of the dot
operator an Employee. If this is impossible (for instance, p[3] is in a completely

figure 4.8

The complete Student
and Employee classes,
using both forms of
super

1 class Student extends Person
2 {
3 public Student(String n, int ag, String ad, String p,
4 double g)
5 { super(n, ag, ad, p); gpa = g; }
6
7 public String toString()
8 { return super.toString() + getGPA(); }
9

10 public double getGPA()
11 { return gpa; }
12
13 private double gpa;
14 }
15
16 class Employee extends Person
17 {
18 public Employee(String n, int ag, String ad,
19 String p, double s)
20 { super(n, ag, ad, p); salary = s; }
21
22 public String toString()
23 { return super.toString() + " $" + getSalary(); }
24
25 public double getSalary()
26 { return salary; }
27
28 public void raise(double percentRaise)
29 { salary *= (1 + percentRaise); }
30
31 private double salary;
32 }

4.1 what is inheritance? 123

different hierarchy), the compiler will complain. If it is possible for the cast to
make sense, the program will compile, and so the above code will success-
fully give a 4% raise to p[3]. This construct, in which we change the static
type of an expression from a base class to a class farther down in the inheri-
tance hierarchy is known as a downcast.

What if p[3] was not an Employee? For instance, what if we used the following?

 ((Employee) p[1]).raise(0.04); // p[1] is a Student

In that case the program would compile, but the Virtual Machine would throw
a ClassCastException, which is a run-time exception that signals a program-
ming error. Casts are always double-checked at run time to ensure that the
programmer (or a malicious hacker) is not trying to subvert Java’s strong
typing system. The safe way of doing these types of calls is to use instanceof
first:

 if(p[3] instanceof Employee)
 ((Employee) p[3]).raise(0.04);

figure 4.9

An illustration of
polymorphism with
arrays

1 class PersonDemo
2 {
3 public static void printAll(Person [] arr)
4 {
5 for(int i = 0; i < arr.length; i++)
6 {
7 if(arr[i] != null)
8 {
9 System.out.print("[" + i + "] ");

10 System.out.println(arr[i].toString());
11 }
12 }
13 }
14
15 public static void main(String [] args)
16 {
17 Person [] p = new Person[4];
18
19 p[0] = new Person("joe", 25, "New York",
20 "212-555-1212");
21 p[1] = new Student("jill", 27, "Chicago",
22 "312-555-1212", 4.0);
23 p[3] = new Employee("bob", 29, "Boston",
24 "617-555-1212", 100000.0);
25
26 printAll(p);
27 }
28 }

A downcast is a
cast down the
inheritance hierar-
chy. Casts are
always verified at
runtime by the
Virtual Machine.

124 chapter 4 inheritance

4.1.10 compatibility of array types

One of the difficulties in language design is how to handle inheritance for
aggregate types. In our example, we know that Employee IS-A Person. But is it
true that Employee[] IS-A Person[]? In other words, if a routine is written to
accept Person[] as a parameter, can we pass an Employee[] as an argument?

Arrays of sub-
classes are type-
compatible with
arrays of super-
classes. This is
known as
covariant arrays.

At first glance, this seems like a no-brainer, and Employee[] should be
type-compatible with Person[]. However, this issue is trickier than it seems.
Suppose that in addition to Employee, Student IS-A Person. Suppose the
Employee[] is type-compatible with Person[]. Then consider this sequence of
assignments:

Person[] arr = new Employee[5]; // compiles: arrays are compatible
arr[0] = new Student(...); // compiles: Student IS-A Person

If an incompatible
type is inserted into
the array, the Virtual
Machine will throw
an ArrayStore-
Exception.

Both assignments compile, yet arr[0] is actually a referencing an Employee,
and Student IS-NOT-A Employee. Thus we have type confusion. The runtime
system cannot throw a ClassCastException since there is no cast.

The easiest way to avoid this problem is to specify that the arrays are not
type-compatible. However, in Java the arrays are type-compatible. This is
known as a covariant array type. Each array keeps track of the type of object
it is allowed to store. If an incompatible type is inserted into the array, the
Virtual Machine will throw an ArrayStoreException.

In Java 5, the sub-
class method’s
return type only
needs to be type-
compatible with
(i.e., it may be a
subclass of) the
superclass
method’s return
type. This is known
as a covariant
return type.

4.1.11 covariant return types

Prior to Java 5, when a method was overridden, the subclass method was
required to have the same return type as the superclass method. Java 5
relaxes this rule. In Java 5, the subclass method’s return type only needs to
be type-compatible with (i.e., it may be a subclass of) the superclass
method’s return type. This is known as a covariant return type. As an example,
suppose class Person has a makeCopy method

public Person makeCopy();

that returns a copy of the Person. Prior to Java 5, if class Employee overrode this
method, the return type would have to be Person. In Java 5, the method may be
overridden as

public Employee makeCopy();

4.2 designing hierarchies 125

4.2 designing hierarchies
Suppose we have a Circle class, and for any non-null Circle c, c.area()
returns the area of Circle c. Additionally, suppose we have a Rectangle class,
and for any non-null Rectangle r, r.area() returns the area of Rectangle r. Pos-
sibly we have other classes such as Ellipse, Triangle, and Square, all with area
methods. Suppose we have an array that contains references to these objects,
and we want to compute the total area of all the objects. Since they all have an
area method for all classes, polymorphism is an attractive option, yielding
code such as the following:

 public static double totalArea(WhatType [] arr)
 {
 double total = 0.0;

 for(int i = 0; i < arr.length; i++)
 if(arr[i] != null)
 total += arr[i].area();

 return total;
 }

For this code to work, we need to decide the type declaration for WhatType.
None of Circle, Rectangle, etc., will work, since there is no IS-A relationship.
Thus we need to define a type, say Shape, such that Circle IS-A Shape, Rectangle
IS-A Shape, etc. A possible hierarchy is illustrated in Figure 4.10. Additionally,
in order for arr[i].area() to make sense, area must be a method available
for Shape.

figure 4.10

The hierarchy of
shapes used in an
inheritance exampleShape

Circle Rectangle

126 chapter 4 inheritance

This suggests a class for Shape, as shown in Figure 4.11. Once we have the
Shape class, we can provide others, as shown in Figure 4.12. These classes
also include a perimeter method.

The code in Figure 4.12, with classes that extend the simple Shape class in
Figure 4.11 that returns –1 for area, can now be used polymorphically, as
shown in Figure 4.13.

Too many
instanceof opera-
tors is a symptom
of poor object-
oriented design.

A huge benefit of this design is that we can add a new class to the hierar-
chy without disturbing implementations. For instance, suppose we want to
add triangles into the mix. All we need to do is have Triangle extend Shape,
override area appropriately, and now Triangle objects can be included in any
Shape[] object. Observe that this involves the following:

n NO CHANGES to the Shape class

n NO CHANGES to the Circle, Rectangle, or other existing classes

n NO CHANGES to the totalArea method

making it difficult to break existing code in the process of adding new code. Notice
also the lack of any instanceof tests, which is typical of good polymorphic code.

4.2.1 abstract methods and classes

Although the code in the previous example works, improvements are possi-
ble in the Shape class written in Figure 4.11. Notice that the Shape class itself,
and the area method in particular, are placeholders: The Shape’s area method
is never intended to be called directly. It is there so that the compiler and
run-time system can conspire to use dynamic dispatch and call an appropriate
area method. In fact, examining main, we see that Shape objects themselves
are not supposed to be created either. The class exists simply as a common
superclass for the others.5

figure 4.11

A possible Shape class

1 public class Shape
2 {
3 public double area()
4 {
5 return -1;
6 }
7 }

5. Declaring a private Shape constructor DOES NOT solve the second problem: The constructor
is needed by the subclasses.

4.2 designing hierarchies 127

The programmer has attempted to signal that calling Shape’s area is an
error by returning –1, which is an obviously impossible area. But this is a
value that might be ignored. Furthermore, this is a value that will be returned
if, when extending Shape, area is not overridden. This failure to override could
occur because of a typographical error: An Area function is written instead of
area, making it difficult to track down the error at run time.

figure 4.12

Circle and Rectangle
classes

1 public class Circle extends Shape
2 {
3 public Circle(double rad)
4 { radius = rad; }
5
6 public double area()
7 { return Math.PI * radius * radius; }
8
9 public double perimeter()

10 { return 2 * Math.PI * radius; }
11
12 public String toString()
13 { return "Circle: " + radius; }
14
15 private double radius;
16 }
17
18 public class Rectangle extends Shape
19 {
20 public Rectangle(double len, double wid)
21 { length = len; width = wid; }
22
23 public double area()
24 { return length * width; }
25
26 public double perimeter()
27 { return 2 * (length + width); }
28
29 public String toString()
30 { return "Rectangle: " + length + " " + width; }
31
32 public double getLength()
33 { return length; }
34
35 public double getWidth()
36 { return width; }
37
38 private double length;
39 private double width;
40 }

128 chapter 4 inheritance

Abstract methods
and classes repre-
sent placeholders.

A better solution for area is to throw a runtime exception (a good one is
UnsupportedOperationException) in the Shape class. This is preferable to return-
ing –1 because the exception will not be ignored.

However, even that solution resolves the problem at runtime. It would be
better to have syntax that explicitly states that area is a placeholder and does
not need any implementation at all, and that further, Shape is a placeholder
class and cannot be constructed, even though it may declare constructors, and
will have a default constructor if none are declared. If this syntax were available,
then the compiler could, at compile time, declare as illegal any attempts to
construct a Shape instance. It could also declare as illegal any classes, such as
Triangle, for which there are attempts to construct instances, even though
area has not been overridden. This exactly describes abstract methods and
abstract classes.

An abstract method
has no meaningful
definition and is
thus always defined
in the derived class.

An abstract method is a method that declares functionality that all derived
class objects must eventually implement. In other words, it says what these
objects can do. However, it does not provide a default implementation.
Instead, each object must provide its own implementation.

figure 4.13

A sample
program that
uses the
shape
hierarchy

1 class ShapeDemo
2 {
3 public static double totalArea(Shape [] arr)
4 {
5 double total = 0;
6
7 for(Shape s : arr)
8 if(s != null)
9 total += s.area();

10
11 return total;
12 }
13
14 public static void printAll(Shape [] arr)
15 {
16 for(Shape s : arr)
17 System.out.println(s);
18 }
19
20 public static void main(String [] args)
21 {
22 Shape [] a = { new Circle(2.0), new Rectangle(1.0, 3.0), null };
23
24 System.out.println("Total area = " + totalArea(a));
25 printAll(a);
26 }
27 }

4.2 designing hierarchies 129

A class that has at least one abstract method is an abstract class. Java
requires that all abstract classes explicitly be declared as such. When a
derived class fails to override an abstract method with an implementation, the
method remains abstract in the derived class. As a result, if a class that is not
intended to be abstract fails to override an abstract method, the compiler will
detect the inconsistency and report an error.

An example of how we can make Shape abstract is shown in Figure 4.14.
No changes are required to any of the other code in Figures 4.12 and 4.13.
Observe that an abstract class can have methods that are not abstract, as is the
case with semiperimeter.

An abstract class can also declare both static and instance fields. Like
nonabstract classes, these fields would typically be private, and the instance
fields would be initialized by constructors. Although abstract classes cannot
be created, these constructors will be called when the derived classes use
super. In a more extensive example, the Shape class could include the coordi-
nates of the object’s extremities, which would be set by constructors, and it
could provide implementation of methods, such as positionOf, that are inde-
pendent of the actual type of object; positionOf would be a final method.

A class with at least
one abstract
method must be an
abstract class.

As mentioned earlier, the existence of at least one abstract method
makes the base class abstract and disallows creation of it. Thus a Shape object
cannot itself be created; only the derived objects can. However, as usual, a
Shape variable can reference any concrete derived object, such as a Circle or
Rectangle. Thus

 Shape a, b;
 a = new Circle(3.0); // Legal
 b = new Shape(); // Illegal

Before continuing, let us summarize the four types of class methods:

1. Final methods. The virtual machine may choose at run time to per-
form inline optimization, thus avoiding dynamic dispatch. We use a
final method only when the method is invariant over the inheritance
hierarchy (that is, when the method is never redefined).

figure 4.14

An abstract Shape
class. Figures 4.12
and 4.13 are
unchanged.

1 public abstract class Shape
2 {
3 public abstract double area();
4 public abstract double perimeter();
5
6 public double semiperimeter()
7 { return perimeter() / 2; }
8 }

130 chapter 4 inheritance

2. Abstract methods. Overriding is resolved at run time. The base class
provides no implementation and is abstract. The absence of a default
requires either that the derived classes provide an implementation or
that the classes themselves be abstract.

3. Static methods. Overridding is resolved at compile time because there
is no controlling object.

4. Other methods. Overriding is resolved at run time. The base class
provides a default implementation that may be either overridden by
the derived classes or accepted unchanged by the derived classes.

4.2.2 designing for the future

Consider the following implementation for the Square class:

public class Square extends Rectangle
{
 public Square(double side)
 { super(side, side); }
}

Since obviously a square is a rectangle whose length and width are the
same, it would seem reasonable to have Square extend Rectangle, and thus
avoid rewriting methods such as area and perimeter. While it is true that
because toString is not overridden, Squares will always be output as Rectangles
with identical lengths and widths, that can be repaired by providing a toString
method for Square. Thus the Square class can be made slick and we can reuse
Rectangle code. But is this a reasonable design? To answer that question, we
must go back to the fundamental rule of inheritance.

The extends clause is appropriate only if it is true that Square IS-A Rectangle.
From a programming perspective, this does not simply mean that a square
must geometrically be a type of rectangle; rather, it means that any operation
that a Rectangle can perform must also be able to be supported by a Square.
Most important, however, this is not a static decision, meaning that we do not
simply look at the current set of operations supported by Rectangle. Rather,
we must ask if it is reasonable to assume that in the future it is possible that
operations might be added to the Rectangle class that would not make
sense for a Square. If that is the case, then the argument that a Square IS-A
Rectangle is weakened considerably. For instance, suppose the Rectangle class
has a stretch method whose contract provides that stretch lengths the larger
dimension of the Rectangle, while leaving the smaller dimension in tact.
Clearly the operation cannot be made available to a Square, since doing so
would destroy squareness.

4.3 multiple inheritance 131

Multiple inheritance
is used to derive a
class from several
base classes. Java
does not allow mul-
tiple inheritance.

If we know that the Rectangle class has a stretch method, then it is proba-
bly not a good design to have Square extend Rectangle. If Square already
extends Rectangle and then later on we want to add stretch to Rectangle, there
are two basic ways to proceed.

Option #1 would be to have Square override stretch with an implementa-
tion that throws an exception:

 public void stretch(double factor)
{ throw new UnsupportedOperationException(); }

With this design, at least squares will never lose their squareness.
Option #2 would be to redesign the entire hierarchy to have Square no

longer extend Rectangle. This is known as refactoring. Depending on how
complicated the entire hierarchy is, this could be an incredibly messy task.
However, some development tools can automate much of the process. The best
plan, especially for a large hierarchy is to think about these issues at the time
of design, and ask what the hierarchy might reasonably look like in the future.
Often this is easy to say, but very challenging to do.

A similar philosophy occurs when deciding what exceptions should be
listed in the throws list of a method. Because of the IS-A relationship, when a
method is overridden, new checked exceptions cannot be added to the throws
list. The overriding implementation can reduce, or subset, the original list of
checked exceptions, but can never add to it. As such, in determining the
throws list of a method, the designer should look not only at the exceptions
that can be thrown in the current implementation of the method, but also what
exceptions might reasonably be thrown by the method in the future (should
the implementation change) and what exceptions might be thrown by overrid-
ing implementations provided by future subclasses.

4.3 multiple inheritance
All the inheritance examples seen so far derived one class from a single base
class. In multiple inheritance, a class may be derived from more than one base
class. For instance, we may have a Student class and an Employee class. A
StudentEmployee could then be derived from both classes.

Although multiple inheritance sounds attractive, and some languages
(including C++) support it, it is wrought with subtleties that make design
difficult. For instance, the two base classes may contain two methods that
have the same signature but different implementations. Alternatively, they
may have two identically named fields. Which one should be used?

132 chapter 4 inheritance

For example, suppose that in the previous StudentEmployee example, Person
is a class with data field name and method toString. Suppose, too, that Student
extends Person and overrides toString to include the year of graduation. Further,
suppose that Employee extends Person but does not override toString; instead, it
declares that it is final.

1. Since StudentEmployee inherits the data members from both Student
and Employee, do we get two copies of name?

2. If StudentEmployee does not override toString, which toString method
should be used?

When many classes are involved, the problems are even larger. It appears,
however, that the typical multiple inheritance problems can be traced to con-
flicting implementations or conflicting data fields. As a result, Java does not
allow multiple inheritance of implementations.

However, allowing multiple inheritance for the purposes of type-
compatibility can be very useful, as long as we can ensure that there are
no implementation conflicts.

Returning to our Shape example, suppose our hierarchy contains many
shapes such as Circle, Square, Ellipse, Rectangle, Triangle. Suppose that for
some, but not all of these shapes, we have a stretch method, as described in
Section 4.2.2 that lengthens the longest dimension, leaving all others
unchanged. We could reasonably envision that the stretch method is written
for Ellipse, Rectangle, and Triangle, but not Circle or Square. We would like a
method to stretch all the shapes in an array:

 public static void stretchAll(WhatType [] arr, factor)
 {
 for(WhatType s : arr)
 s.stretch(factor);
 }

The idea is that stretchAll would work for arrays of Ellipse, arrays of
Rectangle, arrays of Triangle, or even an array that contained Ellipses, Rectangles,
and Triangles.

For this code to work, we need to decide the type declaration for
WhatType. One possibility is that WhatType can be Shape, as long as Shape has
an abstract stretch method. We could then override stretch for each type
of Shape, having Circle and Square throw UnsupportedOperationExceptions.
But as we discussed in Section 4.2.2, this solution seems to violate the
notion of an IS-A relationship, and moreover, it does not generalize out to
more complicated cases.

4.3 multiple inheritance 133

Another idea would be to try to define an abstract class Stretchable as follows:

abstract class Stretchable
{
 public abstract void stretch(double factor);
}

We could use Stretchable as our missing type in the stretchAll method.
At that point, we would try to have Rectangle, Ellipses, and Triangle extend
Stretchable, and provide the stretch method:

// Does not work
public class Rectangle extends Shape, Stretchable
{
 public void stretch(double factor)
 { ... }
 public void area()
 { ... }

 ...
}

The picture that we would have at this point is shown in Figure 4.15.
In principle this would be fine, but then we have multiple inheritance,

which we have previously said was illegal, because of concerns that we
might inherit conflicting implementations. As it stands now, only the Shape
class has an implementation; Stretchable is purely abstract, so one could
argue that the compiler should be willing to grant leniency. But it is possible
that after everything is compiled, Stretchable could be altered to provide an

Shape

Circle Square Rectangle Ellipse Triangle

Stretchable

figure 4.15

Inheriting multiple classes. This does not work unless either Shape or Stretchable is
specifically designated as being implementation-free

134 chapter 4 inheritance

implementation, at which point there would be a problem. What we would
like is more than a campaign promise; we need some syntax that forces
Stretchable to remain implementation-free forever. If this was possible, then
the compiler could allow the inheritance from two classes that has a hierar-
chy in the style of Figure 4.15.

This syntax is precisely what an interface is.

4.4 the interface
The interface is an
abstract class that
contains no imple-
mentation details.

The interface in Java is the ultimate abstract class. It consists of public abstract
methods and public static final fields, only.

A class is said to implement the interface if it provides definitions for all
of the abstract methods in the interface. A class that implements the interface
behaves as if it had extended an abstract class specified by the interface.

In principle, the main difference between an interface and an abstract
class is that although both provide a specification of what the subclasses
must do, the interface is not allowed to provide any implementation details
either in the form of data fields or implemented methods. The practical
effect of this is that multiple interfaces do not suffer the same potential
problems as multiple inheritance because we cannot have conflicting imple-
mentations. Thus, while a class may extend only one other class, it may
implement more than one interface.

4.4.1 specifying an interface

Syntactically, virtually nothing is easier than specifying an interface. The inter-
face looks like a class declaration, except that it uses the keyword interface. It
consists of a listing of the methods that must be implemented. An example is
the Stretchable interface, shown in Figure 4.16.

The Stretchable interface specifies one method that every subclass
must implement: Stretch. Note that we do not have to specify that these
methods are public and abstract. Since these modifiers are required for
interface methods, they can and usually are omitted.

figure 4.16

The Stretchable
interface

1 /**
2 * Interface that defines stretch method to lengthen the longest
3 * dimension of a Shape
4 */
5 public interface Stretchable
6 {
7 void stretch(double factor);
8 }

4.4 the interface 135

4.4.2 implementing an interface
The implements
clause is used to
declare that a class
implements an
interface. The class
must implement all
interface methods
or it remains
abstract.

A class implements an interface by

1. Declaring that it implements the interface

2. Defining implementations for all the interface methods

An example is shown in Figure 4.17. Here, we complete the Rectangle
class, which we used in Section 4.2.

Line 1 shows that when implementing an interface, we use implements
instead of extends. We can provide any methods that we want, but we must
provide at least those listed in the interface. The interface is implemented at
lines 5 to 14. Notice that we must implement the exact method specified in the
interface.

A class that implements an interface can be extended if it is not final. The
extended class automatically implements the interface.

As we see from our example, a class that implements an interface may still
extend one other class. The extends clause must precede the implements clause.

4.4.3 multiple interfaces

As we mentioned earlier, a class may implement multiple interfaces. The
syntax for doing so is simple. A class implements multiple interfaces by

1. Listing the interfaces (comma separated) that it implements

2. Defining implementations for all of the interface methods

The interface is the ultimate in abstract classes and represents an elegant
solution to the multiple inheritance problem.

figure 4.17

The Rectangle class
(abbreviated), which
implements the
Stretchable interface

1 public class Rectangle extends Shape implements Stretchable
2 {
3 /* Remainder of class unchanged from Figure 4.12 */
4
5 public void stretch(double factor)
6 {
7 if(factor <= 0)
8 throw new IllegalArgumentException();
9

10 if(length > width)
11 length *= factor;
12 else
13 width *= factor;
14 }
15 }

136 chapter 4 inheritance

4.4.4 interfaces are abstract classes

Because an interface is an abstract class, all the rules of inheritance apply.
Specifically,

1. The IS-A relationship holds. If class C implements interface I,
then C IS-A I and is type-compatible with I. If a class C implements
interfaces I1, I2, and I3, then C IS-A I1, C IS-A I2, and C IS-A I3,
and is type-compatible with I1, I2, and I3.

2. The instanceof operator can be used to determine if a reference is
type-compatible with an interface.

3. When a class implements an interface method, it may not reduce
visibility. Since all interface methods are public, all implementations
must be public.

4. When a class implements an interface method, it may not add checked
exceptions to the throws list. If a class implements multiple interfaces in
which the same method occurs with a different throws list, the throws list
of the implementation may list only checked exceptions that are in the
intersection of the throws lists of the interface methods.

5. When a class implements an interface method, it must implement the
exact signature (not including the throws list); otherwise, it inherits an
abstract version of the interface method and has provided a non-
abstract overloaded, but different, method.

6. A class may not implement two interfaces that contain a method with
the same signature and incompatible return types, since it would be
impossible to provide both methods in one class.

7. If a class fails to implement any methods in an interface, it must be
declared abstract.

8. Interfaces can extend other interfaces (including multiple interfaces).

4.5 fundamental inheritance in java
Two important places where inheritance is used in Java are the Object class
and the hierarchy of exceptions.

4.5.1 the Object class

Java specifies that if a class does not extend another class, then it implicitly
extends the class Object (defined in java.lang). As a result, every class is
either a direct or indirect subclass of Object.

4.5 fundamental inheritance in java 137

The Object class contains several methods, and since it is not abstract,
all have implementations. The most commonly used method is toString,
which we have already seen. If toString is not written for a class, an imple-
mentation is provided that concatenates the name of the class, an @, and the
class’s “hash code.”

Other important methods are equals and the hashCode, which we will dis-
cuss in more detail in Chapter 6, and a set of somewhat tricky methods that
advanced Java programmers need to know about.

4.5.2 the hierarchy of exceptions

As described in Section 2.5, there are several types of exceptions. The root of
the hierarchy, a portion of which is shown in Figure 4.18, is Throwable, which

NullPointerException
ArrayIndexOutOfBoundsException
ArithmeticException
UnsupportedOperationException
NoSuchMethodException
InvalidArgumentException
java.util.NoSuchElementException
java.util.ConcurrentModificationException
java.util.EmptyStackException
ClassCastException

OutOfMemoryError
InternalError
UnknownError

java.io.IOException

java.io.FileNotFoundException

RuntimeException

Error

Throwable

Exception

figure 4.18

The hierarchy of
exceptions (partial
list)

138 chapter 4 inheritance

defines a set of printStackTrace methods, provides a toString implementation,
a pair of constructors, and little else. The hierarchy is split off into Error,
RuntimeException, and checked exceptions. A checked exception is any
Exception that is not a RuntimeException. For the most part, each new class
extends another exception class, providing only a pair of constructors. It is
possible to provide more, but none of the standard exceptions bother to do so.
In weiss.util, we implement three of the standard java.util exceptions. One
such implementation, which shows that new exception classes typically
provide little more than constructors, is shown in Figure 4.19.

4.5.3 i/o: the decorator pattern

I/O in Java looks fairly complex to use but works nicely for doing I/O with
different sources, such as the terminal, files, and Internet sockets. Because it is
designed to be extensible, there are lots of classes—over 50 in all. It is cumber-
some to use for trivial tasks; for instance, reading a number from the terminal
requires substantial work.

Input is done through the use of stream classes. Because Java was
designed for Internet programming, most of the I/O centers around byte-
oriented reading and writing.

figure 4.19

NoSuchElementException,
implemented in
weiss.util

1 package weiss.util;
2
3 public class NoSuchElementException extends RuntimeException
4 {
5 /**
6 * Constructs a NoSuchElementException with
7 * no detail message.
8 */
9 public NoSuchElementException()

10 {
11 }
12
13 /*
14 * Constructs a NoSuchElementException with
15 * a detail message.
16 * @param msg the detail message.
17 */
18 public NoSuchElementException(String msg)
19 {
20 super(msg);
21 }
22 }

4.5 fundamental inheritance in java 139

Byte-oriented I/O is done with stream classes that extend InputStream or
OutputStream. InputStream and OutputStream are abstract classes and not inter-
faces, so there is no such thing as a stream open for both input and output.
These classes declare an abstract read and write method for single-byte I/O,
respectively, and also a small set of concrete methods such as close and block
I/O (which can be implemented in terms of calls to single-byte I/O). Exam-
ples of these classes include FileInputStream and FileOutputStream, as well as
the hidden SocketInputStream and SocketOutputStream. (The socket streams are
produced by methods that return an object statically typed as InputStream or
OutputStream.)

InputStreamReader
and OutputStream-
Writer classes are
bridges that allow
the programmer to
cross over from
the Stream to
Reader and Writer
hierarchies.

Character-oriented I/O is done with classes that extend the abstract classes
Reader and Writer. These also contain read and write methods. There are not as
many Reader and Writer classes as InputStream and OutputStream classes.

However, this is not a problem, because of the InputStreamReader and
OutputStreamWriter classes. These are called bridges because they cross over
from the Stream to Reader and Writer hierarchies. An InputStreamReader is con-
structed with any InputStream and creates an object that IS-A Reader. For
instance, we can create a Reader for files using

 InputStream fis = new FileInputStream("foo.txt");
 Reader fin = new InputStreamReader(fis);

It happens that there is a FileReader convenience class that does this
already; Figure 4.20 provides a plausible implementation.

From a Reader, we can do limited I/O; the read method returns one charac-
ter. If we want to read one line instead, we need a class called BufferedReader.
Like other Reader objects, a BufferedReader is constructed from any other
Reader, but it provides both buffering and a readLine method. Thus, continuing
the previous example,

 BufferedReader bin = new BufferedReader(fin);

Wrapping an InputStream inside an InputStreamReader inside a BufferedReader
works for any InputStream, including System.in or sockets. Figure 4.21, which
mimics Figure 2.17, illustrates the use of this pattern to read two numbers from
the standard input.

figure 4.20

The FileReader
convenience class

1 class FileReader extends InputStreamReader
2 {
3 public FileReader(String name) throws FileNotFoundException
4 { super(new FileInputStream(name)); }
5 }

140 chapter 4 inheritance

The wrapping idea is an example of a commonly used Java design pat-
tern, which we will see again in Section 4.6.2.

Similar to the BufferedReader is the PrintWriter, which allows us to do
println operations.

The OutputStream hierarchy includes several wrappers, such as
DataOutput-Stream, ObjectOutputStream, and GZIPOutputStream.

DataOutputStream allows us to write primitives in binary form (rather than
human-readable text form); for instance, a call to writeInt writes the 4 bytes
that represent a 32-bit integer. Writing data that way avoids conversions to text
form, resulting in time and (sometimes) space savings. ObjectOutputStream
allows us to write an entire object including all its components, its compo-
nent’s components, etc., to a stream. The object and all its components must

figure 4.21

A program that
demonstrates the
wrapping of streams
and readers

1 import java.io.InputStreamReader;
2 import java.io.BufferedReader;
3 import java.io.IOException;
4 import java.util.Scanner;
5 import java.util.NoSuchElementException;
6
7 class MaxTest
8 {
9 public static void main(String [] args)

10 {
11 BufferedReader in = new BufferedReader(new
12 InputStreamReader(System.in));
13
14 System.out.println("Enter 2 ints on one line: ");
15 try
16 {
17 String oneLine = in.readLine();
18 if(oneLine == null)
19 return;
20 Scanner str = new Scanner(oneLine);
21
22 int x = str.nextInt();
23 int y = str.nextInt();
24
25 System.out.println("Max: " + Math.max(x, y));
26 }
27 catch(IOException e)
28 { System.err.println("Unexpected I/O error"); }
29 catch(NoSuchElementException e)
30 { System.err.println("Error: need two ints"); }
31 }
32 }

4.5 fundamental inheritance in java 141

implement the Serializable interface. There are no methods in the interface;
one must simply declare that a class is serializable.6 The GZIPOutputStream
wraps an OutputStream and compresses the writes prior to sending it to the
OutputStream. In addition, there is a BufferedOutputStream class. Similar wrappers
are found on the InputStream side. As an example, suppose we have an array of
serializable Person objects. We can write the objects, as a unit, compressed as
follows:

Person [] p = getPersons(); // populate the array
FileOutputStream fout = new FileOutputStream("people.gzip");
BufferedOutputStream bout = new BufferedOutputStream(fout);
GZIPOutputStream gout = new GZIPOutputStream(bout);
ObjectOutputStream oout = new ObjectOutputStream(gout);
oout.writeObject(p);
oout.close();

Later on, we could read everything back:

FileInputStream fin = new FileInputStream("people.gzip");
BufferedInputStream bin = new BufferedInputStream(fin);
GZIPInputStream gin = new GZIPInputStream(bin);
ObjectInputStream oin = new ObjectInputStream(gin);
Person [] p = (Person[]) oin.readObject();
oin.close();

The online code expands this example by having each Person store a name, a
birth date, and the two Person objects that represent the parents.

The idea of nesting
wrappers in order
to add functionality
is known as the
decorator pattern.

The idea of nesting wrappers in order to add functionality is known as
the decorator pattern. By doing this, we have numerous small classes that
are combined to provide a powerful interface. Without this pattern, each
different I/O source would have to have functionality for compression,
serialization, character, and byte I/O, and so on. With the pattern, each
source is only responsible for minimal, basic I/O, and then the extra fea-
tures are added on by the decorators.

6. The reason for this is that serialization, by default, is insecure. When an object is written out
in an ObjectOutputStream, the format is well known, so its private members can be read by a
malicious user. Similarly, when an object is read back in, the data on the input stream is not
checked for correctness, so it is possible to read a corrupt object. There are advanced tech-
niques that can be used to ensure security and integrity when serialization is used, but that is
beyond the scope of this text. The designers of the serialization library felt that serialization
should not be the default because correct use requires knowledge of these issues, and so
they placed a small roadblock in the way.

142 chapter 4 inheritance

4.6 implementing generic
components using inheritance

Generic program-
ming allows us to
implement type-
independent logic.

Recall that an important goal of object-oriented programming is the support
of code reuse. An important mechanism that supports this goal is the
generic mechanism: If the implementation is identical except for the basic
type of the object, a generic implementation can be used to describe the
basic functionality. For instance, a method can be written to sort an array of
items; the logic is independent of the types of objects being sorted, so a
generic method could be used.

In Java, genericity
is obtained by using
inheritance.

Unlike many of the newer languages (such as C++, which uses templates
to implement generic programming), before version 1.5 Java did not support
generic implementations directly. Instead, generic programming was imple-
mented using the basic concepts of inheritance. This section describes how
generic methods and classes can be implemented in Java using the basic prin-
ciples of inheritance.

Direct support for generic methods and classes was announced by Sun in
June 2001 as a future language addition. Finally, in late 2004, Java 5 was
released and provided support for generic methods and classes. However,
using generic classes requires an understanding of the pre-Java 5 idioms for
generic programming. As a result, an understanding of how inheritance is
used to implement generic programs is essential, even in Java 5.

4.6.1 using Object for genericity

The basic idea in Java is that we can implement a generic class by using an
appropriate superclass, such as Object.

Consider the IntCell class shown in Figure 3.2. Recall that the IntCell
supports the read and write methods. We can, in principle, make this a generic
MemoryCell class that stores any type of Object by replacing instances of int
with Object. The resulting MemoryCell class is shown in Figure 4.22.

There are two details that must be considered when we use this strat-
egy. The first is illustrated in Figure 4.23, which depicts a main that writes a
"37" to a MemoryCell object and then reads from the MemoryCell object. To
access a specific method of the object we must downcast to the correct
type. (Of course in this example, we do not need the downcast, since we are
simply invoking the toString method at line 9, and this can be done for any
object.)

A second important detail is that primitive types cannot be used. Only
reference types are compatible with Object. A standard workaround to this
problem is discussed momentarily.

4.6 implementing generic components using inheritance 143

MemoryCell is a fairly small example. A larger example that is typical of
generic code reuse, Figure 4.24 shows a simplified generic ArrayList class as
it would be written before Java 5; the online code fills in some additional
methods.

4.6.2 wrappers for primitive types

When we implement algorithms, often we run into a language typing prob-
lem: We have an object of one type, but the language syntax requires an object
of a different type.

This technique illustrates the basic theme of a wrapper class. One typical
use is to store a primitive type, and add operations that the primitive type
either does not support or does not support correctly. A second example was
seen in the I/O system, in which a wrapper stores a reference to an object and
forwards requests to the object, embellishing the result somehow (for
instance, with buffering or compression). A similar concept is an adapter
class (in fact, wrapper and adapter are often used interchangeably). An

figure 4.22

A generic MemoryCell
class (pre-Java 5)

1 // MemoryCell class
2 // Object read() --> Returns the stored value
3 // void write(Object x) --> x is stored
4
5 public class MemoryCell
6 {
7 // Public methods
8 public Object read() { return storedValue; }
9 public void write(Object x) { storedValue = x; }

10
11 // Private internal data representation
12 private Object storedValue;
13 }

figure 4.23

Using the generic
MemoryCell class
(pre-Java 5)

1 public class TestMemoryCell
2 {
3 public static void main(String [] args)
4 {
5 MemoryCell m = new MemoryCell();
6
7 m.write("37");
8 String val = (String) m.read();
9 System.out.println("Contents are: " + val);

10 }
11 }

A wrapper class
stores an entity
(the wrapee) and
adds operations
that the original
type does not sup-
port correctly. An
adapter class is
used when the
interface of a class
is not exactly what
is needed.

144 chapter 4 inheritance

figure 4.24

A simplified ArrayList,
with add, get, and size
(pre-Java 5)

1 /**
2 * The SimpleArrayList implements a growable array of Object.
3 * Insertions are always done at the end.
4 */
5 public class SimpleArrayList
6 {
7 /**
8 * Returns the number of items in this collection.
9 * @return the number of items in this collection.

10 */
11 public int size()
12 {
13 return theSize;
14 }
15
16 /**
17 * Returns the item at position idx.
18 * @param idx the index to search in.
19 * @throws ArrayIndexOutOfBoundsException if index is bad.
20 */
21 public Object get(int idx)
22 {
23 if(idx < 0 || idx >= size())
24 throw new ArrayIndexOutOfBoundsException();
25 return theItems[idx];
26 }
27
28 /**
29 * Adds an item at the end of this collection.
30 * @param x any object.
31 * @return true (as per java.util.ArrayList).
32 */
33 public boolean add(Object x)
34 {
35 if(theItems.length == size())
36 {
37 Object [] old = theItems;
38 theItems = new Object[theItems.length * 2 + 1];
39 for(int i = 0; i < size(); i++)
40 theItems[i] = old[i];
41 }
42
43 theItems[theSize++] = x;
44 return true;
45 }
46
47 private static final int INIT_CAPACITY = 10;
48
49 private int theSize = 0;
50 private Object [] theItems = new Object[INIT_CAPACITY];
51 }

4.6 implementing generic components using inheritance 145

adapter class is typically used when the interface of a class is not exactly what
is needed, and provides a wrapping effect, while changing the interface.

In Java, we have already seen that although every reference type is com-
patible with Object, the eight primitive types are not. As a result, Java provides
a wrapper class for each of the eight primitive types. For instance, the wrapper
for the int type is Integer. Each wrapper object is immutable (meaning its
state can never change), stores one primitive value that is set when the object
is constructed, and provides a method to retrieve the value. The wrapper
classes also contain a host of static utility methods.

As an example, Figure 4.25 shows how we can use the Java 5 ArrayList to
store integers. Note carefully that we cannot use ArrayList<int>.

4.6.3 autoboxing/unboxing

The code in Figure 4.25 is annoying to write because using the wrapper
class requires creation of an Integer object prior to the call to add, and then
the extraction of the int value from the Integer, using the intValue method.
Prior to Java 1.4, this is required because if an int is passed in a place
where an Integer object is required, the compiler will generate an error
message, and if the result of an Integer object is assigned to an int, the
compiler will generate an error message. This resulting code in Figure 4.25
accurately reflects the distinction between primitive types and reference
types, yet, it does not cleanly express the programmer’s intent of storing
ints in the collection.

Java 5 rectifies this situation. If an int is passed in a place where an Inte-
ger is required, the compiler will insert a call to the Integer constructor behind
the scenes. This is known as auto-boxing. And if an Integer is passed in a

figure 4.25

An illustration of the
Integer wrapper class
using Java 5 generic
ArrayList

1 import java.util.ArrayList;
2
3 public class BoxingDemo
4 {
5 public static void main(String [] args)
6 {
7 ArrayList<Integer> arr = new ArrayList<Integer>();
8
9 arr.add(new Integer(46));

10 Integer wrapperVal = arr.get(0);
11 int val = wrapperVal.intValue();
12 System.out.println("Position 0: " + val);
13 }
14 }

146 chapter 4 inheritance

place where an int is required, the compiler will insert a call to the intValue
method behind the scenes. This is known as auto-unboxing. Similar behavior
occurs for the seven other primitive/wrapper pairs. Figure 4.26 illustrates
the use of autoboxing and unboxing. Note that the entities referenced in the
ArrayList are still Integer objects; int cannot be substituted for Integer in the
ArrayList instantiations.

4.6.4 adapters: changing an interface

The adapter pattern is used to change the interface of an existing class to con-
form to another. Sometimes it is used to provide a simpler interface, either
with fewer methods or easier-to-use methods. Other times it is used simply to
change some method names. In either case, the implementation technique is
similar.

We have already seen one example of an adapter: the bridge classes
InputStreamReader and OutputStreamWriter that convert byte-oriented streams
into character-oriented streams.

As another example, our MemoryCell class in Section 4.6.1 uses read and
write. But what if we wanted the interface to use get and put instead? There
are two reasonable alternatives. One is to cut and paste a completely new
class. The other is to use composition, in which we design a new class that
wraps the behavior of an existing class.

We use this technique to implement the new class, StorageCell, in
Figure 4.27. Its methods are implemented by calls to the wrapped Memory-
Cell. It is tempting to use inheritance instead of composition, but inherit-
ance supplements the interface (i.e., it adds additional methods, but leaves
the originals). If that is the appropriate behavior, then indeed inheritance
may be preferable to composition.

figure 4.26

Autoboxing and
unboxing

1 import java.util.ArrayList;
2
3 public class BoxingDemo
4 {
5 public static void main(String [] args)
6 {
7 ArrayList<Integer> arr = new ArrayList<Integer>();
8
9 arr.add(46);

10 int val = arr.get(0);
11 System.out.println("Position 0: " + val);
12 }
13 }

The adapter pattern
is used to change
the interface of an
existing class to
conform to another.

4.6 implementing generic components using inheritance 147

4.6.5 using interface types for genericity

Using Object as a generic type works only if the operations that are being
performed can be expressed using only methods available in the Object
class.

Consider, for example, the problem of finding the maximum item in an
array of items. The basic code is type-independent, but it does require the
ability to compare any two objects and decide which is larger and which is
smaller. For instance, here is the basic code for finding the maximum BigInteger
in an array:

 public static BigInteger findMax(BigInteger [] arr)
 {
 int maxIndex = 0;

 for(int i = 1; i < arr.length; i++)
if(arr[i].compareTo(arr[maxIndex] < 0)

maxIndex = i;

 return arr[maxIndex];
 }

Finding the maximum item in an array of String, where maximum is
taken to be lexicographically (i.e. alphabetically last) is the same basic
code.

figure 4.27

An adapter class that
changes the
MemoryCell interface
to use get and put

1 // A class for simulating a memory cell.
2 public class StorageCell
3 {
4 public Object get()
5 { return m.read(); }
6
7 public void put(Object x)
8 { m.write(x); }
9

10 private MemoryCell m = new MemoryCell();
11 }

148 chapter 4 inheritance

 public static String findMax(String [] arr)
 {
 int maxIndex = 0;

 for(int i = 1; i < arr.length; i++)
if(arr[i].compareTo(arr[maxIndex] < 0)

maxIndex = i;

 return arr[maxIndex];
 }

If we want the findMax code to work for both types, or even others that
happen to also have a compareTo method, then we should be able to do so, as
long as we can identify a unifying type. As it turns out, the Java language
defines the Comparable interface, that contains a single compareTo method.
Many library classes implement the interface. We can also have own own
classes implement the interface. Figure 4.28 shows the basic hierarchy. Older
versions of Java require that compareTo’s parameter be listed as type Object;
newer versions (since Java 5) will have Comparable be a generic interface,
which we discuss in Section 4.7.

With this interface, we can simply write the findMax routine to accept an
array of Comparable. The older, pre-generic style for findMax is shown in
Figure 4.29, along with a test program.

It is important to mention a few caveats. First, only objects that imple-
ment the Comparable interface can be passed as elements of the Comparable
array. Objects that have a compareTo method but do not declare that they
implement Comparable are not Comparable, and do not have the requisite IS-A
relationship.

Second, if a Comparable array were to have two objects that are incompati-
ble (e.g., a Date and a BigInteger), the compareTo method would throw a
ClassCastException. This is the expected (indeed, required) behavior.

Third, as before, primitives cannot be passed as Comparables, but the wrap-
pers work because they implement the Comparable interface.

Comparable

DateString BigInteger

figure 4.28

Three classes that
all implement the
Comparable
interface

4.6 implementing generic components using inheritance 149

Fourth, it is not required that the interface be a standard library interface.
Finally, this solution does not always work, because it might be impossi-

ble to declare that a class implements a needed interface. For instance, the
class might be a library class, while the interface is a user-defined interface.
And if the class is final, we can’t even create a new class. Section 4.8 offers
another solution for this problem, which is the function object. The function
object uses interfaces also, and is perhaps one of the central themes encoun-
tered in the Java library.

figure 4.29

A generic findMax
routine, with demo
using shapes and
strings (pre-Java 5)

1 import java.math.BigInteger;
2
3 class FindMaxDemo
4 {
5 /**
6 * Return max item in a.
7 * Precondition: a.length > 0
8 */
9 public static Comparable findMax(Comparable [] a)

10 {
11 int maxIndex = 0;
12
13 for(int i = 1; i < a.length; i++)
14 if(a[i].compareTo(a[maxIndex]) > 0)
15 maxIndex = i;
16
17 return a[maxIndex];
18 }
19
20 /**
21 * Test findMax on BigInteger and String objects.
22 */
23 public static void main(String [] args)
24 {
25 BigInteger [] bi1 = { new BigInteger("8764"),
26 new BigInteger("29345"),
27 new BigInteger("1818") };
28
29 String [] st1 = { "Joe", "Bob", "Bill", "Zeke" };
30
31 System.out.println(findMax(bi1));
32 System.out.println(findMax(st1));
33 }
34 }

150 chapter 4 inheritance

4.7 implementing generic components
using java 5 generics

We have already seen that Java 5 supports generic classes and that these
classes are easy to use. However, writing generic classes requires a little more
work. In this section, we illustrate the basics of how generic classes and meth-
ods are written. We do not attempt to cover all the constructs of the language,
which are quite complex and sometimes tricky. Instead, we show the syntax
and idioms that are used throughout this book.

4.7.1 simple generic classes and interfaces

Figure 4.30 shows a generic version of the MemoryCell class previously
depicted in Figure 4.22. Here, we have changed the name to GenericMemoryCell
because neither class is in a package and thus the names cannot be the same.

When a generic
class is specified,
the class declara-
tion includes one or
more type parame-
ters, enclosed in
angle brackets <>
after the class
name.

When a generic class is specified, the class declaration includes one or
more type parameters enclosed in angle brackets <> after the class name. Line 1
shows that the GenericMemoryCell takes one type parameter. In this instance,
there are no explicit restrictions on the type parameter, so the user can create
types such as GenericMemoryCell<String> and GenericMemoryCell<Integer> but
not GenericMemoryCell<int>. Inside the GenericMemoryCell class declaration, we
can declare fields of the generic type and methods that use the generic type as a
parameter or return type.

Interfaces can also
be declared as
generic.

Interfaces can also be declared as generic. For example, prior to Java 5 the
Comparable interface was not generic, and its compareTo method took an Object
as the parameter. As a result, any reference variable passed to the compareTo
method would compile, even if the variable was not a sensible type, and only
at runtime would the error be reported as a ClassCastException. In Java 5, the
Comparable class is generic, as shown in Figure 4.31. The String class, for

figure 4.30

Generic
implementation of the
MemoryCell class

1 public class GenericMemoryCell<AnyType>
2 {
3 public AnyType read()
4 { return storedValue; }
5 public void write(AnyType x)
6 { storedValue = x; }
7
8 private AnyType storedValue;
9 }

4.7 implementing generic components using java 5 generics 151

instance, now implements Comparable<String> and has a compareTo method that
takes a String as a parameter. By making the class generic, many of the errors
that were previously only reported at runtime become compile-time errors.

4.7.2 wildcards with bounds

In Figure 4.13 we saw a static method that computes the total area in an array
of Shapes. Suppose we want to rewrite the method so that it works with a
parameter that is ArrayList<Shape>. Because of the enhanced for loop, the
code should be identical, and the resulting code is shown in Figure 4.32. If we
pass an ArrayList<Shape>, the code works. However, what happens if we pass
an ArrayList<Square>? The answer depends on whether an ArrayList<Square>
IS-A ArrayList<Shape>. Recall from Section 4.1.10 that the technical term for
this is whether we have covariance.

Generic collections
are not covariant.

In Java, as we mentioned in Section 4.1.10, arrays are covariant. So
Square[] IS-A Shape[]. On the one hand, consistency would suggest that if
arrays are covariant, then collections should be covariant too. On the other
hand, as we saw in Section 4.1.10, the covariance of arrays leads to code that
compiles but then generates a runtime exception (an ArrayStoreException).
Because the entire reason to have generics is to generate compiler errors
rather than runtime exceptions for type mismatches, generic collections are
not covariant. As a result, we cannot pass an ArrayList<Square> as a parameter
to the method in Figure 4.32.

figure 4.31

Comparable interface,
Java 5 version which
is generic

1 package java.lang;
2
3 public interface Comparable<AnyType>
4 {
5 public int compareTo(AnyType other);
6 }

figure 4.32

totalArea method that
does not work if
passed an
ArrayList<Square>

1 public static double totalArea(ArrayList<Shape> arr)
2 {
3 double total = 0;
4
5 for(Shape s : arr)
6 if(s != null)
7 total += s.area();
8
9 return total;

10 }

152 chapter 4 inheritance

What we are left with is that generics (and the generic collections) are
not covariant (which makes sense) but arrays are. Without additional syntax,
users would tend to avoid collections because the lack of covariance makes
the code less flexible.

Wildcards are used
to express sub-
classes (or
superclasses) of
parameter types.

Java 5 makes up for this with wildcards. Wildcards are used to express
subclasses (or superclasses) of parameter types. Figure 4.33 illustrates the
use of wildcards with a bound to write a totalArea method that takes as
parameter an ArrayList<T>, where T IS-A Shape. Thus, ArrayList<Shape> and
ArrayList<Square> are both acceptable parameters. Wildcards can also be
used without a bound (in which case extends Object is presumed) or with
super instead of extends (to express superclass rather than subclass); there
are also some other syntax uses that we do not discuss here.

4.7.3 generic static methods

In some sense, the totalArea method in Figure 4.33 is generic, since it works
for different types. But there is no specific type parameter list, as was done in
the GenericMemoryCell class declaration. Sometimes the specific type is impor-
tant perhaps because one of the following reasons apply:

The generic
method looks much
like the generic
class in that the
type parameter list
uses the same syn-
tax. The type list in
a generic method
precedes the return
type.

1. The type is used as the return type
2. The type is used in more than one parameter type
3. The type is used to declare a local variable

If so, then an explicit generic method with type parameters must be declared.
For instance, Figure 4.34 illustrates a generic static method that per-

forms a sequential search for value x in array arr. By using a generic
method instead of a nongeneric method that uses Object as the parameter
types, we can get compile-time errors if searching for an Apple in an array
of Shapes.

figure 4.33

totalArea method
revised with wildcards
that works if passed
an ArrayList<Square>

1 public static double totalArea(ArrayList<? extends Shape> arr)
2 {
3 double total = 0;
4
5 for(Shape s : arr)
6 if(s != null)
7 total += s.area();
8
9 return total;

10 }

4.7 implementing generic components using java 5 generics 153

The generic method looks much like the generic class in that the type
parameter list uses the same syntax. The type parameters in a generic method
precede the return type.

4.7.4 type bounds
The type bound is
specified inside the
angle brackets <>.

Suppose we want to write a findMax routine. Consider the code in Figure 4.35.
This code cannot work because the compiler cannot prove that the call to
compareTo at line 6 is valid; compareTo is guaranteed to exist only if AnyType is
Comparable. We can solve this problem by using a type bound. The type bound
is specified inside the angle brackets <>, and it specifies properties that the
parameter types must have. A naive attempt is to rewrite the signature as

public static <AnyType extends Comparable> ...

This is naive because as we know, the Comparable interface is now generic.
Although this code would compile, a better attempt would be

public static <AnyType extends Comparable<AnyType>> ...

However, this attempt is not satisfactory. To see the problem, suppose
Shape implements Comparable<Shape>. Suppose Square extends Shape. Then all

figure 4.34

Generic static method
to search an array

1 public static <AnyType>
2 boolean contains(AnyType [] arr, AnyType x)
3 {
4 for(AnyType val : arr)
5 if(x.equals(val))
6 return true;
7
8 return false;
9 }

figure 4.35

Generic static method
to find largest element
in an array that does
not work

1 public static <AnyType> AnyType findMax(AnyType [] a)
2 {
3 int maxIndex = 0;
4
5 for(int i = 1; i < a.length; i++)
6 if(a[i].compareTo(a[maxIndex]) > 0)
7 maxIndex = i;
8
9 return a[maxIndex];

10 }

154 chapter 4 inheritance

we know is that Square implements Comparable<Shape>. Thus, a Square IS-A
Comparable<Shape>, but it IS-NOT-A Comparable<Square>!

As a result, what we need to say is that AnyType IS-A Comparable<T> where
T is a superclass of AnyType. Since we do not need to know the exact type T, we
can use a wildcard. The resulting signature is

public static <AnyType extends Comparable<? super AnyType>>

Figure 4.36 shows the implementation of findMax. The compiler will
accept arrays of types T only such that T implements the Comparable<S> inter-
face, where T IS-A S. Certainly the bounds declaration looks like a mess. For-
tunately, we won’t see anything more complicated than this idiom.

4.7.5 type erasure
Generic classes are
converted by the
compiler to non-
generic classes by
a process known as
type erasure.

Generic types, for the most part, are constructs in the Java language but not in
the Virtual Machine. Generic classes are converted by the compiler to non-
generic classes by a process known as type erasure. The simplified version of
what happens is that the compiler generates a raw class with the same name
as the generic class with the type parameters removed. The type variables are
replaced with their bounds, and when calls are made to generic methods that
have an erased return type, casts are inserted automatically. If a generic class
is used without a type parameter, the raw class is used.

Generics do not
make the code
faster. They do
make the code
more type-safe at
compile time.

One important consequence of type erasure is that the generated code is
not much different than the code that programmers have been writing before
generics and in fact is not any faster. The significant benefit is that the pro-
grammer does not have to place casts in the code, and the compiler will do
significant type checking.

4.7.6 restrictions on generics

There are numerous restrictions on generic types. Every one of the restrictions
listed here is required because of type erasure.

figure 4.36

Generic static method
to find largest element
in an array. Illustrates
a bounds on the type
parameter

1 public static <AnyType extends Comparable<? super AnyType>>
2 AnyType findMax(AnyType [] a)
3 {
4 int maxIndex = 0;
5
6 for(int i = 1; i < a.length; i++)
7 if(a[i].compareTo(a[maxIndex]) > 0)
8 maxIndex = i;
9

10 return a[maxIndex];
11 }

4.7 implementing generic components using java 5 generics 155

primitive types
Primitive types can-
not be used for a
type parameter.

Primitive types cannot be used for a type parameter. Thus ArrayList<int> is
illegal. You must use wrapper classes.

instanceof tests
instanceof tests
and type casts
work only with the
raw type.

instanceof tests and type casts work only with the raw type. Thus, if

ArrayList<Integer> list1 = new ArrayList<Integer>();
list1.add(4);
Object list = list1;
ArrayList<String> list2 = (ArrayList<String>) list;
String s = list2.get(0);

was legal. then at runtime the typecast would succeed since all types are
ArrayList. Eventually, a runtime error would result at the last line because the
call to get would try to return a String but could not.

static contexts
Static methods and
fields cannot refer
to the class’s type
variables. Static
fields are shared
among the
class’s generic
instantiations.

In a generic class, static methods and fields cannot refer to the class’s type
variables since after erasure, there are no type variables. Further, since there is
really only one raw class, static fields are shared among the class’s generic
instantiations.

instantiation of generic types
It is illegal to create an instance of a generic type. If T is a type variable, the
statement

T obj = new T(); // Right-hand side is illegal

It is illegal to
create an instance
of a generic type.

is illegal. T is replaced by its bounds, which could be Object (or even an
abstract class), so the call to new cannot make sense.

generic array objects
It is illegal to cre-
ate an array of a
generic type.

It is illegal to create an array of a generic type. If T is a type variable, the statement

T [] arr = new T[10]; // Right-hand side is illegal

is illegal. T would be replaced by its bounds, which would probably be Object,
and then the cast (generated by type erasure) to T[] would fail because
Object[] IS-NOT-A T[]. Figure 4.37 shows a generic version of SimpleArrayL-
ist previously seen in Figure 4.24. The only tricky part is the code at line 38.
Because we cannot create arrays of generic objects, we must create an array
of Object and then use a typecast. This typecast will generate a compiler warn-
ing about an unchecked type conversion. It is impossible to implement the
generic collection classes with arrays without getting this warning. If clients
want their code to compile without warnings, they should use only generic
collection types, not generic array types.

156 chapter 4 inheritance

figure 4.37

SimpleArrayList class
using generics

1 /**
2 * The GenericSimpleArrayList implements a growable array.
3 * Insertions are always done at the end.
4 */
5 public class GenericSimpleArrayList<AnyType>
6 {
7 /**
8 * Returns the number of items in this collection.
9 * @return the number of items in this collection.

10 */
11 public int size()
12 {
13 return theSize;
14 }
15
16 /**
17 * Returns the item at position idx.
18 * @param idx the index to search in.
19 * @throws ArrayIndexOutOfBoundsException if index is bad.
20 */
21 public AnyType get(int idx)
22 {
23 if(idx < 0 || idx >= size())
24 throw new ArrayIndexOutOfBoundsException();
25 return theItems[idx];
26 }
27
28 /**
29 * Adds an item at the end of this collection.
30 * @param x any object.
31 * @return true.
32 */
33 public boolean add(AnyType x)
34 {
35 if(theItems.length == size())
36 {
37 AnyType [] old = theItems;
38 theItems = (AnyType [])new Object[size()*2 + 1];
39 for(int i = 0; i < size(); i++)
40 theItems[i] = old[i];
41 }
42
43 theItems[theSize++] = x;
44 return true;
45 }
46
47 private static final int INIT_CAPACITY = 10;
48
49 private int theSize;
50 private AnyType [] theItems;
51 }

4.8 the functor (function objects) 157

arrays of parameterized types
Instantiation of
arrays of parame-
terized types is
illegal.

Instantiation of arrays of parameterized types is illegal. Consider the following
code:

ArrayList<String> [] arr1 = new ArrayList<String>[10];
Object [] arr2 = arr1;
arr2[0] = new ArrayList<Double>();

Normally, we would expect that the assignment at line 3, which has the wrong
type, would generate an ArrayStoreException. However, after type erasure, the
array type is ArrayList[], and the object added to the array is ArrayList, so
there is no ArrayStoreException. Thus, this code has no casts, yet it will even-
tually generate a ClassCastException, which is exactly the situation that gener-
ics are supposed to avoid.

4.8 the functor (function objects)
In Sections 4.6 and 4.7, we saw how interfaces can be used to write generic
algorithms. As an example, the method in Figure 4.36 can be used to find the
maximum item in an array.

However, the findMax method has an important limitation. That is, it
works only for objects that implement the Comparable interface and are able
to provide compareTo as the basis for all comparison decisions. There are
many situations in which this is not feasible. As an example, consider the
SimpleRectangle class in Figure 4.38.

The SimpleRectangle class does not have a compareTo function, and conse-
quently cannot implement the Comparable interface. The main reason for this
is that because there are many plausible alternatives, it is difficult to decide
on a good meaning for compareTo. We could base the comparison on area,
perimeter, length, width, and so on. Once we write compareTo, we are stuck
with it. What if we want to have findMax work with several different comparison
alternatives?

The solution to the problem is to pass the comparison function as a sec-
ond parameter to findMax, and have findMax use the comparison function
instead of assuming the existence of compareTo. Thus findMax will now have
two parameters: an array of Object of an arbitrary type (which need not have
compareTo defined), and a comparison function.

The main issue left is how to pass the comparison function. Some lan-
guages allow parameters to be functions. However, this solution often has
efficiency problems and is not available in all object-oriented languages.
Java does not allow functions to be passed as parameters; we can only pass

158 chapter 4 inheritance

primitive values and references. So we appear not to have a way of passing a
function.

Functor is another
name for a func-
tion object.

However, recall that an object consists of data and functions. So we can
embed the function in an object and pass a reference to it. Indeed, this idea
works in all object-oriented languages. The object is called a function object,
and is sometimes also called a functor.

The function object
class contains a
method specified
by the generic
algorithm. An
instance of the
class is passed to
the algorithm.

The function object often contains no data. The class simply contains a
single method, with a given name, that is specified by the generic algorithm
(in this case, findMax). An instance of the class is then passed to the algo-
rithm, which in turn calls the single method of the function object. We can
design different comparison functions by simply declaring new classes.
Each new class contains a different implementation of the agreed-upon sin-
gle method.

In Java, to implement this idiom we use inheritance, and specifically we
make use of interfaces. The interface is used to declare the signature of the
agreed-upon function. As an example, Figure 4.39 shows the Comparator inter-
face, which is part of the standard java.util package. Recall that to illustrate
how the Java library is implemented, we will reimplement a portion of
java.util as weiss.util. Before Java 5, this class was not generic.

The interface says that any (nonabstract) class that claims to be a
Comparator must provide an implementation of the compare method; thus any
object that is an instance of such a class has a compare method that it can call.

figure 4.38

The SimpleRectangle
class, which does not
implement the
Comparable interface

1 // A simple rectangle class.
2 public class SimpleRectangle
3 {
4 public SimpleRectangle(int len, int wid)
5 { length = len; width = wid; }
6
7 public int getLength()
8 { return length; }
9

10 public int getWidth()
11 { return width; }
12
13 public String toString()
14 { return "Rectangle " + getLength() + " by "
15 + getWidth(); }
16
17 private int length;
18 private int width;
19 }

4.8 the functor (function objects) 159

Using this interface, we can now pass a Comparator as the second
parameter to findMax. If this Comparator is cmp, we can safely make the call
cmp.compare(o1,o2) to compare any two objects as needed. A wildcard used
in the Comparator parameter to indicate that the Comparator knows how to
compare objects that are the same type or supertypes of those in the array.
It is up to the caller of findMax to pass an appropriately implemented
instance of Comparator as the actual argument.

An example is shown in Figure 4.40. findMax now takes two parameters.
The second parameter is the function object. As shown on line 11, findMax
expects that the function object implements a method named compare, and it
must do so, since it implements the Comparator interface.

Once findMax is written, it can be called in main. To do so, we need to
pass to findMax an array of SimpleRectangle objects and a function object that
implements the Comparator interface. We implement OrderRectByWidth, a new
class that contains the required compare method. The compare method returns
an integer indicating if the first rectangle is less than, equal to, or greater than
the second rectangle on the basis of widths. main simply passes an instance
of OrderRectByWidth to findMax.7 Both main and OrderRectByWidth are shown in

7. The trick of implementing compare by subtracting works for ints as long as both are the same
sign. Otherwise, there is a possibility of overflow. This simplifying trick is also why we use
SimpleRectangle, rather than Rectangle (which stored widths as doubles).

figure 4.39

The Comparator
interface, originally
defined in java.util
and rewritten for the
weiss.util package

1 package weiss.util;
2
3 /**
4 * Comparator function object interface.
5 */
6 public interface Comparator<AnyType>
7 {
8 /**
9 * Return the result of comparing lhs and rhs.

10 * @param lhs first object.
11 * @param rhs second object.
12 * @return < 0 if lhs is less than rhs,
13 * 0 if lhs is equal to rhs,
14 * > 0 if lhs is greater than rhs.
15 */
16 int compare(AnyType lhs, AnyType rhs);
17 }

160 chapter 4 inheritance

Figure 4.41. Observe that the OrderRectByWidth object has no data members.
This is usually true of function objects.

The function object technique is an illustration of a pattern that we see
over and over again, not just in Java, but in any language that has objects. In
Java, this pattern is used over and over and over again and represents perhaps
the single dominant idiomatic use of interfaces.

figure 4.40

The generic findMax
algorithm, using a
function object

1 public class Utils
2 {
3 // Generic findMax with a function object.
4 // Precondition: a.length > 0.
5 public static <AnyType> AnyType
6 findMax(AnyType [] a, Comparator<? super AnyType> cmp)
7 {
8 int maxIndex = 0;
9

10 for(int i = 1; i < a.length; i++)
11 if(cmp.compare(a[i], a[maxIndex]) > 0)
12 maxIndex = i;
13
14 return a[maxIndex];
15 }
16 }

figure 4.41

An example of a
function object

1 class OrderRectByWidth implements Comparator<SimpleRectangle>
2 {
3 public int compare(SimpleRectangle r1, SimpleRectangle r2)
4 { return(r1.getWidth() - r2.getWidth()); }
5 }
6
7 public class CompareTest
8 {
9 public static void main(String [] args)

10 {
11 SimpleRectangle [] rects = new SimpleRectangle[4];
12 rects[0] = new SimpleRectangle(1, 10);
13 rects[1] = new SimpleRectangle(20, 1);
14 rects[2] = new SimpleRectangle(4, 6);
15 rects[3] = new SimpleRectangle(5, 5);
16
17 System.out.println("MAX WIDTH: " +
18 Utils.findMax(rects, new OrderRectByWidth()));
19 }
20 }

4.8 the functor (function objects) 161

4.8.1 nested classes

Generally speaking, when we write a class, we expect, or at least hope, for it
to be useful in many contexts, not just the particular application that is being
worked on.

An annoying feature of the function object pattern, especially in Java, is the
fact that because it is used so often, it results in the creation of numerous small
classes, that each contain one method, that are used perhaps only once in a pro-
gram, and that have limited applicability outside of the current application.

This is annoying for at least two reasons. First, we might have dozens of
function object classes. If they are public, by rule they are scattered in sepa-
rate files. If they are package visible, they might all be in the same file, but we
still have to scroll up and down to find their definitions, which is likely to be
far removed from the one or perhaps two places in the entire program where
they are instantiated as function objects. It would be preferable if each func-
tion object class could be declared as close as possible to its instantiation.
Second, once a name is used, it cannot be reused in the package without pos-
sibilities of name collisions. Although packages solve some namespace prob-
lems, they do not solve them all, especially when the same class name is used
twice in the default package.

With a nested class, we can solve some of these problems. A nested class is
a class declaration that is placed inside another class declaration—the outer
class—using the keyword static. A nested class is considered a member of the
outer class. As a result, it can be public, private, package visible, or protected,
and depending on the visibility, may or may not be accessible by methods that
are not part of the outer class. Typically, it is private and thus inaccessible from
outside the outer class. Also, because a nested class is a member of the outer
class, its methods can access private static members of the outer class, and can
access private instance members when given a reference to an outer object.

Figure 4.42 illustrates the use of a nested class in conjunction with the
function object pattern. The static in front of the nested class declaration of
OrderRectByWidth is essential; without it, we have an inner class, which
behaves differently and is discussed later in this text (in Chapter 15).

Occasionally, a nested class is public. In Figure 4.42, if OrderRectByWidth
was declared public, the class CompareTestInner1.OrderRectByWidth could be
used from outside of the CompareTestInner1 class.

4.8.2 local classes

In addition to allowing class declarations inside of classes, Java also allows
class declarations inside of methods. These classes are called local classes.
This is illustrated in Figure 4.43.

A nested class is a
class declaration
that is placed inside
another class dec-
laration—the outer
class—using the
keyword static.

A nested class is a
part of the outer
class and can be
declared with a visi-
bility specifier. All
outer class mem-
bers are visible to
the nested class’s
methods.

162 chapter 4 inheritance

figure 4.42

Using a nested class to hide the OrderRectByWidth class declaration

1 import java.util.Comparator;
2
3 class CompareTestInner1
4 {
5 private static class OrderRectByWidth implements Comparator<SimpleRectangle>
6 {
7 public int compare(SimpleRectangle r1, SimpleRectangle r2)
8 { return r1.getWidth() - r2.getWidth(); }
9 }

10
11 public static void main(String [] args)
12 {
13 SimpleRectangle [] rects = new SimpleRectangle[4];
14 rects[0] = new SimpleRectangle(1, 10);
15 rects[1] = new SimpleRectangle(20, 1);
16 rects[2] = new SimpleRectangle(4, 6);
17 rects[3] = new SimpleRectangle(5, 5);
18
19 System.out.println("MAX WIDTH: " +
20 Utils.findMax(rects, new OrderRectByWidth()));
21 }
22 }

figure 4.43

Using a local class to hide the OrderRectByWidth class declaration further

1 class CompareTestInner2
2 {
3 public static void main(String [] args)
4 {
5 SimpleRectangle [] rects = new SimpleRectangle[4];
6 rects[0] = new SimpleRectangle(1, 10);
7 rects[1] = new SimpleRectangle(20, 1);
8 rects[2] = new SimpleRectangle(4, 6);
9 rects[3] = new SimpleRectangle(5, 5);

10
11 class OrderRectByWidth implements Comparator<SimpleRectangle>
12 {
13 public int compare(SimpleRectangle r1, SimpleRectangle r2)
14 { return r1.getWidth() - r2.getWidth(); }
15 }
16
17 System.out.println("MAX WIDTH: " +
18 Utils.findMax(rects, new OrderRectByWidth()));
19 }
20 }

4.8 the functor (function objects) 163

An anonymous
class is a class that
has no name.

Java also allows
class declarations
inside of methods.
Such classes are
known as local
classes and may
not be declared
with either a visibil-
ity modifier or the
static modifier.

Note that when a class is declared inside a method, it cannot be declared
private or static. However, the class is visible only inside of the method in
which it was declared. This makes it easier to write the class right before its
first (perhaps only) use and avoid pollution of namespaces.

An advantage of declaring a class inside of a method is that the class’s
methods (in this case, compare) has access to local variables of the function
that are declared prior to the class. This can be important in some applica-
tions. There is a technical rule: In order to access local variables, the vari-
ables must be declared final. We will not be using these types of classes in
the text.

4.8.3 anonymous classes

One might suspect that by placing a class immediately before the line of code
in which it is used, we have declared the class as close as possible to its use.
However, in Java, we can do even better.

Figure 4.44 illustrates the anonymous inner class. An anonymous class is
a class that has no name. The syntax is that instead of writing new Inner(), and
providing the implementation of Inner as a named class, we write new
Interface(), and then provide the implementation of the interface (everything
from the opening to closing brace) immediately after the new expression.

figure 4.44

Using an anonymous class to implement the function object

1 class CompareTestInner3
2 {
3 public static void main(String [] args)
4 {
5 SimpleRectangle [] rects = new SimpleRectangle[4];
6 rects[0] = new SimpleRectangle(1, 10);
7 rects[1] = new SimpleRectangle(20, 1);
8 rects[2] = new SimpleRectangle(4, 6);
9 rects[3] = new SimpleRectangle(5, 5);

10
11 System.out.println("MAX WIDTH: " +
12 Utils.findMax(rects, new Comparator<SimpleRectangle>()
13 {
14 public int compare(SimpleRectangle r1, SimpleRectangle r2)
15 { return r1.getWidth() - r2.getWidth(); }
16 }
17));
18 }
19 }

164 chapter 4 inheritance

Anonymous classes
introduce signifi-
cant language
complications.

Anonymous classes
are often used to
implement function
objects.

Instead of implementing an interface anonymously, it is also possible to
extend a class anonymously, providing only the overridden methods.

The syntax looks very daunting, but after a while, one gets used to it. It
complicates the language significantly, because the anonymous class is a
class. As an example of the complications that are introduced, since the name
of a constructor is the name of a class, how does one define a constructor for
an anonymous class? The answer is that you cannot do so.

The anonymous class is in practice very useful, and its use is often seen as
part of the function object pattern in conjunction with event handling in user
interfaces. In event handling, the programmer is required to specify, in a func-
tion, what happens when certain events occur.

4.8.4 nested classes and generics

When a nested class is declared inside a generic class, the nested class cannot
refer to the parameter types of the generic outer class. However, the nested
class can itself be generic and can reuse the parameter type names of the
generic outer class. Examples of syntax include the following:

class Outer<AnyType>
{
 public static class Inner<AnyType>
 {
 }

 public static class OtherInner
 {
 // cannot use AnyType here
 }
}

Outer.Inner<String> i1 = new Outer.Inner<String>();
Outer.OtherInner i2 = new Outer.OtherInner();

Notice that in the declarations of i1 and i2, Outer has no parameter types.

4.9 dynamic dispatch details
Dynamic dispatch
is not important for
static, final, or pri-
vate methods.

A common myth is that all methods and all parameters are bound at run time.
This is not true. First, there are some cases in which dynamic dispatch is never
used or is not an issue:

n Static methods, regardless of how the method is invoked

n Final methods

4.9 dynamic dispatch details 165

Static overloading
means that the
parameters to a
method are always
deduced statically,
at compile time.

n Private methods (since they are invoked only from inside the class
and are thus implicitly final)

In other scenarios, dynamic dispatch is meaningfully used. But what
exactly does dynamic dispatch mean?

In Java, the param-
eters to a method
are always deduced
statically, at compile
time.

Dynamic dispatch means that the method that is appropriate for the object
being operated on is the one that is used. However, it does not mean that the
absolute best match is performed for all parameters. Specifically, in Java, the
parameters to a method are always deduced statically, at compile time.

For a concrete example, consider the code in Figure 4.45. In the whichFoo
method, a call is made to foo. But which foo is called? We expect the answer
to depend on the run-time types of arg1 and arg2.

Because parameters are always matched at compile time, it does not mat-
ter what type arg2 is actually referencing. The foo that is matched will be

 public void foo(Base x)

The only issue is whether the Base or Derived version is used. That is the
decision that is made at run time, when the object that arg1 references is known.

Dynamic dispatch
means that once
the signature of an
instance method is
ascertained, the
class of the method
can be determined
at run time based
on the dynamic
type of the invoking
object.

The precise methodology used is that the compiler deduces, at compile
time, the best signature, based on the static types of the parameters and the
methods that are available for the static type of the controlling reference. At that
point, the signature of the method is set. This step is called static overloading.
The only remaining issue is which class’s version of that method is used. This
is done by having the Virtual Machine deduce the runtime type of this object.
Once the runtime type is known, the Virtual Machine walks up the inheritance
hierarchy, looking for the last overridden version of the method; this is the first
method of the appropriate signature that the Virtual Machine finds as it walks
up toward Object.8 This second step is called dynamic dispatch.

Static overloading can lead to subtle errors when a method that is sup-
posed to be overridden is instead overloaded. Figure 4.46 illustrates a com-
mon programming error that occurs when implementing the equals method.

The equals method is defined in class Object and is intended to return true
if two objects have identical states. It takes an Object as a parameter, and the
Object provides a default implementation that returns true only if the two
objects are the same. In other words, in class Object, the implementation of
equals is roughly

 public boolean equals(Object other)
 { return this == other; }

8. If no such method is found, perhaps because only part of the program was recompiled, then
the Virtual Machine throws a NoSuchMethodException.

166 chapter 4 inheritance

When overridding equals, the parameter must be of type Object; other-
wise, overloading is being done. In Figure 4.46, equals is not overridden;
instead it is (unintentionally) overloaded. As a result, the call to sameVal will
return false, which appears surprising, since the call to equals returns true
and sameVal calls equals.

figure 4.45

An illustration of static
binding for
parameters

1 class Base
2 {
3 public void foo(Base x)
4 { System.out.println("Base.Base"); }
5
6 public void foo(Derived x)
7 { System.out.println("Base.Derived"); }
8 }
9

10 class Derived extends Base
11 {
12 public void foo(Base x)
13 { System.out.println("Derived.Base"); }
14
15 public void foo(Derived x)
16 { System.out.println("Derived.Derived"); }
17 }
18
19 class StaticParamsDemo
20 {
21 public static void whichFoo(Base arg1, Base arg2)
22 {
23 // It is guaranteed that we will call foo(Base)
24 // Only issue is which class's version of foo(Base)
25 // is called; the dynamic type of arg1 is used
26 // to decide.
27 arg1.foo(arg2);
28 }
29
30 public static void main(String [] args)
31 {
32 Base b = new Base();
33 Derived d = new Derived();
34
35 whichFoo(b, b);
36 whichFoo(b, d);
37 whichFoo(d, b);
38 whichFoo(d, d);
39 }
40 }

4.9 dynamic dispatch details 167

The problem is that the call in sameVal is this.equals(other). The static
type of this is SomeClass. In SomeClass, there are two versions of equals: the
listed equals that takes a SomeClass as a parameter, and the inherited equals
that takes an Object. The static type of the parameter (other) is Object, so
the best match is the equals that takes an Object. At run time, the virtual
machine searches for that equals, and finds the one in class Object. And
since this and other are different objects, the equals method in class Object
returns false.

Thus, equals must be written to take an Object as a parameter, and typi-
cally a downcast will be required after a verification that the type is appropri-
ate. One way of doing that is to use an instanceof test, but that is safe only for
final classes. Overriding equals is actually fairly tricky in the presence of
inheritance, and is discussed in Section 6.7.

figure 4.46

An illustration of
overloading equals
instead of overriding
equals. Here, the call
to the sameVal returns
false!

1 final class SomeClass
2 {
3 public SomeClass(int i)
4 { id = i; }
5
6 public boolean sameVal(Object other)
7 { return other instanceof SomeClass && equals(other); }
8
9 /**

10 * This is a bad implementation!
11 * other has the wrong type, so this does
12 * not override Object's equals.
13 */
14 public boolean equals(SomeClass other)
15 { return other != null && id == other.id; }
16
17 private int id;
18 }
19
20 class BadEqualsDemo
21 {
22 public static void main(String [] args)
23 {
24 SomeClass obj1 = new SomeClass(4);
25 SomeClass obj2 = new SomeClass(4);
26
27 System.out.println(obj1.equals(obj2)); // true
28 System.out.println(obj1.sameVal(obj2)); // false
29 }
30 }

168 chapter 4 inheritance

summary

Inheritance is a powerful feature that is an essential part of object-oriented pro-
gramming and Java. It allows us to abstract functionality into abstract base classes
and have derived classes implement and expand on that functionality. Several
types of methods can be specified in the base class, as illustrated in Figure 4.47.

The most abstract class, in which no implementation is allowed, is the
interface. The interface lists methods that must be implemented by a derived
class. The derived class must both implement all of these methods (or itself be
abstract) and specify, via the implements clause, that it is implementing the
interface. Multiple interfaces may be implemented by a class, thus providing a
simpler alternative to multiple inheritance.

Finally, inheritance allows us to easily write generic methods and classes
that work for a wide range of generic types. This will typically involve using a
significant amount of casting. Java 5 adds generic classes and methods that
hide the casting. Interfaces are also widely used for generic components, and
to implement the function object pattern.

This chapter concludes the first part of the text, which provided an over-
view of Java and object-oriented programming. We will now go on to look at
algorithms and the building blocks of problem solving.

key concepts

abstract class A class that cannot be constructed but serves to specify func-
tionality of derived classes. (129)

abstract method A method that has no meaningful definition and is thus
always defined in the derived class. (128)

figure 4.47

Four types of class
methods

Method Overloading Comments

final Potentially inlined Invariant over the inheritance hierarchy (method is
never redefined).

abstract Runtime Base class provides no implementation and is
abstract. Derived class must provide an
implementation.

static Compile time No controlling object.

Other Runtime Base class provides a default implementation that
may be either overridden by the derived classes or
accepted unchanged by the derived classes.

key concepts 169

adapter class A class that is typically used when the interface of another class
is not exactly what is needed. The adapter provides a wrapping effect,
while changing the interface. (143)

anonymous class A class that has no name and is useful for implementing
short function objects. (163)

base class The class on which the inheritance is based. (114)
boxing Creating an instance of a wrapper class to store a primitive type. In

Java 5, this is done automatically. (145)
composition Preferred mechanism to inheritance when an IS-A relationship

does not hold. Instead, we say that an object of class B is composed of an
object of class A (and other objects). (110)

covariant arrays In Java, arrays are covariant, meaning that Derived[] is type
compatible with Base[]. (124)

covariant return type Overriding the return type with a subtype. This is
allowed starting in Java 5. (124)

decorator pattern The pattern that involves the combining of several wrappers
in order to add functionality. (141)

derived class A completely new class that nonetheless has some compatibility
with the class from which it was derived. (114)

dynamic dispatch A runtime decision to apply the method corresponding to
the actual referenced object. (117)

extends clause A clause used to declare that a new class is a subclass of
another class. (114)

final class A class that may not be extended. (120)
final method A method that may not be overridden and is invariant over the

inheritance hierarchy. Static binding is used for final methods. (119)
function object An object passed to a generic function with the intention of

having its single method used by the generic function. (158)
functor A function object. (158)
generic classes Added in Java 5, allows classes to specify type parameters and

avoid significant amounts of type casting. (150)
generic programming Used to implement type-independent logic. (142)
HAS-A relationship A relationship in which the derived class has a (instance of

the) base class. (110)
implements clause A clause used to declare that a class implements the meth-

ods of an interface. (135)
inheritance The process whereby we may derive a class from a base class

without disturbing the implementation of the base class. Also allows the
design of class hierarchies, such as Throwable and InputStream. (114)

170 chapter 4 inheritance

interface A special kind of abstract class that contains no implementation
details. (134)

IS-A relationship A relationship in which the derived class is a (variation of
the) base class. (117)

leaf class A final class. (120)
local class A class inside a method, declared with no visibility modifier. (161)
multiple inheritance The process of deriving a class from several base classes.

Multiple inheritance is not allowed in Java. However, the alternative, mul-
tiple interfaces, is allowed. (131)

nested class A class inside a class, declared with the static modifier. (161)
partial overriding The act of augmenting a base class method to perform addi-

tional, but not entirely different, tasks. (121)
polymorphism The ability of a reference variable to reference objects of sev-

eral different types. When operations are applied to the variable, the oper-
ation that is appropriate to the actual referenced object is automatically
selected. (116)

protected class member Accessible by the derived class and classes in the
same package. (118)

raw class A class with the generic type parameters removed. (154)
static binding The decision on which class’s version of a method to use is made

at compile time. Is only used for static, final, or private methods. (120)
static overloading The first step for deducing the method that will be used. In

this step, the static types of the parameters are used to deduce the signature
of the method that will be invoked. Static overloading is always used.
(165)

subclass/superclass relationships If X IS-A Y, then X is a subclass of Y and Y
is a superclass of X. These relationships are transitive. (117)

super constructor call A call to the base class constructor. (119)
super object An object used in partial overriding to apply a base class method.

(121)
type bounds Specifies properties that type parameters must satisfy. (152)
type erasure The process by which generic classes are rewritten as nongeneric

classes. (150)
type parameters The parameters enclosed in angle brackets <> in a generic

class or method declaration. (150)
unboxing Creating a primitive type from an instance of a wrapper class. In

Java 5, this is done automatically. (145)
wildcard types A ? as a type parameter; allows any type (possibly with

bounds). (152)
wrapper A class that is used to store another type, and add operations that the

primitive type either does not support or does not support correctly. (143)

on the internet 171

common errors

1. Private members of a base class are not visible in the derived class.

2. Objects of an abstract class cannot be constructed.

3. If the derived class fails to implement any inherited abstract method,
then the derived class becomes abstract. If this was not intended, a com-
piler error will result.

4. Final methods may not be overridden. Final classes may not be extended.

5. Static methods use static binding, even if they are overridden in a
derived class.

6. Java uses static overloading and always selects the signature of an over-
loaded method at compile time.

7. In a derived class, the inherited base class members should only be ini-
tialized as an aggregate by using the super method. If these members are
public or protected, they may later be read or assigned to individually.

8. When you send a function object as a parameter, you must send a con-
structed object, and not simply the name of the class.

9. Overusing anonymous classes is a common error.

10. The throws list for a method in a derived class cannot be redefined to throw
an exception not thrown in the base class. Return types must also match.

11. When a method is overridden, it is illegal to reduce its visibility. This is
also true when implementing interface methods, which by definition are
always public.

on the internet

All the chapter code is available online. Some of the code was presented in
stages; for those classes, only one final version is provided.

PersonDemo.java The Person hierarchy and test program.
Shape.java The abstract Shape class.
Circle.java The Circle class.
Rectangle.java The Rectangle class.
ShapeDemo.java A test program for the Shape example.
Stretchable.java The Stretchable interface.
StretchDemo.java The test program for the Stretchable example.
NoSuchElementException.java

The exception class in Figure 4.19. This is
part of weiss.util.
ConcurrentModificationException.java and
EmptyStackException.java are also online.

172 chapter 4 inheritance

DecoratorDemo.java An illustration of the decorator pattern,
including buffering, compression, and
serialization.

MemoryCell.java The MemoryCell class in Figure 4.22.
TestMemoryCell.java The test program for the memory cell class

shown in Figure 4.23.
SimpleArrayList.java The generic simplified ArrayList class in

Figure 4.24, with some additional methods.
A test program is provided in
ReadStringsWithSimpleArrayList.java.

PrimitiveWrapperDemo.java
Demonstrates the use of the Integer class, as
shown in Figure 4.25.

BoxingDemo.java Illustrates autoboxing and unboxing, as
shown in Figure 4.26.

StorageCellDemo.java The StorageCell adapter as shown in
Figure 4.27, and a test program.

FindMaxDemo.java The findMax generic algorithm in Figure 4.29.
GenericMemoryCell.java Illustrates the GenericMemoryCell class, in

Figure 4.30, updated to use Java 5 generics.
TestGenericMemoryCell.java tests the class.

GenericSimpleArrayList.java
The generic simplified ArrayList class in
Figure 4.37, with some additional methods.
A test program is provided in ReadStrings-
WithGenericSimpleArrayList.java.

GenericFindMaxDemo.java
Illustrates the generic findMax method in
Figure 4.36.

SimpleRectangle.java Contains the SimpleRectangle class in
Figure 4.38.

Comparator.java The Comparator interface in Figure 4.39.
CompareTest.java Illustrates the function object, with no nested

classes, as shown in Figure 4.41.
CompareTestInner1.java Illustrates the function object, with a nested

class, as shown in Figure 4.42.
CompareTestInner2.java Illustrates the function object, with a local

class, as shown in Figure 4.43.
CompareTestInner3.java Illustrates the function object, with an anony-

mous class, as shown in Figure 4.44.

exercises 173

StaticParamsDemo.java The demonstration of static overloading and
dynamic dispatch shown in Figure 4.45.

BadEqualsDemo.java Illustrates the consequences of overloading
instead of overriding equals, as shown in
Figure 4.46.

exercises

IN SHORT

4.1 What members of an inherited class can be used in the derived class?
What members become public for users of the derived class?

4.2 What is composition?

4.3 Explain polymorphism. Explain dynamic dispatch. When is dynamic
dispatch not used?

4.4 What is autoboxing and unboxing?

4.5 What is a final method?

4.6 Consider the program to test visibility in Figure 4.48.
a. Which accesses are illegal?
b. Make main a method in Base. Which accesses are illegal?
c. Make main a method in Derived. Which accesses are illegal?
d. How do these answers change if protected is removed from line 4?
e. Write a three-parameter constructor for Base. Then write a five-

parameter constructor for Derived.
f. The class Derived consists of five integers. Which are accessible

to the class Derived?
g. A method in the class Derived is passed a Base object. Which of

the Base object members can the Derived class access?

4.7 What is the difference between a final class and other classes? Why
are final classes used?

4.8 What is an abstract method? What is an abstract class?

4.9 What is an interface? How does the interface differ from an abstract
class? What members may be in an interface?

4.10 Explain the design of the Java I/O library. Include a class hierarchy
picture for all the classes described in Section 4.5.3.

4.11 How were generic algorithms implemented in Java before Java 5?
How are they implemented in Java 5?

174 chapter 4 inheritance

4.12 Explain the adapter and wrapper patterns. How do they differ?

4.13 What are two common ways to implement adapters? What are the
trade-offs between these implementation methods? Describe how
function objects are implemented in Java.

4.14 What is a local class? What is an anonymous class?

4.15 What is type erasure? What restrictions on generic classes are a con-
sequence of type erasure? What is a raw class?

4.16 Explain the Java rules for covariance for arrays and generic collec-
tions. What are wildcards and type bounds and how do they attempt
to make the covariance rules appear the same?

IN THEORY

4.17 Answer each part TRUE or FALSE:
a. All methods in an abstract class must be abstract.
b. An abstract class may provide constructors.
c. An abstract class can declare instance data.

figure 4.48

A program to test
visibility

1 public class Base
2 {
3 public int bPublic;
4 protected int bProtect;
5 private int bPrivate;
6 // Public methods omitted
7 }
8
9 public class Derived extends Base

10 {
11 public int dPublic;
12 private int dPrivate;
13 // Public methods omitted
14 }
15
16 public class Tester
17 {
18 public static void main(String [] args)
19 {
20 Base b = new Base();
21 Derived d = new Derived();
22
23 System.out.println(b.bPublic + " " + b.bProtect + " "
24 + b.bPrivate + " " + d.dPublic + " "
25 + d.dPrivate);
26 }
27 }

exercises 175

d. An abstract class can extend another abstract class.
e. An abstract class can extend a non-abstract class.
f. An interface is an abstract class.
g. An interface can declare instance data.
h. Any method in an interface must be public.
i. All methods in an interface must be abstract.
j. An interface can have no methods at all.
k. An interface can extend another interface.
l. An interface can declare constructors.
m. A class may extend more than one class.
n. A class may implement more than one interface.
o. A class may extend one class and implement one interface.
p. An interface may implement some of its methods.
q. Methods in an interface may provide a throws list.
r. All methods in an interface must have a void return type.
s. Throwable is an interface.
t. Object is an abstract class.
u. Comparable is an interface.
v. Comparator is an example of an interface that is used for function

objects.

4.18 Carefully examine the online documentation for the Scanner construc-
tors. Which of the following are acceptable parameters for a Scanner:
File, FileInputStream, FileReader.

4.19 A local class can access local variables that are declared in that
method (prior to the class). Show that if this is allowed, it is possible
for an instance of the local class to access the value of the local vari-
able, even after the method has terminated. (For this reason, the com-
piler will insist that these variables are marked final.)

4.20 This exercise explores how Java performs dynamic dispatch, and also
why trivial final methods may not be inlined at compile time. Place
each of the classes in Figure 4.49 in its own file.
a. Compile Class2 and run the program. What is the output?
b. What is the exact signature (including return type) of the getX

method that is deduced at compile time at line 14?
c. Change the getX routine at line 5 to return an int; remove the ""

from the body at line 6, and recompile Class2. What is the output?
d. What is the exact signature (including return type) of the getX

method that is now deduced at compile time at line 14?
e. Change Class1 back to its original, but recompile Class1 only.

What is the result of running the program?
f. What would the result have been had the compiler been allowed

to perform inline optimization?

176 chapter 4 inheritance

4.21 In each of the following code fragments, find any errors and any
unnecessary casts.
a. Base [] arr = new Base [2];

arr[0] = arr[1] = new Derived();

Derived x = (Derived) arr[0];
Derived y = ((Derived[])arr)[0];

b. Derived [] arr = new Derived [2];
arr[0] = arr[1] = new Derived();

Base x = arr[0];
Base y = ((Base[])arr)[0];

c. Base [] arr = new Derived [2];
arr[0] = arr[1] = new Derived();

Derived x = (Derived) arr[0];
Derived y = ((Derived[])arr)[0];

d. Base [] arr = new Derived [2];
arr[0] = arr[1] = new Base();

IN PRACTICE

4.22 Write a generic copy routine that moves elements from one array to
another identically sized and compatible array.

4.23 Write generic methods min and max, each of which accepts two param-
eters and returns the smaller and larger, respectively. Then use those
methods on the String type.

figure 4.49

The classes for
Exercise 4.20

1 public class Class1
2 {
3 public static int x = 5;
4
5 public final String getX()
6 { return "" + x + 12; }
7 }
8
9 public class Class2

10 {
11 public static void main(String [] args)
12 {
13 Class1 obj = new Class1();
14 System.out.println(obj.getX());
15 }
16 }

exercises 177

4.24 Write generic method min, which accepts an array and returns the
smallest item. Then use the method on the String type.

4.25 Write generic method max2, which accepts an array and returns an
array of length two representing the two largest items in the array.
The input array should be unchanged. Then use this method on the
String type.

4.26 Write generic method sort, which accepts an array and rearranges the
array in nondecreasing sorted order. Test your method on both String
and BigInteger.

4.27 For the Shape example, modify the constructors in the hierarchy to
throw an InvalidArgumentException when the parameters are negative.

4.28 Add an Ellipse class into the Shape hierarchy, and make it Stretchable.

4.29 Modify the MemoryCell to implement Comparable<MemoryCell>.

4.30 Modify the Circle class to implement Comparable<Circle>.

4.31 Modify the BigRational class from Chapter 3 to implement Compara-
ble<BigRational>.

4.32 Modify the Polynomial class from Exercise 3.33 to implement Compa-
rable<Polynomial>. The comparison should be based on the degrees of
the polynomials.

4.33 Add a Square class into the Shape hierarchy, and have it implement
Comparable<Square>.

4.34 Add a Triangle class into the Shape hierarchy. Make it Stretchable, but
have stretch throw an exception if the call to stretch would result in
dimensions that violate the triangle inequality.

4.35 Revise the stretchAll method to accept a ArrayList instead of an
array. Use wildcards to ensure that both ArrayList<Stretchable> and
ArrayList<Rectangle> are acceptable parameters.

4.36 Modify the Person class so that it can use findMax to obtain the alpha-
betically last person.

4.37 A SingleBuffer supports get and put: The SingleBuffer stores a single
item and an indication whether the SingleBuffer is logically empty. A
put may be applied only to an empty buffer, and it inserts an item into
the buffer. A get may be applied only to a nonempty buffer, and it
deletes and returns the contents of the buffer. Write a generic class to
implement SingleBuffer. Define an exception to signal errors.

178 chapter 4 inheritance

4.38 A SortedArrayList stores a collection. It is similar to ArrayList, except
that add will place the item in the correct sorted order instead of at the
end (however, at this point it will be difficult for you to use inheri-
tance). Implement a separate SortedArrayList class that supports add,
get, remove, and size.

4.39 Provide a function object that can be passed to findMax and which will
order Strings using compareToIgnoreCase instead of compareTo.

4.40 Method contains takes an array of integers and returns true if there
exists any item in the array that satisfies a specified condition. For
instance, in the following code fragment:

 int [] input = { 100, 37, 49 };

 boolean result1 = contains(input, new Prime());
 boolean result2 = contains(input, new PerfectSquare());
 boolean result3 = contains(input, new Negative());

The intended result is that result1 is true because 37 is a prime number,
result2 is true because both 100 and 49 are perfect squares, and result3
is false because there are no negative numbers in the array.

Implement the following components:

a. An interface that will be used to specify the second parameter to
contains.

b. The contains method (which is a static method).
c. The classes Negative, Prime, and PerfectSquare.

4.41 Method transform takes two identically sized-arrays as parameters:
input and output, and a third parameter representing a function to be
applied to the input array.

For instance, in the following code fragment:

 double [] input = { 1.0, -3.0, 5.0 };
 double [] output1 = new double [3];
 double [] output2 = new double [3];
 double [] output3 = new double [4];

 transform(input, output1, new ComputeSquare());
 transform(input, output2, new ComputeAbsoluteValue());
 transform(input, output3, new ComputeSquare());

The intended result is that output1 contains 1.0, 9.0, 25.0, output2 contains
1.0, 3.0, 5.0, and the third call to transform throws an IllegalArgumentEx-
ception because the arrays have different sizes. Implement the following
components:

exercises 179

a. An interface that will be used to specify the third parameter to
transform.

b. The transform method (which is a static method). Remember to
throw an exception if the input and output arrays are not identically-
sized.

c. The classes ComputeSquare and ComputeAbsoluteValue.

4.42 Rewrite Exercise 4.40 by using generics to allow the input array to be
of an arbitrary type.

4.43 Rewrite Exercise 4.41 by using generics to allow the input array and
output arrays to be of arbitrary (not necessarily the same) types.

4.44 This exercise asks you to write a generic countMatches method.
Your method will take two parameters. The first parameter is an
array of int. The second parameter is a function object that returns
a Boolean.
a. Give a declaration for an interface that expresses the requisite

function object.
b. countMatches returns the number of array items for which the

function object returns true. Implement countMatches.
c. Test countMatches by writing a function object, EqualsZero, that

implements your interface to accept one parameter and returns
true if the parameter is equal to zero. Use an EqualsZero function
object to test countMatches.

4.45 Although the function objects we have looked at store no data, this is
not a requirement. Reuse the interface in Exercise 4.44(a).
a. Write a function object EqualsK. EqualsK contains one data mem-

ber (k). EqualsK is constructed with a single parameter (the default
is zero) that is used to initialize k. Its method returns true if the
parameter is equal to k.

b. Use EqualsK to test countMatches in Exercise 4.44 (c).

PROGRAMMING PROJECTS

4.46 Rewrite the Shape hierarchy to store the area as a data member and
have it computed by the Shape constructor. The constructors in the
derived classes should compute an area and pass the result to the
super method. Make area a final method that returns only the value of
this data member.

4.47 Add the concept of a position to the Shape hierarchy by including
coordinates as data members. Then add a distance method.

4.48 Write an abstract class for Date and its derived class GregorianDate.

180 chapter 4 inheritance

4.49 Implement a tax payer hierarchy that consists of a TaxPayer inter-
face and the classes SinglePayer and MarriedPayer that implement the
interface.

4.50 Implement a gzip and gunzip program that performs compression and
uncompression of files.

4.51 A book consists of an author, title, and ISBN number (all of which
can never change once the book is created).

A library book is a book that also contains a due date and the current
holder of the book, which is either a String representing a person who
has checked the book out or null if the book is currently not checked
out. Both the due date and holder of the book can change over time.

A library contains library books and supports the following
operations:

1. Add a library book to the library.
2. Check out a library book by specifying its ISBN number and

new holder and the due date.
3. Determine the current holder of a library book given its ISBN

number.

a. Write two interfaces: Book and LibraryBook that abstract the func-
tionality described above.

b. Write a library class that includes the three methods specified. In
implementing the Library class, you should maintain the library
books in an ArrayList. You may assume that there are never any
requests to add duplicate books.

4.52 A set of classes is used to handle the different ticket types for a the-
ater. All tickets have a unique serial number that is assigned when the
ticket is constructed and a price. There are many types of tickets.

a. Design a class hierarchy that encompasses the above three classes.
b. Implement the Ticket abstract class. This class should store a serial

number as its private data. Provide an appropriate abstract method to
get the price of the ticket, provide a method that returns the serial
number, and provide an implementation of toString that prints the
serial number and price information. The Ticket class must provide a
constructor to initialize the serial number. To do so, use the following
strategy: maintain a static ArrayList<Integer> representing previously
assigned serial numbers. Repeatedly generate a new serial number
using a random number generator until you obtain a serial number
not already assigned.

exercises 181

c. Implement the FixedPriceTicket class. The constructor accepts a
price. The class is abstract but you can and should implement the
method that returns the price information.

d. Implement the WalkupTicket class and the ComplementaryTicket
class.

e. Implement the AdvanceTicket class. Provide a constructor that
takes a parameter indicating the number of days in advance that
the ticket is being purchased. Recall that the number of days of
advanced purchase affects the ticket price.

f. Implement the StudentAdvanceTicket class. Provide a constructor
that takes a parameter indicating the number of days in advance
that the ticket is being purchased. The toString method should
include a notation that this is a student ticket. This ticket costs half
of an Advanceticket. If the pricing scheme for AdvanceTicket
changes, the StudentAdvanceTicket price should be computed cor-
rectly with no code modification to the StudentAdvanceTicket class.

g. Write a class TicketOrder that stores a collection of Tickets. Tick-
etOrder should provide methods add, toString, and totalPrice.
Provide a test program that creates a TicketOrder object and then
calls add with all kinds of tickets. Print the order, including the
total price.

Ticket type Description

Sample
toString
Output

Ticket This is an abstract class representing all tickets

FixedPriceTicket This is an abstract class representing tickets
that are always the same price. The constructor
accepts the price as the parameter.

ComplimentaryTicket These tickets are free (thus FixedPrice). SN: 273, $0

WalkupTicket These tickets are purchased on the day of the
event for $50 (thus FixedPrice).

SN: 314, $50

AdvanceTicket Tickets purchased ten or more days in advance
cost $30. Tickets purchased fewer than ten days
in advance cost $40.

SN: 612, $40

StudentAdvanceTicket These are AdvanceTickets that cost half of what
an AdvanceTicket would normally cost.

SN: 59, $15
(student)

182 chapter 4 inheritance

4.53 Consider the following five classes: Bank, Account, NonInterestChecking-
Account, InterestCheckingAccount, and PlatinumCheckingAccount, as well as
an interface called InterestBearingAccount which interact as follows:

n A Bank stores an ArrayList that can contain accounts of all types,
including savings and checking accounts, some of which are
interest bearing and some of which are not. Bank contains a
method called totalAssets that returns the sum of all the balances
in all the accounts. It also contains a method called addInterest
that invokes the addInterest method for all the accounts in the
bank that are interest-bearing.

n Account is an abstract class. Each account stores the name of the
account holder, an account number (sequentially assigned auto-
matically), and the current balance, along with an appropriate
constructor to initialize these data members, and methods to
access the current balance, add to the current balance, and subtract
from the current balance. NOTE: All these methods are implemented
in the Account class, so even though Account is abstract, none of the
methods that you are implementing in this class are abstract.

n The InterestBearingAccount interface declares a single method
addInterest (no parameters, void return type) that increases the bal-
ance by the interest rate that is appropriate for the particular account.

n An InterestCheckingAccount is an Account that is also an
InterestBearingAccount. Invoking addInterest increases the
balance by 3%.

n A PlatinumCheckingAccount is an InterestCheckingAccount. Invoking
addInterest increases the balance by double the rate for an Inter-
estCheckingAccount (whatever that rate happens to be).

n A NonInterestCheckingAccount is an Account but it is not an
InterestBearingAccount. It has no additional functionality beyond
the basic Account class.

For this question, do the following. You do not have to provide any func-
tionality beyond the specifications above:

a. Five of the six classes above form an inheritance hierarchy. For
those five classes, draw the hierarchy.

b. Implement Account.
c. Implement NonInterestCheckingAccount.
d. Write the InterestBearingAccount interface.
e. Implement Bank.
f. Implement InterestCheckingAccount.
g. Implement PlatinumCheckingAccount.

references 183

references

The following books describe the general principles of object-oriented soft-
ware development:

1. G. Booch, Object-Oriented Design and Analysis with Applications (Sec-
ond Edition), Benjamin Cummings, Redwood City, CA, 1994.

2. T. Budd, Understanding Object-Oriented Programming With Java,
Addison-Wesley, Boston, MA, 2001.

3. D. de Champeaux, D. Lea, and P. Faure, Object-Oriented System Devel-
opment, Addison-Wesley, Reading, MA, 1993.

4. I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-
Oriented Software Engineering: A Use Case Driven Approach (revised
fourth printing), Addison-Wesley, Reading, MA, 1992.

5. B. Meyer, Object-Oriented Software Construction, Prentice Hall, Englewood
Cliffs, NJ, 1988.

This page intentionally left blank

par t
two

chapter 5 algorithm analysis

chapter 6 the collections api

chapter 7 recursion

chapter 8 sorting algorithms

chapter 9 randomization

Algorithms
and Building
Blocks

This page intentionally left blank

chap te r 5

algorithm analysis

I n Part One we examined how object-oriented programming can help in the
design and implementation of large systems. We did not examine perfor-
mance issues. Generally, we use a computer because we need to process a
large amount of data. When we run a program on large amounts of input, we
must be certain that the program terminates within a reasonable amount of
time. Although the amount of running time is somewhat dependent on the
programming language we use, and to a smaller extent the methodology we
use (such as procedural versus object-oriented), often those factors are
unchangeable constants of the design. Even so, the running time is most
strongly correlated with the choice of algorithms.

An algorithm is a clearly specified set of instructions the computer will
follow to solve a problem. Once an algorithm is given for a problem and
determined to be correct, the next step is to determine the amount of
resources, such as time and space, that the algorithm will require. This step is
called algorithm analysis. An algorithm that requires several hundred
gigabytes of main memory is not useful for most current machines, even if it
is completely correct.

188 chapter 5 algorithm analysis

In this chapter, we show the following:

n How to estimate the time required for an algorithm

n How to use techniques that drastically reduce the running time of an
algorithm

n How to use a mathematical framework that more rigorously describes
the running time of an algorithm

n How to write a simple binary search routine

5.1 what is algorithm analysis?
More data means
that the program
takes more time.

The amount of time that any algorithm takes to run almost always depends on
the amount of input that it must process. We expect, for instance, that sorting
10,000 elements requires more time than sorting 10 elements. The running
time of an algorithm is thus a function of the input size. The exact value of the
function depends on many factors, such as the speed of the host machine, the
quality of the compiler, and in some cases, the quality of the program. For a
given program on a given computer, we can plot the running time function on a
graph. Figure 5.1 illustrates such a plot for four programs. The curves repre-
sent four common functions encountered in algorithm analysis: linear,

, quadratic, and cubic. The input size N ranges from 1 to 100

figure 5.1

Running times for
small inputs

10

8

6

4

2

0
10 20 30 40 50 60 70 80 90 100

Linear
O(N log N)
Quadratic

Cubic

R
un

ni
ng

 T
im

e
(m

ic
ro

se
co

nd
s)

Input Size (N)

O(N log N)

5.1 what is algorithm analysis? 189

items, and the running times range from 0 to 10 microseconds. A quick glance
at Figure 5.1 and its companion, Figure 5.2, suggests that the linear, O(N log N),
quadratic, and cubic curves represent running times in order of decreasing
preference.

Of the common
functions encoun-
tered in algorithm
analysis, linear rep-
resents the most
efficient algorithm.

An example is the problem of downloading a file over the Internet. Suppose
there is an initial 2-sec delay (to set up a connection), after which the download
proceeds at 160 K/sec. Then if the file is N kilobytes, the time to download is
described by the formula . This is a linear function.
Downloading an 8,000K file takes approximately 52 sec, whereas download-
ing a file twice as large (16,000K) takes about 102 sec, or roughly twice as
long. This property, in which time essentially is directly proportional to amount
of input, is the signature of a linear algorithm, which is the most efficient algo-
rithm. In contrast, as these first two graphs show, some of the nonlinear algo-
rithms lead to large running times. For instance, the linear algorithm is much
more efficient than the cubic algorithm.

In this chapter we address several important questions:

n Is it always important to be on the most efficient curve?

n How much better is one curve than another?

n How do you decide which curve a particular algorithm lies on?

n How do you design algorithms that avoid being on less-efficient
curves?

figure 5.2

Running times for
moderate inputs

1

0.8

0.6

0.4

0.2

0
1000 2000 3000 4000 5000 6000 7000 8000

Linear
O(N log N)
Quadratic

Cubic

9000 10000

R
un

ni
ng

 T
im

e
(m

ill
is

ec
on

ds
)

0

Input Size (N)

T N() N 160⁄ 2+=

190 chapter 5 algorithm analysis

A cubic function is a function whose dominant term is some constant
times . As an example, is a cubic function. Simi-
larly, a quadratic function has a dominant term that is some constant times

, and a linear function has a dominant term that is some constant times N.
The expression represents a function whose dominant term is N
times the logarithm of N. The logarithm is a slowly growing function; for
instance, the logarithm of 1,000,000 (with the typical base 2) is only 20. The
logarithm grows more slowly than a square or cube (or any) root. We discuss
the logarithm in more depth in Section 5.5.

The growth rate of
a function is most
important when N
is sufficiently large.

Either of two functions may be smaller than the other at any given point, so
claiming, for instance, that does not make sense. Instead, we mea-
sure the functions’ rates of growth. This is justified for three reasons. First, for cubic
functions such as the one shown in Figure 5.2, when N is 1,000 the value of the
cubic function is almost entirely determined by the cubic term. In the function

, for N = 1,000, the value of the function is
10,001,040,080, of which 10,000,000,000 is due to the term. If we were to
use only the cubic term to estimate the entire function, an error of about 0.01 percent
would result. For sufficiently large N, the value of a function is largely determined
by its dominant term (the meaning of the term sufficiently large varies by function).

The second reason we measure the functions’ growth rates is that the
exact value of the leading constant of the dominant term is not meaningful
across different machines (although the relative values of the leading constant
for identically growing functions might be). For instance, the quality of the
compiler could have a large influence on the leading constant. The third rea-
son is that small values of N generally are not important. For N = 20,
Figure 5.1 shows that all algorithms terminate within 5 μs. The difference
between the best and worst algorithm is less than a blink of the eye.

Big-Oh notation is
used to capture the
most dominant
term in a function.

We use Big-Oh notation to capture the most dominant term in a function
and to represent the growth rate. For instance, the running time of a quadratic
algorithm is specified as (pronounced “order en-squared”). Big-Oh
notation also allows us to establish a relative order among functions by compar-
ing dominant terms. We discuss Big-Oh notation more formally in Section 5.4.

For small values of N (for instance, those less than 40), Figure 5.1 shows
that one curve may be initially better than another, which doesn’t hold for larger
values of N. For example, initially the quadratic curve is better than the

curve, but as N gets sufficiently large, the quadratic algorithm loses
its advantage. For small amounts of input, making comparisons between func-
tions is difficult because leading constants become very significant. The function
N + 2,500 is larger than when N is less than 50. Eventually, the linear func-
tion is always less than the quadratic function. Most important, for small input
sizes the running times are generally inconsequential, so we need not worry
about them. For instance, Figure 5.1 shows that when N is less than 25, all four

N 3 10N 3 N 2 40N 80+ + +

N 2

O(N log N)

F N() G N()<

10N 3 N 2 40N 80+ + +
10N 3

O N 2()

O(N log N)

N 2

5.1 what is algorithm analysis? 191

algorithms run in less than 10 μs. Consequently, when input sizes are very small,
a good rule of thumb is to use the simplest algorithm.

Figure 5.2 clearly demonstrates the differences between the various
curves for large input sizes. A linear algorithm solves a problem of size
10,000 in a small fraction of a second. The algorithm uses
roughly 10 times as much time. Note that the actual time differences depend
on the constants involved and thus might be more or less. Depending on these
constants, an algorithm might be faster than a linear algorithm
for fairly large input sizes. For equally complex algorithms, however, linear
algorithms tend to win out over algorithms.

Quadratic algo-
rithms are impracti-
cal for input sizes
exceeding a few
thousand.

This relationship is not true, however, for the quadratic and cubic algo-
rithms. Quadratic algorithms are almost always impractical when the input
size is more than a few thousand, and cubic algorithms are impractical for
input sizes as small as a few hundred. For instance, it is impractical to use a
naive sorting algorithm for 1,000,000 items, because most simple sorting
algorithms (such as bubble sort and selection sort) are quadratic algorithms.
The sorting algorithms discussed in Chapter 8 run in subquadratic time—that
is, better than O(N2)—thus making sorting large arrays practical.

Cubic algorithms
are impractical for
input sizes as small
as a few hundred.

The most striking feature of these curves is that the quadratic and cubic
algorithms are not competitive with the others for reasonably large inputs. We
can code the quadratic algorithm in highly efficient machine language and do a
poor job coding the linear algorithm, and the quadratic algorithm will still lose
badly. Even the most clever programming tricks cannot make an inefficient
algorithm fast. Thus, before we waste effort attempting to optimize code, we
need to optimize the algorithm. Figure 5.3 arranges functions that commonly
describe algorithm running times in order of increasing growth rate.

O(N log N)

O(N log N)

O(N log N)

figure 5.3

Functions in order of
increasing growth rate

Function Name

Constant

Logarithmic

Log-squared

Linear

N log N

Quadratic

Cubic

Exponential

c

log N

Nlog2

N

N log N

N 2

N 3

2N

192 chapter 5 algorithm analysis

5.2 examples of algorithm
running times

In this section we examine three problems. We also sketch possible solutions and
determine what kind of running times the algorithms will exhibit, without provid-
ing detailed programs. The goal in this section is to provide you with some intu-
ition about algorithm analysis. In Section 5.3 we provide more details on the
process, and in Section 5.4 we formally approach an algorithm analysis problem.

We look at the following problems in this section:

minimum element in an array
Given an array of N items, find the smallest item.

closest points in the plane
Given N points in a plane (that is, an x-y coordinate system), find the pair of points
that are closest together.

colinear points in the plane
Given N points in a plane (that is, an x-y coordinate system), determine if any three
form a straight line.

The minimum element problem is fundamental in computer science. It
can be solved as follows:

1. Maintain a variable min that stores the minimum element.

2. Initialize min to the first element.

3. Make a sequential scan through the array and update min as appropriate.

The running time of this algorithm will be , or linear, because we will
repeat a fixed amount of work for each element in the array. A linear algo-
rithm is as good as we can hope for. This is because we have to examine every
element in the array, a process that requires linear time.

The closest points problem is a fundamental problem in graphics that can
be solved as follows:

1. Calculate the distance between each pair of points.

2. Retain the minimum distance.

This calculation is expensive, however, because there are pairs
of points.1 Thus there are roughly pairs of points. Examining all these

1. Each of N points can be paired with points for a total of pairs. However,
this pairing double-counts pairs A, B and B, A, so we must divide by 2.

O(N)

N N 1–() 2⁄
N 2

N 1– N N 1–()

5.3 the maximum contiguous subsequence sum problem 193

pairs and finding the minimum distance among them takes quadratic time. A
better algorithm runs in time and works by avoiding the compu-
tation of all distances. There is also an algorithm that is expected to take

time. These last two algorithms use subtle observations to provide
faster results and are beyond the scope of this text.

The colinear points problem is important for many graphics algorithms.
The reason is that the existence of colinear points introduces a degenerate
case that requires special handling. It can be directly solved by enumerating
all groups of three points. This solution is even more computationally expen-
sive than that for the closest points problem because the number of different
groups of three points is (using reasoning similar to that
used for the closest points problem). This result tells us that the direct
approach will yield a cubic algorithm. There is also a more clever strategy
(also beyond the scope of this text) that solves the problem in quadratic time
(and further improvement is an area of continuously active research).

In Section 5.3 we look at a problem that illustrates the differences among
linear, quadratic, and cubic algorithms. We also show how the performance of
these algorithms compares to a mathematical prediction. Finally, after dis-
cussing the basic ideas, we examine Big-Oh notation more formally.

5.3 the maximum contiguous
subsequence sum problem

In this section, we consider the following problem:

maximum contiguous subsequence sum problem
Given (possibly negative) integers , find (and identify the sequence
corresponding to) the maximum value of . The maximum contiguous sub-
sequence sum is zero if all the integers are negative.

Programming
details are consid-
ered after the algo-
rithm design.

As an example, if the input is {–2, 11, –4, 13, –5, 2}, then the answer is 20,
which represents the contiguous subsequence encompassing items 2 through
4 (shown in boldface type). As a second example, for the input { 1, –3, 4, –2,
–1, 6 }, the answer is 7 for the subsequence encompassing the last four items.

In Java, arrays begin at zero, so a Java program would represent the input
as a sequence to . This is a programming detail and not part of the
algorithm design.

Always consider
emptiness.

Before the discussion of the algorithms for this problem, we need to com-
ment on the degenerate case in which all input integers are negative. The prob-
lem statement gives a maximum contiguous subsequence sum of 0 for this case.
One might wonder why we do this, rather than just returning the largest (that is,

O(N log N)

O(N)

N N 1–() N 2–() 6⁄

A1 A2 … AN, , ,
Akk i=

j∑

A0 AN 1–

194 chapter 5 algorithm analysis

the smallest in magnitude) negative integer in the input. The reason is that the
empty subsequence, consisting of zero integers, is also a subsequence, and its
sum is clearly 0. Because the empty subsequence is contiguous, there is always
a contiguous subsequence whose sum is 0. This result is analogous to the empty
set being a subset of any set. Be aware that emptiness is always a possibility and
that in many instances it is not a special case at all.

There are lots of
drastically different
algorithms (in terms
of efficiency) that
can be used to
solve the maximum
contiguous subse-
quence sum
problem.

The maximum contiguous subsequence sum problem is interesting
mainly because there are so many algorithms to solve it—and the perfor-
mance of these algorithms varies drastically. In this section, we discuss three
such algorithms. The first is an obvious exhaustive search algorithm, but it is
very inefficient. The second is an improvement on the first, which is accom-
plished by a simple observation. The third is a very efficient, but not obvious,
algorithm. We prove that its running time is linear.

In Chapter 7 we present a fourth algorithm, which has run-
ning time. That algorithm is not as efficient as the linear algorithm, but it is
much more efficient than the other two. It is also typical of the kinds of
algorithms that result in running times. The graphs shown in
Figures 5.1 and 5.2 are representative of these four algorithms.

5.3.1 the obvious O(N3) algorithm
A brute force algo-
rithm is generally
the least efficient
but simplest
method to code.

The simplest algorithm is a direct exhaustive search, or a brute force algo-
rithm, as shown in Figure 5.4. Lines 9 and 10 control a pair of loops that iter-
ate over all possible subsequences. For each possible subsequence, the value
of its sum is computed at lines 12 to 15. If that sum is the best sum encoun-
tered, we update the value of maxSum, which is eventually returned at line 25.
Two ints—seqStart and seqEnd (which are static class fields)—are also
updated whenever a new best sequence is encountered.

The direct exhaustive search algorithm has the merit of extreme simplic-
ity; the less complex an algorithm is, the more likely it is to be programmed
correctly. However, exhaustive search algorithms are usually not as efficient
as possible. In the remainder of this section we show that the running time of
the algorithm is cubic. We count the number of times (as a function of the
input size) the expressions in Figure 5.4 are evaluated. We require only a Big-
Oh result, so once we have found a dominant term, we can ignore lower order
terms and leading constants.

The running time of the algorithm is entirely dominated by the innermost
for loop in lines 14 and 15. Four expressions there are repeatedly executed:

1. The initialization k = i

2. The test k <= j

3. The increment thisSum += a[k]

4. The adjustment k++

O(N log N)

O(N log N)

5.3 the maximum contiguous subsequence sum problem 195

A mathematical
analysis is used to
count the number
of times that cer-
tain statements are
executed.

The number of times expression 3 is executed makes it the dominant
term among the four expressions. Note that each initialization is accompa-
nied by at least one test. We are ignoring constants, so we may disregard the
cost of the initializations; the initializations cannot be the single dominating
cost of the algorithm. Because the test given by expression 2 is unsuccessful
exactly once per loop, the number of unsuccessful tests performed by
expression 2 is exactly equal to the number of initializations. Consequently,
it is not dominant. The number of successful tests at expression 2, the num-
ber of increments performed by expression 3, and the number of adjust-
ments at expression 4 are all identical. Thus the number of increments (i.e.,
the number of times that line 15 is executed) is a dominant measure of the
work performed in the innermost loop.

The number of times line 15 is executed is exactly equal to the number of
ordered triplets (i, j, k) that satisfy 2 The reason is that the index
i runs over the entire array, j runs from i to the end of the array, and k runs from i
to j. A quick and dirty estimate is that the number of triplets is somewhat less than

, or , because i, j, and k can each assume one of N values. The

1 /**
2 * Cubic maximum contiguous subsequence sum algorithm.
3 * seqStart and seqEnd represent the actual best sequence.
4 */
5 public static int maxSubsequenceSum(int [] a)
6 {
7 int maxSum = 0;
8
9 for(int i = 0; i < a.length; i++)

10 for(int j = i; j < a.length; j++)
11 {
12 int thisSum = 0;
13
14 for(int k = i; k <= j; k++)
15 thisSum += a[k];
16
17 if(thisSum > maxSum)
18 {
19 maxSum = thisSum;
20 seqStart = i;
21 seqEnd = j;
22 }
23 }
24
25 return maxSum;
26 }

figure 5.4

A cubic maximum
contiguous
subsequence sum
algorithm

2. In Java, the indices run from 0 to . We have used the algorithmic equivalent 1 to N to
simplify the analysis.

1 i k j N.≤ ≤ ≤ ≤

N 1–

N N N×× N 3

196 chapter 5 algorithm analysis

additional restriction reduces this number. A precise calculation is
somewhat difficult to obtain and is performed in Theorem 5.1.

The most important part of Theorem 5.1 is not the proof, but rather the
result. There are two ways to evaluate the number of triplets. One is to evalu-
ate the sum . We could evaluate this sum inside out (see
Exercise 5.12). Instead, we will use an alternative.

The result of Theorem 5.1 is that the innermost for loop accounts for
cubic running time. The remaining work in the algorithm is inconsequential
because it is done, at most, once per iteration of the inner loop. Put another
way, the cost of lines 17 to 22 is inconsequential because that part of the code
is done only as often as the initialization of the inner for loop, rather than as
often as the repeated body of the inner for loop. Consequently, the algorithm
is .

We do not need
precise calcula-
tions for a Big-Oh
estimate. In many
cases, we can use
the simple rule of
multiplying the size
of all the nested
loops. Note care-
fully that consecu-
tive loops do not
multiply.

The previous combinatorial argument allows us to obtain precise calcula-
tions on the number of iterations in the inner loop. For a Big-Oh calculation,
this is not really necessary; we need to know only that the leading term is
some constant times . Looking at the algorithm, we see a loop that is
potentially of size N inside a loop that is potentially of size N inside another
loop that is potentially of size N. This configuration tells us that the triple loop
has the potential for iterations. This potential is only about six
times higher than what our precise calculation of what actually occurs. Con-
stants are ignored anyway, so we can adopt the general rule that, when we
have nested loops, we should multiply the cost of the innermost statement by
the size of each loop in the nest to obtain an upper bound. In most cases, the

i k j≤ ≤

1
k i=
j∑j i=

N∑i 1=
N∑

Theorem 5.1 The number of integer-ordered triplets (i, j, k) that satisfy is
.

Proof Place the following N + 2 balls in a box: N balls numbered 1 to N, one unnumbered
red ball, and one unnumbered blue ball. Remove three balls from the box. If a red ball
is drawn, number it as the lowest of the numbered balls drawn. If a blue ball is drawn,
number it as the highest of the numbered balls drawn. Notice that if we draw both a
red and blue ball, then the effect is to have three balls identically numbered. Order
the three balls. Each such order corresponds to a triplet solution to the equation in
Theorem 5.1. The number of possible orders is the number of distinct ways to draw
three balls without replacement from a collection of N + 2 balls. This is similar to the
problem of selecting three points from a group of N that we evaluated in Section 5.2,
so we immediately obtain the stated result.

1 i k j N≤ ≤ ≤ ≤
N N 1+() N 2+() 6⁄

O N 3()

N 3

N N N××

5.3 the maximum contiguous subsequence sum problem 197

If we remove
another loop, we
have a linear
algorithm.

The algorithm is
tricky. It uses a
clever observation
to step quickly over
large numbers of
subsequences that
cannot be the best.

upper bound will not be a gross overestimate.3 Thus a program with three
nested loops, each running sequentially through large portions of an array, is
likely to exhibit behavior. Note that three consecutive (nonnested)
loops exhibit linear behavior; it is nesting that leads to a combinatoric explo-
sion. Consequently, to improve the algorithm, we need to remove a loop.

5.3.2 an improved O(N 2) algorithm
When we remove a
nested loop from
an algorithm, we
generally lower the
running time.

When we can remove a nested loop from the algorithm, we generally lower the
running time. How do we remove a loop? Obviously, we cannot always do so.
However, the previous algorithm has many unnecessary computations. The ineffi-
ciency that the improved algorithm corrects is the unduly expensive computation
in the inner for loop in Figure 5.4. The improved algorithm makes use of the fact
that . In other words, suppose we have just calculated
the sum for the subsequence i, ..., . Then computing the sum for the subse-
quence i, ..., j should not take long because we need only one more addition.
However, the cubic algorithm throws away this information. If we use this obser-
vation, we obtain the improved algorithm shown in Figure 5.5. We have two
rather than three nested loops, and the running time is O(N 2).

5.3.3 a linear algorithm
To move from a quadratic algorithm to a linear algorithm, we need to remove
yet another loop. However, unlike the reduction illustrated in Figures 5.4 and
5.5, where loop removal was simple, getting rid of another loop is not so easy.
The problem is that the quadratic algorithm is still an exhaustive search; that
is, we are trying all possible subsequences. The only difference between the
quadratic and cubic algorithms is that the cost of testing each successive sub-
sequence is a constant instead of linear . Because a quadratic
number of subsequences are possible, the only way we can attain a subqua-
dratic bound is to find a clever way to eliminate from consideration a large
number of subsequences, without actually computing their sum and testing to
see if that sum is a new maximum. This section shows how this is done.

First, we eliminate a large number of possible subsequences from consid-
eration. Clearly, the best subsequence can never start with a negative number,
so if a[i] is negative we can skip the inner loop and advance i. More gener-
ally, the best subsequence can never start with a negative subsubsequence.

So, let be the subsequence encompassing elements from i to j, and let
 be its sum.

3. Exercise 5.21 illustrates a case in which the multiplication of loop sizes yields an overesti-
mate in the Big-Oh result.

O N 3()

Akk i=
j∑ A j Akk i=

j 1–∑+=
j 1–

O 1() O(N)

Ai j,
Si j,

198 chapter 5 algorithm analysis

An illustration of the sums generated by i, j, and q is shown on the first
two lines in Figure 5.6. Theorem 5.2 demonstrates that we can avoid examin-
ing several subsequences by including an additional test: If thisSum is less
than 0, we can break from the inner loop in Figure 5.5. Intuitively, if a subse-
quence’s sum is negative, then it cannot be part of the maximum contiguous
subsequence. The reason is that we can get a larger contiguous subsequence

figure 5.5

A quadratic maximum
contiguous
subsequence sum
algorithm

1 /**
2 * Quadratic maximum contiguous subsequence sum algorithm.
3 * seqStart and seqEnd represent the actual best sequence.
4 */
5 public static int maxSubsequenceSum(int [] a)
6 {
7 int maxSum = 0;
8
9 for(int i = 0; i < a.length; i++)

10 {
11 int thisSum = 0;
12
13 for(int j = i; j < a.length; j++)
14 {
15 thisSum += a[j];
16
17 if(thisSum > maxSum)
18 {
19 maxSum = thisSum;
20 seqStart = i;
21 seqEnd = j;
22 }
23 }
24 }
25
26 return maxSum;
27 }

Theorem 5.2 Let be any sequence with . If , then is not the maximum con-
tiguous subsequence.

Proof The sum of A’s elements from i to q is the sum of A’s elements from i to j added to
the sum of A’s elements from to q. Thus we have . Because

, we know that . Thus is not a maximum contiguous subse-
quence.

Ai j, Si j, 0< q j> Ai q,

j 1+ Si q, Si j, S j 1 q,++=
Si j, 0< Si q, S j 1+ q,< Ai q,

5.3 the maximum contiguous subsequence sum problem 199

by not including it. This observation by itself is not sufficient to reduce the
running time below quadratic. A similar observation also holds: All contigu-
ous subsequences that border the maximum contiguous subsequence must
have negative (or 0) sums (otherwise, we would include them). This observa-
tion also does not reduce the running time to below quadratic. However, a
third observation, illustrated in Figure 5.7, does, and we formalize it with
Theorem 5.3.

figure 5.6

The subsequences
used in Theorem 5.2

<Sj + 1, q

Sj + 1, q< 0

i j j + 1 q

figure 5.7

The subsequences
used in Theorem 5.3.
The sequence from p
to q has a sum that is,
at most, that of the
subsequence from i to
q. On the left-hand
side, the sequence
from i to q is itself not
the maximum (by
Theorem 5.2). On the
right-hand side, the
sequence from i to q
has already been
seen.

<=Si, q

Si, q

>=0

i j j + 1 q

<=Si, q

Si, q

>=0

i q j

p – 1 p p – 1 p

For any i, let be the first sequence, with . Then, for any and
, either is not a maximum contiguous subsequence or is equal to an

already seen maximum contiguous subsequence.

Theorem 5.3

If , then Theorem 5.2 applies. Otherwise, as in Theorem 5.2, we have
. Since j is the lowest index for which , it follows that

. Thus . If (shown on the left-hand side in Figure 5.7), then
Theorem 5.2 implies that is not a maximum contiguous subsequence, so neither
is . Otherwise, as shown on the right-hand side in Figure 5.7, the subsequence

 has a sum equal to, at most, that of the already seen subsequence .

Proof

Ai j, Si j, 0< i p j≤ ≤
p q≤ Ap q,

p i=
Si q, Si p 1–, Sp q,+= Si j, 0<
Si p 1–, 0≥ Sp q, Si q,≤ q j>

Ai q,

Ap q,

Ap q, Ai q,

200 chapter 5 algorithm analysis

Theorem 5.3 tells us that, when a negative subsequence is detected, not
only can we break the inner loop, but also we can advance i to j+1. Figure 5.8
shows that we can rewrite the algorithm using only a single loop. Clearly, the
running time of this algorithm is linear: At each step in the loop, we advance
j, so the loop iterates at most N times. The correctness of this algorithm is
much less obvious than for the previous algorithms, which is typical. That is,
algorithms that use the structure of a problem to beat an exhaustive search
generally require some sort of correctness proof. We proved that the algorithm
(although not the resulting Java program) is correct using a short mathemati-
cal argument. The purpose is not to make the discussion entirely mathemati-
cal, but rather to give a flavor of the techniques that might be required in
advanced work.

figure 5.8

A linear maximum
contiguous
subsequence sum
algorithm

1 /**
2 * Linear maximum contiguous subsequence sum algorithm.
3 * seqStart and seqEnd represent the actual best sequence.
4 */
5 public static int maximumSubsequenceSum(int [] a)
6 {
7 int maxSum = 0;
8 int thisSum = 0;
9

10 for(int i = 0, j = 0; j < a.length; j++)
11 {
12 thisSum += a[j];
13
14 if(thisSum > maxSum)
15 {
16 maxSum = thisSum;
17 seqStart = i;
18 seqEnd = j;
19 }
20 else if(thisSum < 0)
21 {
22 i = j + 1;
23 thisSum = 0;
24 }
25 }
26
27 return maxSum;
28 }

If we detect a neg-
ative sum, we can
move i all the way
past j.

If an algorithm is
complex, a correct-
ness proof is
required.

5.4 general big-oh rules 201

5.4 general big-oh rules
Now that we have the basic ideas of algorithm analysis, we can adopt a
slightly more formal approach. In this section, we outline the general rules for
using Big-Oh notation. Although we use Big-Oh notation almost exclusively
throughout this text, we also define three other types of algorithm notation
that are related to Big-Oh and used occasionally later on in the text.

definition: (Big-Oh) is if there are positive constants c and
such that when .

definition: (Big-Omega) is if there are positive constants c
and such that when .

definition: (Big-Theta) is if and only if is and
 is .

definition: (Little-Oh) is if and only if is and
 is not .4

The first definition, Big-Oh notation, states that there is a point such
that for all values of N that are past this point, is bounded by some
multiple of . This is the sufficiently large N mentioned earlier. Thus, if
the running time of an algorithm is , then, ignoring constants,
we are guaranteeing that at some point we can bound the running time by a
quadratic function. Notice that if the true running time is linear, then the state-
ment that the running time is is technically correct because the ine-
quality holds. However, would be the more precise claim.

If we use the traditional inequality operators to compare growth rates,
then the first definition says that the growth rate of is less than or equal
to that of .

The second definition, , called Big-Omega, says that
the growth rate of is greater than or equal to that of . For instance,
we might say that any algorithm that works by examining every possible subse-
quence in the maximum subsequence sum problem must take time
because a quadratic number of subsequences are possible. This is a lower-bound
argument that is used in more advanced analysis. Later in the text, we will see
one example of this argument and demonstrate that any general-purpose sorting
algorithm requires time.

4. Our definition for Little-Oh is not precisely correct for some unsual functions, but is the
simplest to express the basic concepts used throughout this text.

T N() O F N()() N0

T N() cF N()≤ N N0≥

T N() Ω F N()()
N0 T N() cF N()≥ N N0≥

T N() Θ F N()() T N() O F N()()
T N() Ω F N()()

T N() o F N()() T N() O F N()()
T N() Θ F N()()

N 0

T N()
F N()

T N() O N 2()

O N 2()
O(N)

T N()
F N()

T N() Ω F N()()=
T N() F N()

Ω N 2()

Ω N log N()

Big-Oh is similar to
less than or equal
to, when growth
rates are being
considered.

Big-Omega is simi-
lar to greater than
or equal to, when
growth rates are
being considered.

202 chapter 5 algorithm analysis

Big-Theta is similar
to equal to, when
growth rates are
being considered.

The third definition, , called Big-Theta, says that the
growth rate of equals the growth rate of . For instance, the max-
imum subsequence algorithm shown in Figure 5.5 runs in time. In
other words, the running time is bounded by a quadratic function, and this
bound cannot be improved because it is also lower-bounded by another qua-
dratic function. When we use Big-Theta notation, we are providing not only
an upper bound on an algorithm but also assurances that the analysis that
leads to the upper bound is as good (tight) as possible. In spite of the addi-
tional precision offered by Big-Theta, however, Big-Oh is more commonly
used, except by researchers in the algorithm analysis field.

Little-Oh is similar
to less than, when
growth rates are
being considered.

The final definition, , called Little-Oh, says that the
growth rate of is strictly less than the growth rate of . This func-
tion is different from Big-Oh because Big-Oh allows the possibility that the
growth rates are the same. For instance, if the running time of an algorithm is

, then it is guaranteed to be growing at a slower rate than quadratic
(that is, it is a subquadratic algorithm). Thus a bound of is a better
bound than . Figure 5.9 summarizes these four definitions.

Throw out leading
constants, lower-
order terms, and
relational symbols
when using Big-Oh.

A couple of stylistic notes are in order. First, including constants or low-
order terms inside a Big-Oh is bad style. Do not say or

. In both cases, the correct form is .
Second, in any analysis that requires a Big-Oh answer, all sorts of shortcuts
are possible. Lower-order terms, leading constants, and relational symbols are
all thrown away.

Now that the mathematics have formalized, we can relate it to the analysis
of algorithms. The most basic rule is that the running time of a loop is at most
the running time of the statements inside the loop (including tests) times the
number of iterations. As shown earlier, the initialization and testing of the
loop condition is usually no more dominant than are the statements encom-
passing the body of the loop.

T N() Θ F N()()=
T N() F N()

Θ N 2()

T N() o F N()()=
T N() F N()

o N 2()
o N 2()

Θ N 2()

figure 5.9

Meanings of the
various growth
functions

Mathematical Expression Relative Rates of Growth

Growth of is growth of .

Growth of is growth of .

Growth of is growth of .

Growth of is growth of .

T N() O F N()()= T N() ≤ F N()

T N() Ω F N()()= T N() ≥ F N()

T N() Θ F N()()= T N() = F N()

T N() o F N()()= T N() < F N()

T N() O 2N 2()=
T N() O N 2 N+()= T N() O N 2()=

5.4 general big-oh rules 203

A worst-case
bound is a guaran-
tee over all inputs
of some size.

The running time of statements inside a group of nested loops is the running
time of the statements (including tests in the innermost loop) multiplied by the sizes
of all the loops. The running time of a sequence of consecutive loops is equal to the
running time of the dominant loop. The time difference between a nested loop in
which both indices run from 1 to N and two consecutive loops that are not nested but
run over the same indices is the same as the space difference between a two-dimen-
sional array and two one-dimensional arrays. The first case is quadratic. The second
case is linear because N+N is 2N, which is still . Occasionally, this simple rule
can overestimate the running time, but in most cases it does not. Even if it does, Big-
Oh does not guarantee an exact asymptotic answer—just an upper bound.

In an average-case
bound, the running
time is measured
as an average over
all of the possible
inputs of size N.

The analyses we have performed thus far involved use of a worst-case bound,
which is a guarantee over all inputs of some size. Another form of analysis is the
average-case bound, in which the running time is measured as an average over all
of the possible inputs of size N. The average might differ from the worst case if,
for example, a conditional statement that depends on the particular input causes
an early exit from a loop. We discuss average-case bounds in more detail in Sec-
tion 5.8. For now, simply note that the fact that one algorithm has a better worst-
case bound than another algorithm implies nothing about their relative average-
case bounds. However, in many cases average-case and worst-case bounds are
closely correlated. When they are not, the bounds are treated separately.

The last Big-Oh item we examine is how the running time grows for each
type of curve, as illustrated in Figures 5.1 and 5.2. We want a more quantita-
tive answer to this question: If an algorithm takes time to solve a prob-
lem of size N, how long does it take to solve a larger problem? For instance,
how long does it take to solve a problem when there is 10 times as much
input? The answers are shown in Figure 5.10. However, we want to answer
the question without running the program and hope our analytical answers
will agree with the observed behavior.

O(N)

T(N)

figure 5.10

Observed running
times (in seconds) for
various maximum
contiguous
subsequence sum
algorithms

Figure 5.4 Figure 5.5 Figure 7.20 Figure 5.8

10 0.000001 0.000000 0.000001 0.000000

100 0.000288 0.000019 0.000014 0.000005

1,000 0.223111 0.001630 0.000154 0.000053

10,000 218 0.133064 0.001630 0.000533

100,000 NA 13.17 0.017467 0.005571

1,000,000 NA NA 0.185363 0.056338

N O N 3() O N 2() O(N log N) O(N)

204 chapter 5 algorithm analysis

We begin by examining the cubic algorithm. We assume that the
running time is reasonably approximated by . Consequently,

. Mathematical manipulation yields

If the size of the
input increases by
a factor of f, the
running time of a
cubic program
increases by a fac-
tor of roughly f 3.

Thus the running time of a cubic program increases by a factor of 1,000
(assuming N is sufficiently large) when the amount of input is increased by a
factor of 10. This relationship is roughly confirmed by the increase in running
time from N = 100 to 1,000 shown in Figure 5.10. Recall that we do not expect
an exact answer—just a reasonable approximation. We would also expect that
for N = 100,000, the running time would increase another 1,000-fold. The
result would be that a cubic algorithm requires roughly 60 hours (21/2 days) of
computation time. In general, if the amount of the input increases by a factor
of f, then the cubic algorithm’s running time increases by a factor of .

If the size of the
input increases by
a factor of f, the
running time of a
quadratic program
increases by a fac-
tor of roughly f 2.

We can perform similar calculations for quadratic and linear algorithms.
For the quadratic algorithm, we assume that . It follows that

. When we expand, we obtain

So when the input size increases by a factor of 10, the running time of a qua-
dratic program increases by a factor of approximately 100. This relationship
is also confirmed in Figure 5.10. In general, an f-fold increase in input size
yields an -fold increase in running time for a quadratic algorithm.

If the size of the
input increases by a
factor of f, then the
running time of a lin-
ear program also
increases by a factor
of f. This is the pre-
ferred running time
for an algorithm.

Finally, for a linear algorithm, a similar calculation shows that a 10-fold
increase in input size results in a 10-fold increase in running time. Again, this rela-
tionship has been confirmed experimentally in Figure 5.10. Note, however, that for a
linear program, the term sufficiently large could mean a somewhat higher input size
than for the other programs in the event of significant overhead used in all cases. For
a linear program, this term could still be significant for moderate input sizes.

The analysis used here does not work when there are logarithmic terms.
When an algorithm is presented with 10 times as much input, the
running time increases by a factor slightly larger than 10. Specifically, we
have . When we expand, we obtain

Here c′ = 10clog10. As N gets very large, the ratio gets closer and
closer to 10 because gets smaller and smaller
with increasing N. Consequently, if the algorithm is competitive with a linear algo-
rithm for very large N, it is likely to remain competitive for slightly larger N.

Does all this mean that quadratic and cubic algorithms are useless? The
answer is no. In some cases, the most efficient algorithms known are quadratic or

T(N) cN 3=
T 10N() c 10N() 3=

T 10N() 1000cN 3 1000T(N)= =

f 3

T N() cN 2=
T 10N() c 10N()2=

T 10N() 100cN 2 100T N()= =

f 2

O(N log N)

T 10N() c 10N() 10N()log=

T 10N() 10cN 10N()log 10cN Nlog 10cN 10log+ 10T N() c′N+= = =

T 10N() T N()⁄
c′N T N()⁄ 10 10log() Nlog⁄≈

5.5 the logarithm 205

cubic. In others, the most efficient algorithm is even worse (exponential). Further-
more, when the amount of input is small, any algorithm will do. Frequently the
algorithms that are not asymptotically efficient are nonetheless easy to program.
For small inputs, that is the way to go. Finally, a good way to test a complex lin-
ear algorithm is to compare its output with an exhaustive search algorithm. In
Section 5.8 we discuss some other limitations of the Big-Oh model.

5.5 the logarithm
The list of typical growth rate functions includes several entries containing
the logarithm. A logarithm is the exponent that indicates the power to which a
number (the base) is raised to produce a given number. In this section we look
in more detail at the mathematics behind the logarithm. In Section 5.6 we
show its use in a simple algorithm.

The logarithm of N
(to the base 2) is
the value X such
that 2 raised to the
power of X equals
N. By default, the
base of the loga-
rithm is 2.

We begin with the formal definition and then follow with more intuitive
viewpoints.

definition: For any , if .

In this definition, B is the base of the logarithm. In computer science, when
the base is omitted, it defaults to 2, which is natural for several reasons, as we
show later in the chapter. We will prove one mathematical theorem, Theorem 5.4,
to show that, as far as Big-Oh notation is concerned, the base is unimportant, and
also to show how relations that involve logarithms can be derived.

In the rest of the text, we use base 2 logarithms exclusively. An important fact
about the logarithm is that it grows slowly. Because 210 = 1,024, log 1,024 = 10.
Additional calculations show that the logarithm of 1,000,000 is roughly 20, and
the logarithm of 1,000,000,000 is only 30. Consequently, performance of an

algorithm is much closer to a linear algorithm than to a qua-
dratic algorithm for even moderately large amounts of input. Before we
look at a realistic algorithm whose running time includes the logarithm, let us
look at a few examples of how the logarithm comes into play.

B N, 0> NBlog K= BK N=

The base does not matter. For any constant , . Theorem 5.4

Let . Then . Let . Then . Thus
. Hence, we have , which implies that

. Therefore , thus completing the
proof.

Proof

B 1> NBlog O(log N)=

NBlog K= BK N= C Blog= 2C B=
BK 2C()K N= = 2CK N=
log N CK C NBlog= = NBlog Nlog() Blog()⁄=

O(N log N) O(N)
O N 2()

206 chapter 5 algorithm analysis

bits in a binary number
How many bits are required to represent N consecutive integers?

The number of bits
required to repre-
sent numbers is
logarithmic.

A 16-bit short integer represents the 65,536 integers in the range –32,768 to
32,767. In general, B bits are sufficient to represent different integers.
Thus the number of bits B required to represent N consecutive integers satis-
fies the equation . Hence, we obtain , so the minimum num-
ber of bits is . (Here is the ceiling function and represents the
smallest integer that is at least as large as X. The corresponding floor function

 represents the largest integer that is at least as small as X.)

repeated doubling
Starting from X = 1, how many times should X be doubled before it is at least as
large as N?

The repeated dou-
bling principle holds
that, starting at 1,
we can repeatedly
double only loga-
rithmically many
times until we
reach N.

Suppose we start with $1 and double it every year. How long would it take to
save a million dollars? In this case, after 1 year we would have $2; after 2 years,
$4; after 3 years, $8 and so on. In general, after K years we would have dol-
lars, so we want to find the smallest K satisfying . This is the same equa-
tion as before, so . After 20 years, we would have over a million
dollars. The repeated doubling principle holds that, starting from 1, we can
repeatedly double only times until we reach N.

repeated halving
Starting from X = N, if N is repeatedly halved, how many iterations must be applied
to make N smaller than or equal to 1?

If the division rounds up to the nearest integer (or is real, not integer, divi-
sion), we have the same problem as with repeated doubling, except that we
are going in the opposite direction. Once again the answer is itera-
tions. If the division rounds down, the answer is . We can show the
difference by starting with . Two divisions are necessary, unless the
division rounds down, in which case only one is needed.

Many of the algorithms examined in this text will have logarithms, intro-
duced because of the repeated halving principle, which holds that, starting at
N, we can halve only logarithmically many times. In other words, an algo-
rithm is if it takes constant () time to cut the problem size by
a constant fraction (which is usually). This condition follows directly from
the fact that there will be iterations of the loop. Any constant frac-
tion will do because the fraction is reflected in the base of the logarithm, and
Theorem 5.4 tells us that the base does not matter.

All of the remaining occurrences of logarithms are introduced (either
directly or indirectly) by applying Theorem 5.5. This theorem concerns the
Nth harmonic number, which is the sum of the reciprocals of the first N posi-
tive integers, and states that the Nth harmonic number, HN, satisfies

2B

2B N≥ B log N≥
log N X

X

2K

2K N≥
K log N=

log N

log N
log N

X 3=

O(log N) O 1()
1
2
--

O(log N)

The repeated halv-
ing principle holds
that, starting at N,
we can halve only
logarithmically
many times.
This process is
used to obtain log-
arithmic routines
for searching.

The Nth harmonic
number is the sum
of the reciprocals
of the first N posi-
tive integers. The
growth rate of the
harmonic number is
logarithmic.

5.6 static searching problem 207

. The proof uses calculus, but you do not need to understand the
proof to use the theorem.

The next section shows how the repeated halving principle leads to an
efficient searching algorithm.

5.6 static searching problem
An important use of computers is looking up data. If the data are not allowed
to change (e.g., it is stored on a CD-ROM), we say that the data are static. A
static search accesses data that are never altered. The static searching problem
is naturally formulated as follows.

static searching problem
Given an integer X and an array A, return the position of X in A or an indication that
it is not present. If X occurs more than once, return any occurrence. The array A is
never altered.

An example of static searching is looking up a person in the telephone
book. The efficiency of a static searching algorithm depends on whether the
array being searched is sorted. In the case of the telephone book, searching by
name is fast, but searching by phone number is hopeless (for humans). In this
section, we examine some solutions to the static searching problem.

5.6.1 sequential search
A sequential search
steps through the
data sequentially
until a match is
found.

When the input array is not sorted, we have little choice but to do a linear
sequential search, which steps through the array sequentially until a match is
found. The complexity of the algorithm is analyzed in three ways. First, we
provide the cost of an unsuccessful search. Then, we give the worst-case cost
of a successful search. Finally, we find the average cost of a successful search.

HN Θ log N()=

Let . Then . A more precise estimate is
.

Theorem 5.5

The intuition of the proof is that a discrete sum is well approximated by the (continu-
ous) integral. The proof uses a construction to show that the sum can be
bounded above and below by , with appropriate limits. Details are left as Exercise
5.24.

Proof

HN 1 i⁄
i 1=
N∑= HN Θ log N()=

Nln 0.577+

HNxd
x

-----∫

208 chapter 5 algorithm analysis

Analyzing successful and unsuccessful searches separately is typical. Unsuc-
cessful searches usually are more time consuming than are successful
searches (just think about the last time you lost something in your house). For
sequential searching, the analysis is straightforward.

A sequential search
is linear.

An unsuccessful search requires the examination of every item in the
array, so the time will be . In the worst case, a successful search, too,
requires the examination of every item in the array because we might not find
a match until the last item. Thus the worst-case running time for a successful
search is also linear. On average, however, we search only half of the array.
That is, for every successful search in position i, there is a corresponding suc-
cessful search in position (assuming we start numbering from 0).
However, is still . As mentioned earlier in the chapter, all these
Big-Oh terms should correctly be Big-Theta terms. However, the use of Big-
Oh is more popular.

5.6.2 binary search
If the input array is
sorted, we can use
the binary search,
which we perform
from the middle of
the array rather
than the end.

If the input array has been sorted, we have an alternative to the sequential
search, the binary search, which is performed from the middle of the array
rather than the end. We keep track of low and high, which delimit the portion
of the array in which an item, if present, must reside. Initially, the range is
from 0 to . If low is larger than high, we know that the item is not
present, so we return NOT_FOUND. Otherwise, at line 15, we let mid be the half-
way point of the range (rounding down if the range has an even number of
elements) and compare the item we are searching for with the item in position
mid.5 If we find a match, we are done and can return. If the item we are search-
ing for is less than the item in position mid, then it must reside in the range low
to mid-1. If it is greater, then it must reside in the range mid+1 to high. In
Figure 5.11, lines 17 to 20 alter the possible range, essentially cutting it in
half. By the repeated halving principle, we know that the number of iterations
will be .

The binary search
is logarithmic
because the search
range is halved in
each iteration.

For an unsuccessful search, the number of iterations in the loop is
. The reason is that we halve the range in each iteration (rounding

down if the range has an odd number of elements); we add 1 because the final
range encompasses zero elements. For a successful search, the worst case is

iterations because in the worst case we get down to a range of only one
element. The average case is only one iteration better because half of the ele-
ments require the worst case for their search, a quarter of the elements save one
iteration, and only one in elements will save i iterations from the worst case.

O(N)

N 1– i–
N 2⁄ O(N)

5. Note that if low and high are large enough, their sum will overflow an int, yielding an incor-
rect negative value for mid. Exercise 5.27 discusses this in more detail.

N 1–

O(log N)

log N 1+

log N

2i

5.6 static searching problem 209

The mathematics involves computing the weighted average by calculating the
sum of a finite series. The bottom line, however, is that the running time for each
search is . In Exercise 5.26, you are asked to complete the calculation.

For reasonably large values of N, the binary search outperforms the sequen-
tial search. For instance, if N is 1,000, then on average a successful sequential
search requires about 500 comparisons. The average binary search, using the
previous formula, requires , or eight iterations for a successful
search. Each iteration uses 1.5 comparisons on average (sometimes 1; other
times, 2), so the total is 12 comparisons for a successful search. The binary
search wins by even more in the worst case or when searches are unsuccessful.

Optimizing the
binary search can
cut the number of
comparisons
roughly in half.

If we want to make the binary search even faster, we need to make the
inner loop tighter. A possible strategy is to remove the (implicit) test for a suc-
cessful search from that inner loop and shrink the range down to one item in
all cases. Then we can use a single test outside of the loop to determine if the
item is in the array or cannot be found, as shown in Figure 5.12. If the item we
are searching for in Figure 5.12 is not larger than the item in the mid position,
then it is in the range that includes the mid position. When we break the loop,
the subrange is 1, and we can test to see whether we have a match.

figure 5.11

Basic binary search
that uses three-way
comparisons

1 /**
2 * Performs the standard binary search
3 * using two comparisons per level.
4 * @return index where item is found, or NOT_FOUND.
5 */
6 public static <AnyType extends Comparable<? super AnyType>>
7 int binarySearch(AnyType [] a, AnyType x)
8 {
9 int low = 0;

10 int high = a.length - 1;
11 int mid;
12
13 while(low <= high)
14 {
15 mid = (low + high) / 2;
16
17 if(a[mid].compareTo(x) < 0)
18 low = mid + 1;
19 else if(a[mid].compareTo(x) > 0)
20 high = mid - 1;
21 else
22 return mid;
23 }
24
25 return NOT_FOUND; // NOT_FOUND = -1
26 }

O(log N)

log N 1–

210 chapter 5 algorithm analysis

In the revised algorithm, the number of iterations is always ⎡log N⎤
because we always shrink the range in half, possibly by rounding down. Thus,
the number of comparisons used is always ⎡log N⎤ + 1.

Binary search is surprisingly tricky to code. Exercise 5.9 illustrates some
common errors.

Notice that for small N, such as values smaller than 6, the binary search might
not be worth using. It uses roughly the same number of comparisons for a typical
successful search, but it has the overhead of line 18 in each iteration. Indeed, the
last few iterations of the binary search progress slowly. One can adopt a hybrid
strategy in which the binary search loop terminates when the range is small and
applies a sequential scan to finish. Similarly, people search a phone book nonse-
quentially. Once they have narrowed the range to a column, they perform a
sequential scan. The scan of a telephone book is not sequential, but it also is not a
binary search. Instead it is more like the algorithm discussed in the next section.

figure 5.12

Binary search using
two-way comparisons

1 /**
2 * Performs the standard binary search
3 * using one comparison per level.
4 * @return index where item is found or NOT_FOUND.
5 */
6 public static <AnyType extends Comparable<? super AnyType>>
7 int binarySearch(AnyType [] a, AnyType x)
8 {
9 if(a.length == 0)

10 return NOT_FOUND;
11
12 int low = 0;
13 int high = a.length - 1;
14 int mid;
15
16 while(low < high)
17 {
18 mid = (low + high) / 2;
19
20 if(a[mid].compareTo(x) < 0)
21 low = mid + 1;
22 else
23 high = mid;
24 }
25
26 if(a[low].compareTo(x) == 0)
27 return low;
28
29 return NOT_FOUND;
30 }

5.6 static searching problem 211

5.6.3 interpolation search

The binary search is very fast at searching a sorted static array. In fact, it is so fast
that we would rarely use anything else. A static searching method that is sometimes
faster, however, is an interpolation search, which has better Big-Oh performance
on average than binary search but has limited practicality and a bad worst case. For
an interpolation search to be practical, two assumptions must be satisfied:

1. Each access must be very expensive compared to a typical instruc-
tion. For example, the array might be on a disk instead of in memory,
and each comparison requires a disk access.

2. The data must not only be sorted, it must also be fairly uniformly distrib-
uted. For example, a phone book is fairly uniformly distributed. If the
input items are {1, 2, 4, 8, 16, }, the distribution is not uniform.

These assumptions are quite restrictive, so you might never use an inter-
polation search. But it is interesting to see that there is more than one way to
solve a problem and that no algorithm, not even the classic binary search, is
the best in all situations.

The interpolation search requires that we spend more time to make an
accurate guess regarding where the item might be. The binary search always
uses the midpoint. However, searching for Hank Aaron in the middle of the
phone book would be silly; somewhere near the start clearly would be more
appropriate. Thus, instead of mid, we use next to indicate the next item that we
will try to access.

Here’s an example of what might work well. Suppose that the range con-
tains 1,000 items, the low item in the range is 1,000, the high item in the range
is 1,000,000, and we are searching for an item of value 12,000. If the items
are uniformly distributed, then we expect to find a match somewhere near the
twelfth item. The applicable formula is

The subtraction of 1 is a technical adjustment that has been shown to perform well
in practice. Clearly, this calculation is more costly than the binary search calcula-
tion. It involves an extra division (the division by 2 in the binary search is really
just a bit shift, just as dividing by 10 is easy for humans), multiplication, and four
subtractions. These calculations need to be done using floating-point operations.
One iteration may be slower than the complete binary search. However, if the cost
of these calculations is insignificant when compared to the cost of accessing an
item, speed is immaterial; we care only about the number of iterations.

…

next low x a low[]–
a high[] a low[]–
--- high low– 1–()×+=

212 chapter 5 algorithm analysis

Interpolation search
has a better Big-Oh
bound on average
than does binary
search, but has lim-
ited practicality and
a bad worst case.

In the worst case, where data is not uniformly distributed, the running
time could be linear and every item might be examined. In Exercise 5.25 you
are asked to construct such a case. However, if we assume that the items are
reasonably distributed, as with a phone book, the average number of compari-
sons has been shown to be . In other words, we apply the loga-
rithm twice in succession. For N = 4 billion, is about 32 and
is roughly 5. Of course, there are some hidden constants in the Big-Oh nota-
tion, but the extra logarithm can lower the number of iterations considerably,
so long as a bad case does not crop up. Proving the result rigorously, however,
is quite complicated.

5.7 checking an algorithm analysis
Once we have performed an algorithm analysis, we want to determine
whether it is correct and as good as we can possibly make it. One way to do
this is to code the program and see if the empirically observed running time
matches the running time predicted by the analysis.

When N increases by a factor of 10, the running time goes up by a factor
of 10 for linear programs, 100 for quadratic programs, and 1,000 for cubic
programs. Programs that run in take slightly more than 10 times
as long to run under the same circumstances. These increases can be hard to
spot if the lower-order terms have relatively large coefficients and N is not
large enough. An example is the jump from N = 10 to N = 100 in the running
time for the various implementations of the maximum contiguous subse-
quence sum problem. Differentiating linear programs from pro-
grams, based purely on empirical evidence, also can be very difficult.

Another commonly used trick to verify that some program is
is to compute the values for a range of N (usually spaced out by
factors of 2), where is the empirically observed running time. If
is a tight answer for the running time, then the computed values converge to a
positive constant. If is an overestimate, the values converge to zero. If

 is an underestimate, and hence wrong, the values diverge.
As an example, suppose that we write a program to perform N random

searches using the binary search algorithm. Since each search is logarithmic,
we expect the total running time of the program to be .
Figure 5.13 shows the actual observed running time for the routine for various
input sizes on a real (but extremely slow) computer. The last column is most
likely the converging column and thus confirms our analysis, whereas the
increasing numbers for suggest that is an underestimate, and the
quickly decreasing values for suggest that is an overestimate.

O Nloglog()
log N log Nlog

O(N log N)

O(N log N)

O F N()()
T N() F N()⁄

T N() F N()

F N()
F N()

O(N log N)

T N⁄ O(N)
T N 2⁄ O N 2()

5.8 limitations of big-oh analysis 213

Note in particular that we do not have definitive convergence. One prob-
lem is that the clock that we used to time the program ticks only every 10 ms.
Note also that there is not a great difference between and .
Certainly an algorithm is much closer to being linear than being
quadratic.

5.8 limitations of big-oh analysis

Worst-case is
sometimes uncom-
mon and can be
safely ignored. At
other times, it is
very common and
cannot be ignored.

Big-Oh analysis is a very effective tool, but it does have limitations. As already
mentioned, its use is not appropriate for small amounts of input. For small
amounts of input, use the simplest algorithm. Also, for a particular algorithm, the
constant implied by the Big-Oh may be too large to be practical. For example, if
one algorithm’s running time is governed by the formula and another
has a running time of 1000N, then the first algorithm would most likely be better,
even though its growth rate is larger. Large constants can come into play when an
algorithm is excessively complex. They also come into play because our analysis
disregards constants and thus cannot differentiate between things like memory
access (which is cheap) and disk access (which typically is many thousand times
more expensive). Our analysis assumes infinite memory, but in applications
involving large data sets, lack of sufficient memory can be a severe problem.

Sometimes, even when constants and lower-order terms are considered,
the analysis is shown empirically to be an overestimate. In this case, the analy-
sis needs to be tightened (usually by a clever observation). Or the average-case

figure 5.13

Empirical running time
for N binary searches
in an N-item
array

CPU Time T
(microseconds) T/N T/N2 T / (N log N)

10,000 1,000 0.1000000 0.0000100 0.0075257

20,000 2,000 0.1000000 0.0000050 0.0069990

40,000 4,400 0.1100000 0.0000027 0.0071953

80,000 9,300 0.1162500 0.0000015 0.0071373

160,000 19,600 0.1225000 0.0000008 0.0070860

320,000 41,700 0.1303125 0.0000004 0.0071257

640,000 87,700 0.1370313 0.0000002 0.0071046

N

O(N) O(N log N)
O(N log N)

2N log N

214 chapter 5 algorithm analysis

running time bound may be significantly less than the worst-case running time
bound, and so no improvement in the bound is possible. For many complicated
algorithms the worst-case bound is achievable by some bad input, but in prac-
tice it is usually an overestimate. Two examples are the sorting algorithms
Shellsort and quicksort (both described in Chapter 8).

Average-case anal-
ysis is almost
always much more
difficult than worst-
case analysis.

However, worst-case bounds are usually easier to obtain than their average-
case counterparts. For example, a mathematical analysis of the average-case run-
ning time of Shellsort has not been obtained. Sometimes, merely defining what
average means is difficult. We use a worst-case analysis because it is expedient
and also because, in most instances, the worst-case analysis is very meaningful. In
the course of performing the analysis, we frequently can tell whether it will apply
to the average case.

summary

In this chapter we introduced algorithm analysis and showed that algorithmic
decisions generally influence the running time of a program much more than
programming tricks do. We also showed the huge difference between the run-
ning times for quadratic and linear programs and illustrated that cubic algo-
rithms are, for the most part, unsatisfactory. We examined an algorithm that
could be viewed as the basis for our first data structure. The binary search effi-
ciently supports static operations (i.e., searching but not updating), thereby
providing a logarithmic worst-case search. Later in the text we examine
dynamic data structures that efficiently support updates (both insertion and
deletion).

In Chapter 6 we discuss some of the data structures and algorithms
included in Java’s Collections API. We also look at some applications of data
structures and discuss their efficiency.

key concepts

average-case bound Measurement of running time as an average over all the
possible inputs of size N. (203)

Big-Oh The notation used to capture the most dominant term in a function; it
is similar to less than or equal to when growth rates are being considered.
(190)

Big-Omega The notation similar to greater than or equal to when growth rates
are being considered. (201)

Big-Theta The notation similar to equal to when growth rates are being
considered. (202)

common errors 215

binary search The search method used if the input array has been sorted and is
performed from the middle rather than the end. The binary search is loga-
rithmic because the search range is halved in each iteration. (208)

harmonic numbers The Nth harmonic number is the sum of the reciprocals of
the first N positive integers. The growth rate of the harmonic numbers is
logarithmic. (206)

interpolation search A static searching algorithm that has better Big-Oh per-
formance on average than binary search but has limited practicality and a
bad worst case. (212)

linear time algorithm An algorithm that causes the running time to grow as
. If the size of the input increases by a factor of f, then the running

time also increases by a factor of f. It is the preferred running time for an
algorithm. (204)

Little-Oh The notation similar to less than when growth rates are being
considered. (202)

logarithm The exponent that indicates the power to which a number is raised
to produce a given number. For example, the logarithm of N (to the base
2) is the value X such that 2 raised to the power of X equals N. (205)

repeated-doubling principle Holds that, starting at 1, repeated doubling can
occur only logarithmically many times until we reach N. (206)

repeated-halving principle Holds that, starting at N, repeated halving can occur
only logarithmically many times until we reach 1. This process is used to
obtain logarithmic routines for searching. (206)

sequential search A linear search method that steps through an array until a
match is found. (207)

static search Accesses data that is never altered. (207)
subquadratic An algorithm whose running time is strictly slower than qua-

dratic, which can be written as . (202)
worst-case bound A guarantee over all inputs of some size. (203)

common errors

1. For nested loops, the total time is affected by the product of the loop
sizes. For consecutive loops, it is not.

2. Do not just blindly count the number of loops. A pair of nested loops that
each run from 1 to accounts for time.

3. Do not write expressions such as or . Only the dom-
inant term, with the leading constant removed, is needed.

O(N)

o N 2()

N 2 O N 4()

O 2N 2() O N 2 N+()

216 chapter 5 algorithm analysis

4. Use equalities with Big-Oh, Big-Omega, and so on. Writing that the
running time is makes no sense because Big-Oh is an upper
bound. Do not write that the running time is ; if the intention is
to say that the running time is strictly less than quadratic, use Little-Oh
notation.

5. Use Big-Omega, not Big-Oh, to express a lower bound.

6. Use the logarithm to describe the running time for a problem solved by
halving its size in constant time. If it takes more than constant time to
halve the problem, the logarithm does not apply.

7. The base (if it is a constant) of the logarithm is irrelevant for the purposes
of Big-Oh. To include it is an error.

on the internet

The three maximum contiguous subsequence sum algorithms, as well as a
fourth taken from Section 7.5, are available, along with a main that conducts
the timing tests.

MaxSumTest.java Contains four algorithms for the maximum subse-
quence sum problem.

BinarySearch.java Contains the binary search shown in Figure 5.11.
The code in Figure 5.12 is not provided, but a sim-
ilar version that is part of the Collections API and
is implemented in Figure 6.15 is in Arrays.java as
part of weiss.util.

exercises

IN SHORT

5.1 Balls are drawn from a box as specified in Theorem 5.1 in the combi-
nations given in (a) – (d). What are the corresponding values of i, j,
and k?
a. Red, 5, 6
b. Blue, 5, 6
c. Blue, 3, Red
d. 6, 5, Red

5.2 Why isn’t an implementation based solely on Theorem 5.2 sufficient
to obtain a subquadratic running time for the maximum contiguous
subsequence sum problem?

O> N 2()
O< N 2()

exercises 217

5.3 Suppose and . Which of
the following are true?
a.
b.
c.
d.

5.4 Group the following into equivalent Big-Oh functions:

x2, x, x2 + x, x2 – x, and (x3 / (x – 1)).

5.5 Programs A and B are analyzed and are found to have worst-case run-
ning times no greater than and , respectively. Answer
the following questions, if possible.
a. Which program has the better guarantee on the running time for

large values of N (N > 10,000)?
b. Which program has the better guarantee on the running time for

small values of N (N < 100)?
c. Which program will run faster on average for N = 1,000?
d. Can program B run faster than program A on all possible inputs?

5.6 Solving a problem requires running an algorithm and then afterwards
a second algorithm. What is the total cost of solving the problem?

5.7 Solving a problem requires running an algorithm and then
afterwards an algorithm. What is the total cost of solving the
problem?

5.8 Solving a problem requires running an algorithm, and then per-
forming N binary searches on an N-element array, and then running
another algorithm. What is the total cost of solving the problem?

5.9 For the binary search routine in Figure 5.11, show the consequences
of the following replacement code fragments:
a. Line 13: using the test low < high
b. Line 15: assigning mid = low + high / 2
c. Line 18: assigning low = mid
d. Line 20: assigning high = mid

IN THEORY

5.10 For the typical algorithms that you use to perform calculations by
hand, determine the running time to
a. Add two N-digit integers
b. Multiply two N-digit integers
c. Divide two N-digit integers

T 1 N() O F N()()= T 2 N() O F N()()=

T 1 N() T 2 N()+ O F N()()=
T 1 N() T 2 N()– O F N()()=
T 1 N() T 2 N()⁄ O 1()=
T 1 N() O T 2 N()()=

150N log N N 2

O(N)
O(N)

O N 2()
O(N)

O(N)

O(N)

218 chapter 5 algorithm analysis

5.11 In terms of N, what is the running time of the following algorithm to
compute :

public static double power(double x, int n)
{
 double result = 1.0;

 for(int i = 0; i < n; i++)
 result *= x;
 return result;
}

5.12 Directly evaluate the triple summation that precedes Theorem 5.1.
Verify that the answers are identical.

5.13 For the quadratic algorithm for the maximum contiguous subse-
quence sum problem, determine precisely how many times the inner-
most statement is executed.

5.14 An algorithm takes 0.5 ms for input size 100. How long will it take
for input size 500 (assuming that low-order terms are negligible) if
the running time is
a. linear
b.
c. quadratic
d. cubic

5.15 An algorithm takes 0.5 ms for input size 100. How large a problem
can be solved in 1 minute (assuming that low-order terms are negligi-
ble) if the running time is
a. linear
b.
c. quadratic
d. cubic

5.16 For 1,000 items, our algorithm takes 10 sec. to run on machine A, but
now you replace the machine with machine B that is 2 times as fast.
Approximately how long will the algorithm take to run on machine B
for 2,000 items if the algorithm is:
a. linear
b. quadratic
c.
d.

X N

O(N log N)

O(N log N)

O N 3()
O(N log N)

exercises 219

5.17 Complete Figure 5.10 with estimates for the running times that were
too long to simulate. Interpolate the running times for all four algo-
rithms and estimate the time required to compute the maximum con-
tiguous subsequence sum of 10,000,000 numbers. What assumptions
have you made?

5.18 The data in Figure 5.14 shows the result of running the maximum
subsequence sum problem in 1991. The program was written in the C
programming language and run on a Unix-based Sun 3/60 worksta-
tion with 4 Megabytes of main memory. This is the actual data from
that era.
a. Verify that for each algorithm, the change in the observed running

time is consistent with the Big-Oh running time of the algorithm.
b. Estimate the running time for N = 100,000 for the poorest performing

algorithm.
c. How much faster is the algorithm compared to 1991?
d. How much faster is the algorithm compared to 1991?
e. Explain why the answers for parts c and d are different. Is this

significant for two algorithms with different Big-Oh running
times? Is this significant for two algorithms with identical Big-Oh
running times?

5.19 Order the following functions by growth rate: N, , , ,
, , , , , , , 37,

, and . Indicate which functions grow at the same rate.

figure 5.14

Figure 5.10 using
data from 1991.

10 0.00193 0.00045 0.00066 0.00034

100 0.47015 0.0112 0.00486 0.00063

1,000 448.77 1.1233 0.05843 0.00333

10,000 NA 111.13 0.6831 0.03042

100,000 NA NA 8.0113 0.29832

N O N 3() O N 2() O(N log N) O(N)

O N 3()
O N()

N N 1.5 N 2

N log N N Nloglog N Nlog2 N N 2()log 2 N⁄ 2N 2N 2/

N 3 N 2 Nlog

220 chapter 5 algorithm analysis

5.20 For each of the following program fragments, do the following:
a. Give a Big-Oh analysis of the running time.
b. Implement the code and run for several values of N.
c. Compare your analysis with the actual running times.

// Fragment 1
for(int i = 0; i < n; i++)
 sum++;

// Fragment 2
for(int i = 0; i < n; i += 2)
 sum++;

// Fragment 3
for(int i = 0; i < n; i++)
 for(int j = 0; j < n; j++)
 sum++;

// Fragment 4
for(int i = 0; i < n; i++)
 sum++;
for(int j = 0; j < n; j++)
 sum++;

// Fragment 5
for(int i = 0; i < n; i++)
 for(int j = 0; j < n * n; j++)
 sum++;

// Fragment 6
for(int i = 0; i < n; i++)
 for(int j = 0; j < i; j++)
 sum++;

// Fragment 7
for(int i = 0; i < n; i++)
 for(int j = 0; j < n * n; j++)
 for(int k = 0; k < j; k++)
 sum++;

// Fragment 8
for(int i = 1; i < n; i = i * 2)
 sum++;

exercises 221

5.21 Occasionally, multiplying the sizes of nested loops can give an over-
estimate for the Big-Oh running time. This result happens when an
innermost loop is infrequently executed. Repeat Exercise 5.20 for the
following program fragment:

for(int i = 1; i <= n; i++)
 for(int j = 1; j <= i * i; j++)
 if(j % i == 0)
 for(int k = 0; k < j; k++)
 sum++;

5.22 In a court case, a judge cited a city for contempt and ordered a fine of
$2 for the first day. Each subsequent day, until the city followed the
judge’s order, the fine was squared (that is, the fine progressed as fol-
lows: $2, $4, $16, $256, $65536, . . .).
a. What would be the fine on day N?
b. How many days would it take for the fine to reach D dollars (a

Big-Oh answer will do)?

5.23 Unlucky Joe has been in companies that keep getting bought out by
other companies. Every time Joe’s company is bought out, it is
always swallowed up by a larger company. Joe is now in a company
with N employees. What is the maximum number of different compa-
nies that Joe has worked for?

5.24 Prove Theorem 5.5. Hint: Show that . Then show a sim-
ilar lower bound.

5.25 Construct an example whereby an interpolation search examines
every element in the input array.

5.26 Analyze the cost of an average successful search for the binary search
algorithm in Figure 5.11.

5.27 Integers in Java range from –231 to 231 – 1. Consequently, if we have
a large array with more than 230 elements, computing the midpoint of
a subarray using mid=(low+high)/2 will cause low+high to overflow the
integer range if the midpoint resides past array index 230.
a. How large is 230?
b. Show that (low +(high-low)/2) is a computationally equivalent

calculation that does not overflow in this situation.
c. How large can an array be using the modification suggested in

part (b)?

1
i

2
N∑

xd
x

1
N∫<

222 chapter 5 algorithm analysis

5.28 Consider the following method, whose implementation is shown:

// Precondition: m represents matrix with N rows, N columns
// in each row, elements are increasing
// in each column, elements are increasing
// Postcondition: returns true if some element in m stores val;
// returns false otherwise
public static boolean contains(int [] [] m, int val)
{

int N = m.length;

for(int r = 0; r < N; r++)
 for(int c = 0; c < N; c++)
 if(m[r][c] == val)
 return true;
return false;

}

An example of a matrix that satisfies the stated precondition is

int [] [] m1 = { { 4, 6, 8 },
{ 5, 9, 11 },
{ 7, 11, 14 } };

a. What is the running time of contains?
b. Suppose it takes 4 seconds to run contains on a 100-by-100

matrix. Assuming that low-order terms are negligible, how long
will it take to run contains on a 400-by-400 matrix?

c. Suppose contains is rewritten so that the algorithm performs a
binary search on each row, returning true if any of the row-
searches succeed, and false otherwise. What is the running time
of this revised version of contains?

5.29 Method hasTwoTrueValues returns true if at least two values in an array
of Booleans are true. Provide the Big-Oh running time for all three
implementations proposed.

// Version 1
 public boolean hasTwoTrueValues(boolean [] arr)
 {

 int count = 0;

 for(int i = 0; i < arr.length; i++)
 if(arr[i])
 count++;

 return count >= 2;
 }

exercises 223

 // Version 2
 public boolean hasTwoTrueValues(boolean [] arr)
 {

 for(int i = 0; i < arr.length; i++)
 for(int j = i + 1; j < arr.length; j++)
 if(arr[i] && arr[j])
 return true;

 return false;
 }

 // Version 3
 public boolean hasTwoTrueValues(boolean [] arr)
 {

 for(int i = 0; i < arr.length; i++)
 if(arr[i])
 for(int j = i + 1; j < arr.length; j++)
 if(arr[j])
 return true;

 return false;
 }

IN PRACTICE

5.30 Give an efficient algorithm to determine whether an integer i exists
such that in an array of increasing integers. What is the run-
ning time of your algorithm?

5.31 A prime number has no factors besides 1 and itself. Do the following:
a. Write a program to determine if a positive integer N is prime. In

terms of N, what is the worst-case running time of your program?
b. Let B equal the number of bits in the binary representation of N.

What is the value of B?
c. In terms of B, what is the worst-case running time of your program?
d. Compare the running times to determine if a 20-bit number and a

40-bit number are prime.

5.32 An important problem in numerical analysis is to find a solution to the
equation for some arbitrary F. If the function is continuous
and has two points low and high such that and have
opposite signs, then a root must exist between low and high and can be
found by either a binary search or an interpolation search. Write a func-
tion that takes as parameters F, low, and high and solves for a zero.
What must you do to ensure termination?

Ai i=

F X() 0=
F low() F high()

224 chapter 5 algorithm analysis

5.33 A majority element in an array A of size N is an element that appears
more than times (thus there is at most one such element). For
example, the array

3, 3, 4, 2, 4, 4, 2, 4, 4

has a majority element (4), whereas the array

3, 3, 4, 2, 4, 4, 2, 4

does not. Give an algorithm to find a majority element if one exists, or
reports that one does not. What is the running time of your algorithm?
(Hint: There is an solution.)

5.34 The input is an N × N matrix of numbers that is already in memory.
Each individual row is increasing from left to right. Each individual
column is increasing from top to bottom. Give an worst-case
algorithm that decides if a number X is in the matrix.

5.35 Design efficient algorithms that take an array of positive numbers a,
and determine
a. The maximum value of a[j]+a[i], for j i
b. The maximum value of a[j]-a[i], for j i
c. The maximum value of a[j]*a[i], for j i
d. The maximum value of a[j]/a[i], for j i

5.36 Suppose that when the capacity of an ArrayList is increased, it is
always doubled. If an ArrayList stores N items, and started with an
initial capacity of 1, what is the maximum number of times that an
ArrayList’s capacity could have been increased?

5.37 The ArrayList class in java.util always increases the capacity by
50%. What is the maximum number of times that its capacity can be
increased?

5.38 The ArrayList class contains a trim method that resizes the internal
array to exactly the capacity. The trim method is intended to be used
after all the items have been added the ArrayList, in order to avoid
wasting space. Suppose, however, the novice programmer invokes
trim after each add. In that case, what is the running time of building
an N-item ArrayList? Write a program that performs 100,000 adds to
an ArrayList and illustrates the novice’s error.

5.39 Because a String is immutable, a String concatenation of the form
str1+=str2 takes time that is proportional to the length of the resulting
string, even if str2 is very short. What is the running time of the code
in Figure 5.15, assuming that the array has N items?

N 2⁄

O(N)

O(N)

≥
≥
≥
≥

exercises 225

PROGRAMMING PROJECTS

5.40 The Sieve of Eratosthenes is a method used to compute all primes
less than N. Begin by making a table of integers 2 to N. Find the
smallest integer, i, that is not crossed out. Then print i and cross out i,
2i, 3i, . . . When , the algorithm terminates. The running time
has been shown to be . Write a program to implement
the Sieve and verify the running time claim. How difficult is it to dif-
ferentiate the running time from and ?

5.41 The equation has exactly one integral
solution that satisfies . Write a pro-
gram to find the solution. Hint: First, precompute all values of
and store them in an array. Then, for each tuple , you
only need to verify that some F exists in the array. (There are several
ways to check for F, one of which is to use a binary search to check
for F. Other methods might prove to be more efficient.)

5.42 Suppose we modify the code in Figure 5.5 by adding the following
lines immediately after line 15:

if(thisSum < 0)
 break;

This modification is suggested in the text and avoids examining any
sequence that begins with a negative number.
a. If all the numbers in the array are positive, what is the running

time of the resulting algorithm?
b. If all the numbers in the array are negative, what is the running

time of the resulting algorithm?
c. Suppose all the numbers are integers uniformly and randomly

distributed between –50 and 49, inclusive. Write a test program to

figure 5.15

Return a String
representation of an
array.

public static String toString(Object [] arr)
{
 String result = " [";

 for(String s : arr)
 result += s + " ";

 result += "]";

 return result;
}

i N>
O N Nloglog()

O(N) O(N log N)

A5 B5 C5 D5 E5+ + + + F5=
0 A B C D E F 75≤ ≤ ≤ ≤ ≤ ≤<

X5

A B C D E, , , ,()

226 chapter 5 algorithm analysis

obtain timing data, going up to N = 10,000,000. Can you infer the
running time of the program in this unique circumstance?

d. Now suppose all the numbers are integers uniformly and ran-
domly distributed between –45 and 54, inclusive. Does that sig-
nificantly affect the running time?

e. Suppose all the numbers are integers uniformly and randomly
distributed between –1 and 1, inclusive. Does that significantly
affect the running time?

5.43 Suppose you have a sorted array of positive and negative integers and
would like to determine if there exist some value x such that both x
and –x are in the array. Consider the following three algorithms:

Algorithm #1: For each element in the array, do a sequential search to
see if its negative is also in the array.

Algorithm #2: For each element in the array, do a binary search to see if
its negative is also in the array.

Algorithm #3: Maintain two indices i and j, initialized to the first and
last element in the array, respectively. If the two elements being indexed
sum to 0, then x has been found. Otherwise, if the sum is smaller than 0,
advance i; if the sum is larger than 0 retreat j, and repeatedly test the sum
until either x is found, or i and j meet.

Determine the running times of each algorithm, and implement all three
obtaining actual timing data for various values of N. Confirm your analy-
sis with the timing data.

5.44 As mentioned in Exercise 5.38, repeated String concatenation can be
expensive. Consequently, Java provides a StringBuilder class. A
StringBuilder is somewhat like an ArrayList that stores unlimited
characters. The StringBuilder allows one to easily add to the end,
automatically expanding an internal character array (by doubling its
capacity) as needed. In so doing, the cost of appending can be
assumed to be proportional to the number of characters added to the
StringBuilder (rather than the number of characters in the result). At
any point, the StringBuilder can be used to construct a String. Figure
5.16 contains two methods that return Strings containing N xs. What
is the running time of each method? Run the methods on various val-
ues of N to verify your answer.

references 227

references

The maximum contiguous subsequence sum problem is from [5]. References
[4], [5], and [6] show how to optimize programs for speed. Interpolation
search was first suggested in [14] and was analyzed in [13]. References [1],
[8], and [17] provide a more rigorous treatment of algorithm analysis. The
three-part series [10], [11], and [12], newly updated, remains the foremost ref-
erence work on the topic. The mathematical background required for more
advanced algorithm analysis is provided by [2], [3], [7], [15], and [16]. An
especially good book for advanced analysis is [9].

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

2. M. O. Albertson and J. P. Hutchinson, Discrete Mathematics with Algo-
rithms, John Wiley & Sons, New York, 1988.

3. Z. Bavel, Math Companion for Computer Science, Reston Publishing
Company, Reston, VA, 1982.

4. J. L. Bentley, Writing Efficient Programs, Prentice-Hall, Englewood
Cliffs, NJ, 1982.

5. J. L. Bentley, Programming Pearls, Addison-Wesley, Reading, MA,
1986.

figure 5.16

Return a string
containing lots of x’s.

public static String makeLongString1(int N)
{
 String result = "";

 for(int i = 0; i < N; i++)
 result += "x";

 return result;
}

public static String makeLongString2(int N)
{
 StringBuilder result = new StringBuilder("");

 for(int i = 0; i < N; i++)
 result.append("x");

 return new String(result);
}

228 chapter 5 algorithm analysis

6. J. L. Bentley, More Programming Pearls, Addison-Wesley, Reading,
MA, 1988.

7. R. A. Brualdi, Introductory Combinatorics, North-Holland, New York,
1977.

8. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed., MIT Press, Cambridge, MA, 2010.

9. R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics,
Addison-Wesley, Reading, MA, 1989.

10. D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental
Algorithms, 3rd ed., Addison-Wesley, Reading, MA, 1997.

11. D. E. Knuth, The Art of Computer Programming, Vol. 2: Seminumerical
Algorithms, 3rd ed., Addison-Wesley, Reading, MA, 1997.

12. D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching, 2nd ed., Addison-Wesley, Reading, MA, 1998.

13. Y. Pearl, A. Itai, and H. Avni, “Interpolation Search – A log log N
Search,” Communications of the ACM 21 (1978), 550–554.

14. W. W. Peterson, “Addressing for Random Storage,” IBM Journal of
Research and Development 1 (1957), 131–132.

15. F. S. Roberts, Applied Combinatorics, Prentice Hall, Englewood Cliffs,
NJ, 1984.

16. A. Tucker, Applied Combinatorics, 2nd ed., John Wiley & Sons, New
York, 1984.

17. M. A. Weiss, Data Structures and Algorithm Analysis in Java, 2nd ed.,
Addison-Wesley, Reading, MA, 2007.

chap te r 6

the collections api

Many algorithms require the use of a proper representation of data to
achieve efficiency. This representation and the operations that are allowed for
it are known as a data structure. Each data structure allows arbitrary insertion
but differs in how it allows access to members in the group. Some data struc-
tures allow arbitrary access and deletions, whereas others impose restrictions,
such as allowing access to only the most recently or least recently inserted
item in the group.

As part of Java, a supporting library known as the Collections API is pro-
vided. Most of the Collections API resides in java.util. This API provides a
collection of data structures. It also provides some generic algorithms, such as
sorting. The Collections API makes heavy use of inheritance.

Our primary goal is to describe, in general terms, some examples and
applications of data structures. Our secondary goal is to describe the basics of
the Collections API, so that we can use it in Part Three. We do not discuss the
theory behind an efficient Collections API implementation until Part Four, at
which point we provide simplified implementations of some core Collections
API components. But delaying the discussion of the Collections API’s imple-
mentation until after we use it is not a problem. We do not need to know how
something is implemented so long as we know that it is implemented.

230 chapter 6 the collections api

In this chapter, we show

n Common data structures, their allowed operations, and their running times

n Some applications of the data structures

n The organization of the Collections API, and its integration with the
rest of the language

6.1 introduction
A data structure is
a representation of
data and the oper-
ations allowed on
that data.

Data structures allow us to achieve an important object-oriented program-
ming goal: component reuse. The data structures described in this section
(and implemented later, in Part Four) have recurring uses. When each data
structure has been implemented once, it can be used over and over in vari-
ous applications.

A data structure is a representation of data and the operations allowed on
that data. Many, but by no means all, of the common data structures store a
collection of objects and then provide methods to add a new object to, remove
an existing object from, or access a contained object in the collection.

Data structures
allow us to achieve
component reuse.

In this chapter, we examine some of the fundamental data structures and
their applications. Using a high-level protocol, we describe typical operations
that are usually supported by the data structures and briefly describe their
uses. When possible, we give an estimate of the cost of implementing these
operations efficiently. This estimate is often based on analogy with non-
computer applications of the data structure. Our high-level protocol usually
supports only a core set of basic operations. Later, when describing the basics
of how the data structures can be implemented (in general there are multiple
competing ideas), we can more easily focus on language-independent algo-
rithmic details if we restrict the set of operations to a minimum core set.

As an example, Figure 6.1 illustrates a generic protocol that many data
structures tend to follow. We do not actually use this protocol directly in any
code. However, an inheritance-based hierarchy of data structures could use
this class as a starting point.

The Collections
API is the one
library for data
structures and
algorithms that is
guaranteed to be
available.

Then we give a description of the Collections API interface that is pro-
vided for these data structures. By no means does the Collections API repre-
sent the best way of doing things. However, it represents the one library for
data structures and algorithms guaranteed to be available. Its use also illus-
trates some of the core issues that must be dealt with once the theory is taken
care of.

We defer consideration of efficient implementation of data structures to
Part IV. At that point we will provide, as part of package weiss.nonstandard,

6.2 the iterator pattern 231

some competing implementations for data structures that follow the simple
protocols developed in this chapter. We will also provide one implementation
for the basic Collections API components described in the chapter, in package
weiss.util. Thus we are separating the interface of the Collections API (that is,
what it does, which we describe in the chapter) from its implementation (that
is, how it is done, which we describe in Part Four). This approach—the separa-
tion of the interface and implementation—is part of the object-oriented paradigm.
The user of the data structure needs to see only the available operations, not the
implementation. Recall this is the encapsulation and information-hiding part of
object-oriented programming.

The rest of this chapter is organized as follows: First, we discuss the
basics of the iterator pattern, which is used throughout the Collections API.
Then we discuss the interface for containers and iterators in the Collections
API. Next we describe some Collections API algorithms, and finally, we
examine some other data structures many of which are supported in the
Collections API.

6.2 the iterator pattern
The Collections API makes heavy use of a common technique known as the
iterator pattern. So before we begin our discussion of the Collections API, we
examine the ideas behind the iterator pattern.

An iterator object
controls iteration
of a collection.

Consider the problem of printing the elements in a collection. Typically,
the collection is an array, so assuming that the object v is an array, its contents
are easily printed with code like the following:1

figure 6.1

A generic protocol for
many data structures

1 package weiss.nonstandard;
2
3 // SimpleContainer protocol
4 public interface SimpleContainer<AnyType>
5 {
6 void insert(AnyType x);
7 void remove(AnyType x);
8 AnyType find(AnyType x);
9

10 boolean isEmpty();
11 void makeEmpty();
12 }

1. The enhanced for loop added in Java 5 is simply additional syntax. The compiler expands
the enhanced for loop to obtain the code shown here.

232 chapter 6 the collections api

for(int i = 0; i < v.length; i++)
 System.out.println(v[i]);

In this loop, i is an iterator object, because it is the object that is used to con-
trol the iteration. However, using the integer i as an iterator constrains the
design: We can only store the collection in an array-like structure. A more
flexible alternative is to design an iterator class that encapsulates a position
inside of a collection. The iterator class provides methods to step through the
collection.

When we program
to an interface, we
write code that
uses the most
abstract methods.
These methods
will be applied to
the actual con-
crete types.

The key is the concept of programming to an interface: We want the code
that performs access of the container to be as independent of the type of the
container as possible. This is done by using only methods that are common to
all containers and their iterators.

There are many different possible iterator designs. If we replace int i
with IteratorType itr, then the loop above expresses

for(itr = v.first(); itr.isValid(); itr.advance())
 System.out.println(itr.getData());

This suggests an iterator class that contains methods such as isValid, advance,
getData, and so on.

We describe two designs, outside the Collections API context, that lead to
the Collections API iterator design. We discuss the specifics of the Collections
iterators in Section 6.3.2, deferring implementations to Part IV.

6.2.1 basic iterator design
iterator returns
an appropriate
iterator for the col-
lection.

The first iterator design uses only three methods. The container class is
required to provide an iterator method. iterator returns an appropriate itera-
tor for the collection. The iterator class has only two methods, hasNext and
next. hasNext returns true if the iteration has not yet been exhausted. next
returns the next item in the collection (and in the process, advances the cur-
rent position). This iterator interface is similar to the interface provided in the
Collections API.

To illustrate the implementation of this design, we outline the collection
class and provide an iterator class, MyContainer and MyContainerIterator,
respectively. Their use is shown in Figure 6.2. The data members and iterator
method for MyContainer are written in Figure 6.3. To simplify matters, we omit
the constructors, and methods such as add, size, etc. The ArrayList class from
earlier chapters can be reused to provide an implementation of these methods.
We also avoid use of generics for now.

6.2 the iterator pattern 233

The iterator is con-
structed with a
reference to the
container that it
iterates over.

The iterator method in class MyContainer simply returns a new iterator;
notice that the iterator must have information about the container that it is iter-
ating over. Thus the iterator is constructed with a reference to the MyContainer.

Figure 6.4 shows the MyContainerIterator. The iterator keeps a variable
(current) that represents the current position in the container, and a reference
to the container. The implementation of the constructor and two methods is
straightforward. The constructor initializes the container reference, hasNext
simply compares the current position with the container size, and next uses the
current position to index the array (and then advances the current position).

The better design
would put more
functionality in the
iterator.

A limitation of this iterator design is the relatively limited interface.
Observe that it is impossible to reset the iterator back to the beginning, and
that the next method couples access of an item with advancing. The next,
hasNext design is what is used in the Java Collections API; many people
feel that the API should have provided a more flexible iterator. It is cer-
tainly possible to put more functionality in the iterator, while leaving the

figure 6.2

A main method, to
illustrate iterator
design 1

1 public static void main(String [] args)
2 {
3 MyContainer v = new MyContainer();
4
5 v.add("3");
6 v.add("2");
7
8 System.out.println("Container contents: ");
9 MyContainerIterator itr = v.iterator();

10 while(itr.hasNext())
11 System.out.println(itr.next());
12 }

figure 6.3

The MyContainer class,
design 1

1 package weiss.ds;
2
3 public class MyContainer
4 {
5 Object [] items;
6 int size;
7
8 public MyContainerIterator iterator()
9 { return new MyContainerIterator(this); }

10
11 // Other methods
12 }

234 chapter 6 the collections api

MyContainer class implementation completely unchanged. On the other
hand, doing so illustrates no new principles.

Note that in the implementation of MyContainer, the data members items and
size are package visible, rather than being private. This unfortunate relaxation
of the usual privacy of data members is necessary because these data members
need to be accessed by MyContainerIterator. Similarly, the MyContainerIterator
constructor is package visible, so that it can be called by MyContainer.

6.2.2 inheritance-based iterators and factories

The iterator designed so far manages to abstract the concept of iteration into
an iterator class. This is good, because it means that if the collection changes
from an array-based collection to something else, the basic code such as lines
10 and 11 in Figure 6.2 does not need to change.

While this is a significant improvement, changes from an array-based col-
lection to something else require that we change all the declarations of the
iterator. For instance, in Figure 6.2, we would need to change line 9. We dis-
cuss an alternative in this section.

An inheritance-
based iteration
scheme defines an
iterator interface.
Clients program to
this interface.

Our basic idea is to define an interface Iterator. Corresponding to each
different kind of container is an iterator that implements the Iterator proto-
col. In our example, this gives three classes: MyContainer, Iterator, and
MyContainerIterator. The relationship that holds is MyContainerIterator IS-A
Iterator. The reason we do this is that each container can now create an
appropriate iterator, but pass it back as an abstract Iterator.

figure 6.4

Implementation of the
MyContainerIterator,
design 1

1 // An iterator class that steps through a MyContainer.
2
3 package weiss.ds;
4
5 public class MyContainerIterator
6 {
7 private int current = 0;
8 private MyContainer container;
9

10 MyContainerIterator(MyContainer c)
11 { container = c; }
12
13 public boolean hasNext()
14 { return current < container.size; }
15
16 public Object next()
17 { return container.items[current++]; }
18 }

6.2 the iterator pattern 235

Figure 6.5 shows MyContainer. In the revised MyContainer, the iterator
method returns a reference to an Iterator object; the actual type turns out to
be a MyContainerIterator. Since MyContainerIterator IS-A Iterator, this is safe
to do.

A factory method
creates a new
concrete instance
but returns it using
a reference to the
interface type.

Because iterator creates and returns a new Iterator object, whose actual
type is unknown, it is commonly known as a factory method. The iterator
interface, which serves simply to establish the protocol by which all sub-
classes of Iterator can be accessed, is shown in Figure 6.6. There are only
two changes to the implementation of MyContainerIterator, shown in
Figure 6.7 and both changes are at line 5. First, the implements clause has been
added. Second, MyContainerIterator no longer needs to be a public class.

Nowhere in main is
there any mention
of the actual itera-
tor type.

Figure 6.8 demonstrates how the inheritance-based iterators are used. At
line 9, we see the declaration of itr: It is now a reference to an Iterator.
Nowhere in main is there any mention of the actual MyContainerIterator type.
The fact that a MyContainerIterator exists is not used by any clients of the
MyContainer class. This is a very slick design and illustrates nicely the idea of
hiding an implementation and programming to an interface. The implementa-
tion can be made even slicker by use of nested classes, and a Java feature
known as inner classes. Those implementation details are deferred until
Chapter 15.

figure 6.5

The MyContainer class,
design 2

1 package weiss.ds;
2
3 public class MyContainer
4 {
5 Object [] items;
6 int size;
7
8 public Iterator iterator()
9 { return new MyContainerIterator(this); }

10
11 // Other methods not shown.
12 }

figure 6.6

The Iterator
interface, design 2

1 package weiss.ds;
2
3 public interface Iterator
4 {
5 boolean hasNext();
6 Object next();
7 }

236 chapter 6 the collections api

6.3 collections api:
containers and iterators

This section describes the basics of the Collections API iterators and how they
interact with containers. We know that an iterator is an object that is used to
traverse a collection of objects. In the Collections API such a collection is
abstracted by the Collection interface, and the iterator is abstracted by the
Iterator interface.

The Collections API iterators are somewhat inflexible, in that they pro-
vide few operations. These iterators use an inheritance model described in
Section 6.2.2.

figure 6.7

Implementation of the
MyContainerIterator,
design 2

1 // An iterator class that steps through a MyContainer.
2
3 package weiss.ds;
4
5 class MyContainerIterator implements Iterator
6 {
7 private int current = 0;
8 private MyContainer container;
9

10 MyContainerIterator(MyContainer c)
11 { container = c; }
12
13 public boolean hasNext()
14 { return current < container.size; }
15
16 public Object next()
17 { return container.items[current++]; }
18 }

figure 6.8

A main method, to
illustrate iterator
design 2

1 public static void main(String [] args)
2 {
3 MyContainer v = new MyContainer();
4
5 v.add("3");
6 v.add("2");
7
8 System.out.println("Container contents: ");
9 Iterator itr = v.iterator();

10 while(itr.hasNext())
11 System.out.println(itr.next());
12 }

6.3 collections api: containers and iterators 237

6.3.1 the Collection interface
The Collection
interface repre-
sents a group of
objects, known as
its elements.

The Collection interface represents a group of objects, known as its elements.
Some implementations, such as lists, are unsorted; others, such as sets and
maps, may be sorted. Some implementations allow duplicates; others do not.
Starting with Java 5, the Collection interface and the entire Collections API
make use of generics. All containers support the following operations.

boolean isEmpty()

Returns true if the container contains no elements and false otherwise.

int size()

Returns the number of elements in the container.

boolean add(AnyType x)

Adds item x to the container. Returns true if this operation succeeds and
false otherwise (e.g., if the container does not allow duplicates and x is
already in the container).

boolean contains(Object x)

Returns true if x is in the container and false otherwise.

boolean remove(Object x)

Removes item x from the container. Returns true if x was removed and false
otherwise.

void clear()

Makes the container empty.

Object [] toArray()
<OtherType> OtherType [] toArray (OtherType [] arr)

Returns an array that contains references to all items in the container.

java.util.Iterator<AnyType> iterator()

Returns an Iterator that can be used to begin traversing all locations in the
container.

Because Collection is generic, it allows objects of only a specific type
(AnyType) to be in the collection. Thus, the parameter to add is AnyType. The
parameter to contains and remove should be AnyType also; however, for back-
ward compatibility it is Object. Certainly, if contains or remove are called with
a parameter that is not of type AnyType, the return value will be false.

The method toArray returns an array that contains references to the items
that are in the collection. In some cases, it can be faster to manipulate this
array than to use an iterator to manipulate the collection; however, the cost of

238 chapter 6 the collections api

doing so is extra space. The most common place where using the array would
be useful is when the collection is being accessed several times or via nested
loops. If the array is being accessed only once, sequentially, it is unlikely that
using toArray will make things faster; it can make things slower while also
costing extra space.

One version of toArray returns the array in a type that is Object[]. The
other version allows the user to specify the exact type of the array by passing a
parameter containing the array (thus avoiding the costs of casting during the
subsequent manipulation). If the array is not large enough, a sufficiently large
array is returned instead; however, this should never be needed. The following
snippet shows how to obtain an array from a Collection<String> coll:

String [] theStrings = new String[coll.size()];
coll.toArray(theStrings);

At this point, the array can be manipulated via normal array indexing. The
one-parameter version of toArray is generally the one that you would want to
use because the runtime costs of casting are avoided.

Finally, the iterator method returns an Iterator<AnyType>, which can be
used to traverse the collection.

Figure 6.9 illustrates a specification of the Collection interface. The
actual Collection interface in java.util contains some additional methods,
but we will be content with this subset. By convention, all implementations
supply both a zero-parameter constructor that creates an empty collection
and a constructor that creates a collection that refers to the same elements as
another collection. This is basically a shallow-copy of a collection. How-
ever, there is no syntax in the language that forces the implementation of
these constructors.

The Collection interface extends Iterable, which means that the enhanced
for loop can be applied to it. Recall that the Iterable interface requires the
implementation of an iterator method that returns a java.util.Iterator. The
compiler will expand the enhanced for loop with appropriate calls to methods
in java.util.Iterator. At line 41, we see the iterator method required by the
Iterable interface. However, we remark that we are taking advantage of cova-
riant return types (Section 4.1.11), because the return type for the iterator
method at line 41 is actually weiss.util.Iterator, which is our own class that
extends java.util.Iterator, and is shown in Section 6.3.2.

The Collections API also codifies the notion of an optional interface
method. For instance, suppose we want an immutable collection: Once it is
constructed, its state should never change. An immutable collection appears
incompatible with Collection, since add and remove do not make sense for
immutable collections.

6.3 collections api: containers and iterators 239

figure 6.9

A sample specification of the Collection interface

1 package weiss.util;
2
3 /**
4 * Collection interface; the root of all 1.5 collections.
5 */
6 public interface Collection<AnyType> extends Iterable<AnyType>, java.io.Serializable
7 {
8 /**
9 * Returns the number of items in this collection.

10 */
11 int size();
12
13 /**
14 * Tests if this collection is empty.
15 */
16 boolean isEmpty();
17
18 /**
19 * Tests if some item is in this collection.
20 */
21 boolean contains(Object x);
22
23 /**
24 * Adds an item to this collection.
25 */
26 boolean add(AnyType x);
27
28 /**
29 * Removes an item from this collection.
30 */
31 boolean remove(Object x);
32
33 /**
34 * Change the size of this collection to zero.
35 */
36 void clear();
37
38 /**
39 * Obtains an Iterator object used to traverse the collection.
40 */
41 Iterator<AnyType> iterator();
42
43 /**
44 * Obtains a primitive array view of the collection.
45 */
46 Object [] toArray();
47
48 /**
49 * Obtains a primitive array view of the collection.
50 */
51 <OtherType> OtherType [] toArray(OtherType [] arr);
52 }

240 chapter 6 the collections api

However, there is an existing loophole: Although the implementor of the
immutable collection must implement add and remove, there is no rule that says
these methods must do anything. Instead, the implementor can simply throw a
run-time UnsupportedOperationException. In doing so, the implementor has tech-
nically implemented the interface, while not really providing add and remove.

By convention, interface methods that document that they are optional
can be implemented in this manner. If the implementation chooses not to
implement an optional method, then it should document that fact. It is up to
the client user of the API to verify that the method is implemented by consult-
ing the documentation, and if the client ignores the documentation and calls
the method anyway, the run-time UnsupportedOperationException is thrown,
signifying a programming error.

Optional methods are somewhat controversial, but they do not represent
any new language additions. They are simply a convention.

We will eventually implement all methods. The most interesting of these
methods is iterator, which is a factory method that creates and returns an
Iterator object. The operations that can be performed by an Iterator are
described in Section 6.3.2.

6.3.2 Iterator interface
An iterator is an
object that allows
us to iterate
through all objects
in a collection.

As described in Section 6.2, an iterator is an object that allows us to iterate
through all objects in a collection. The technique of using an iterator class was
discussed in the context of read-only vectors in Section 6.2.

The Iterator interface in the Collections API is small and contains only
three methods:

boolean hasNext()

Returns true if there are more items to view in this iteration.

AnyType next()

Returns a reference to the next object not yet seen by this iterator. The object
becomes seen, and thus advances the iterator.

void remove()

Removes the last item viewed by next. This can be called only once between
calls to next.

The Iterator inter-
face contains only
three methods:
next, hasNext, and
remove.

Each collection defines its own implementation of the Iterator interface,
in a class that is invisible to users of the java.util package.

The iterators also expect a stable container. An important problem that
occurs in the design of containers and iterators is to decide what happens if the
state of a container is modified while an iteration is in progress. The Collections

6.3 collections api: containers and iterators 241

API takes a strict view: Any external structural modification of the container
(adds, removes, and so on) will result in a ConcurrentModificationException by
the iterator methods when one of the methods is called. In other words, if we
have an iterator, and then an object is added to the container, and then we invoke
the next method on the iterator, the iterator will detect that it is now invalid, and
an exception will be thrown by next.

The Iterator
methods throw an
exception if its
container has
been structurally
modified.

This means that it is impossible to remove an object from a container
when we have seen it via an iterator, without invalidating the iterator. This is
one reason why there is a remove method in the iterator class. Calling the itera-
tor remove causes the last seen object to be removed from the container. It
invalidates all other iterators that are viewing this container, but not the itera-
tor that performed the remove. It is also likely to be more efficient than the con-
tainer’s remove method, at least for some collections. However, remove cannot
be called twice in a row. Furthermore, remove preserves the semantics of next
and hasNext, because the next unseen item in the iteration remains the same.
This version of remove is listed as an optional method, so the programmer
needs to check that it is implemented. The design of remove has been criticized
as poor, but we will use it at one point in the text.

Figure 6.10 provides a sample specification of the Iterator interface.
(Our iterator class extends the standard java.util version in order to allow

figure 6.10

A sample specification of Iterator

1 package weiss.util;
2
3 /**
4 * Iterator interface.
5 */
6 public interface Iterator<AnyType> extends java.util.Iterator<AnyType>
7 {
8 /**
9 * Tests if there are items not yet iterated over.

10 */
11 boolean hasNext();
12
13 /**
14 * Obtains the next (as yet unseen) item in the collection.
15 */
16 AnyType next();
17
18 /**
19 * Remove the last item returned by next.
20 * Can only be called once after next.
21 */
22 void remove();
23 }

242 chapter 6 the collections api

the enhanced for loop to work.) As an example of using the Iterator, the
routines in Figure 6.11 print each element in any container. If the container
is an ordered set, its elements are output in sorted order. The first implemen-
tation uses an iterator directly, and the second implementation uses an
enhanced for loop. The enhanced for loop is simply a compiler substitution.
The compiler, in effect, generates the first version (with java.util.Iterator)
from the second.

6.4 generic algorithms
The Collections
class contains a set
of static methods
that operate on
Collection objects.

The Collections API provides a few general purpose algorithms that operate
on all of the containers. These are static methods in the Collections class (note
that this is a different class than the Collection interface). There are also some
static methods in the Arrays class that manipulate arrays (sorting, searching,
etc.). Most of those methods are overloaded—a generic version, and once for
each of the primitive types (except boolean).

We examine only a few of the algorithms, with the intention of showing
the general ideas that pervade the Collections API, while documenting the
specific algorithms that will be used in Part Three.

The material in
Section 4.8 is an
essential prerequi-
site to this section.

Some of the algorithms make use of function objects. Consequently, the
material in Section 4.8 is an essential prerequisite to this section.

figure 6.11

Print the contents of
any Collection.

1 // Print the contents of Collection c (using iterator directly)
2 public static <AnyType> void printCollection(Collection<AnyType> c)
3 {
4 Iterator<AnyType> itr = c.iterator();
5 while(itr.hasNext())
6 System.out.print(itr.next() + " ");
7 System.out.println();
8 }
9

10 // Print the contents of Collection c (using enhanced for loop)
11 public static <AnyType> void printCollection(Collection<AnyType> c)
12 {
13 for(AnyType val : c)
14 System.out.print(val + " ");
15 System.out.println();
16 }

6.4 generic algorithms 243

6.4.1 Comparator function objects

Many Collections API classes and routines require the ability to order objects.
There are two ways to do this. One possibility is that the objects implement the
Comparable interface and provide a compareTo method. The other possibility is
that the comparison function is embedded as the compare method in an object that
implements the Comparator interface. Comparator is defined in java.util; a sam-
ple implementation was shown in Figure 4.39 and is repeated in Figure 6.12.

6.4.2 the Collections class

Although we will not make use of the Collections class in this text, it has two
methods that are thematic of how generic algorithms for the Collections API
are written. We write these methods in the Collections class implementation
that spans Figures 6.13 and 6.14.

reverseOrder is a
factory method
that creates a
Comparator repre-
senting the
reverse natural
order.

Figure 6.13 begins by illustrating the common technique of declaring a
private constructor in classes that contain only static methods. This prevents
instantiation of the class. It continues by providing the reverseOrder method.
This is a factory method that returns a Comparator that provides the reverse
of the natural ordering for Comparable objects. The returned object, created at
line 20, is an instance of the ReverseComparator class written in lines 23 to
29. In the ReverseComparator class, we use the compareTo method. This is an

figure 6.12

The Comparator interface, originally defined in java.util and rewritten for the weiss.util package

1 package weiss.util;
2
3 /**
4 * Comparator function object interface.
5 */
6 public interface Comparator<AnyType>
7 {
8 /**
9 * Return the result of comparing lhs and rhs.

10 * @param lhs first object.
11 * @param rhs second object.
12 * @return < 0 if lhs is less than rhs,
13 * 0 if lhs is equal to rhs,
14 * > 0 if lhs is greater than rhs.
15 * @throws ClassCastException if objects cannot be compared.
16 */
17 int compare(AnyType lhs, AnyType rhs) throws ClassCastException;
18 }

244 chapter 6 the collections api

example of the type of code that might be implemented with an anonymous
class. We have a similar declaration for the default comparator; since the
standard API does not provide a public method to return this, we declare our
method to be package-visible.

Figure 6.14 illustrates the max method, which returns the largest ele-
ment in any Collection. The one-parameter max calls the two-parameter max

figure 6.13

The Collections class (part 1): private constructor and reverseOrder

1 package weiss.util;
2
3 /**
4 * Instanceless class contains static methods that operate on collections.
5 */
6 public class Collections
7 {
8 private Collections()
9 {

10 }
11
12 /*
13 * Returns a comparator that imposes the reverse of the
14 * default ordering on a collection of objects that
15 * implement the Comparable interface.
16 * @return the comparator.
17 */
18 public static <AnyType> Comparator<AnyType> reverseOrder()
19 {
20 return new ReverseComparator<AnyType>();
21 }
22
23 private static class ReverseComparator<AnyType> implements Comparator<AnyType>
24 {
25 public int compare(AnyType lhs, AnyType rhs)
26 {
27 return - ((Comparable)lhs).compareTo(rhs);
28 }
29 }
30
31 static class DefaultComparator<AnyType extends Comparable<? super AnyType>>
32 implements Comparator<AnyType>
33 {
34 public int compare(AnyType lhs, AnyType rhs)
35 {
36 return lhs.compareTo(rhs);
37 }
38 }

6.4 generic algorithms 245

by supplying the default comparator. The funky syntax in the type param-
eter list is used to ensure that the type erasure of max generates Object
(rather than Comparable). This is important because earlier versions of Java

figure 6.14

The Collections class (part 2): max

39 /**
40 * Returns the maximum object in the collection,
41 * using default ordering
42 * @param coll the collection.
43 * @return the maximum object.
44 * @throws NoSuchElementException if coll is empty.
45 * @throws ClassCastException if objects in collection
46 * cannot be compared.
47 */
48 public static <AnyType extends Object & Comparable<? super AnyType>>
49 AnyType max(Collection<? extends AnyType> coll)
50 {
51 return max(coll, new DefaultComparator<AnyType>());
52 }
53
54 /**
55 * Returns the maximum object in the collection.
56 * @param coll the collection.
57 * @param cmp the comparator.
58 * @return the maximum object.
59 * @throws NoSuchElementException if coll is empty.
60 * @throws ClassCastException if objects in collection
61 * cannot be compared.
62 */
63 public static <AnyType>
64 AnyType max(Collection<? extends AnyType> coll, Comparator<? super AnyType> cmp)
65 {
66 if(coll.size() == 0)
67 throw new NoSuchElementException();
68
69 Iterator<? extends AnyType> itr = coll.iterator();
70 AnyType maxValue = itr.next();
71
72 while(itr.hasNext())
73 {
74 AnyType current = itr.next();
75 if(cmp.compare(current, maxValue) > 0)
76 maxValue = current;
77 }
78
79 return maxValue;
80 }
81 }

246 chapter 6 the collections api

used Object as the return type, and we want to ensure backward compat-
ability. The two-parameter max combines the iterator pattern with the func-
tion object pattern to step through the collection, and at line 75 uses calls
to the function object to update the maximum item.

6.4.3 binary search

The Collections API implementation of the binary search is the static method
Arrays.binarySearch. There are actually seven overloaded versions—one for
each of the primitive types except boolean, plus two more overloaded versions
that work on Objects (one works with a comparator, one uses the default com-
parator). We will implement the Object versions (using generics); the other
seven are mindless copy-and-paste.

binarySearch uses
binary search and
returns the index
of the matched
item or a negative
number if the item
is not found.

As usual, for binary search the array must be sorted; if it is not, the results
are undefined (verifying that the array is sorted would destroy the logarithmic
time bound for the operation).

If the search for the item is successful, the index of the match is returned.
If the search is unsuccessful, we determine the first position that contains a
larger item, add 1 to this position, and then return the negative of the value.
Thus, the return value is always negative, because it is at most -1 (which
occurs if the item we are searching for is smaller than all other items) and is at
least -a.length-1 (which occurs if the item we are searching for is larger than
all other items).

The implementation is shown in Figure 6.15. As was the case for the max
routines, the two-parameter binarySearch calls the three-parameter binarySearch
(see lines 17 and 18). The three-parameter binary search routine mirrors the
implementation in Figure 5.12. In Java 5, the two-parameter version does not
use generics. Instead, all types are Object. But our generic implementation
seems to make more sense. The three-parameter version is generic in Java 5.

We use the binarySearch method in Section 10.1.

6.4.4 sorting
The Arrays class
contains a set of
static methods
that operate on
arrays.

The Collections API provides a set of overloaded sort methods in the Arrays
class. Simply pass an array of primitives, or an array of Objects that imple-
ment Comparable, or an array of Objects and a Comparator. We have not pro-
vided a sort method in our Arrays class.

void sort(Object [] arr)

Rearranges the elements in the array to be in sorted order, using the natural
order.

6.4 generic algorithms 247

figure 6.15

Implementation of the binarySearch method in Arrays class

1 package weiss.util;
2
3 /**
4 * Instanceless class that contains static methods
5 * to manipulate arrays.
6 */
7 public class Arrays
8 {
9 private Arrays() { }

10
11 /**
12 * Search sorted array arr using default comparator
13 */
14 public static <AnyType extends Comparable<AnyType>> int
15 binarySearch(AnyType [] arr, AnyType x)
16 {
17 return binarySearch(arr, x,
18 new Collections.DefaultComparator<AnyType>());
19 }
20
21 /**
22 * Performs a search on sorted array arr using a comparator.
23 * If arr is not sorted, results are undefined.
24 * @param arr the array to search.
25 * @param x the object to search for.
26 * @param cmp the comparator.
27 * @return if x is found, returns the index where it is found.
28 * otherwise, the return value is a negative number equal
29 * to -(p + 1), where p is the first position greater
30 * than x. This can range from -1 down to -(arr.length+1).
31 * @throws ClassCastException if items are not comparable.
32 */
33 public static <AnyType> int
34 binarySearch(AnyType [] arr, AnyType x, Comparator<? super AnyType> cmp)
35 {
36 int low = 0, mid = 0;
37 int high = arr.length;
38
39 while(low < high)
40 {
41 mid = (low + high) / 2;
42 if(cmp.compare(x, arr[mid]) > 0)
43 low = mid + 1;
44 else
45 high = mid;
46 }
47 if(low == arr.length || cmp.compare(x, arr[low]) != 0)
48 return - (low + 1);
49 return low;
50 }
51 }

248 chapter 6 the collections api

void sort(Object [] arr, Comparator cmp)

Rearranges the elements in the array to be in sorted order, using the order
specified by the comparator.

In Java 5, these methods have been written as generic methods. The generic
sorting algorithms are required to run in time.

6.5 the List interface
A list is a collec-
tion of items in
which the items
have a position.

A list is a collection of items in which the items have a position. The most obvious
example of a list is an array. In an array, items are placed in position 0, 1, etc.

The List interface extends the Collection interface and abstracts the
notion of a position. The interface in java.util adds numerous methods to
the Collection interface. We are content to add the three shown in
Figure 6.16.

The List interface
extends the
Collection inter-
face and abstracts
the notion of a
position.

The first two methods are get and set, which are similar to the methods
that we have already seen in ArrayList. The third method returns a more flexi-
ble iterator, the ListIterator.

O(N log N)

figure 6.16

A sample List
interface

1 package weiss.util;
2
3 /**
4 * List interface. Contains much less than java.util
5 */
6 public interface List<AnyType> extends Collection<AnyType>
7 {
8 AnyType get(int idx);
9 AnyType set(int idx, AnyType newVal);

10
11 /**
12 * Obtains a ListIterator object used to traverse
13 * the collection bidirectionally.
14 * @return an iterator positioned
15 * prior to the requested element.
16 * @param pos the index to start the iterator.
17 * Use size() to do complete reverse traversal.
18 * Use 0 to do complete forward traversal.
19 * @throws IndexOutOfBoundsException if pos is not
20 * between 0 and size(), inclusive.
21 */
22 ListIterator<AnyType> listIterator(int pos);
23 }

6.5 the List interface 249

6.5.1 the ListIterator interface
ListIterator is a
bidirectional ver-
sion of Iterator.

As shown in Figure 6.17, ListIterator is just like an Iterator, except that it
is bidirectional. Thus we can both advance and retreat. Because of this, the
listIterator factory method that creates it must be given a value that is log-
ically equal to the number of elements that have already been visited in the
forward direction. If this value is zero, the ListIterator is initialized at the
front, just like an Iterator. If this value is the size of the List, the iterator is
initialized to have processed all elements in the forward direction. Thus in
this state, hasNext returns false, but we can use hasPrevious and previous to
traverse the list in reverse.

Figure 6.18 illustrates that we can use itr1 to traverse a list in the forward
direction, and then once we reach the end, we can traverse the list backwards. It also
illustrates itr2, which is positioned at the end, and simply processes the ArrayList
in reverse. Finally, it shows the enhanced for loop.

One difficulty with the ListIterator is that the semantics for remove must
change slightly. The new semantics are that remove deletes from the List the last

figure 6.17

A sample
ListIterator
interface

1 package weiss.util;
2
3 /**
4 * ListIterator interface for List interface.
5 */
6 public interface ListIterator<AnyType> extends Iterator<AnyType>
7 {
8 /**
9 * Tests if there are more items in the collection

10 * when iterating in reverse.
11 * @return true if there are more items in the collection
12 * when traversing in reverse.
13 */
14 boolean hasPrevious();
15
16 /**
17 * Obtains the previous item in the collection.
18 * @return the previous (as yet unseen) item in the collection
19 * when traversing in reverse.
20 */
21 AnyType previous();
22
23 /**
24 * Remove the last item returned by next or previous.
25 * Can only be called once after next or previous.
26 */
27 void remove();
28 }

250 chapter 6 the collections api

object returned as a result of calling either next or previous, and remove can
only be called once between calls to either next or previous. To override the
javadoc output that is generated for remove, remove is listed in the
ListIterator interface.

The interface in Figure 6.17 is only a partial interface. There are some
additional methods in the ListIterator that we do not discuss in the text, but
which are used throughout as exercises. These methods include add and set,
which allow the user to make changes to the List at the current location held
by the iterator.

figure 6.18

A sample program that illustrates bidirectional iteration

1 import java.util.ArrayList;
2 import java.util.ListIterator;
3
4 class TestArrayList
5 {
6 public static void main(String [] args)
7 {
8 ArrayList<Integer> lst = new ArrayList<Integer>();
9 lst.add(2); lst.add(4);

10 ListIterator<Integer> itr1 = lst.listIterator(0);
11 ListIterator<Integer> itr2 = lst.listIterator(lst.size());
12
13 System.out.print("Forward: ");
14 while(itr1.hasNext())
15 System.out.print(itr1.next() + " ");
16 System.out.println();
17
18 System.out.print("Backward: ");
19 while(itr1.hasPrevious())
20 System.out.print(itr1.previous() + " ");
21 System.out.println();
22
23 System.out.print("Backward: ");
24 while(itr2.hasPrevious())
25 System.out.print(itr2.previous() + " ");
26 System.out.println();
27
28 System.out.print("Forward: ");
29 for(Integer x : lst)
30 System.out.print(x + " ");
31 System.out.println();
32 }
33 }

6.5 the List interface 251

6.5.2 LinkedList class

There are two basic List implementations in the Collections API. One imple-
mentation is the ArrayList, which we have already seen. The other is a
LinkedList, which stores items internally in a different manner than ArrayList,
yielding performance trade-offs. A third version is Vector, which is like
ArrayList, but is from an older library, and is present mostly for compatibility
with legacy (old) code. Using Vector is no longer in vogue.

The LinkedList
class implements
a linked list.

The ArrayList may be appropriate if insertions are performed only at the
high end of the array (using add), for the reasons discussed in Section 2.4.3. The
ArrayList doubles the internal array capacity if an insertion at the high end
would exceed the internal capacity. Although this gives good Big-Oh perfor-
mance, especially if we add a constructor that allows the caller to suggest initial
capacity for the internal array, the ArrayList is a poor choice if insertions are not
made at the end, because then we must move items out of the way.

The linked list is
used to avoid large
amounts of data
movement. It
stores items with
an additional one
reference per item
overhead.

In a linked list, we store items noncontiguously rather than in the
usual contiguous array. To do this, we store each object in a node that con-
tains the object and a reference to the next node in the list, as shown in
Figure 6.19. In this scenario, we maintain references to both the first and
last node in the list.

To be more concrete, a typical node looks like this:

class ListNode
{
 Object data; // Some element
 ListNode next;
}

At any point, we can add a new last item x by doing this:

last.next = new ListNode(); // Attach a new ListNode
last = last.next; // Adjust last
last.data = x; // Place x in the node
last.next = null; // It's the last; adjust next

figure 6.19

A simple linked list

first last

A0 A1 A2 A3

252 chapter 6 the collections api

Now an arbitrary item can no longer be found in one access. Instead, we must
scan down the list. This is similar to the difference between accessing an item on a
compact disk (one access) or a tape (sequential). While this may appear to make
linked lists less attractive than arrays, they still have advantages. First, an insertion
into the middle of the list does not require moving all of the items that follow the
insertion point. Data movement is very expensive in practice, and the linked list
allows insertion with only a constant number of assignment statements.

The basic trade-
off between
ArrayList and
LinkedList is that
get is not efficient
for LinkedList,
while insertion and
removal from the
middle of a con-
tainer is more effi-
ciently supported
by the LinkedList.

Comparing ArrayList and LinkedList, we see that insertions and deletions
toward the middle of the sequence are inefficient in the ArrayList but may be
efficient for a LinkedList. However, an ArrayList allows direct access by the
index, but a LinkedList should not. It happens that in the Collections API, get
and set are part of the List interface, so LinkedList supports these operations,
but does so very slowly. Thus, the LinkedList can always be used unless effi-
cient indexing is needed. The ArrayList may still be a better choice if inser-
tions occur only at the end.

To access items in the list, we need a reference to the corresponding node,
rather than an index. The reference to the node would typically be hidden
inside an iterator class.

Access to the list
is done through an
iterator class.

Because LinkedList performs adds and removes more efficiently, it has more
operations than the ArrayList. Some of the additional operations available for
LinkedList are the following:

void addLast(AnyType element)

Appends element at the end of this LinkedList.

void addFirst(AnyType element)

Appends element to the front of this LinkedList.

AnyType getFirst()
AnyType element()

Returns the first element in this LinkedList. element was added in Java 5.

AnyType getLast()

Returns the last element in this LinkedList.

AnyType removeFirst()
AnyType remove()

Removes and returns the first element from this LinkedList. remove was
added in Java 5.

AnyType removeLast()

Removes and returns the last element from this LinkedList.

We implement the LinkedList class in Part Four.

6.5 the List interface 253

6.5.3 running time for Lists

In Section 6.5.2 we saw that for some operations, ArrayList is a better
choice than LinkedList, and for other operations the reverse is true. In this
section, rather than discuss the times informally, we will analyze the run-
ning times in terms of Big-Oh. Initially, we concentrate on the following
subset of operations:

n add (at the end)

n add (at the front)

n remove (at the end)

n remove (at the front)

n get and set

n contains

ArrayList costs
For the ArrayList, adding at the end simply involves placing an item at the
next available array slot, and incrementing the current size. Occasionally we
have to resize the capacity of the array, but as this is an extremely rare opera-
tion, one can argue that it does not affect the running time. Thus the cost of
adding at the end of an ArrayList does not depend on the number of items
stored in the ArrayList and is

Similarly, removing from the end of the ArrayList simply involves decre-
menting the current size, and is get and set on the ArrayList become
array indexing operations, which are typically taken to be constant-time,
operations.

Needless to say, when we are discussing the cost of a single operation on
a collection, it is hard to envision anything better than constant time,
per operation. To do better than this would require that as the collection gets
larger, operations actually get faster, which would be very unusual.

However, not all operations are on an ArrayList. As we have seen, if
we add at the front of the ArrayList, then every element in the ArrayList must
be shifted one index higher. Thus if there are N elements in the ArrayList,
adding at the front is an operation. Similarly, removing from the front
of the ArrayList requires shifting all the elements one index lower, which is also
an operation. And a contains on an ArrayList is an operation,
because we potentially have to sequentially examine every item in the ArrayList.

Needless to say, per operation is not as good as per opera-
tion. In fact, when one considers that the contains operation is and is
basically an exhaustive search, one can argue that per operation for a
basic collection operation is about as bad as it gets.

O 1().

O 1().
O 1()

O 1(),

O 1()

O(N)

O(N) O(N)

O(N) O 1()
O(N)

O(N)

254 chapter 6 the collections api

LinkedList costs

If we look at the LinkedList operations, we can see that adding at either the
front or the end is an operation. To add at the front, we simply create a
new node and add it at the front, updating first. This operation does not
depend on knowing how many subsequent nodes are in the list. To add at the
end, we simply create a new node and add it at the end, adjusting last.

Removing the first item in the linked list is likewise an operation,
because we simply advance first to the next node in the list. Removing the
last item in the linked list appears to also be , since we need to move
last to the next-to-last node, and update a next link. However, getting to the
next-to-last node is not easy in the linked list, as drawn in Figure 6.19.

In the classic linked list, where each node stores a link to its next node,
having a link to the last node provides no information about the next-to-last
node. The obvious idea of maintaining a third link to the next-to-last node
doesn’t work because it too would need to be updated during a remove.
Instead, we have every node maintain a link to its previous node in the list.
This is shown in Figure 6.20 and is know as a doubly linked list.

In a doubly linked list, add and remove operations at either end take
time. As we know, there is a trade-off, however, because get and set are no
longer efficient. Instead of direct access through an array, we have to follow
links. In some cases we can optimize by starting at the end instead of the
front, but if the get or set is to an item that is near the middle of the list, it
must take time.

contains in a linked list is the same as an ArrayList: the basic algorithm is
a sequential search that potentially examines every item, and thus is an
operation.

comparison of ArrayList and LinkedList costs
Figure 6.21 compares the running time of single operations in the ArrayList
and LinkedList.

To see the differences between using ArrayList and LinkedList in a larger
routine, we look at some methods that operate on a List. First, suppose we
construct a List by adding items at the end.

O 1()

O 1()

O 1()

figure 6.20

A doubly linked list
ba c d

first last

O 1()

O(N)

O(N)

6.5 the List interface 255

public static void makeList1(List<Integer> lst, int N)
 {
 lst.clear();
 for(int i = 0; i < N; i++)
 lst.add(i);
 }

Irregardless of whether an ArrayList or LinkedList is passed as a parame-
ter, the running time of makeList1 is because each call to add, being at
the end of the list, takes constant time. On the other hand, if we construct a
List by adding items at the front,

 public static void makeList2(List<Integer> lst, int N)
 {
 lst.clear();
 for(int i = 0; i < N; i++)
 lst.add(0, i);
 }

the running time is for a LinkedList, but O(N 2) for an ArrayList,
because in an ArrayList, adding at the front is an operation.

The next routine attempts to compute the sum of the numbers in a List:

 public static int sum(List<Integer> lst)
 {
 int total = 0;
 for(int i = 0; i < N; i++)
 total += lst.get(i);
 }

Here, the running time is for an ArrayList, but O(N 2) for a
LinkedList, because in a LinkedList, calls to get are operations. Instead,
use an enhanced for loop, which will be make the running time for any
List, because the iterator will efficiently advance from one item to the next.

figure 6.21

Single-operation
costs for ArrayList
and LinkedList

ArrayList LinkedList

add/remove at end

add/remove at front

get/set

contains

O 1() O 1()

O(N) O 1()

O 1() O(N)

O(N) O(N)

O(N)

O(N)
O(N)

O(N)
O(N)

O(N)

256 chapter 6 the collections api

6.5.4 removing from and adding
to the middle of a List

The List interface contains two operations:

void add(int idx, AnyType x);
void remove(int idx);

that allow the adding of an item to a specified index and removing of an item
from a specified index. For an ArrayList, these operations are in general ,
because of the item shifting that is required.

For a LinkedList, in principle one would expect that if we know where the
change is being made, then we should be able to do it efficiently by splicing
links in the linked list. For instance, it is easy to see that in principle, remov-
ing a single node from a doubly linked list requires changing some links in the
preceding and succeeding nodes. However, these operations are still in
a LinkedList because it takes time to find the node.

This is precisely why the Iterator provides a remove method. The idea is that
often an item is being removed only after we have examined it and decided to
discard it. This is similar to the idea of picking up items from the floor: as you
search the floor, if you see an item, you immediately pick it up because you are
already there.

As an example, we provide a routine that removes all even-valued items
in a list. Thus if the list contains 6, 5, 1, 4, 2, then after the method is invoked
it will contain 5, 1.

There are several possible ideas for an algorithm that deletes items from
the list as they are encountered. Of course, one idea is to construct a new list
containing all the odd numbers, and then clear the original list and copy the
odd numbers back into it. But we are more interested in writing a clean ver-
sion that avoids making a copy, and instead removes items from the list as
they are encountered.

This is almost certainly a losing strategy for an ArrayList, since removing
from almost anywhere in an ArrayList is expensive. (It is possible to design a
different algorithm for ArrayList that works in place, but let us not worry
about that now.) In a LinkedList, there is some hope, since as we know,
removing from a known position can be done efficiently by rearranging some
links.

Figure 6.22 shows the first attempt. On an ArrayList, as expected, the
remove is not efficient, so the routine takes quadratic time. A LinkedList
exposes two problems. First, the call to get is not efficient, so the routine takes
quadratic time. Additionally, the call to remove is equally inefficient, because
as we have seen, it is expensive to get to position i.

O(N)

O(N)
O(N)

6.5 the List interface 257

Figure 6.23 shows one attempt to rectify the problem. Instead of using
get, we use an iterator to step through the list. This is efficient. But then we
use the Collection’s remove method to remove an even-valued item. This is not
an efficient operation because the remove method has to search for the item
again, which takes linear time. But if we run the code, we find out that the sit-
uation is even worse: the program generates a ConcurrentModificationException
because when an item is removed, the underlying iterator used by the enhanced
for loop is invalidated. (The code in Figure 6.22 explains why: we cannot expect
the enhanced for loop to understand that it must advance only if an item is not
removed.)

Figure 6.24 shows an idea that works: after the iterator finds an even-
valued item, we can use the iterator to remove the value it has just seen. For a
LinkedList, the call to the iterator’s remove method is only constant time,
because the iterator is at (or near) the node that needs to be removed. Thus, for
a LinkedList, the entire routine takes linear time, rather than quadratic time.

figure 6.22

Removes the even
numbers in a list;
quadratic on all
types of lists

1 public static void removeEvensVer1(List<Integer> lst)
2 {
3 int i = 0;
4 while(i < lst.size())
5 if(lst.get(i) % 2 == 0)
6 lst.remove(i);
7 else
8 i++;
9 }

figure 6.23

Removes the even
numbers in a list;
doesn’t work
because of
ConcurrentModifica-
tionException

1 public static void removeEvensVer2(List<Integer> lst)
2 {
3 for(Integer x : lst)
4 if(x % 2 == 0)
5 lst.remove(x);
6 }

figure 6.24

Removes the even
numbers in a list;
quadratic on
ArrayList, but linear
time for LinkedList

1 public static void removeEvensVer3(List<Integer> lst)
2 {
3 Iterator<Integer> itr = lst.iterator();
4
5 while(itr.hasNext())
6 if(itr.next() % 2 == 0)
7 itr.remove();
8 }

258 chapter 6 the collections api

For an ArrayList, even though the iterator is at the point that needs to be
removed, the remove is still expensive, because array items must be shifted, so
as expected, the entire routine still takes quadratic time for an ArrayList.

If we run the code in Figure 6.24, passing a LinkedList<Integer>, it takes
0.015 sec. for a 400,000 item list, and 0.031 sec. for an 800,000 item
LinkedList, and is clearly a linear-time routine, because the running time increases
by the same factor as the input size. When we pass an ArrayList<Integer>, the
routine takes about 1 minutes for a 400,000 item ArrayList, and about five
minutes for an 800,000 item ArrayList; the four-fold increase in running time
when the input increases by only a factor of two is consistent with quadratic
behavior.

A similar situation occurs for add. The Iterator interface does not pro-
vide an add method, but ListIterator does. We have not shown that method
in Figure 6.17. Exercise 6.23 asks you to use it.

6.6 stacks and queues
In this section, we describe two containers: the stack and queue. In principle, both
have very simple interfaces (but not in the Collections API) and very efficient
implementations. Even so, as we will see, they are very useful data structures.

6.6.1 stacks
A stack restricts
access to the most
recently inserted
item.

A stack is a data structure in which access is restricted to the most recently
inserted item. It behaves very much like the common stack of bills, stack of
plates, or stack of newspapers. The last item added to the stack is placed on
the top and is easily accessible, whereas items that have been in the stack for a
while are more difficult to access. Thus the stack is appropriate if we expect to
access only the top item; all other items are inaccessible.

In a stack, the three natural operations of insert, remove, and find are
renamed push, pop, and top. These basic operations are illustrated in Figure 6.25.

The interface shown in Figure 6.26 illustrates the typical protocol. It is
similar to the protocol previously seen in Figure 6.1. By pushing items and
then popping them, we can use the stack to reverse the order of things.

Stack operations
take a constant
amount of time.

Each stack operation should take a constant amount of time, independent
of the number of items in the stack. By analogy, finding today’s newspaper in
a stack of newspapers is fast, no matter how deep the stack is. However, arbi-
trary access in a stack is not efficiently supported, so we do not list it as an
option in the protocol.

1
4
--

6.6 stacks and queues 259

What makes the stack useful are the many applications for which we need to
access only the most recently inserted item. An important use of stacks is in com-
piler design.

6.6.2 stacks and computer languages

Compilers check your programs for syntax errors. Often, however, a lack of
one symbol (e.g., a missing comment-ender */ or }) causes the compiler to
spill out a hundred lines of diagnostics without identifying the real error; this
is especially true when using anonymous classes.

A useful tool in this situation is a program that checks whether everything
is balanced, that is, every { corresponds to a }, every [to a], and so on. The
sequence [()] is legal but [(]) is not—so simply counting the numbers of
each symbol is insufficient. (Assume for now that we are processing only a
sequence of tokens and will not worry about problems such as the character
constant '{' not needing a matching '}'.)

push pop, top

Stack

figure 6.25

The stack model:
Input to a stack is by
push, output is by top,
and deletion is by pop.

figure 6.26

Protocol for the stack

1 // Stack protocol
2
3 package weiss.nonstandard;
4
5 public interface Stack<AnyType>
6 {
7 void push(AnyType x); // insert
8 void pop(); // remove
9 AnyType top(); // find

10 AnyType topAndPop(); // find + remove
11
12 boolean isEmpty();
13 void makeEmpty();
14 }

260 chapter 6 the collections api

A stack can be
used to check for
unbalanced
symbols.

A stack is useful for checking unbalanced symbols because we know that
when a closing symbol such as) is seen, it matches the most recently seen
unclosed (. Therefore, by placing opening symbols on a stack, we can easily check
that a closing symbol makes sense. Specifically, we have the following algorithm.

1. Make an empty stack.

2. Read symbols until the end of the file.

a. If the token is an opening symbol, push it onto the stack.

b. If it is a closing symbol and if the stack is empty, report an error.

c. Otherwise, pop the stack. If the symbol popped is not the corre-
sponding opening symbol, report an error.

3. At the end of the file, if the stack is not empty, report an error.

In Section 11.1 we will develop this algorithm to work for (almost) all
Java programs. Details include error reporting, and processing of comments,
strings, and character constants, as well as escape sequences.

The stack is used
to implement
method calls in
most program-
ming languages.

The algorithm to check balanced symbols suggests a way to implement
method calls. The problem is that, when a call is made to a new method, all the
variables local to the calling method need to be saved by the system; otherwise,
the new method would overwrite the calling routine’s variables. Furthermore,
the current location in the calling routine must be saved so that the new method
knows where to go after it is done. The reason that this problem is similar to bal-
ancing symbols is because a method call and a method return are essentially the
same as an open parenthesis and a closed parenthesis, so the same ideas should
apply. This indeed is the case: As discussed in Section 7.3, the stack is used to
implement method calls in most programming languages.

The operator prece-
dence parsing
algorithm uses a
stack to evaluate
expressions.

A final important application of the stack is the evaluation of expressions in
computer languages. In the expression 1+2*3, we see that at the point that the * is
encountered, we have already read the operator + and the operands 1 and 2. Does
* operate on 2, or 1+2? Precedence rules tell us that * operates on 2, which is the
most recently seen operand. After the 3 is seen, we can evaluate 2*3 as 6 and then
apply the + operator. This process suggests that operands and intermediate results
should be saved on a stack. It also suggests that the operators be saved on the stack
(since the + is held until the higher precedence * is evaluated). An algorithm that
uses this strategy is operator precedence parsing, and is described in Section 11.2.

6.6.3 queues
The queue
restricts access to
the least recently
inserted item.

Another simple data structure is the queue, which restricts access to the least
recently inserted item. In many cases being able to find and/or remove the
most-recently inserted item is important. But in an equal number of cases, it is
not only unimportant, it is actually the wrong thing to do. In a multiprocessing

6.7 sets 261

system, for example, when jobs are submitted to a printer, we expect the least
recent or most senior job to be printed first. This order is not only fair but it is
also required to guarantee that the first job does not wait forever. Thus you can
expect to find printer queues on all large systems.

The basic operations supported by queues are the following:

n enqueue, or insertion at the back of the line

n dequeue, or removal of the item from the front of the line

n getFront, or access of the item at the front of the line

Queue operations
take a constant
amount of time.

Figure 6.27 illustrates these queue operations. Historically, dequeue and
getFront have been combined into one operation; we do this by having dequeue
return a reference to the item that it has removed.

Because the queue operations and the stack operations are restricted simi-
larly, we expect that they should also take a constant amount of time per
query. This is indeed the case. All of the basic queue operations take
time. We will see several applications of queues in the case studies.

6.6.4 stacks and queues in the collections api
The Collections
API provides a
Stack class but no
queue class. Java
5 adds a Queue
interface.

The Collections API provides a Stack class but no queue class. The Stack
methods are push, pop, and peek. However, the Stack class extends Vector and
is slower than it needs to be; like Vector, its use is no longer in vogue and can
be replaced with List operations. Before Java 1.4, the only java.util support
for queue operations was to use a LinkedList (e.g., addLast, removeFirst, and
getFirst). Java 5 adds a Queue interface, part of which is shown in Figure 6.28.
However, we still must use LinkedList methods. The new methods are add,
remove, and element.

6.7 sets
A Set contains no
duplicates.

A Set is a container that contains no duplicates. It supports all of the Collection
methods. Most importantly, recall that as we discussed in Section 6.5.3, contains
for a List is inefficient, regardless of whether the List is an ArrayList or a

figure 6.27

The queue model:
Input is by enqueue,
output is by getFront,
and deletion is by
dequeue.

enqueue dequeue

getFront

Queue

O 1()

262 chapter 6 the collections api

LinkedList. A library implementation of Set is expected to efficiently support
contains. Similarly, the Collection remove method (which has as a parameter a
specified object, not a specified index) for a List is inefficient because it is
implied that the first thing remove must do is to find the item being removed;
essentially this makes remove at least as difficult as contains. For a Set, remove is
expected to also be efficiently implemented. And finally, add is expected to
have an efficient implementation. There is no Java syntax that can be used to
specify that an operation must meet a time constraint or may not contain
duplicates; thus Figure 6.29 illustrates that the Set interface does little more
than declare a type.

figure 6.28

Possible Queue
interface

1 package weiss.util;
2
3 /**
4 * Queue interface.
5 */
6 public interface Queue<AnyType> extends Collection<AnyType>
7 {
8 /**
9 * Returns but does not remove the item at the "front"

10 * of the queue.
11 * @return the front item of null if the queue is empty.
12 * @throws NoSuchElementException if the queue is empty.
13 */
14 AnyType element();
15
16 /**
17 * Returns and removes the item at the "front"
18 * of the queue.
19 * @return the front item.
20 * @throws NoSuchElementException if the queue is empty.
21 */
22 AnyType remove();
23 }

figure 6.29

Possible Set interface

1 package weiss.util;
2
3 /**
4 * Set interface.
5 */
6 public interface Set<AnyType> extends Collection<AnyType>
7 {
8 }

6.7 sets 263

The SortedSet is an
ordered container.
It allows no
duplicates.

A SortedSet is a Set that maintains (internally) its items in sorted order.
Objects that are added into the SortedSet must either be comparable, or a
Comparator has to be provided when the container is instantiated. A SortedSet
supports all of the Set methods, but its iterator is guaranteed to step through
items in its sorted order. The SortedSet also allows us to find the smallest
and largest item. The interface for our subset of SortedSet is shown in
Figure 6.30.

6.7.1 the TreeSet class
The TreeSet is an
implementation of
SortedSet.

The SortedSet is implemented by a TreeSet. The underlying implementation
of the TreeSet is a balanced-binary search tree and is discussed in Chapter 19.

By default, ordering uses the default comparator. An alternate ordering
can be specified by providing a comparator to the constructor. As an example,
Figure 6.31 illustrates how a SortedSet that stores strings is constructed. The
call to printCollection will output elements in decreasing sorted order.

The SortedSet, like all Sets, does not allow duplicates. Two items are con-
sidered equal if the comparator’s compare method returns 0.

figure 6.30

Possible SortedSet
interface

1 package weiss.util;
2
3 /**
4 * SortedSet interface.
5 */
6 public interface SortedSet<AnyType> extends Set<AnyType>
7 {
8 /**
9 * Return the comparator used by this SortedSet.

10 * @return the comparator or null if the
11 * default comparator is used.
12 */
13 Comparator<? super AnyType> comparator();
14
15 /**
16 * Find the smallest item in the set.
17 * @return the smallest item.
18 * @throws NoSuchElementException if the set is empty.
19 */
20 AnyType first();
21
22 /**
23 * Find the largest item in the set.
24 * @return the largest item.
25 * @throws NoSuchElementException if the set is empty.
26 */
27 AnyType last();
28 }

264 chapter 6 the collections api

In Section 5.6, we examined the static searching problem and saw that if
the items are presented to us in sorted order, then we can support the find
operation in logarithmic worst-case time. This is static searching because,
once we are presented with the items, we cannot add or remove items. The
SortedSet allows us to add and remove items.

We are hoping that the worst-case cost of the contains, add, and remove
operations is because that would match the bound obtained for the
static binary search. Unfortunately, for the simplest implementation of the
TreeSet, this is not the case. The average case is logarithmic, but the worst
case is and occurs quite frequently. However, by applying some algo-
rithmic tricks, we can obtain a more complex structure that does indeed have

cost per operation. The Collections API TreeSet is guaranteed to
have this performance, and in Chapter 19, we discuss how to obtain it using
the binary search tree and its variants, and provide an implementation of the
TreeSet, with an iterator.

We can also use a
binary search tree
to access the Kth
smallest item in
logarithmic time.

We mention in closing that although we can find the smallest and largest
item in a SortedSet in time, finding the Kth smallest item, where K
is a parameter, is not supported in the Collections API. However, it is possible
to perform this operation in time, while preserving the running
time of the other operations, if we do more work.

6.7.2 the HashSet class
The HashSet imple-
ments the Set
interface. It does
not require a
comparator.

In addition to the TreeSet, the Collections API provides a HashSet class that
implements the Set interface. The HashSet differs from the TreeSet in that it can-
not be used to enumerate items in sorted order, nor can it be used to obtain the
smallest or largest item. Indeed, the items in the HashSet do not have to be com-
parable in any way. This means that the HashSet is less powerful than the
TreeSet. If being able to enumerate the items in a Set in sorted order is not
important, then it is often preferable to use the HashSet because not having to
maintain sorted order allows the HashSet to obtain faster performance. To do so,
elements placed in the HashSet must provide hints to the HashSet algorithms.

figure 6.31

An illustration of the TreeSet, using reverse order

1 public static void main(String [] args)
2 {
3 Set<String> s = new TreeSet<String>(Collections.reverseOrder());
4 s.add("joe");
5 s.add("bob");
6 s.add("hal");
7 printCollection(s); // Figure 6.11
8 }

O(log N)

O(N)

O(log N)

O(log N)

O(log N)

6.7 sets 265

This is done by having each element implement a special hashCode method; we
describe this method later in this subsection.

Figure 6.32 illustrates the use of the HashSet. It is guaranteed that if we
iterate through the entire HashSet, we will see each item once, but the order
that the items are visited is unknown. It is almost certain that the order will not
be the same as the order of insertion, nor will it be any kind of sorted order.

Like all Sets, the HashSet does not allow duplicates. Two items are consid-
ered equal if the equals method says so. Thus, any object that is inserted into
the HashSet must have a properly overridden equals method.

Recall that in Section 4.9, we discussed that it is essential that equals is
overridden (by providing a new version that takes an Object as parameter)
rather than overloaded.

implementing equals and hashCode
equals must be
symmetric; this is
tricky when inheri-
tance is involved.

Overriding equals is very tricky when inheritance is involved. The contract for
equals states that if p and q are not null, p.equals(q) should return the same
value as q.equals(p). This does not occur in Figure 6.33. In that example,
clearly b.equals(c) returns true, as expected. a.equals(b) also returns true,
because BaseClass’s equals method is used, and that only compares the x com-
ponents. However, b.equals(a) returns false, because DerivedClass’s equals
method is used, and the instanceof test will fail (a is not an instance of
DerivedClass) at line 29.

Solution 1 is to not
override equals
below the base
class. Solution 2 is
to require identi-
cally typed objects
using getClass.

There are two standard solutions to this problem. One is to make the
equals method final in BaseClass. This avoids the problem of conflicting
equals. The other solution is to strengthen the equals test to require that the
types are identical, and not simply compatible, since the one-way compati-
bility is what breaks equals. In this example, a BaseClass and DerivedClass
object would never be declared equal. Figure 6.34 shows a correct imple-
mentation. Line 8 contains the idiomatic test. getClass returns a special
object of type Class (note the capital C) that represents information about
any object’s class. getClass is a final method in the Object class. If when
invoked on two different objects it returns the same Class instance, then the
two objects have identical types.

figure 6.32

An illustration of the
HashSet, where items
are output in some
order

1 public static void main(String [] args)
2 {
3 Set<String> s = new HashSet<String>();
4 s.add("joe");
5 s.add("bob");
6 s.add("hal");
7 printCollection(s); // Figure 6.11
8 }

266 chapter 6 the collections api

figure 6.33

An illustration of a
broken implementation
of equals

1 class BaseClass
2 {
3 public BaseClass(int i)
4 { x = i; }
5
6 public boolean equals(Object rhs)
7 {
8 // This is the wrong test (ok if final class)
9 if(!(rhs instanceof BaseClass))

10 return false;
11
12 return x == ((BaseClass) rhs).x;
13 }
14
15 private int x;
16 }
17
18 class DerivedClass extends BaseClass
19 {
20 public DerivedClass(int i, int j)
21 {
22 super(i);
23 y = j;
24 }
25
26 public boolean equals(Object rhs)
27 {
28 // This is the wrong test.
29 if(!(rhs instanceof DerivedClass))
30 return false;
31
32 return super.equals(rhs) &&
33 y == ((DerivedClass) rhs).y;
34 }
35
36 private int y;
37 }
38
39 public class EqualsWithInheritance
40 {
41 public static void main(String [] args)
42 {
43 BaseClass a = new BaseClass(5);
44 DerivedClass b = new DerivedClass(5, 8);
45 DerivedClass c = new DerivedClass(5, 8);
46
47 System.out.println("b.equals(c): " + b.equals(c));
48 System.out.println("a.equals(b): " + a.equals(b));
49 System.out.println("b.equals(a): " + b.equals(a));
50 }
51 }

6.7 sets 267

The hashCode
method must be
overridden, if
equals is overrid-
den, or the HashSet
will not work.

When using a HashSet, we must also override the special hashCode method
that is specified in Object; hashCode returns an int. Think of hashCode as pro-
viding a trusted hint of where the items are stored. If the hint is wrong, the
item is not found, so if two objects are equal, they should provide identical
hints. The contract for hashCode is that if two objects are declared equal by
the equals method, then the hashCode method must return the same value for
them. If this contract is violated, the HashSet will fail to find objects, even if
equals declares that there is a match. If equals declares the objects are not
equal, the hashCode method should return a different value for them, but this
is not required. However, it is very beneficial for HashSet performance if
hashCode rarely produces identical results for unequal objects. How hashCode
and HashSet interact is discussed in Chapter 20.

figure 6.34

Correct
implementation of
equals

1 class BaseClass
2 {
3 public BaseClass(int i)
4 { x = i; }
5
6 public boolean equals(Object rhs)
7 {
8 if(rhs == null || getClass() != rhs.getClass())
9 return false;

10
11 return x == ((BaseClass) rhs).x;
12 }
13
14 private int x;
15 }
16
17 class DerivedClass extends BaseClass
18 {
19 public DerivedClass(int i, int j)
20 {
21 super(i);
22 y = j;
23 }
24
25 public boolean equals(Object rhs)
26 {
27 // Class test not needed; getClass() is done
28 // in superclass equals
29 return super.equals(rhs) &&
30 y == ((DerivedClass) rhs).y;
31 }
32
33 private int y;
34 }

268 chapter 6 the collections api

Figure 6.35 illustrates a SimpleStudent class in which two SimpleStudents
are equal if they have the same name (and are both SimpleStudents). This could
be overridden using the techniques in Figure 6.34 as needed, or this method
could be declared final. If it was declared final, then the test that is present
allows only two identically typed SimpleStudents to be declared equal. If, with
a final equals, we replace the test at line 40 with an instanceof test, then any
two objects in the hierarchy can be declared equal if their names match.

The hashCode method at lines 47 and 48 simply uses the hashCode of the
name field. Thus if two SimpleStudent objects have the same name (as declared
by equals) they will have the same hashCode, since, presumably, the implemen-
tors of String honored the contract for hashCode.

The accompanying test program is part of a larger test that illustrates all
the basic containers. Observe that if hashCode is unimplemented, all three
SimpleStudent objects will be added to the HashSet because the duplicate will
not be detected.

It turns out that on average, the HashSet operations can be performed
in constant time. This seems like an astounding result because it means that
the cost of a single HashSet operation does not depend on whether the HashSet
contains 10 items or 10,000 items. The theory behind the HashSet is fascinating
and is described in Chapter 20.

6.8 maps
A Map is used to
store a collection
of entries that
consists of keys
and their values.
The Map maps keys
to values.

A Map is used to store a collection of entries that consists of keys and their val-
ues. The Map maps keys to values. Keys must be unique, but several keys can
map to the same value. Thus, values need not be unique. There is a SortedMap
interface that maintains the map logically in key-sorted order.

Not surprisingly, there are two implementations: the HashMap and TreeMap.
The HashMap does not keep keys in sorted order, whereas the TreeMap does. For
simplicity, we do not implement the SortedMap interface but we do implement
HashMap and TreeMap.

The Map can be implemented as a Set instantiated with a pair (see
Section 3.9), whose comparator or equals/hashCode implementation refers
only to the key. The Map interface does not extend Collection; instead it
exists on its own. A sample interface that contains the most important
methods is shown in Figures 6.36 and 6.37.

Most of the methods have intuitive semantics. put is used to add a key/
value pair, remove is used to remove a key/value pair (only the key is speci-
fied), and get returns the value associated with a key. null values are allowed,
which complicates issues for get, because the return value from get will not

6.8 maps 269

1 /**
2 * Test program for HashSet.
3 */
4 class IteratorTest
5 {
6 public static void main(String [] args)
7 {
8 List<SimpleStudent> stud1 = new ArrayList<SimpleStudent>();
9 stud1.add(new SimpleStudent("Bob", 0));

10 stud1.add(new SimpleStudent("Joe", 1));
11 stud1.add(new SimpleStudent("Bob", 2)); // duplicate
12
13 // Will only have 2 items, if hashCode is
14 // implemented. Otherwise will have 3 because
15 // duplicate will not be detected.
16 Set<SimpleStudent> stud2 = new HashSet<SimpleStudent>(stud1);
17
18 printCollection(stud1); // Bob Joe Bob (unspecified order)
19 printCollection(stud2); // Two items in unspecified order
20 }
21 }
22
23 /**
24 * Illustrates use of hashCode/equals for a user-defined class.
25 * Students are ordered on basis of name only.
26 */
27 class SimpleStudent implements Comparable<SimpleStudent>
28 {
29 String name;
30 int id;
31
32 public SimpleStudent(String n, int i)
33 { name = n; id = i; }
34
35 public String toString()
36 { return name + " " + id; }
37
38 public boolean equals(Object rhs)
39 {
40 if(rhs == null || getClass() != rhs.getClass())
41 return false;
42
43 SimpleStudent other = (SimpleStudent) rhs;
44 return name.equals(other.name);
45 }
46
47 public int hashCode()
48 { return name.hashCode(); }
49 }

figure 6.35

Illustrates the equals and hashCode methods for use in HashSet

270 chapter 6 the collections api

figure 6.36

A sample Map
interface (part 1)

1 package weiss.util;
2
3 /**
4 * Map interface.
5 * A map stores key/value pairs.
6 * In our implementations, duplicate keys are not allowed.
7 */
8 public interface Map<KeyType,ValueType> extends java.io.Serializable
9 {

10 /**
11 * Returns the number of keys in this map.
12 */
13 int size();
14
15 /**
16 * Tests if this map is empty.
17 */
18 boolean isEmpty();
19
20 /**
21 * Tests if this map contains a given key.
22 */
23 boolean containsKey(KeyType key);
24
25 /**
26 * Returns the value that matches the key or null
27 * if the key is not found. Since null values are allowed,
28 * checking if the return value is null may not be a
29 * safe way to ascertain if the key is present in the map.
30 */
31 ValueType get(KeyType key);
32
33 /**
34 * Adds the key/value pair to the map, overriding the
35 * original value if the key was already present.
36 * Returns the old value associated with the key, or
37 * null if the key was not present prior to this call.
38 */
39 ValueType put(KeyType key, ValueType value);
40
41 /**
42 * Removes the key and its value from the map.
43 * Returns the previous value associated with the key,
44 * or null if the key was not present prior to this call.
45 */
46 ValueType remove(KeyType key);

6.8 maps 271

figure 6.37

A sample Map interface (part 2)

47 /**
48 * Removes all key/value pairs from the map.
49 */
50 void clear();
51
52 /**
53 * Returns the keys in the map.
54 */
55 Set<KeyType> keySet();
56
57 /**
58 * Returns the values in the map. There may be duplicates.
59 */
60 Collection<ValueType> values();
61
62 /**
63 * Return a set of Map.Entry objects corresponding to
64 * the key/value pairs in the map.
65 */
66 Set<Entry<KeyType,ValueType>> entrySet();
67
68 /**
69 * Interface used to access the key/value pairs in a map.
70 * From a map, use entrySet().iterator to obtain an iterator
71 * over a Set of pairs. The next() method of this iterator
72 * yields objects of type Map.Entry<KeyType,ValueType>.
73 */
74 public interface Entry<KeyType,ValueType> extends java.io.Serializable
75 {
76 /**
77 * Returns this pair's key.
78 */
79 KeyType getKey();
80
81 /**
82 * Returns this pair's value.
83 */
84 ValueType getValue();
85
86 /**
87 * Change this pair's value.
88 * @return the old value associated with this pair.
89 */
90 ValueType setValue(ValueType newValue);
91 }
92 }

272 chapter 6 the collections api

distinguish between a failed search and a successful search that returns null
for the value. containsKey can be used if null values are known to be in the map.

The Map interface does not provide an iterator method or class. Instead it
returns a Collection that can be used to view the contents of the map.

The keySet method gives a Collection that contains all the keys. Since
duplicate keys are not allowed, the result of keySet is a Set, for which we can
obtain an iterator. If the Map is a SortedMap, the Set is a SortedSet.

Similarly, the values method returns a Collection that contains all the val-
ues. This really is a Collection, since duplicate values are allowed.

Map.Entry
abstracts the
notion of a pair in
the map.

Finally, the entrySet method returns a collection of key/value pairs.
Again, this is a Set, because the pairs must have different keys. The objects in
the Set returned by the entrySet are pairs; there must be a type that represents
key/value pairs. This is specified by the Entry interface that is nested in the Map
interface. Thus the type of object that is in the entrySet is Map.Entry.

Figure 6.38 illustrates the use of the Map with a TreeMap. An empty map is
created at line 23 and then populated with a series of put calls at lines 25 to
29. The last call to put simply replaces a value with “unlisted”. Lines 31 and
32 print the result of a call to get, which is used to obtain the value for the key
"Jane Doe". More interesting is the printMap routine that spans lines 8 to 19.

In printMap, at line 12, we obtain a Set containing Map.Entry pairs. From
the Set, we can use an enhanced for loop to view the Map.Entrys, and we can
obtain the key and value information using getKey and getValue, as shown on
lines 16 and 17.

keySet, values, and
entrySet return
views.

Returning to main, we see that keySet returns a set of keys (at line 37) that
can be printed at line 38 by calling printCollection (in Figure 6.11); similarly
at lines 41 and 42, values returns a collection of values that can be printed.
More interesting, the key set and value collection are views of the map, so
changes to the map are immediately reflected in the key set and value collec-
tion, and removals from the key set or value set become removals from the
underlying map. Thus line 44 removes not only the key from the key set but
also the associated entry from the map. Similarly, line 45 removes an entry
from the map. Thus the printing at line 49 reflects a map with two entries
removed.

Views themselves are an interesting concept and we will discuss specifics
of how they are implemented later when we implement the map classes. Some
further examples of views are discussed in Section 6.10.

Figure 6.39 illustrates another use of the map, in a method that returns
items in a list that appear more than once. In this code, a map is being used
internally to group the duplicates together: the key of the map is an item, and
the value is the number of times the item has occurred. Lines 8–12 illustrate
the typical idea seen in building up a map this way. If the item has never been

6.8 maps 273

figure 6.38

An illustration using the Map interface

1 import java.util.Map;
2 import java.util.TreeMap;
3 import java.util.Set;
4 import java.util.Collection;
5
6 public class MapDemo
7 {
8 public static <KeyType,ValueType>
9 void printMap(String msg, Map<KeyType,ValueType> m)

10 {
11 System.out.println(msg + ":");
12 Set<Map.Entry<KeyType,ValueType>> entries = m.entrySet();
13
14 for(Map.Entry<KeyType,ValueType> thisPair : entries)
15 {
16 System.out.print(thisPair.getKey() + ": ");
17 System.out.println(thisPair.getValue());
18 }
19 }
20
21 public static void main(String [] args)
22 {
23 Map<String,String> phone1 = new TreeMap<String,String>();
24
25 phone1.put("John Doe", "212-555-1212");
26 phone1.put("Jane Doe", "312-555-1212");
27 phone1.put("Holly Doe", "213-555-1212");
28 phone1.put("Susan Doe", "617-555-1212");
29 phone1.put("Jane Doe", "unlisted");
30
31 System.out.println("phone1.get(\"Jane Doe\"): " +
32 phone1.get("Jane Doe"));
33 System.out.println("\nThe map is: ");
34 printMap("phone1", phone1);
35
36 System.out.println("\nThe keys are: ");
37 Set<String> keys = phone1.keySet();
38 printCollection(keys);
39
40 System.out.println("\nThe values are: ");
41 Collection<String> values = phone1.values();
42 printCollection(values);
43
44 keys.remove("John Doe");
45 values.remove("unlisted");
46
47 System.out.println("After John Doe and 1 unlisted are removed");
48 System.out.println("\nThe map is: ");
49 printMap("phone1", phone1);
50 }
51 }

274 chapter 6 the collections api

placed in the map, we do so with a count of 1. Otherwise, we update the
count. Note the judicious use of autoboxing and unboxing. Then at lines 15–17,
we use an iterator to traverse through the entry set, obtaining keys that appear
with a count of two or more in the map.

6.9 priority queues
The priority queue
supports access of
the minimum item
only.

Although jobs sent to a printer are generally placed on a queue, that might not
always be the best thing to do. For instance, one job might be particularly
important, so we might want to allow that job to be run as soon as the printer
is available. Conversely, when the printer finishes a job, and several 1-page
jobs and one 100-page job are waiting, it might be reasonable to print the long
job last, even if it is not the last job submitted. (Unfortunately, most systems
do not do this, which can be particularly annoying at times.)

Similarly, in a multiuser environment the operating system scheduler
must decide which of several processes to run. Generally, a process is allowed
to run only for a fixed period of time. A poor algorithm for such a procedure
involves use of a queue. Jobs are initially placed at the end of the queue. The
scheduler repeatedly takes the first job from the queue, runs it until either it
finishes or its time limit is up, and places it at the end of the queue if it does
not finish. Generally, this strategy is not appropriate because short jobs must

figure 6.39

A typical use of a map

1 public static List<String> listDuplicates(List<String> coll)
2 {
3 Map<String,Integer> count = new TreeMap<String,Integer>();
4 List<String> result = new ArrayList<String>();
5
6 for(String word : coll)
7 {
8 Integer occurs = count.get(word);
9 if(occurs == null)

10 count.put(word, 1);
11 else
12 count.put(word, occurs + 1);
13 }
14
15 for(Map.Entry<String,Integer> e : count.entrySet())
16 if(e.getValue() >= 2)
17 result.add(e.getKey());
18
19 return result;
20 }

6.9 priority queues 275

wait and thus seem to take a long time to run. Clearly, users who are running
an editor should not see a visible delay in the echoing of typed characters.
Thus short jobs (that is, those using fewer resources) should have precedence
over jobs that have already consumed large amounts of resources. Further-
more, some resource-intensive jobs, such as jobs run by the system adminis-
trator, might be important and should also have precedence.

If we give each job a number to measure its priority, then the smaller
number (pages printed, resources used) tends to indicate greater importance.
Thus we want to be able to access the smallest item in a collection of items
and remove it from the collection. To do so, we use the findMin and deleteMin
operations. The data structure that supports these operations is the priority
queue and supports access of the minimum item only. Figure 6.40 illustrates
the basic priority queue operations.

Although the priority queue is a fundamental data structure, before Java 5
there was no implementation of it in the Collections API. A SortedSet was not
sufficient because it is important for a priority queue to allow duplicate items.

In Java 5, the PriorityQueue is a class that implements the Queue interface.
Thus insert, findMin, and deleteMin are expressed via calls to add, element, and
remove. The PriorityQueue can be constructed either with no parameters, a com-
parator, or another compatible collection. Throughout the text, we often use the
terms insert, findMin, and deleteMin to describe the priority queue methods.
Figure 6.41 illustrates the use of the priority queue.

The binary heap
implements the
priority queue in
logarithmic time
per operation with
little extra space.

As the priority queue supports only the deleteMin and findMin operations,
we might expect performance that is a compromise between the constant-time
queue and the logarithmic time set. Indeed, this is the case. The basic priority
queue supports all operations in logarithmic worst-case time, uses only an
array, supports insertion in constant average time, is simple to implement, and
is known as a binary heap. This structure is one of the most elegant data struc-
tures known. In Chapter 21, we provide details on the implementation of the
binary heap. An alternate implementation that supports an additional
decreaseKey operation is the pairing heap, described in Chapter 23. Because
there are many efficient implementations of priority queues, it is unfortunate

insert

Priority
Queue

deleteMin
findMin

figure 6.40

The priority queue
model: Only the
minimum element is
accessible.

276 chapter 6 the collections api

that the library designers did not choose to make PriorityQueue an interface.
Nonetheless, the PriorityQueue implementation in Java 5 is sufficient for most
priority queue applications.

An important use
of priority queues
is event-driven
simulation.

An important application of the priority queue is event-driven simulation. Con-
sider, for example, a system such as a bank in which customers arrive and wait in
line until one of K tellers is available. Customer arrival is governed by a probability
distribution function, as is the service time (the amount of time it takes a teller to
provide complete service to one customer). We are interested in statistics such as
how long on average a customer has to wait or how long a line might be.

With certain probability distributions and values of K, we can compute
these statistics exactly. However, as K gets larger, the analysis becomes
considerably more difficult, so the use of a computer to simulate the operation
of the bank is appealing. In this way, the bank’s officers can determine how
many tellers are needed to ensure reasonably smooth service. An event-driven
simulation consists of processing events. The two events here are (1) a cus-
tomer arriving and (2) a customer departing, thus freeing up a teller. At any
point we have a collection of events waiting to happen. To run the simulation,
we need to determine the next event; this is the event whose time of occur-
rence is minimum. Hence, we use a priority queue that extracts the event of
minimum time to process the event list efficiently. We present a complete dis-
cussion and implementation of event-driven simulation in Section 13.2.

figure 6.41

A routine to
demonstrate the
PriorityQueue

1 import java.util.PriorityQueue;
2
3 public class PriorityQueueDemo
4 {
5 public static <AnyType extends Comparable<? super AnyType>>
6 void dumpPQ(String msg, PriorityQueue<AnyType> pq)
7 {
8 System.out.println(msg + ":");
9 while(!pq.isEmpty())

10 System.out.println(pq.remove());
11 }
12
13 // Do some inserts and removes (done in dumpPQ).
14 public static void main(String [] args)
15 {
16 PriorityQueue<Integer> minPQ = new PriorityQueue<Integer>();
17
18 minPQ.add(4);
19 minPQ.add(3);
20 minPQ.add(5);
21
22 dumpPQ("minPQ", minPQ);
23 }
24 }

6.10 views in the collections api 277

6.10 views in the collections api
In Section 6.8, we saw an illustration of methods that return “views” of a map.
Specificially, keySet returns a view representing a Set of all keys in the map;
values returns a view representing a Collection of all values in the map; entrySet
returns a view representing a Set of all entries in the map. Changes to the map
will be reflected in any view, and changes to any view will reflect on the map
and also the other views. This behavior was demonstrated in Figure 6.38 by
using the remove method on the key set and value collection.

There are many other examples of views in the Collections API. In this
section, we discuss two such uses of views.

6.10.1 the subList method for Lists

The subList method takes two parameters representing list indices and returns
a view of a List whose range includes the first index and excludes the last
index. Thus,

 System.out.println(theList.subList(3, 8));

prints the five items in the sublist. Because subList is a view, nonstructural
changes to the sublist reflect back in the original, and vice-versa. However, as
is the case with iterators, a structural modification to the original list invali-
dates the sublist. Finally, perhaps most importantly, because the sublist is a
view, and not a copy of a portion of the original list, the cost of invoking
subList is O(1), and the operations on the sublist retain their same efficiency.

6.10.2 the headSet, subSet, and tailSet methods for
SortedSets

The SortedSet class has methods that return views of the Set:

SortedSet<AnyType> subSet(AnyType fromElement, AnyTypet toElement);
SortedSet<AnyType> headSet(AnyType toElement);
SortedSet<AnyType> tailSet(AnyType fromElement);

fromElement and toElement in effect partition the SortedSet into three subsets:
the headSet, subSet (middle part), and tailSet. Figure 6.42 illustrates this by
partitioning a number line.

In these methods, toElement is not included in any range, but fromElement
is. In Java 6, there are additional overloads of these methods that allow the
caller to control whether fromElement and toElement are included in any par-
ticular range.

278 chapter 6 the collections api

For instance, in a Set<String> words, the number of words starting with the
letter 'x' is given by:

 words.subSet("x", true, "y", false).size()

 The rank of a value val in any Set s (i.e. if val is the third largest, it has rank 3)
is given by

 s.tailSet(val).size()

Because the subsets are views, changes to the subsets reflect back in the
original, and vice-versa, and structural modifications to either are reflected in
the other. As is the case with lists, because the subsets are views, and not cop-
ies of a portion of the original set, the cost of invoking headSet, tailSet, or
subSet is comparable to any of the other set operations, which will be

, and the add, contains, and remove operations (but not size!) on the
subset retain their same efficiency.

summary

In this chapter, we examined the basic data structures that will be used
throughout the book. We provided generic protocols and explained what the
running time should be for each data structure. We also described the interface
provided by the Collections API. In later chapters, we show how these data
structures are used and eventually give an implementation of each data struc-
ture that meets the time bounds we have claimed here. Figure 6.43 summa-
rizes the results that will be obtained for the generic insert, find, and remove
sequence of operations.

Chapter 7 describes an important problem-solving tool known as recur-
sion. Recursion allows many problems to be efficiently solved with short
algorithms and is central to the efficient implementation of a sorting algo-
rithm and several data structures.

figure 6.42

headSet, subset, and
tailSet positioned on
a number line.

headSet

fromElement toElement

subSet tailSet

O(log N)

key concepts 279

key concepts

Arrays Contains a set of static methods that operate on arrays. (246)
binary heap Implements the priority queue in logarithmic time per operation

using an array. (275)
binary search tree A data structure that supports insertion, removal, and

searching. We can also use it to access the Kth smallest item. The cost is
logarithmic average-case time for a simple implementation and logarith-
mic worst-case time for a more careful implementation. (264)

Collection An interface that represents a group of objects, known as its ele-
ments. (237)

Collections A class that contains a set of static methods that operate on
Collection objects. (242)

data structure A representation of data and the operations allowed on that
data, permitting component reuse. (230)

factory method A method that creates new concrete instances but returns them
using a reference to an abstract class. (235)

hashCode A method used by HashSet that must be overridden for objects if the
object’s equals method is overridden. (268)

HashMap The Collections API implementation of a Map with unordered keys. (268)
HashSet The Collections API implementation of an (unordered) Set. (264)
iterator An object that allows access to elements in a container. (240)

Data
Structure Access Comments

Stack Most recent only, pop, Very very fast

Queue Least recent only, dequeue, Very very fast

List Any item

TreeSet Any item by name or rank, Average case easy to do; worst case requires effort

HashSet Any item by name, Average case

Priority
Queue

findMin, ,
deleteMin,

insert is on average, worst case

O 1()

O 1()

O(N)

O(log N)

O 1()

O 1()
O(log N)

O 1() O(log N)

figure 6.43

A summary of some data structures

280 chapter 6 the collections api

Iterator The Collections API interface that specifies the protocol for a uni-
directional iterator. (240)

list A collection of items in which the items have a position. (248)
List The Collections API interface that specifies the protocol for a list. (248)
ListIterator The Collections API interface that provides bidirectional iteration.

(249)
linked list A data structure that is used to avoid large amounts of data move-

ment. It uses a small amount of extra space per item. (251)
LinkedList The Collections API class that implements a linked list. (251)
Map The Collections API interface that abstracts a collection of pairs consist-

ing of keys and their values and maps keys to values. (268)
Map.Entry Abstracts the idea of a pair in a map. (272)
operator precedence parsing An algorithm that uses a stack to evaluate expres-

sions. (260)
priority queue A data structure that supports access of the minimum item only.

(274)
programming to an interface The technique of using classes by writing in

terms of the most abstract interface. Attempts to hide even the name of the
concrete class that is being operated on. (235)

queue A data structure that restricts access to the least recently inserted item. (260)
Set The Collections API interface that abstracts a collection with no dupli-

cates. (261)
SortedSet The Collections API interface that abstracts a sorted set with no

duplicates. (263)
stack A data structure that restricts access to the most recently inserted item.

(258)
TreeMap The Collections API implementation of a Map with ordered keys. (268)
TreeSet The Collections API implementation of a SortedSet. (264)

common errors

1. Do not worry about low-level optimizations until after you have concen-
trated on basic design and algorithmic issues.

2. When you send a function object as a parameter, you must send a con-
structed object, and not simply the name of the class.

3. When using a Map, if you are not sure if a key is in the map, you may need
to use containsKey rather than checking the result of get.

4. A priority queue is not a queue. It just sounds like it is.

exercises 281

on the internet

There is lots of code in this chapter. Test code is in the root directory, non-
standard protocols are in package weiss.nonstandard, and everything else is in
package weiss.util.

Collection.java Contains the code in Figure 6.9.
Iterator.java Contains the code in Figure 6.10.
Collections.java Contains the code in Figures 6.13 and 6.14.
Arrays.java Contains the code in Figure 6.15.
List.java Contains the code in Figure 6.16.
ListIterator.java Contains the code in Figure 6.17.
TestArrayList.java Illustrates the ArrayList, as in Figure 6.18.
Set.java Contains the code in Figure 6.29. The online code

contains an extra method that is not part of Java 5.
Stack.java Contains the nonstandard protocol in Figure 6.26.
UnderflowException.java

Contains a nonstandard exception.
Queue.java Contains the standard interface in Figure 6.28.
SortedSet.java Contains the code in Figure 6.30.
TreeSetDemo.java Contains the code in Figures 6.11 and 6.31.
IteratorTest.java Contains the code that illustrates all the iterators,

including code in Figures 6.11, 6.32, and 6.35.
EqualsWithInheritance.java

Contains the code in Figures 6.33 and 6.34, com-
bined as one.

Map.java Contains the code in Figures 6.36 and 6.37.
MapDemo.java Contains the code in Figure 6.38.
DuplicateFinder.java Contains the code in Figure 6.39.
PriorityQueueDemo.java

Contains the code in Figure 6.41.

exercises

IN SHORT

6.1 Show the results of the following sequence: add(4), add(8), add(1),
add(6), remove(), and remove() when the add and remove operations
correspond to the basic operations in the following:
a. Stack
b. Queue
c. Priority queue

282 chapter 6 the collections api

IN THEORY

6.2 Consider the following method, whose implementation is not shown:

// Precondition: Collection c represents a Collection of
// other Collections.
// c is not null; none of the collections are null
// str is not null
// Postcondition: returns the number of occurrences of
// String str in c.
public static
int count(Collection<Collection<String>> c, String str)

a. Provide an implementation of count.
b. Assume that Collection c contains N collections and that each of

those collections contains N objects. What is the running time of
count, as written in part (a)?

c. Suppose it takes 2 milliseconds to run count when N (specified) is
100. Assuming low-order terms are negligible, how long will it
take to run count when N is 300?

6.3 Can all of the following be supported in logarithmic time: insert,
deleteMin, deleteMax, findMin, and findMax?

6.4 Which of the data structures in Figure 6.43 lead to sorting algorithms
that could run in less than quadratic time (by inserting all items into
the data structure and then removing them in order)?

6.5 Show that the following operations can be supported in constant time
simultaneously: push, pop, and findMin. Note that deleteMin is not part
of the repertoire. Hint: Maintain two stacks—one to store items and
the other to store minimums as they occur.

6.6 A double-ended queue supports insertions and deletions at both the
front and end of the line. What is the running time per operation?

IN PRACTICE

6.7 Write a routine that uses the Collections API to print out the items in
any Collection in reverse order. Do not use a ListIterator.

6.8 Show how to implement a stack efficiently by using a List as a data
member.

6.9 Show how to implement a queue efficiently by using a List as a data
member.

exercises 283

6.10 equals, shown below, returns true if the two lists have the same size
and contain the same elements in the same order. Assume N is the size
of both lists.

public boolean equals(List<Integer> lhs, List<Integer> rhs)
{
 if(lhs.size() != rhs.size())
 return false;

 for(int i = 0; i < lhs.size(); i++)
 if(!lhs.get(i).equals(rhs.get(i))
 return false;

 return true;
}

a. What is the running time of equals when both lists are ArrayLists?
b. What is the running time of equals when both lists are LinkedLists?
c. Suppose it takes 4 seconds to run equals on two equally-sized

10,000-item LinkedLists. How long will it take to run equals on
two equally-sized 50,000-item LinkedLists?

d. Explain in one sentence how to make the algorithm efficient for
all types of lists.

6.11 hasSpecial, shown below, returns true if there exists two unique num-
bers in the list that sum to a third number in the list. Assume N is the
size of the list.

// Returns true if two numbers in c when added together sum
// to a third number in c.
public static boolean hasSpecial(List<Integer> c)
{
 for(int i = 0; i < c.size(); i++)
 for(int j = i + 1; j < c.size(); j++)
 for(int k = 0; k < c.size(); k++)
 if(c.get(i) + c.get(j) == c.get(k))
 return true;

 return false;
}

a. What is the running time of hasSpecial when the list is an ArrayList?
b. What is the running time of hasSpecial when the list is a LinkedList?
c. Suppose it takes 2 seconds to run hasSpecial on a 1,000-item

ArrayList. How long will it take to run hasSpecial on a 3,000-item
ArrayList? You may assume hasSpecial returns false in both cases.

284 chapter 6 the collections api

6.12 intersect, shown below, returns the number of elements that are in
both lists. Assume both lists contain N items.

// Returns the number of elements in both c1 and c2
// Assumes no duplicates in either list.
public static int intersect (List<Integer> c1, List<Integer> c2)
{
 int count = 0;

 for(int i = 0; i < c1.size(); i++)
 {
 int item1 = c1.get(i);
 for(int j = 0; j < c2.size(); j++)
 {
 if(c2.get(j) == item1)
 {
 count++;
 break;
 }
 }
 }

 return count;
}

a. What is the running time of intersect when both lists are
ArrayLists?

b. What is the running time of intersect when both lists are
LinkedLists?

c. Suppose it takes 4 seconds to run intersect on two equally-sized
1,000-item LinkedLists. How long will it take to run intersect on
two equally-sized 3,000-item LinkedLists?

d. Does rewriting the two loops using the enhanced for loop (i.e.
for(int x : c1)) make intersect more efficient? Provide an
explanation of your reasoning.

6.13 containsAll returns true if the first list contains all the elements in the
second list. Assume the lists are approximately the same size and
have about N items each.

exercises 285

public static boolean containsAll(List<Integer> bigger,
 List<Integer> items)
{
 outer:
 for(int i = 0; i < bigger.size(); i++)
 {
 Integer itemToFind = bigger.get(i);

 for(int j = 0; j < items.size(); j++)
 if(items.get(j).equals(itemToFind)) // match
 continue outer;

 // If we get here, no entry in items matches bigger.get(i)
 return false;
 }
 return true;
}

a. What is the running time of containsAll when both lists are
ArrayLists?

b. What is the running time of containsAll when both lists are
LinkedLists?

c. Suppose it takes 10 seconds to run containsAll on two equally-valued
1000-item ArrayLists. How long will it take to run containsAll on
two equally-valued 2000-item ArrayLists?

d. Explain in one sentence how to make the algorithm efficient for all
types of lists.

6.14 containsSum, shown below, returns true if there exists two unique
numbers in the list that sum to K. Assume N is the size of the list.

public static boolean containsSum(List<Integer> lst, int K)
{
 for(int i = 0; i < lst.size(); i++)
 for(int j = i + 1; j < lst.size(); j++)
 if(lst.get(i) + lst.get(j) == K)
 return true;

 return false;
}

a. What is the running time of containsSum when the list is an ArrayList?
b. What is the running time of containsSum when the list is a

LinkedList?
c. Suppose it takes 2 seconds to run containsSum on a 1,000-item

ArrayList. How long will it take to run containsSum on a 3,000-item
ArrayList? You may assume containsSum returns false in both cases.

286 chapter 6 the collections api

6.15 Consider the following implementation of the clear method (which
empties any collection).

public abstract class AbstractCollection<AnyType>
 implements Collection<AnyType>
{
 public void clear()
 {
 Iterator<AnyType> itr = this.iterator();

 while(itr.hasNext())
 {
 itr.next();
 itr.remove();
 }
 }
 ...
}

a. Suppose LinkedList extends AbstractCollection and does not
override clear. What is the running time of clear?

b. Suppose ArrayList extends AbstractCollection and does not over-
ride clear. What is the running time of clear?

c. Suppose it takes 4 seconds to run clear on a 100,000-item ArrayList.
How long will it take to run clear on a 500,000-item ArrayList?

d. As clearly as possible, describe the behavior of this alternate
implementation of clear:

public void clear()
{
 for(AnyType item : this)
 this.remove(item);
}

6.16 Static method removeHalf removes the first half of a List (if there are
an odd number of items, then slightly less than one-half of the list is
removed). One possible implementation of removeHalf is shown
below:

public static void removeHalf(List<?> lst)
{
 int size = lst.size();

 for(int i = 0; i < size / 2; i++)
 lst.remove(0);
}

a. Why can't we use lst.size()/2 as the test in the for loop?

exercises 287

b. What is the Big-Oh running time if lst is an ArrayList.
c. What is the Big-Oh running time if lst is a LinkedList.
d. Suppose we have two computers, Machine A and Machine B.

Machine B is twice as fast as Machine A. How would the running
time for removeHalf on Machine B compare to Machine A if Machine
B is given an ArrayList that is twice as large as the ArrayList given
to Machine A?

e. Does the one line implementation:

public static void removeHalf(List<?> lst)
{
 lst.subList(0, lst.size() / 2).clear();
}

work, and if so, what is the Big-Oh running time for both an ArrayList
and a LinkedList?

6.17 Static method removeEveryOtherItem removes items in even positions (0,
2, 4, etc.) from a List. One possible implementation of removeEvery-
OtherItem is shown below:

public static void removeEveryOtherItem(List<?> lst)
{
 for(int i = 0; i < lst.size(); i++)
 lst.remove(i);
}

a. What is the Big-Oh running time if lst is an ArrayList.
b. What is the Big-Oh running time if lst is a LinkedList.
c. Suppose we have two computers, Machine A and Machine B.

Machine B is twice as fast as Machine A. Machine A takes 1 sec.
on a 100,000 item list. How large a list can Machine B process in
1 second?

d. Rewrite removeEveryOtherItem, using an iterator, so that it is effi-
cient for linked lists and does not use any extra space besides the
iterator.

6.18 Consider the following implementation of the removeAll method
(which removes all occurrences of any item in the collection passed
as a parameter from this collection).

288 chapter 6 the collections api

public abstract class AbstractCollection<AnyType>
 implements Collection<AnyType>
{
 public boolean removeAll (Collection<? extends AnyType> c)
 {
 Iterator<AnyType> itr = this.iterator();
 boolean wasChanged = false;

 while(itr.hasNext())
 {
 if(c.contains(itr.next()))
 {
 itr.remove();
 wasChanged = true;
 }
 }
 return wasChanged;
 }
 ...
}

a. Suppose LinkedList extends AbtractCollection and does not over-
ride removeAll. What is the running time of removeAll when c is a
List?

b. Suppose LinkedList extends AbstractCollection and does not over-
ride removeAll. What is the running time of removeAll when c is a
TreeSet?

c. Suppose ArrayList extends AbstractCollection and does not over-
ride removeAll. What is the running time of removeAll when c is a
List?

d. Suppose ArrayList extends AbstractCollection and does not over-
ride removeAll. What is the running time of removeAll when c is a
TreeSet?

e. What is the result of calling c.removeAll(c) using the implemen-
tation above?

f. Explain how to add code so that a call such as c.removeAll(c)
clears the collection.

6.19 Write a test program to see which of the following calls successfully
clears a java LinkedList.
c.removeAll(c);
c.removeAll(c.subList (0, c.size());

exercises 289

6.20 The RandomAccess interface contains no methods but is intended to serve
as a marker: a List class implements the interface only if its get and
set methods are very efficient. Accordingly, ArrayList implements the
RandomAccess interface. Implement static method removeEveryOtherItem,
described in Exercise 6.17. If list implements RandomAccess (use an
instanceof test), then use get and set to reposition items at the front half
of the list. Otherwise, use an iterator that is efficient for linked lists.

6.21 Write, in as few lines as possible, code that removes all entries in a
Map whose values are null.

6.22 The listIterator method set allows the caller to change the value of
the last item that was seen. Implement the toUpper method (that
makes the entire list upper case) shown below using a listIterator:

public static void toUpper(List<String> theList)

6.23 Method changeList replaces each String in the list by both its lower
case and upper case equivalents. Thus if the original list contained
[Hello,NewYork], then new list will contain [hello, HELLO, newyork, NEWYORK].
Use the listIterator add and remove methods to write an efficient
implementation for linked lists of method changeList:

public static void changeList(LinkedList<String> theList)

PROGRAMMING PROJECTS

6.24 A queue can be implemented by using an array and maintaining the
current size. The queue elements are stored in consecutive array posi-
tions, with the front item always in position 0. Note that this is not the
most efficient method. Do the following:
a. Describe the algorithms for getFront, enqueue, and dequeue.
b. What is the Big-Oh running time for each of getFront, enqueue,

and dequeue using these algorithms?
c. Write an implementation that uses these algorithms using the pro-

tocol in Figure 6.28.

6.25 The operations that are supported by the SortedSet can also be imple-
mented by using an array and maintaining the current size. The array
elements are stored in sorted order in consecutive array positions. Thus
contains can be implemented by a binary search. Do the following:
a. Describe the algorithms for add and remove.
b. What is the running time for these algorithms?

290 chapter 6 the collections api

c. Write an implementation that uses these algorithms, using the
protocol in Figure 6.1.

d. Write an implementation that uses these algorithms, using the
standard SortedSet protocol.

6.26 A priority queue can be implemented by using a sorted array (as in
Exercise 6.25). Do the following:
a. Describe the algorithms for findMin, deleteMin, and insert.
b. What is the Big-Oh running time for each of findMin, deleteMin,

and insert using these algorithms?
c. Write an implementation that uses these algorithms.

6.27 A priority queue can be implemented by storing items in an unsorted
array and inserting items in the next available location. Do the following:
a. Describe the algorithms for findMin, deleteMin, and insert.
b. What is the Big-Oh running time for each of findMin, deleteMin,

and insert using these algorithms?
c. Write an implementation that uses these algorithms.

6.28 By adding an extra data member to the priority queue class in
Exercise 6.27, you can implement both insert and findMin in con-
stant time. The extra data member maintains the array position
where the minimum is stored. However, deleteMin is still expen-
sive. Do the following:
a. Describe the algorithms for insert, findMin, and deleteMin.
b. What is the Big-Oh running time for deleteMin?
c. Write an implementation that uses these algorithms.

6.29 By maintaining the invariant that the elements in the priority queue
are sorted in nonincreasing order (that is, the largest item is first, the
smallest is last), you can implement both findMin and deleteMin in
constant time. However, insert is expensive. Do the following:
a. Describe the algorithms for insert, findMin, and deleteMin.
b. What is the Big-Oh running time for insert?
c. Write an implementation that uses these algorithms.

6.30 A double-ended priority queue allows access to both the minimum
and maximum elements. In other words, all of the following are sup-
ported: findMin, deleteMin, findMax, and deleteMax. Do the following:
a. Describe the algorithms for insert, findMin, deleteMin, findMax,

and deleteMax.
b. What is the Big-Oh running time for each of findMin, deleteMin,

findMax, deleteMax, and insert using these algorithms?
c. Write an implementation that uses these algorithms.

exercises 291

6.31 A median heap supports the following operations: insert, findKth,
and removeKth. The last two find and remove, respectively, the Kth
smallest element (where k is a parameter). The simplest implementa-
tion maintains the data in sorted order. Do the following:
a. Describe the algorithms that can be used to support median heap

operations.
b. What is the Big-Oh running time for each of the basic operations

using these algorithms?
c. Write an implementation that uses these algorithms.

6.32 A MultiSet is like a Set, but allows duplicates. Consider the following
interface for a MultiSet:

public interface MultiSet<AnyType>
{
 void add(AnyType x);
 boolean contains(AnyType x);
 int count(AnyType x);
 boolean removeOne(AnyType x);
 boolean removeAll(AnyType x);
 void toArray(AnyType [] arr);
}

There are many ways to implement the MultiSet interface. A TreeMultiSet
stores items in sorted order. The data representation can be a TreeMap, in
which the key is an item that is in the multiset, and the value represents
the number of times the item is stored. Implement the TreeMultiSet, and
make sure toString is provided.

6.33 Write a program that reads strings from input and outputs them sorted,
by length, shortest string first. If a subset of input strings has the same
length, your program should output them in alphabetical order.

6.34 Collections.fill takes a List and a value, and places value in all posi-
tions in the list. Implement fill.

6.35 Collections.reverse takes a List and reverses its contents. Implement
reverse.

6.36 Write a method that removes every other element in a List. Your rou-
tine should run in linear time and use constant extra space if the List
is a LinkedList.

6.37 Write a method that takes a Map<String,String> as a parameter and
returns a new Map<String,String> in which keys and values are
swapped. Throw an exception if there are duplicate values in the map
that is passed as a parameter.

292 chapter 6 the collections api

references

References for the theory that underlies these data structures are provided in
Part Four. The Collections API is described in most recent Java books (see the
references in Chapter 1).

chap te r 7

recursion

A method that is partially defined in terms of itself is called recursive.
Like many languages, Java supports recursive methods. Recursion, which is
the use of recursive methods, is a powerful programming tool that in many
cases can yield both short and efficient algorithms. In this chapter we explore
how recursion works, thus providing some insight into its variations, limita-
tions, and uses. We begin our discussion of recursion by examining the math-
ematical principle on which it is based: mathematical induction. Then we give
examples of simple recursive methods and prove that they generate correct
answers.

In this chapter, we show

n The four basic rules of recursion

n Numerical applications of recursion, leading to implementation of an
encryption algorithm

n A general technique called divide and conquer

n A general technique called dynamic programming, which is similar to
recursion but uses tables instead of recursive method calls

n A general technique called backtracking, which amounts to a careful
exhaustive search

294 chapter 7 recursion

7.1 what is recursion?
A recursive method
is a method that
directly or indi-
rectly makes a call
to itself.

A recursive method is a method that either directly or indirectly makes a call to
itself. This action may seem to be circular logic: How can a method F solve a
problem by calling itself? The key is that the method F calls itself on a differ-
ent, generally simpler, instance. The following are some examples.

n Files on a computer are generally stored in directories. Users may
create subdirectories that store more files and directories. Suppose
that we want to examine every file in a directory D, including all files
in all subdirectories (and subsubdirectories, and so on). We do so by
recursively examining every file in each subdirectory and then exam-
ining all files in the directory D (discussed in Chapter 18).

n Suppose that we have a large dictionary. Words in dictionaries are
defined in terms of other words. When we look up the meaning of a
word, we might not always understand the definition, so we might
have to look up words in the definition. Likewise, we might not
understand some of those, so we might have to continue this search
for a while. As the dictionary is finite, eventually either we come to a
point where we understand all the words in some definition (and thus
understand that definition and can retrace our path through the other
definitions), we find that the definitions are circular and that we are
stuck, or some word we need to understand is not defined in the dic-
tionary. Our recursive strategy to understand words is as follows: If
we know the meaning of a word, we are done; otherwise, we look the
word up in the dictionary. If we understand all the words in the defini-
tion, we are done. Otherwise, we figure out what the definition means
by recursively looking up the words that we do not know. This proce-
dure terminates if the dictionary is well defined, but it can loop indef-
initely if a word is circularly defined.

n Computer languages are frequently defined recursively. For instance,
an arithmetic expression is an object, or a parenthesized expression,
or two expressions added to each other, and so on.

Recursion is a powerful problem-solving tool. Many algorithms are most eas-
ily expressed in a recursive formulation. Furthermore, the most efficient solutions
to many problems are based on this natural recursive formulation. But you must
be careful not to create circular logic that would result in infinite loops.

In this chapter we discuss the general conditions that must be satisfied by
recursive algorithms and give several practical examples. It shows that some-
times algorithms that are naturally expressed recursively must be rewritten
without recursion.

7.2 background: proofs by mathematical induction 295

7.2 background: proofs by
mathematical induction

Induction is an
important proof
technique used to
establish theorems
that hold for posi-
tive integers.

In this section we discuss proof by mathematical induction. (Throughout this
chapter we omit the word mathematical when describing this technique.)
Induction is commonly used to establish theorems that hold for positive inte-
gers. We start by proving a simple theorem, Theorem 7.1. This particular the-
orem can be easily established by using other methods, but often a proof by
induction is the simplest mechanism.

Obviously, the theorem is true for N = 1 because both the left-hand and right-
hand sides evaluate to 1. Further checking shows that it is true for 2 ≤ N ≤ 10.
However, the fact that the theorem holds for all N that are easy to check by hand
does not imply that it holds for all N. Consider, for instance, numbers of the form

. The first five numbers (corresponding to are 3, 5, 17, 257,
and 65,537. These numbers are all prime. Indeed, at one time mathematicians
conjectured that all numbers of this form are prime. That is not the case. We can
easily check by computer that . In fact, no other
prime of the form is known.

A proof by induc-
tion shows that the
theorem is true for
some simple cases
and then shows
how to extend the
range of true cases
indefinitely.

A proof by induction is carried out in two steps. First, as we have just
done, we show that the theorem is true for the smallest cases. We then show
that if the theorem is true for the first few cases, it can be extended to include
the next case. For instance, we show that a theorem that is true for all

must be true for . Once we have shown how to extend
the range of true cases, we have shown that it is true for all cases. The reason
is that we can extend the range of true cases indefinitely. We use this tech-
nique to prove Theorem 7.1.

For any integer , the sum of the first N integers, given by
, equals .

Theorem 7.1N 1≥
i

i 1=
N∑ 1 2 … N+ + += N N 1+() 2⁄

22k 1+ 0 k 4)≤ ≤

225 1+ 641 6,700,417× ˙=
22k 1+

1 N k≤ ≤ 1 N k 1+≤ ≤

Clearly, the theorem is true for . Suppose that the theorem is true for all
. Then

. (7.1)

(continued on next page)

Proof of
Theorem 7.1

N 1=
1 N k≤ ≤

i
i 1=
k 1+∑ k 1+() i

i 1=
k∑+=

296 chapter 7 recursion

In a proof by induc-
tion, the basis is the
easy case that can
be shown by hand.

Why does this constitute a proof? First, the theorem is true for N = 1,
which is called the basis. We can view it as being the basis for our belief that
the theorem is true in general. In a proof by induction, the basis is the easy
case that can be shown by hand. Once we have established the basis, we use
inductive hypothesis to assume that the theorem is true for some arbitrary k and
that, under this assumption, if the theorem is true for k, then it is true for k + 1.
In our case, we know that the theorem is true for the basis N = 1, so we know
that it also is true for N = 2. Because it is true for N = 2, it must be true for N =
3. And as it is true for N = 3, it must be true for N = 4. Extending this logic, we
know that the theorem is true for every positive integer beginning with N = 1.

The inductive
hypothesis
assumes that the
theorem is true for
some arbitrary case
and that, under this
assumption, it is
true for the next
case.

Let us apply proof by induction to a second problem, which is not quite as
simple as the first. First, we examine the sequence of numbers , ,

, , , and so on. Each mem-
ber represents the sum of the first N squares, with alternating signs. The
sequence evaluates to 1, 3, 6, 10, and 15. Thus, in general, the sum seems to
be equal to the sum of the first N integers, which, as we know from Theorem
7.1, would be . Theorem 7.2 proves this result.

Proof of
Theorem 7.1

(continued from previous page)

By assumption, the theorem is true for k, so we may replace the sum on the right-
hand side of Equation 7.1 with , obtaining

(7.2)

Algebraic manipulation of the right-hand side of Equation 7.2 now yields

This result confirms the theorem for the case . Thus by induction, the theorem is
true for all integers .

k k 1+() 2⁄

i
i 1=
k 1+∑ k 1+() k k 1+() 2⁄()+=

i
i 1=
k 1+∑ k 1+() k 2+() 2⁄=

k 1+
N 1≥

12 22 12–
32 22– 12+ 42 32– 22 12–+ 52 42– 32 22– 12+ +

N N 1+() 2⁄

Theorem 7.2 The sum is .

Proof The proof is by induction.

Basis: Clearly, the theorem is true for .

(continued on next page)

1–()N i– i2
i N=
1∑ N2 N 1–()2 N 2–()2 …–+–= N N 1+() 2⁄

N 1=

7.3 basic recursion 297

7.3 basic recursion
A recursive method
is defined in terms
of a smaller
instance of itself.
There must be
some base case
that can be com-
puted without
recursion.

Proofs by induction show us that, if we know that a statement is true for a
smallest case and can show that one case implies the next case, then we know
the statement is true for all cases.

Sometimes mathematical functions are defined recursively. For instance,
let S(N) be the sum of the first N integers. Then S(1) = 1, and we can write
S(N) = S(N – 1) + N. Here we have defined the function S in terms of a smaller
instance of itself. The recursive definition of S(N) is virtually identical to the
closed form S(N) = N(N + 1) / 2, with the exception that the recursive defini-
tion is only defined for positive integers and is less directly computable.

(continued from previous page)

Inductive hypothesis: First we assume that the theorem is true for k:

.

Then we must show that it is true for , namely, that

We write

(7.3)

If we rewrite the right-hand side of Equation 7.3, we obtain

and a substitution yields

(7.4)

If we apply the inductive hypothesis, then we can replace the summation on the right-
hand side of Equation 7.4, obtaining

(7.5)

Simple algebraic manipulation of the right-hand side of Equation 7.5 then yields

which establishes the theorem for . Thus, by induction, the theorem is true
for all .

Proof of
Theorem 7.2

1–()k i– i2
i k=
1∑ k k 1+()

2
-------------------=

k 1+

1–()k 1 i–+ i2
i k 1+=
1∑ k 1+() k 2+()

2
----------------------------------=

1–()k 1 i–+ i2
i k 1+=
1∑ k 1+()2 k2 k 1–()2 …–+–=

1–()k 1 i–+ i2
i k 1+=
1∑ k 1+()2 (k2 k 1)2– …+()––=

1–()k 1 i–+ i2
i k 1+=
1∑ k 1+()2 1–()k i– i2

i k=
1∑()–=

1–()k 1 i–+ i2
i k 1+=
1∑ k 1+()2 k k 1+() 2⁄–=

1–()k 1 i–+ i2
i k 1+=
1∑ k 1+() k 2+() 2⁄=

N k 1+=
N 1≥

298 chapter 7 recursion

Sometimes writing a formula recursively is easier than writing it in closed
form. Figure 7.1 shows a straightforward implementation of the recursive function.
If N = 1, we have the basis, for which we know that S(1) = 1. We take care of this
case at lines 4 and 5. Otherwise, we follow the recursive definition S(N) = S(N – 1)
+ N precisely at line 7. It is hard to imagine that we could implement the recursive
method any more simply than this, so the natural question is, does it actually work?

The answer, except as noted shortly, is that this routine works. Let us
examine how the call to s(4) is evaluated. When the call to s(4) is made, the
test at line 4 fails. We then execute line 7, where we evaluate s(3). Like any
other method, this evaluation requires a call to s. In that call we get to line 4,
where the test fails; thus we go to line 7. At this point we call s(2). Again, we
call s, and now n is 2. The test at line 4 still fails, so we call s(1) at line 7. Now
we have n equal to 1, so s(1) returns 1. At this point s(2) can continue, adding
the return value from s(1) to 2; thus s(2) returns 3. Now s(3) continues, add-
ing the value of 3 returned by s(2) to n, which is 3; thus s(3) returns 6. This
result enables completion of the call to s(4), which finally returns 10.

Note that, although s seems to be calling itself, in reality it is calling a
clone of itself. That clone is simply another method with different parameters.
At any instant only one clone is active; the rest are pending. It is the com-
puter’s job, not yours, to handle all the bookkeeping. If there were too much
bookkeeping even for the computer, then it would be time to worry. We dis-
cuss these details later in the chapter.

The base case is an
instance that can
be solved without
recursion. Any
recursive call must
make progress
toward a base case.

A base case is an instance that can be solved without recursion. Any
recursive call must progress toward the base case in order to terminate eventu-
ally. We thus have our first two (of four) fundamental rules of recursion.

1. Base case: Always have at least one case that can be solved without
using recursion.

2. Make progress: Any recursive call must progress toward a base case.

Our recursive evaluation routine does have a few problems. One is the call
s(0), for which the method behaves poorly.1 This behavior is natural because

figure 7.1

Recursive evaluation
of the sum of the first
N integers

1 // Evaluate the sum of the first n integers
2 public static long s(int n)
3 {
4 if(n == 1)
5 return 1;
6 else
7 return s(n - 1) + n;
8 }

1. A call to s(-1) is made, and the program eventually crashes because there are too many
pending recursive calls. The recursive calls are not progressing toward a base case.

7.3 basic recursion 299

the recursive definition of S(N) does not allow for N < 1. We can fix this prob-
lem by extending the definition of S(N) to include N = 0. Because there are no
numbers to add in this case, a natural value for S(0) would be 0. This value
makes sense because the recursive definition can apply for S(1), as S(0) + 1 is 1.
To implement this change, we just replace 1 with 0 on lines 4 and 5. Negative
N also causes errors, but this problem can be fixed in a similar manner (and is
left for you to do as Exercise 7.2).

A second problem is that if the parameter n is large, but not so large
that the answer does not fit in an int, the program can crash or hang. Our
system, for instance, cannot handle N ≥ 8,882. The reason is that, as we
have shown, the implementation of recursion requires some bookkeeping
to keep track of the pending recursive calls, and for sufficiently long chains
of recursion, the computer simply runs out of memory. We explain this
condition in more detail later in the chapter. This routine also is somewhat
more time consuming than an equivalent loop because the bookkeeping
also uses some time.

Needless to say, this particular example does not demonstrate the best use
of recursion because the problem is so easy to solve without recursion. Most
of the good uses of recursion do not exhaust the computer’s memory and are
only slightly more time consuming than nonrecursive implementations. How-
ever, recursion almost always leads to more compact code.

7.3.1 printing numbers in any base

A good example of how recursion simplifies the coding of routines is num-
ber printing. Suppose that we want to print out a nonnegative number N in
decimal form but that we do not have a number output function available.
However, we can print out one digit at a time. Consider, for instance, how
we would print the number 1369. First we would need to print 1, then 3, then 6,
and then 9. The problem is that obtaining the first digit is a bit sloppy:
Given a number n, we need a loop to determine the first digit of n. In con-
trast is the last digit, which is immediately available as n%10 (which is n for
n less than 10).

Recursion provides a nifty solution. To print out 1369, we print out 136,
followed by the last digit, 9. As we have mentioned, printing out the last digit
using the % operator is easy. Printing out all but the number represented by
eliminating the last digit also is easy, because it is the same problem as print-
ing out n/10. Thus, it can be done by a recursive call.

The code shown in Figure 7.2 implements this printing routine. If n is
smaller than 10, line 6 is not executed and only the one digit n%10 is printed;
otherwise, all but the last digit are printed recursively and then the last digit is
printed.

300 chapter 7 recursion

Note how we have a base case (n is a one-digit integer), and because the
recursive problem has one less digit, all recursive calls progress toward the
base case. Thus we have satisfied the first two fundamental rules of recursion.

To make our printing routine useful, we can extend it to print in any base
between 2 and 16.2 This modification is shown in Figure 7.3.

We introduced a String to make the printing of a through f easier. Each digit
is now output by indexing to the DIGIT_TABLE string. The printInt routine is not
robust. If base is larger than 16, the index to DIGIT_TABLE could be out of bounds.
If base is 0, an arithmetic error results when division by 0 is attempted at line 8.

Failure to progress
means that the pro-
gram does not work.

The most interesting error occurs when base is 1. Then the recursive call at
line 8 fails to make progress because the two parameters to the recursive call are
identical to the original call. Thus the system makes recursive calls until it even-
tually runs out of bookkeeping space (and exits less than gracefully).

A driver routine
tests the validity of
the first call and
then calls the
recursive routine.

We can make the routine more robust by adding an explicit test for base.
The problem with this strategy is that the test would be executed during each
of the recursive calls to printInt, not just during the first call. Once base is
valid in the first call, to retest it is silly because it does not change in the
course of the recursion and thus must still be valid. One way to avoid this
inefficiency is to set up a driver routine. A driver routine tests the validity of
base and then calls the recursive routine, as shown in Figure 7.4. The use of
driver routines for recursive programs is a common technique.

2. Java’s toString method can take any base, but many languages do not have this built-in
capability.

figure 7.2

A recursive routine for
printing N in decimal
form

1 // Print n in base 10, recursively.
2 // Precondition: n >= 0.
3 public static void printDecimal(long n)
4 {
5 if(n >= 10)
6 printDecimal(n / 10);
7 System.out.print((char) ('0' + (n % 10)));
8 }

figure 7.3

A recursive routine for
printing N in any base

1 private static final String DIGIT_TABLE = "0123456789abcdef";
2
3 // Print n in any base, recursively.
4 // Precondition: n >= 0, base is valid.
5 public static void printInt(long n, int base)
6 {
7 if(n >= base)
8 printInt(n / base, base);
9 System.out.print(DIGIT_TABLE.charAt((int) (n % base)));

10 }

7.3 basic recursion 301

7.3.2 why it works

In Theorem 7.3 we show, somewhat rigorously, that the printDecimal algo-
rithm works. Our goal is to verify that the algorithm is correct, so the proof is
based on the assumption that we have made no syntax errors.

Recursive algo-
rithms can be
proven correct with
mathematical
induction.

The proof of Theorem 7.3 illustrates an important principle. When
designing a recursive algorithm, we can always assume that the recursive calls
work (if they progress toward the base case) because, when a proof is per-
formed, this assumption is used as the inductive hypothesis.

At first glance such an assumption seems strange. However, recall that
we always assume that method calls work, and thus the assumption that the
recursive call works is really no different. Like any method, a recursive rou-
tine needs to combine solutions from calls to other methods to obtain a solu-
tion. However, other methods may include easier instances of the original
method.

figure 7.4

A robust number-
printing program

1 public final class PrintInt
2 {
3 private static final String DIGIT_TABLE = "0123456789abcdef";
4 private static final int MAX_BASE = DIGIT_TABLE.length();
5
6 // Print n in any base, recursively
7 // Precondition: n >= 0, 2 <= base <= MAX_BASE
8 private static void printIntRec(long n, int base)
9 {

10 if(n >= base)
11 printIntRec(n / base, base);
12 System.out.print(DIGIT_TABLE.charAt((int) (n % base)));
13 }
14
15 // Driver routine
16 public static void printInt(long n, int base)
17 {
18 if(base <= 1 || base > MAX_BASE)
19 System.err.println("Cannot print in base " + base);
20 else
21 {
22 if(n < 0)
23 {
24 n = -n;
25 System.out.print("-");
26 }
27 printIntRec(n, base);
28 }
29 }
30 }

302 chapter 7 recursion

This observation leads us to the third fundamental rule of recursion.

3. “You gotta believe”: Always assume that the recursive call works.

The third funda-
mental rule of
recursion: Always
assume that the
recursive call
works. Use this
rule to design your
algorithms.

Rule 3 tells us that when we design a recursive method, we do not have to
attempt to trace the possibly long path of recursive calls. As we showed ear-
lier, this task can be daunting and tends to make the design and verification
more difficult. A good use of recursion makes such a trace almost impossible
to understand. Intuitively, we are letting the computer handle the bookkeeping
that, were we to do ourselves, would result in much longer code.

This principle is so important that we state it again: Always assume that
the recursive call works.

7.3.3 how it works

Recall that the implementation of recursion requires additional bookkeeping
on the part of the computer. Said another way, the implementation of any
method requires bookkeeping, and a recursive call is not particularly special
(except that it can overload the computer’s bookkeeping limitations by calling
itself too many times).

To see how a computer might handle recursion, or, more generally, any
sequence of method calls, consider how a person might handle a super busy
day. Imagine you are editing a file on your computer and the phone rings.
When the house phone rings you have to stop editing the file to deal with the
phone. You might want to write down on a piece of paper what you were
doing to the file, just in case the phone call takes a long time and you can’t
remember. Now imagine that while you are on the phone with your spouse,
the cell phone rings. You put your spouse on hold, leaving the phone on a

Theorem 7.3 The algorithm printDecimal shown in Figure 7.2 correctly prints n in base 10.

Proof Let k be the number of digits in n. The proof is by induction on k.

Basis: If , then no recursive call is made, and line 7 correctly outputs the one
digit of n.

Inductive Hypothesis: Assume that printDecimal works correctly for all digit
integers. We show that this assumption implies correctness for any digit inte-
ger n. Because , the if statement at line 5 is satisfied for a digit integer n.
By the inductive hypothesis, the recursive call at line 6 prints the first k digits of n.
Then line 7 prints the final digit. Thus if any k digit integer can be printed, then so can
a digit integer. By induction, we conclude that printDecimal works for all k, and
thus all n.

k 1=

k 1≥
k 1+

k 1≥ k 1+

k 1+

7.3 basic recursion 303

The bookkeeping in
a procedural or
object-oriented lan-
guage is done by
using a stack of
activation records.
Recursion is a
natural by-product.

counter. You better write down on a piece of paper that you put the home
phone down (and where you left the phone!). While you are on the cell phone,
someone knocks on the door. You want to tell your cell phone partner to wait
while you deal with the door. So you put the cell phone down, and you better
write down another note on a piece of paper that you put the cell phone down
(and also where you left the cell phone!). At this point, you have made three
notes to yourself, with the cell phone note being the most recent. When you
open the door, the burglar alarm goes off because you forgot to deactivate it.
So you have to tell the person at the door to wait. You make another note to
yourself, while you deactivate the burglar alarm. Although you are over-
whelmed, you can now finish handling all the tasks that were started in
reverse order: the person at the door, the cell phone conversation, the home
phone conversation, and the file edit. You just have to go back through your
stack of notes that you made to yourself. Note the important phrasing: you are
maintaining a “stack.”

Java, like other languages such as C++, implements methods by using an
internal stack of activation records. An activation record contains relevant
information about the method, including, for instance, the values of the
parameters and local variables. The actual contents of the activation record is
system dependent.

Method calling and
method return
sequences are
stack operations.

The stack of activation records is used because methods return in reverse
order of their invocation. Recall that stacks are great for reversing the order of
things. In the most popular scenario, the top of the stack stores the activation
record for the currently active method. When method G is called, an activa-
tion record for G is pushed onto the stack, which makes G the currently active
method. When a method returns, the stack is popped and the activation record
that is the new top of the stack contains the restored values.

As an example, Figure 7.5 shows a stack of activation records that occurs
in the course of evaluating s(4). At this point, we have the calls to main, s(4),
and s(3) pending and we are actively processing s(2).

The space overhead is the memory used to store an activation record for
each currently active method. Thus, in our earlier example where s(8883)
crashes, the system has room for roughly 8,883 activation records. (Note that
main generates an activation record itself.) The pushing and popping of the
internal stack also represents the overhead of executing a method call.

s (2)

s (3)

s (4)

main ()

TOP:
figure 7.5

A stack of activation
records

304 chapter 7 recursion

Recursion can
always be removed
by using a stack.
This is occasionally
required to save
space.

The close relation between recursion and stacks tells us that recursive
programs can always be implemented iteractively with an explicit stack. Pre-
sumably our stack will store items that are smaller than an activation record,
so we can also reasonably expect to use less space. The result is slightly faster
but longer code. Modern optimizing compilers have lessened the costs associ-
ated with recursion to such a degree that, for the purposes of speed, removing
recursion from an application that uses it well is rarely worthwhile.

7.3.4 too much recursion can be dangerous
Do not use recur-
sion as a substitute
for a simple loop.

In this text we give many examples of the power of recursion. However,
before we look at those examples, you should recognize that recursion is not
always appropriate. For instance, the use of recursion in Figure 7.1 is poor
because a loop would do just as well. A practical liability is that the overhead
of the recursive call takes time and limits the value of n for which the program
is correct. A good rule of thumb is that you should never use recursion as a
substitute for a simple loop.

The i th Fibonacci
number is the sum
of the two previous
Fibonacci numbers.

A much more serious problem is illustrated by an attempt to calculate the
Fibonacci numbers recursively. The Fibonacci numbers are
defined as follows: and ; the ith Fibonacci number equals the
sum of the (i th – 1) and (i th – 2) Fibonacci numbers; thus .
From this definition we can determine that the series of Fibonacci numbers
continues: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, .

Do not do redun-
dant work recur-
sively; the program
will be incredibly
inefficient.

The Fibonacci numbers have an incredible number of properties, which
seem always to crop up. In fact, one journal, The Fibonacci Quarterly, exists
solely for the purpose of publishing theorems involving the Fibonacci num-
bers. For instance, the sum of the squares of two consecutive Fibonacci num-
bers is another Fibonacci number. The sum of the first N Fibonacci numbers is
one less than (see Exercise 7.9 for some other interesting identities).

Because the Fibonacci numbers are recursively defined, writing a recur-
sive routine to determine FN seems natural. This recursive routine, shown in
Figure 7.6, works but has a serious problem. On our relatively fast machine, it
takes nearly a minute to compute F40, an absurd amount of time considering
that the basic calculation requires only 39 additions.

F0 F1 … Fi, , ,
F0 0= F1 1=

Fi Fi 1– Fi 2–+=

…

FN 2+

figure 7.6

A recursive routine for
Fibonacci numbers: A
bad idea

1 // Compute the Nth Fibonacci number.
2 // Bad algorithm.
3 public static long fib(int n)
4 {
5 if(n <= 1)
6 return n;
7 else
8 return fib(n - 1) + fib(n - 2);
9 }

7.3 basic recursion 305

The underlying problem is that this recursive routine performs redundant
calculations. To compute fib(n), we recursively compute fib(n-1). When the
recursive call returns, we compute fib(n-2) by using another recursive call.
But we have already computed fib(n-2) in the process of computing fib(n-1),
so the call to fib(n-2) is a wasted, redundant calculation. In effect, we make
two calls to fib(n-2) instead of only one.

Normally, making two method calls instead of one would only double
the running time of a program. However, here it is worse than that: Each call to
fib(n-1) and each call to fib(n-2) makes a call to fib(n-3); thus there are actu-
ally three calls to fib(n-3). In fact, it keeps getting worse: Each call to fib(n-2) or
fib(n-3) results in a call to fib(n-4), so there are five calls to fib(n-4). Thus we
get a compounding effect: Each recursive call does more and more redundant
work.

The recursive
routine fib is
exponential.

Let C(N) be the number of calls to fib made during the evaluation of fib(n).
Clearly C(0) = C(1) = 1 call. For N ≥ 2, we call fib(n), plus all the calls needed to
evaluate fib(n-1) and fib(n-2) recursively and independently. Thus

. By induction, we can easily verify that for
N ≥ 3 the solution to this recurrence is C(N) = FN + 2 + FN – 1– 1. Thus the number
of recursive calls is larger than the Fibonacci number we are trying to compute,
and it is exponential. For N = 40, F40 = 102,334,155, and the total number of
recursive calls is more than 300,000,000. No wonder the program takes forever.
The explosive growth of the number of recursive calls is illustrated in Figure 7.7.

The fourth funda-
mental rule of
recursion: Never
duplicate work by
solving the same
instance of a prob-
lem in separate
recursive calls.

This example illustrates the fourth and final basic rule of recursion.

4. Compound interest rule: Never duplicate work by solving the same
instance of a problem in separate recursive calls.

7.3.5 preview of trees

The tree is a fundamental structure in computer science. Almost all operating
systems store files in trees or tree-like structures. Trees are also used in com-
piler design, text processing, and searching algorithms. We discuss trees in
detail in Chapters 18 and 19. We also make use of trees in Sections 11.2.4
(expression trees) and 12.1 (Huffman codes).

One definition of the tree is recursive: Either a tree is empty or it consists
of a root and zero or more nonempty subtrees , each of whose

C N() C N 1–() C N 2–() 1+ +=

F1

F2

F0

F3

F1

F4

F1

F2

F0

F5

F1

F2

F0

F3

F1

figure 7.7

A trace of the
recursive calculation
of the Fibonacci
numbers

T1 T2 … Tk, , ,

306 chapter 7 recursion

A tree consists of a
set of nodes and a
set of directed
edges that connect
them.

Parents and chil-
dren are naturally
defined. A directed
edge connects the
parent to the child.

roots are connected by an edge from the root, as illustrated in Figure 7.8. In
certain instances (most notably, the binary trees discussed in Chapter 18), we
may allow some of the subtrees to be empty.

Nonrecursively, then, a tree consists of a set of nodes and a set of directed
edges that connect pairs of nodes. Throughout this text we consider only
rooted trees. A rooted tree has the following properties.

n One node is distinguished as the root.

n Every node c, except the root, is connected by an edge from exactly
one other node p. Node p is c’s parent, and c is one of p’s children.

n A unique path traverses from the root to each node. The number of
edges that must be followed is the path length.

Parents and children are naturally defined. A directed edge connects the parent
to the child.

A leaf has no
children.

Figure 7.9 illustrates a tree. The root node is A: A’s children are B, C, D,
and E. Because A is the root, it has no parent; all other nodes have parents. For
instance, B’s parent is A. A node that has no children is called a leaf. The
leaves in this tree are C, F, G, H, I, and K. The length of the path from A to K
is 3 (edges); the length of the path from A to A is 0 (edges).

7.3.6 additional examples

Perhaps the best way to understand recursion is to consider examples. In this
section, we look at four more examples of recursion. The first two are easily
implemented nonrecursively, but the last two show off some of the power of
recursion.

T1

root

T2 T3 Tk

. . .

figure 7.8

A tree viewed
recursively

7.3 basic recursion 307

factorials
Recall that N! is the product of the first N integers. Thus we can express N! as
N times . Combined with the base case 1! = 1, this information
immediately provides all that we need for a recursive implementation. It is
shown in Figure 7.10.

binary search
In Section 5.6.2 we described the binary search. Recall that in a binary search, we
perform a search in a sorted array A by examining the middle element. If we have a
match, we are done. Otherwise, if the item being searched for is smaller than the
middle element, we search in the subarray that is to the left of the middle element.
Otherwise, we search in the subarray that is to the right of the middle element. This
procedure presumes that the subarray is not empty; if it is, the item is not found.

This description translates directly into the recursive method shown in
Figure 7.11. The code illustrates a thematic technique in which the public
driver routine makes an initial call to a recursive routine and passes on the
return value. Here, the driver sets the low and high points of the subarray,
namely, 0 and a.length-1.

In the recursive method, the base case at lines 18 and 19 handles an empty
subarray. Otherwise, we follow the description given previously by making a

G

B

F H

D

A

C

I

E

J

K

figure 7.9

A tree

N 1–()!

figure 7.10

Recursive
implementation of the
factorial method

1 // Evaluate n!
2 public static long factorial(int n)
3 {
4 if(n <= 1) // base case
5 return 1;
6 else
7 return n * factorial(n - 1);
8 }

308 chapter 7 recursion

recursive call on the appropriate subarray (line 24 or 26) if a match has not
been detected. When a match is detected, the matching index is returned at
line 28.

Note that the running time, in terms of Big-Oh, is unchanged from the
nonrecursive implementation because we are performing the same work. In
practice, the running time would be expected to be slightly larger because of
the hidden costs of recursion.

drawing a ruler
Figure 7.12 shows the result of running a Java program that draws ruler mark-
ings. Here, we consider the problem of marking 1 inch. In the middle is the
longest mark. In Figure 7.12, to the left of the middle is a miniaturized ver-
sion of the ruler and to the right of the middle is a second miniaturized ver-
sion. This result suggests a recursive algorithm that first draws the middle line
and then draws the left and right halves.

figure 7.11

A binary search
routine, using
recursion

1 /**
2 * Performs the standard binary search using two comparisons
3 * per level. This is a driver that calls the recursive method.
4 * @return index where item is found or NOT_FOUND if not found.
5 */
6 public static <AnyType extends Comparable<? super AnyType>>
7 int binarySearch(AnyType [] a, AnyType x)
8 {
9 return binarySearch(a, x, 0, a.length -1);

10 }
11
12 /**
13 * Hidden recursive routine.
14 */
15 private static <AnyType extends Comparable<? super AnyType>>
16 int binarySearch(AnyType [] a, AnyType x, int low, int high)
17 {
18 if(low > high)
19 return NOT_FOUND;
20
21 int mid = (low + high) / 2;
22
23 if(a[mid].compareTo(x) < 0)
24 return binarySearch(a, x, mid + 1, high);
25 else if(a[mid].compareTo(x) > 0)
26 return binarySearch(a, x, low, mid - 1);
27 else
28 return mid;
29 }

7.3 basic recursion 309

You do not have to understand the details of drawing lines and shapes in
Java to understand this program. You simply need to know that a Graphics
object is something that gets drawn to. The drawRuler method in Figure 7.13 is
our recursive routine. It uses the drawLine method, which is part of the Graphics
class. The method drawLine draws a line from one (x, y) coordinate to another
(x, y) coordinate, where coordinates are offset from the top-left corner.

Our routine draws markings at level different heights; each recursive call
is one level deeper (in Figure 7.12, there are eight levels). It first disposes of
the base case at lines 4 and 5. Then the midpoint mark is drawn at line 9.
Finally, the two miniatures are drawn recursively at lines 11 and 12. In the
online code, we include extra code to slow down the drawing. In that way, we
can see the order in which the lines are drawn by the recursive algorithm.

fractal star
Shown in Figure 7.14(a) is a seemingly complex pattern called a fractal star,
which we can easily draw by using recursion. The entire canvas is initially
gray (not shown); the pattern is formed by drawing white squares onto the
gray background. The last square drawn is over the center. Figure 7.14(b)
shows the drawing immediately before the last square is added. Thus prior to
the last square being drawn, four miniature versions have been drawn, one in
each of the four quadrants. This pattern provides the information needed to
derive the recursive algorithm.

figure 7.12

A recursively drawn
ruler

figure 7.13

A recursive method
for drawing a ruler

1 // Java code to draw Figure 7.12.
2 void drawRuler(Graphics g, int left, int right, int level)
3 {
4 if(level < 1)
5 return;
6
7 int mid = (left + right) / 2;
8
9 g.drawLine(mid, 80, mid, 80 - level * 5);

10
11 drawRuler(g, left, mid - 1, level - 1);
12 drawRuler(g, mid + 1, right, level - 1);
13 }

310 chapter 7 recursion

As with the previous example, the method drawFractal uses a Java library
routine. In this case, fillRect draws a rectangle; its upper left-hand corner
and dimensions must be specified. The code is shown in Figure 7.15. The

(a) (b)

figure 7.15

Code for drawing the
fractal star outline
shown in Figure 7.14

1 // Draw picture in Figure 7.14.
2 void drawFractal(Graphics g, int xCenter,
3 int yCenter, int boundingDim)
4 {
5 int side = boundingDim / 2;
6
7 if(side < 1)
8 return;
9

10 // Compute corners.
11 int left = xCenter - side / 2;
12 int top = yCenter - side / 2;
13 int right = xCenter + side / 2;
14 int bottom = yCenter + side / 2;
15
16 // Recursively draw four quadrants.
17 drawFractal(g, left, top, boundingDim / 2);
18 drawFractal(g, left, bottom, boundingDim / 2);
19 drawFractal(g, right, top, boundingDim / 2);
20 drawFractal(g, right, bottom, boundingDim / 2);
21
22 // Draw central square, overlapping quadrants.
23 g.fillRect(left, top, right - left, bottom - top);
24 }

figure 7.14

(a) A fractal star outline drawn by the code shown in Figure 7.15; (b) The same star immediately before the last square is added.

7.4 numerical applications 311

parameters to drawFractal include the center of the fractal and the overall
dimension. From this, we can compute, at line 5, the size of the large central
square. After handling the base case at lines 7 and 8, we compute the bound-
aries of the central rectangle. We can then draw the four miniature fractals at
lines 17 to 20. Finally, we draw the central square at line 23. Note that this
square must be drawn after the recursive calls. Otherwise, we obtain a differ-
ent picture (in Exercise 7.35, you are asked to describe the difference).

7.4 numerical applications
In this section we look at three problems drawn primarily from number theory.
Number theory used to be considered an interesting but useless branch of math-
ematics. However, in the last 30 years, an important application for number the-
ory has emerged: data security. We begin the discussion with a small amount of
mathematical background and then show recursive algorithms to solve three
problems. We can combine these routines in conjunction with a fourth algo-
rithm that is more complex (described in Chapter 9), to implement an algorithm
that can be used to encode and decode messages. To date, nobody has been able
to show that the encryption scheme described here is not secure.

Here are the four problems we examine.

1. Modular exponentiation: Compute XN(mod P).

2. Greatest common divisor: Compute gcd(A, B).

3. Multiplicative inverse: Solve AX ≡ 1(mod P) for X.

4. Primality testing: Determine whether N is prime (deferred to Chapter 9).

The integers we expect to deal with are all large, requiring at least 100
digits each. Therefore we must have a way to represent large integers, along
with a complete set of algorithms for the basic operations of addition, subtrac-
tion, multiplication, division, and so on. Java provides the BigInteger class for
this purpose. Implementing it efficiently is no trivial matter, and in fact there
is extensive literature on the subject.

We use long numbers to simplify our code presentation. The algorithms
described here work with large objects but still execute in a reasonable
amount of time.

7.4.1 modular arithmetic

The problems in this section, as well as the implementation of the hash table
data structure (Chapter 20), require the use of the Java % operator. The % oper-
ator, denoted as operator%, computes the remainder of two integral types. For
example, 13%10 evaluates to 3, as does 3%10, and 23%10. When we compute the

312 chapter 7 recursion

remainder of a division by 10, the possible results range from 0 to 9.3 This
range makes operator% useful for generating small integers.

If two numbers A and B give the same remainder when divided by N, we
say that they are congruent modulo N, written as A ≡ B (mod N). In this case,
it must be true that N divides A – B. Furthermore, the converse is true: If N
divides A – B, then A ≡ B (mod N). Because there are only N possible remain-
ders—0, 1, ..., N – 1— we say that the integers are divided into congruence
classes modulo N. In other words, every integer can be placed in one of N
classes, and those in the same class are congruent to each other, modulo N.
We use three important theorems in our algorithms (we leave the proof of
these facts as Exercise 7.10).

1. If A ≡ B (mod N), then for any C, A + C ≡ B + C(mod N).

2. If A ≡ B (mod N), then for any D, AD ≡ BD(mod N).

3. If A ≡ B (mod N), then for any positive P, AP ≡ BP(mod N).

These theorems allow certain calculations to be done with less effort. For
instance, suppose that we want to know the last digit in 33335555. Because
this number has more than 15,000 digits, it is expensive to compute the
answer directly. However, what we want is to determine 33335555(mod 10).
As 3333 ≡ 3(mod 10), we need only to compute 35555(mod 10). As 34 = 81,
we know that 34 ≡ 1(mod 10), and raising both sides to the power of 1388 tells
us that 35552 ≡ 1(mod 10). If we multiply both sides by 33 = 27, we obtain
35555 ≡ 27 ≡ 7(mod 10), thereby completing the calculation.

7.4.2 modular exponentiation

In this section we show how to compute XN(mod P) efficiently. We can do so
by initializing result to 1 and then repeatedly multiplying result by X, apply-
ing the % operator after every multiplication. Using operator% in this way
instead of just the last multiplication makes each multiplication easier
because it keeps result smaller.

After N multiplications, result is the answer that we are looking for.
However, doing N multiplications is impractical if N is a 100-digit BigInteger.
In fact, if N is 1,000,000,000, it is impractical on all but the fastest machines.

A faster algorithm is based on the following observation. That is, if N is
even, then

3. If n is negative, n%10 ranges from 0 to –9.

XN X X⋅() N 2⁄=

7.4 numerical applications 313

and if N is odd, then

(Recall that is the largest integer that is smaller than or equal to X.) As before,
to perform modular exponentiation, we apply a % after every multiplication.

The recursive algorithm shown in Figure 7.16 represents a direct imple-
mentation of this strategy. Lines 8 and 9 handle the base case: X0 is 1, by def-
inition.4 At line 11, we make a recursive call based on the identity stated in the
preceding paragraph. If N is even, this call computes the desired answer; if N
is odd, we need to multiply by an extra X (and use operator%).

Exponentiation can
be done in logarith-
mic number of
multiplications.

This algorithm is faster than the simple algorithm proposed earlier. If
M(N) is the number of multiplications used by power, we have M(N) ≤
M(⎣N / 2⎦) + 2. The reason is that if N is even, we perform one multiplica-
tion, plus those done recursively, and that if N is odd, we perform two mul-
tiplications, plus those done recursively. Because M(0) = 0, we can show
that M(N) < 2 log N. The logarithmic factor can be obtained without direct
calculation by application of the halving principle (see Section 5.5), which
tells us the number of recursive invocations of power. Moreover, an average
value of M(N) is (3/2)log N, as in each recursive step N is equally likely to
be even or odd. If N is a 100-digit number, in the worst case only about 665
multiplications (and typically only 500 on average) are needed.

4. We define 00 = 1 for the purposes of this algorithm. We also assume that N is nonnegative
and P is positive.

XN = X XN 1–⋅ X X X⋅() N 2⁄⋅=

X

figure 7.16

Modular
exponentiation routine

1 /**
2 * Return x^n (mod p)
3 * Assumes x, n >= 0, p > 0, x < p, 0^0 = 1
4 * Overflow may occur if p > 31 bits.
5 */
6 public static long power(long x, long n, long p)
7 {
8 if(n == 0)
9 return 1;

10
11 long tmp = power((x * x) % p, n / 2, p);
12
13 if(n % 2 != 0)
14 tmp = (tmp * x) % p;
15
16 return tmp;
17 }

314 chapter 7 recursion

7.4.3 greatest common divisor
and multiplicative inverses

The greatest com-
mon divisor (gcd) of
two integers is the
largest integer that
divides both of
them.

Given two nonnegative integers A and B, their greatest common divisor,
gcd(A, B), is the largest integer D that divides both A and B. For instance,
gcd(70, 25) is 5. In other words, the greatest common divisor (gcd) is the larg-
est integer that divides two given integers.

We can easily verify that gcd(A, B) ≡ gcd(A – B, B). If D divides both A
and B, it must also divide A – B; and if D divides both A – B and B, then it
must also divide A.

This observation leads to a simple algorithm in which we repeatedly sub-
tract B from A, transforming the problem into a smaller one. Eventually A
becomes less than B, and then we can switch roles for A and B and continue
from there. At some point B will become 0. Then we know that gcd(A, 0) ≡ A,
and as each transformation preserves the gcd of the original A and B, we have
our answer. This algorithm is called Euclid’s algorithm and was first
described more than 2,000 years ago. Although correct, it is unusable for large
numbers because a huge number of subtractions are likely to be required.

A computationally efficient modification is that the repeated subtractions
of B from A until A is smaller than B is equivalent to the conversion of A to
precisely A mod B. Thus gcd(A, B) ≡ gcd(B, A mod B). This recursive defini-
tion, along with the base case in which B = 0, is used directly to obtain the
routine shown in Figure 7.17. To visualize how it works, note that in the pre-
vious example we used the following sequence of recursive calls to deduce
that the gcd of 70 and 25 is 5: gcd(70, 25) ⇒ gcd(25, 20) ⇒ gcd(20, 5) ⇒
gcd(5, 0) ⇒ 5.

The number of recursive calls used is proportional to the logarithm of A,
which is the same order of magnitude as the other routines that we have pre-
sented in this section. The reason is that, in two recursive calls, the problem is
reduced at least in half. The proof of this is left for you to do as Exercise 7.11.

figure 7.17

Computation of
greatest common
divisor

1 /**
2 * Return the greatest common divisor.
3 */
4 public static long gcd(long a, long b)
5 {
6 if(b == 0)
7 return a;
8 else
9 return gcd(b, a % b);

10 }

7.4 numerical applications 315

The greatest com-
mon divisor and
multiplicative
inverse can also be
calculated in loga-
rithmic time by
using a variant of
Euclid’s algorithm.

The gcd algorithm is used implicitly to solve a similar mathematical prob-
lem. The solution 1 ≤ X < N to the equation AX ≡ 1(mod N) is called the multi-
plicative inverse of A, mod N. Also assume that 1 ≤ A < N. For example, the
inverse of 3, mod 13 is 9; that is, 3 ⋅ 9 mod 13 yields 1.

The ability to compute multiplicative inverses is important because equa-
tions such as 3i ≡ 7(mod 13) are easily solved if we know the multiplicative
inverse. These equations arise in many applications, including the encryption
algorithm discussed at the end of this section. In this example, if we multiply
by the inverse of 3 (namely 9), we obtain i ≡ 63(mod 13), so i = 11 is a solu-
tion. If

AX ≡ 1(mod N), then AX + NY = 1(mod N)

is true for any Y. For some Y, the left-hand side must be exactly 1. Thus the
equation

AX + NY = 1

is solvable if and only if A has a multiplicative inverse.
Given A and B, we show how to find X and Y satisfying

AX + BY = 1

We assume that 0 ≤ ⎥ B⎪ < ⎥ A⎪ and then extend the gcd algorithm to compute
X and Y.

First, we consider the base case, B ≡ 0. In this case we have to solve AX = 1,
which implies that both A and X are 1. In fact, if A is not 1, there is no multiplica-
tive inverse. Hence A has a multiplicative inverse modulo N only if gcd(A, N) = 1.

Otherwise, B is not zero. Recall that gcd(A, B) ≡ gcd(B, A mod B). So we
let A = BQ + R. Here Q is the quotient and R is the remainder, and thus the
recursive call is gcd(B, R). Suppose that we can recursively solve

Since , we have

which means that

BX1 RY1+ 1=

R A BQ–=

BX1 A BQ–()Y1+ 1=

AY1 B X1 QY1–()+ 1=

316 chapter 7 recursion

Thus and is a solution to . We
code this observation directly as fullGcd in Figure 7.18. The method inverse just
calls fullGcd, where X and Y are static class variables. The only detail left is that
the value given for X may be negative. If it is, line 35 of inverse will make it pos-
itive. We leave a proof of that fact for you to do as Exercise 7.14. The proof can
be done by induction.

X Y1= Y X1 A B⁄ Y1–= AX BY+ 1=

figure 7.18

A routine for
determining
multiplicative inverse

1 // Internal variables for fullGcd
2 private static long x;
3 private static long y;
4
5 /**
6 * Works back through Euclid’s algorithm to find
7 * x and y such that if gcd(a,b) = 1,
8 * ax + by = 1.
9 */

10 private static void fullGcd(long a, long b)
11 {
12 long x1, y1;
13
14 if(b == 0)
15 {
16 x = 1;
17 y = 0;
18 }
19 else
20 {
21 fullGcd(b, a % b);
22 x1 = x; y1 = y;
23 x = y1;
24 y = x1 - (a / b) * y1;
25 }
26 }
27
28 /**
29 * Solve ax == 1 (mod n), assuming gcd(a, n) = 1.
30 * @return x.
31 */
32 public static long inverse(long a, long n)
33 {
34 fullGcd(a, n);
35 return x > 0 ? x : x + n;
36 }

7.4 numerical applications 317

7.4.4 the rsa cryptosystem
Number theory is
used in cryptogra-
phy because fac-
toring appears to
be a much harder
process than
multiplication.

For centuries, number theory was thought to be a completely impractical
branch of mathematics. Recently, however, it has emerged as an important
field because of its applicability to cryptography.

The problem we consider has two parts. Suppose that Alice wants to send
a message to Bob but that she is worried that the transmission may be com-
promised. For instance, if the transmission is over a phone line and the phone
is tapped, somebody else may be reading the message. We assume that, even
if there is eavesdropping on the phone line, there is no maliciousness (i.e.,
damage to the signal)—Bob gets whatever Alice sends.

Encryption is used
to transmit mes-
sages so that they
cannot be read by
other parties.

A solution to this problem is to use encryption, an encoding scheme to
transmit messages that cannot be read by other parties. Encryption consists of
two parts. First, Alice encrypts the message and sends the result, which is no
longer plainly readable. When Bob receives Alice’s transmission, he decrypts
it to obtain the original. The security of the algorithm is based on the fact that
nobody else besides Bob should be able to perform the decryption, including
Alice (if she did not save the original message).

The RSA cryptosys-
tem is a popular
encryption method.

Thus Bob must provide Alice with a method of encryption that only he
knows how to reverse. This problem is extremely challenging. Many proposed
algorithms can be compromised by subtle code-breaking techniques. One
method, described here, is the RSA cryptosystem (named after the initials of its
authors), an elegant implementation of an encryption strategy.

Here we give only a high-level overview of encryption, showing how the
methods written in this section interact in a practical way. The references con-
tain pointers to more detailed descriptions, as well as proofs of the key prop-
erties of the algorithm.

First, however, note that a message consists of a sequence of characters
and that each character is just a sequence of bits. Thus a message is a
sequence of bits. If we break the message into blocks of B bits, we can inter-
pret the message as a series of very large numbers. Thus the basic problem is
reduced to encrypting a large number and then decrypting the result.

computation of the rsa constants
The RSA algorithm begins by having the receiver determine some constants.
First, two large primes p and q are randomly chosen. Typically, these would be at
least 100 or so digits each. For the purposes of this example, suppose that p = 127
and q = 211. Note that Bob is the receiver and thus is performing these computa-
tions. Note, also, that primes are plentiful. Bob can thus keep trying random num-
bers until two of them pass the primality test (discussed in Chapter 9).

318 chapter 7 recursion

Next, Bob computes and , which for this
example gives N = 26,797 and = 26,460. Bob continues by choosing any

such that gcd(e, N ′) = 1 . In mathematical terms, he chooses any e that
is relatively prime to N ′. Bob can keep trying different values of e by using
the routine shown in Figure 7.17 until he finds one that satisfies the property.
Any prime e would work, so finding e is at least as easy as finding a prime
number. In this case, e = 13,379 is one of many valid choices. Next, d, the
multiplicative inverse of e, mod N ′ is computed by using the routine shown in
Figure 7.18. In this example, d = 11,099.

Once Bob has computed all these constants, he does the following. First,
he destroys p, q, and N ′. The security of the system is compromised if any one
of these values is discovered. Bob then tells anybody who wants to send him
an encrypted message the values of e and N, but he keeps d secret.

encryption and decryption algorithms
To encrypt an integer M, the sender computes Me(mod N) and sends it. In our case,
if M = 10,237, the value sent is 8,422. When an encrypted integer R is received, all
Bob has to do is compute Rd(mod N). For R = 8,422, he gets back the original M =
10,237 (which is not accidental). Both encryption and decryption can thus be carried
out by using the modular exponentiation routine given in Figure 7.16.

The algorithm works because the choices of e, d, and N guarantee (via a
number theory proof beyond the scope of this text) that Med = M(mod N), so
long as M and N share no common factors. As the only factors of N are two
100-digit primes, it is virtually impossible for that to occur.5 Thus decryption
of the encrypted text gets the original back.

What makes the scheme seem secure is that knowledge of d is apparently
required in order to decode. Now N and e uniquely determine d. For instance,
if we factor N, we get p and q and can then reconstruct d. The caveat is that
factoring is apparently very hard to do for large numbers. Thus the security of
the RSA system is based on the belief that factoring large numbers is intrinsi-
cally very difficult. So far it has held up well.

In public key cryp-
tography, each par-
ticipant publishes
the code others
can use to send
encrypted mes-
sages but keeps
the decrypting code
secret.

This general scheme is known as public key cryptography, by which anybody
who wants to receive messages publishes encryption information for anybody
else to use but keeps the decryption code secret. In the RSA system, e and N
would be computed once by each person and listed in a publicly readable place.

The RSA algorithm is widely used to implement secure e-mail, as well as
secure Internet transactions. When you access a Web page via the https proto-
col, a secure transaction is being performed via cryptography. The method

5. You are more likely to win a typical state lottery 13 weeks in a row. However, if M and N
have a common factor, the system is compromised because the gcd will be a factor of N.

N pq= N′ p 1–() q 1–()=
N′

e 1>

7.5 divide-and-conquer algorithms 319

actually employed is more complex than described here. One problem is that
the RSA algorithm is somewhat slow for sending large messages.

In practice, RSA is
used to encrypt the
key used by a
single-key encryp-
tion algorithm, such
as DES.

A faster method is called DES. Unlike the RSA algorithm, DES is a single-
key algorithm, meaning that the same key serves both to encode and decode. It
is like the typical lock on your house door. The problem with single-key algo-
rithms is that both parties need to share the single key. How does one party
ensure that the other party has the single key? That problem can be solved
by using the RSA algorithm. A typical solution is that, say, Alice will randomly
generate a single key for DES encryption. She then encrypts her message by
using DES, which is much faster than using RSA. She transmits the encrypted
message to Bob. For Bob to decode the encrypted message, he needs to get the
DES key that Alice used. A DES key is relatively short, so Alice can use RSA to
encrypt the DES key and then send it in a second transmission to Bob. Bob next
decrypts Alice’s second transmission, thus obtaining the DES key, at which
point he can decode the original message. These types of protocols, with
enhancements, form the basis of most practical encryption implementations.

7.5 divide-and-conquer algorithms
A divide-and-
conquer algorithm
is a recursive algo-
rithm that is gener-
ally very efficient.

An important problem-solving technique that makes use of recursion is
divide and conquer. A divide-and-conquer algorithm is an efficient recursive
algorithm that consist of two parts:

n Divide, in which smaller problems are solved recursively (except, of
course, base cases)

In divide and con-
quer, the recursion
is the divide, and
the overhead is the
conquer.

n Conquer, in which the solution to the original problem is then formed
from the solutions to the subproblems

Traditionally, routines in which the algorithm contains at least two recur-
sive calls are called divide-and-conquer algorithms, whereas routines whose
text contains only one recursive call are not. Consequently, the recursive rou-
tines presented so far in this chapter are not divide-and-conquer algorithms.
Also, the subproblems usually must be disjoint (i.e., essentially nonoverlap-
ping), so as to avoid the excessive costs seen in the sample recursive computa-
tion of the Fibonacci numbers.

In this section we give an example of the divide-and-conquer paradigm.
First we show how to use recursion to solve the maximum subsequence
sum problem. Then we provide an analysis to show that the running time
is O(N log N). Although we have already used a linear algorithm for this

320 chapter 7 recursion

problem, the solution here is thematic of others in a wide range of applica-
tions, including the sorting algorithms, such as mergesort and quicksort,
discussed in Chapter 8. Consequently, learning the technique is important.
Finally, we show the general form for the running time of a broad class of
divide-and-conquer algorithms.

7.5.1 the maximum contiguous
subsequence sum problem

In Section 5.3 we discussed the problem of finding, in a sequence of numbers,
a contiguous subsequence of maximum sum. For convenience, we restate the
problem here.

maximum contiguous subsequence sum problem
Given (possibly negative) integers , find (and identify the sequence
corresponding to) the maximum value of . The maximum contiguous sub-
sequence sum is zero if all the integers are negative.

The maximum con-
tiguous subse-
quence sum prob-
lem can be solved
with a divide-and-
conquer algorithm.

We presented three algorithms of various complexity. One was a cubic
algorithm based on an exhaustive search: We calculated the sum of each pos-
sible subsequence and selected the maximum. We described a quadratic
improvement that takes advantage of the fact that each new subsequence can
be computed in constant time from a previous subsequence. Because we have
O(N2) subsequences, this bound is the best that can be achieved with an
approach that directly examines all subsequences. We also gave a linear-time
algorithm that works by examining only a few subsequences. However, its
correctness is not obvious.

Let us consider a divide-and-conquer algorithm. Suppose that the sample
input is {4, –3, 5, –2, –1, 2, 6, –2}. We divide this input into two halves, as
shown in Figure 7.19. Then the maximum contiguous subsequence sum can
occur in one of three ways.

n Case 1: It resides entirely in the first half.

n Case 2: It resides entirely in the second half.

n Case 3: It begins in the first half but ends in the second half.

We show how to find the maximums for each of these three cases more effi-
ciently than by using an exhaustive search.

We begin by looking at case 3. We want to avoid the nested loop that
results from considering all N / 2 starting points and N / 2 ending points inde-
pendently. We can do so by replacing two nested loops by two consecutive
loops. The consecutive loops, each of size N / 2, combine to require only linear

A1 A2 … AN, , ,
Akk i=

j∑

7.5 divide-and-conquer algorithms 321

work. We can make this substitution because any contiguous subsequence that
begins in the first half and ends in the second half must include both the last
element of the first half and the first element of the second half.

Figure 7.19 shows that for each element in the first half, we can calculate
the contiguous subsequence sum that ends at the rightmost item. We do so
with a right-to-left scan, starting from the border between the two halves.
Similarly, we can calculate the contiguous subsequence sum for all sequences
that begin with the first element in the second half. We can then combine these
two subsequences to form the maximum contiguous subsequence that spans
the dividing border. In this example, the resulting sequence spans from the
first element in the first half to the next-to-last element in the second half. The
total sum is the sum of the two subsequences, or 4 + 7 = 11.

This analysis shows that case 3 can be solved in linear time. But what
about cases 1 and 2? Because there are N / 2 elements in each half, an
exhaustive search applied to each half still requires quadratic time per half;
specifically, all we have done is eliminate roughly half of the work, and half
of quadratic is still quadratic. In cases 1 and 2 we can apply the same strat-
egy—that of dividing into more halves. We can keep dividing those quarters
further and further until splitting is impossible. This approach is succinctly
stated as follows: Solve cases 1 and 2 recursively. As we demonstrate later,
doing so lowers the running time below quadratic because the savings com-
pound throughout the algorithm. The following is a summary of the main por-
tion of the algorithm:

1. Recursively compute the maximum contiguous subsequence sum that
resides entirely in the first half

2. Recursively compute the maximum contiguous subsequence sum that
resides entirely in the second half

3. Compute, via two consecutive loops, the maximum contiguous subse-
quence sum that begins in the first half but ends in the second half

4. Choose the largest of the three sums.

First Half Second Half

Running sum from the center (*denotes
maximum for each half).

4 –3 5 –2 –1 2 6 –2 Values

 Running sums 4* 0 3 –2 –1 1 7* 5

figure 7.19

Dividing the maximum
contiguous
subsequence problem
into halves

322 chapter 7 recursion

A recursive algorithm requires specifying a base case. When the size of
the problem reaches one element, we do not use recursion. The resulting Java
method is coded in Figure 7.20.

figure 7.20

A divide-and-conquer
algorithm for the
maximum contiguous
subsequence sum
problem

1 /**
2 * Recursive maximum contiguous subsequence sum algorithm.
3 * Finds maximum sum in subarray spanning a[left..right].
4 * Does not attempt to maintain actual best sequence.
5 */
6 private static int maxSumRec(int [] a, int left, int right)
7 {
8 int maxLeftBorderSum = 0, maxRightBorderSum = 0;
9 int leftBorderSum = 0, rightBorderSum = 0;

10 int center = (left + right) / 2;
11
12 if(left == right) // Base case
13 return a[left] > 0 ? a[left] : 0;
14
15 int maxLeftSum = maxSumRec(a, left, center);
16 int maxRightSum = maxSumRec(a, center + 1, right);
17
18 for(int i = center; i >= left; i--)
19 {
20 leftBorderSum += a[i];
21 if(leftBorderSum > maxLeftBorderSum)
22 maxLeftBorderSum = leftBorderSum;
23 }
24
25 for(int i = center + 1; i <= right; i++)
26 {
27 rightBorderSum += a[i];
28 if(rightBorderSum > maxRightBorderSum)
29 maxRightBorderSum = rightBorderSum;
30 }
31
32 return max3(maxLeftSum, maxRightSum,
33 maxLeftBorderSum + maxRightBorderSum);
34 }
35
36 /**
37 * Driver for divide-and-conquer maximum contiguous
38 * subsequence sum algorithm.
39 */
40 public static int maxSubsequenceSum(int [] a)
41 {
42 return a.length > 0 ? maxSumRec(a, 0, a.length - 1) : 0;
43 }

7.5 divide-and-conquer algorithms 323

The general form for the recursive call is to pass the input array along
with the left and right borders, which delimit the portion of the array being
operated on. A one-line driver routine sets this action up by passing the bor-
ders 0 and N – 1 along with the array.

Lines 12 and 13 handle the base case. If left==right, there is one element,
and it is the maximum contiguous subsequence if the element is nonnegative
(otherwise, the empty sequence with sum 0 is maximum). Lines 15 and 16
perform the two recursive calls. These calls are always on a smaller problem
than the original; thus we progress toward the base case. Lines 18 to 23 and
then 25 to 30 calculate the maximum sums that touch the center border. The
sum of these two values is the maximum sum that spans both halves. The rou-
tine max3 (not shown) returns the largest of the three possibilities.

7.5.2 analysis of a basic
divide-and-conquer recurrence

Intuitive analysis of
the maximum
contiguous subse-
quence sum
divide-and-conquer
algorithm: We
spend O(N) per
level.

The recursive maximum contiguous subsequence sum algorithm works by
performing linear work to compute a sum that spans the center border and
then performing two recursive calls. These calls collectively compute a sum
that spans the center border, do further recursive calls, and so on. The total
work performed by the algorithm is then proportional to the scanning done
over all the recursive calls.

Figure 7.21 graphically illustrates how the algorithm works for N = 8 ele-
ments. Each rectangle represents a call to maxSumRec, and the length of the rect-
angle is proportional to the size of the subarray (and hence the cost of the
scanning of the subarray) being operated on by the invocation. The initial call
is shown on the first line: The size of the subarray is N, which represents the
cost of the scanning for the third case. The initial call then makes two recur-
sive calls, yielding two subarrays of size N / 2. The cost of each scan in case 3
is half the original cost, but as there are two such recursive calls, the com-
bined cost of these recursive calls is also N. Each of those two recursive
instances themselves make two recursive calls, yielding four subproblems that
are a quarter of the original size. Thus the total of all case 3 costs is also N.

Eventually, we reach the base case. Each base case has size 1, and there
are N of them. Of course, there are no case 3 costs in this instance, but we
charge 1 unit for performing the check that determines whether the sole ele-
ment is positive or negative. The total cost then, as illustrated in Figure 7.21,
is N per level of recursion. Each level halves the size of the basic problem, so
the halving principle tells us that there are approximately log N levels. In fact,
the number of levels is 1 + ⎡log N⎤ (which is 4 when N equals 8). Thus we
expect that the total running time is O(N log N) .

324 chapter 7 recursion

This analysis gives an intuitive explanation of why the running time is
O(N log N) . In general, however, expanding a recursive algorithm to examine
behavior is a bad idea; it violates the third rule of recursion. We next consider
a more formal mathematical treatment.

Note that the more
formal analysis
holds for all classes
of algorithms that
recursively solve
two halves and use
linear additional
work.

Let T(N) represent the time required to solve a maximum contiguous subse-
quence sum problem of size N. If N = 1, the program takes some constant amount of
time to execute lines 12 to 13, which we call 1 unit. Thus T(1) = 1. Otherwise, the
program must perform two recursive calls and the linear work involved in comput-
ing the maximum sum for case 3. The constant overhead is absorbed by the O(N)
term. How long do the two recursive calls take? Because they solve problems of size
N/2, we know that they must each require T(N/2) units of time; consequently, the
total recursive work is 2T(N/2). This analysis gives the equations

Of course, for the second equation to make sense, N must be a power of 2.
Otherwise, at some point, N / 2 will not be even. A more precise equation is

To simplify the calculations, we assume that N is a power of 2 and replace the
O(N) term with N. These assumptions are minor and do not affect the Big-Oh
result. Consequently, we need to obtain a closed form solution for T(N) from

(7.6)

This equation is illustrated in Figure 7.21, so we know that the answer
will be N log N + N. We can easily verify the result by examining a few val-
ues: T(1), T(2) = 4, T(4) = 12, T(8) = 32, and T(16) = 80. We now prove this
analysis mathematically in Theorem 7.4, using two different methods.

N

N

N

N

figure 7.21

Trace of recursive
calls for recursive
maximum contiguous
subsequence sum
algorithm for N = 8
elements

T 1() 1=

T N() 2T N/2() O N()+=

T N() T N/2() T N/2() O N()+ +=

T 1() 1 and T N() 2T N/2() N+= =

7.5 divide-and-conquer algorithms 325

Although this proof method appears to work well, it can be difficult to
apply in more complicated cases because it tends to give very long equations.
Following is a second method that appears to be easier because it generates
equations vertically that are more easily manipulated.

Assuming that N is a power of 2, the solution to the equation T(N) = 2T(N/2) + N,
with initial condition T(1) = 1, is T(N) = N log N + N.

Theorem 7.4

For sufficiently large N, we have T(N / 2) = 2T(N / 4) + N / 2 because we can use Equa-
tion 7.6 with N / 2 instead of N. Consequently, we have

2T(N / 2) = 4T(N / 4) + N

Substituting this into Equation 7.6 yields

(7.7)

If we use Equation 7.6 for and multiply by 4, we obtain

which we can substitute into the right-hand side of Equation 7.7 to obtain

Continuing in this manner, we obtain

Finally, using (which makes sense, because then), we obtain

Proof
(Method 1)

T N() 4T N/ 4() 2N+=

N 4⁄

4T N/ 4() 8T N/8() N+=

T N() 8T N/ 8() 3N+=

T N() 2kT N/2k() kN+=

k Nlog= 2k N=

T N() NT 1() N Nlog+ N N N+log= =

We divide Equation 7.6 by N, yielding a new basic equation:

This equation is now valid for any N that is a power of 2, so we may also write the fol-
lowing equations:

(continued on next page)

Proof of
Theorem 7.4
(Method 2)

T N()
N

T N/2()

N/2
------------------ 1+=

326 chapter 7 recursion

Note that, if we had not divided through by N at the start of the solution,
the sum would not have telescoped. Deciding on the division required to
ensure a telescoping sum requires some experience and makes the method a
little more difficult to apply than the first alternative. However, once you have
found the correct divisor, the second alternative tends to produce scrap work
that fits better on a standard sheet of paper, leading to fewer mathematical
errors. In contrast, the first method is more of a brute-force approach.

Note that whenever we have a divide-and-conquer algorithm that solves two
half-sized problems with linear additional work, we always have O(N log N)
running time.

Proof of
Theorem 7.4
(Method 2)

(continued from previous page)

(7.8)

Now we add the collective in Equation 7.8. That is, we add all the terms on the left-
hand side and set the result equal to the sum of all the terms on the right-hand side.
The term appears on both sides and thus cancels. In fact, virtually all
the terms appear on both sides and cancel. This is called a telescoping sum. After
everything is added, the final result is

because all the other terms cancel and there are log N equations. Thus all the 1s at
the end of these equations sum to log N. Multiplying through by N gives the final
answer, as before.

T N()
N

T N/ 2()

N/ 2
------------------ 1+=

T N/ 2()
N/ 2

T N/ 4()

N/ 4
------------------ 1+=

T N/ 4()
N/ 4

T N/ 8()

N/ 8
------------------ 1+=

…
T 2()

2

T 1()
1

----------- 1+=

T N/ 2() / N/2()

T N()
N

T 1()

1
----------- Nlog+=

A telescoping
sum generates
large numbers of
canceling terms.

7.5 divide-and-conquer algorithms 327

7.5.3 a general upper bound for
divide-and-conquer running times

The general for-
mula given in this
section allows the
number of subprob-
lems, the size of the
subproblems, and
the amount of addi-
tional work to
assume general
forms. The result
can be used with-
out understanding
of the proof.

The analysis in Section 7.5.2 showed that, when a problem is divided into two
equal halves that are solved recursively—with O(N) overhead, an O(N log N) algo-
rithm is the result. What if we divide a problem into three half-sized problems with
linear overhead, or seven half-sized problems with quadratic overhead? (See Exer-
cise 7.20.) In this section we provide a general formula to compute the running
time of a divide-and-conquer algorithm. The formula requires three parameters:

n A, which is the number of subproblems

n B, which is the relative size of the subproblems (for instance B = 2
represents half-sized subproblems)

n k, which is representative of the fact that the overhead is Θ(Nk)

The formula and its proof is presented as Theorem 7.5. The proof of the
formula requires familiarity with geometric sums. However, knowledge of the
proof is not needed for you to use the formula.

Before proving Theorem 7.5, let us look at some applications. For the maxi-
mum contiguous subsequence sum problem, we have two problems, two halves,
and linear overhead. The applicable values are A = 2, B = 2, and k = 1. Hence the
second case in Theorem 7.5 applies, and we get O(N log N), which agrees with
our previous calculations. If we recursively solve three half-sized problems with
linear overhead, we have A = 3, B = 2, and k = 1, and the first case applies. The
result is O(N log

2
3) = O(N1.59). Here, the overhead does not contribute to the total

cost of the algorithm. Any overhead smaller than O(N1.59) would give the same
running time for the recursive algorithm. An algorithm that solved three half-sized
problems but required quadratic overhead would have O(N2) running time
because the third case would apply. In effect, the overhead dominates once it
exceeds the O(N1.59) threshold. At the threshold the penalty is the logarithmic fac-
tor shown in the second case. We can now prove Theorem 7.5.

The solution to the equation , where and , is Theorem 7.5T N() AT N/B() O Nk()+= A 1≥ B 1>

T N()
O N BAlog()

O Nk Nlog()

O Nk()⎩
⎪
⎨
⎪
⎧

=

for A Bk>

for A Bk=

for A Bk<

328 chapter 7 recursion

Proof of
Theorem 7.5

Following the second proof of Theorem 7.4, we assume that N is a power of B and let
N = BM. Then N / B = BM – 1 and Nk = (BM)k = (Bk)M. We assume that T(1) = 1 and
ignore the constant factor in O(Nk). Then we have the basic equation

If we divide through by AM, we obtain the new basic equation

Now we can write this equation for all M, obtaining

(7.9)

If we add the collective denoted by Equation 7.9, once again virtually all the terms on
the left-hand side cancel the leading terms on the right-hand side, yielding

Thus

(7.10)

If A > Bk, then the sum is a geometric series with a ratio smaller than 1. Because the
sum of an infinite series would converge to a constant, this finite sum is also
bounded by a constant. Thus we obtain

(continued on next page)

T BM() AT BM 1–() Bk()
M

+=

T BM()
AM

T BM 1–()

AM 1–

Bk

A
-----⎝ ⎠

⎛ ⎞
M

+=

T BM()
AM

T BM 1–()

AM 1–

Bk

A
-----⎝ ⎠

⎛ ⎞
M

+=

T BM 1–()
AM 1–

T BM 2–()

AM 2–

Bk

A
-----⎝ ⎠

⎛ ⎞
M 1–

+=

T BM 2–()
AM 2–

T BM 3–()

AM 3–

Bk

A
-----⎝ ⎠

⎛ ⎞
M 2–

+=

…

T B1()
A1

T B0()

A0

Bk

A
-----⎝ ⎠

⎛ ⎞
1

+=

T BM()

AM
--------------- 1 Bk

A
-----⎝ ⎠

⎛ ⎞
i

i 1=

M∑+=

Bk

A
-----⎝ ⎠

⎛ ⎞
i

i 0=

M∑=

T N() T BM() AM Bk

A
-----⎝ ⎠

⎛ ⎞
i

i 0=

M∑= =

7.6 dynamic programming 329

7.6 dynamic programming
Dynamic program-
ming solves sub-
problems nonrecur-
sively by recording
answers in a table.

A problem that can be mathematically expressed recursively can also be
expressed as a recursive algorithm. In many cases, doing so yields a signifi-
cant performance improvement over a more naive exhaustive search. Any
recursive mathematical formula could be directly translated to a recursive
algorithm, but often the compiler may not do justice to the recursive algorithm
and an inefficient program results. That is the case for the recursive computa-
tion of the Fibonacci numbers described in Section 7.3.4. To avoid this recur-
sive explosion, we can use dynamic programming to rewrite the recursive
algorithm as a nonrecursive algorithm that systematically records the answers
to the subproblems in a table. We illustrate this technique with the following
problem.

change-making problem
For a currency with coins (cents) what is the minimum number of
coins needed to make K cents of change?

Greedy algorithms
make locally opti-
mal decisions at
each step. This is
the simple, but not
always the correct,
thing to do.

U.S. currency has coins in 1-, 5-, 10-, and 25-cent denominations (ignore
the less frequently occurring 50-cent piece). We can make 63 cents by using
two 25-cent pieces, one 10-cent piece, and three 1-cent pieces, for a total of
six coins. Change-making in this currency is relatively simple: We repeatedly
use the largest coin available to us. We can show that for U.S. currency this
approach always minimizes the total number of coins used, which is an

(continued from previous page)

(7.11)

If A = Bk, then each term in the sum in Equation 7.10 is 1. As the sum contains 1 +
logBN terms and A = Bk implies AM = Nk,

T(N) = O(AM logB N) = O(N k logBN) = O(N k logN).

Finally, if A < Bk, then the terms in the geometric series are larger than 1. We can com-
pute the sum using a standard formula, thereby obtaining

proving the last case of Theorem 7.5.

Proof of
Theorem 7.5

T N() O AM() O N B
Alog().= =

T N() AM

Bk

A
-----⎝ ⎠

⎛ ⎞
M 1+

1–

Bk

A
----- 1–

------------------------------ O AM Bk

A
-----⎝ ⎠

⎛ ⎞
M

⎝ ⎠
⎛ ⎞ O Bk()

M
() O Nk()= = = =

C1 C2 … CN, , ,

330 chapter 7 recursion

example of so-called greedy algorithms. In a greedy algorithm, during each
phase, a decision is made that appears to be optimal, without regard for future
consequences. This “take what you can get now” strategy is the source of the
name for this class of algorithms. When a problem can be solved with a
greedy algorithm, we are usually quite happy: Greedy algorithms often match
our intuition and make for relatively painless coding. Unfortunately, greedy
algorithms do not always work. If the U.S. currency included a 21-cent piece,
the greedy algorithm would still give a solution that uses six coins, but the
optimal solution uses three coins (all 21-cent pieces).

The question then becomes one of how to solve the problem for an arbi-
trary coin set. We assume that there is always a 1-cent coin so that the solution
always exists. A simple strategy to make K cents in change uses recursion as
follows.

1. If we can make change using exactly one coin, that is the minimum.

2. Otherwise, for each possible value i we can compute the minimum
number of coins needed to make i cents in change and K – i cents in
change independently. We then choose the i that minimizes this sum.

A simple recursive
algorithm for
change-making is
easily written but
inefficient.

For example, let us see how we can make 63 cents in change. Clearly,
one coin will not suffice. We can compute the number of coins required
to make 1 cent of change and 62 cents of change independently (these are
1 and 4, respectively). We obtain these results recursively, so they must
be taken as optimal (it happens that the 62 cents is given as two 21-cent
pieces and two 10-cent pieces). Thus we have a method that uses five
coins. If we split the problem into 2 cents and 61 cents, the recursive
solutions yield 2 and 4, respectively, for a total of six coins. We continue
trying all the possibilities, some of which are shown in Figure 7.22.
Eventually, we see a split into 21 cents and 42 cents, which is changeable
in one and two coins, respectively, thus allowing change to be made in
three coins. The last split we need to try is 31 cents and 32 cents. We can

figure 7.22

Some of the
subproblems solved
recursively in
Figure 7.23 2121 10 10

1

11

2525 10 1

1021

2121

21

10 121

1

62

2

61

21

42

31

32

7.6 dynamic programming 331

change 31 cents in two coins, and we can change 32 cents in three coins
for a total of five coins. But the minimum remains three coins.

Again, we solve each of these subproblems recursively, which yields the
natural algorithm shown in Figure 7.23. If we run the algorithm to make small
change, it works perfectly. But like the Fibonacci calculations, this algorithm
requires too much redundant work, and it will not terminate in a reasonable
amount of time for the 63-cent case.

Our alternative
recursive change-
making algorithm is
still inefficient.

An alternative algorithm involves reducing the problem recursively by
specifying one of the coins. For example, for 63 cents, we can give change in
the following ways, as shown in Figure 7.24.

n One 1-cent piece plus 62 cents recursively distributed

n One 5-cent piece plus 58 cents recursively distributed

n One 10-cent piece plus 53 cents recursively distributed

n One 21-cent piece plus 42 cents recursively distributed

n One 25-cent piece plus 38 cents recursively distributed

Instead of solving 62 recursive problems, as in Figure 7.22, we get by with
only 5 recursive calls, one for each different coin. Again, a naive recursive imple-
mentation is very inefficient because it recomputes answers. For example, in the
first case we are left with a problem of making 62 cents in change. In this sub-
problem, one of the recursive calls made chooses a 10-cent piece and recursively

figure 7.23

A simple but
inefficient recursive
procedure for solving
the coin-changing
problem

1 // Return minimum number of coins to make change.
2 // Simple recursive algorithm that is very inefficient.
3 public static int makeChange(int [] coins, int change)
4 {
5 int minCoins = change;
6
7 for(int i = 0; i < coins.length; i++)
8 if(coins[i] == change)
9 return 1;

10
11 // No match; solve recursively.
12 for(int j = 1; j <= change / 2; j++)
13 {
14 int thisCoins = makeChange(coins, j)
15 + makeChange(coins, change - j);
16
17 if(thisCoins < minCoins)
18 minCoins = thisCoins;
19 }
20
21 return minCoins;
22 }

332 chapter 7 recursion

solves for 52 cents. In the third case we are left with 53 cents. One of its recursive
calls removes the 1-cent piece and also recursively solves for 52 cents. This
redundant work again leads to excessive running time. If we are careful, how-
ever, we can make the algorithm run reasonably fast.

The trick is to save answers to the subproblems in an array. This dynamic
programming technique forms the basis of many algorithms. A large answer
depends only on smaller answers, so we can compute the optimal way to
change 1 cent, then 2 cents, then 3 cents, and so on. This strategy is shown in
the method in Figure 7.25.

First, at line 8 we observe that 0 cents can be changed using zero coins.
The lastCoin array is used to tell us which coin was last used to make the opti-
mal change. Otherwise, we attempt to make cents worth of change, for cents
ranging from 1 to the final maxChange. To make cents worth of change, we try
each coin in succession as indicated by the for statement beginning at line 15.
If the amount of the coin is larger than the amount of change we are trying to
make, there is nothing to do. Otherwise, we test at line 19 to determine
whether the number of coins used to solve the subproblem plus the one coin
combine to be fewer than the minimum number of coins used thus far; if so,
we perform an update at lines 21 and 22. When the loop ends for the current
number of cents, the minimums can be inserted in the arrays, which is done at
lines 26 and 27.

At the end of the algorithm, coinsUsed[i] represents the minimum number of
coins needed to make change for i cents (i==maxChange is the particular solution
that we are looking for). By tracing back through lastCoin, we can figure out the
coins needed to achieve the solution. The running time is that of two nested
for loops and is thus O(NK), where N is the number of different denomina-
tions of coins and K is the amount of change that we are trying to make.

2125 10 1 1

2121 10 10

2121 10 1

2121

1025

5

1

10

21

25 1 1 1

+

+

+

+

+

figure 7.24

An alternative
recursive algorithm for
the coin-changing
problem

7.7 backtracking 333

7.7 backtracking
A backtracking
algorithm uses
recursion to try all
the possibilities.

In this section we set out the last application of recursion. We show how to
write a routine to have the computer select an optimal move in the game Tic-
Tac-Toe. The class Best, shown in Figure 7.26, is used to store the optimal
move that is returned by the move selection algorithm. The skeleton for a Tic-
TacToe class is shown in Figure 7.27. The class has a data object board that rep-
resents the current game position.6 A host of trivial methods are specified,

figure 7.25

A dynamic programming algorithm for solving the change-making problem by computing
optimal change for all amounts from 0 to maxChange and maintaining information to construct
the actual coin sequence

1 // Dynamic programming algorithm to solve change-making problem.
2 // As a result, the coinsUsed array is filled with the
3 // minimum number of coins needed for change from 0 -> maxChange
4 // and lastCoin contains one of the coins needed to make the change.
5 public static void makeChange(int [] coins, int differentCoins,
6 int maxChange, int [] coinsUsed, int [] lastCoin)
7 {
8 coinsUsed[0] = 0; lastCoin[0] = 1;
9

10 for(int cents = 1; cents <= maxChange; cents++)
11 {
12 int minCoins = cents;
13 int newCoin = 1;
14
15 for(int j = 0; j < differentCoins; j++)
16 {
17 if(coins[j] > cents) // Cannot use coin j
18 continue;
19 if(coinsUsed[cents - coins[j]] + 1 < minCoins)
20 {
21 minCoins = coinsUsed[cents - coins[j]] + 1;
22 newCoin = coins[j];
23 }
24 }
25
26 coinsUsed[cents] = minCoins;
27 lastCoin[cents] = newCoin;
28 }
29 }

6. Tic-Tac-Toe is played on a three-by-three board. Two players alternate placing their sym-
bols on squares. The first to get three squares in a row, column, or a long diagonal wins.

334 chapter 7 recursion

including routines to clear the board, to test whether a square is occupied, to
place something on a square, and to test whether a win has been achieved. The
implementation details are provided in the online code.

The challenge is to decide, for any position, what the best move is. The
routine used is chooseMove. The general strategy involves the use of a back-
tracking algorithm. A backtracking algorithm uses recursion to try all the pos-
sibilities.

The minimax strat-
egy is used for Tic-
Tac-Toe. It is based
on the assumption
of optimal play by
both sides.

The basis for making this decision is positionValue, which is shown in
Figure 7.28. The method positionValue returns HUMAN_WIN, DRAW, COMPUTER_WIN,
or UNCLEAR, depending on what the board represents.

The strategy used is the minimax strategy, which is based on the assump-
tion of optimal play by both players. The value of a position is a COMPUTER_WIN
if optimal play implies that the computer can force a win. If the computer can
force a draw but not a win, the value is DRAW; if the human player can force a
win, the value is HUMAN_WIN. We want the computer to win, so we have
HUMAN_WIN < DRAW < COMPUTER_WIN.

For the computer, the value of the position is the maximum of all the val-
ues of the positions that can result from making a move. Suppose that one
move leads to a winning position, two moves lead to a drawing position, and
six moves lead to a losing position. Then the starting position is a winning
position because the computer can force the win. Moreover, the move that
leads to the winning position is the move to make. For the human player we
use the minimum instead of the maximum.

This approach suggests a recursive algorithm to determine the value of a
position. Keeping track of the best move is a matter of bookkeeping once the
basic algorithm to find the value of the position has been written. If the posi-
tion is a terminal position (i.e., we can see right away that Tic-Tac-Toe has
been achieved or the board is full without Tic-Tac-Toe), the position’s value is
immediate. Otherwise, we recursively try all moves, computing the value of

figure 7.26

Class to store an
evaluated move

1 final class Best
2 {
3 int row;
4 int column;
5 int val;
6
7 public Best(int v)
8 { this(v, 0, 0); }
9

10 public Best(int v, int r, int c)
11 { val = v; row = r; column = c; }
12 }

7.7 backtracking 335

figure 7.27

Skeleton for class
TicTacToe

1 class TicTacToe
2 {
3 public static final int HUMAN = 0;
4 public static final int COMPUTER = 1;
5 public static final int EMPTY = 2;
6
7 public static final int HUMAN_WIN = 0;
8 public static final int DRAW = 1;
9 public static final int UNCLEAR = 2;

10 public static final int COMPUTER_WIN = 3;
11
12 // Constructor
13 public TicTacToe()
14 { clearBoard(); }
15
16 // Find optimal move
17 public Best chooseMove(int side)
18 { /* Implementation in Figure 7.29 */ }
19
20 // Compute static value of current position (win, draw, etc.)
21 private int positionValue()
22 { /* Implementation in Figure 7.28 */ }
23
24 // Play move, including checking legality
25 public boolean playMove(int side, int row, int column)
26 { /* Implementation in online code */ }
27
28 // Make board empty
29 public void clearBoard()
30 { /* Implementation in online code */ }
31
32 // Return true if board is full
33 public boolean boardIsFull()
34 { /* Implementation in online code */ }
35
36 // Return true if board shows a win
37 public boolean isAWin(int side)
38 { /* Implementation in online code */ }
39
40 // Play a move, possibly clearing a square
41 private void place(int row, int column, int piece)
42 { board[row][column] = piece; }
43
44 // Test if a square is empty
45 private boolean squareIsEmpty(int row, int column)
46 { return board[row][column] == EMPTY; }
47
48 private int [] [] board = new int[3][3];
49 }

336 chapter 7 recursion

each resulting position, and choose the maximum value. The recursive call
then requires that the human player evaluate the value of the position. For the
human player the value is the minimum of all the possible next moves
because the human player is trying to force the computer to lose. Thus the
recursive method chooseMove, shown in Figure 7.29 takes a parameter side,
which indicates whose turn it is to move.

Lines 12 and 13 handle the base case of the recursion. If we have an
immediate answer, we can return. Otherwise, we set some values at lines 15 to
22, depending on which side is moving. The code in lines 28 to 38 is executed
once for each available move. We try the move at line 28, recursively evaluate
the move at line 29 (saving the value), and then undo the move at line 30.
Lines 33 and 34 test to determine whether this move is the best seen so far. If
so, we adjust value at line 36 and record the move at line 37. At line 41 we
return the value of the position in a Best object.

Alpha–beta pruning
is an improvement
to the minimax
algorithm.

Although the routine shown in Figure 7.29 optimally solves Tic-Tac-Toe,
it performs a lot of searching. Specifically, to choose the first move on an
empty board, it makes 549,946 recursive calls (this number is obtained by
running the program). By using some algorithmic tricks, we can compute the
same information with fewer searches. One such technique is known as
alpha–beta pruning, which is an improvement to the minimax algorithm. We
describe this technique in detail in Chapter 10. Application of alpha–beta
pruning reduces the number of recursive calls to only 18,297.

summary

In this chapter we examined recursion and showed that it is a powerful
problem-solving tool. Following are its fundamental rules, which you
should never forget.

1. Base cases: Always have at least one case that can be solved without
using recursion.

2. Make progress: Any recursive call must progress toward the base case.

figure 7.28

Supporting routine for
evaluating positions

1 // Compute static value of current position (win, draw, etc.)
2 private int positionValue()
3 {
4 return isAWin(COMPUTER) ? COMPUTER_WIN :
5 isAWin(HUMAN) ? HUMAN_WIN :
6 boardIsFull() ? DRAW : UNCLEAR;
7 }

summary 337

3. “You gotta believe”: Always assume that the recursive call works.

4. Compound interest rule: Never duplicate work by solving the same
instance of a problem in separate recursive calls.

figure 7.29

A recursive routine for
finding an optimal Tic-
Tac-Toe move

1 // Find optimal move
2 public Best chooseMove(int side)
3 {
4 int opp; // The other side
5 Best reply; // Opponent’s best reply
6 int dc; // Placeholder
7 int simpleEval; // Result of an immediate evaluation
8 int bestRow = 0;
9 int bestColumn = 0;

10 int value;
11
12 if((simpleEval = positionValue()) != UNCLEAR)
13 return new Best(simpleEval);
14
15 if(side == COMPUTER)
16 {
17 opp = HUMAN; value = HUMAN_WIN;
18 }
19 else
20 {
21 opp = COMPUTER; value = COMPUTER_WIN;
22 }
23
24 for(int row = 0; row < 3; row++)
25 for(int column = 0; column < 3; column++)
26 if(squareIsEmpty(row, column))
27 {
28 place(row, column, side);
29 reply = chooseMove(opp);
30 place(row, column, EMPTY);
31
32 // Update if side gets better position
33 if(side == COMPUTER && reply.val > value
34 || side == HUMAN && reply.val < value)
35 {
36 value = reply.val;
37 bestRow = row; bestColumn = column;
38 }
39 }
40
41 return new Best(value, bestRow, bestColumn);
42 }

338 chapter 7 recursion

Recursion has many uses, some of which we discussed in this chapter. Three
important algorithm design techniques that are based on recursion are divide-
and-conquer, dynamic programming, and backtracking.

In Chapter 8 we examine sorting. The fastest known sorting algorithm is
recursive.

key concepts

activation record The method by which the bookkeeping in a procedural lan-
guage is done. A stack of activation records is used. (303)

alpha–beta pruning An improvement to the minimax algorithm. (336)
backtracking An algorithm that uses recursion to try all possibilities. (333)
base case An instance that can be solved without recursion. Any recursive call

must progress toward a base case. (298)
basis In a proof by induction, the easy case that can be shown by hand. (296)
divide-and-conquer algorithm A type of recursive algorithm that is generally

very efficient. The recursion is the divide part, and the combining of
recursive solutions is the conquer part. (319)

driver routine A routine that tests the validity of the first case and then calls the
recursive routine. (300)

dynamic programming A technique that avoids the recursive explosion by
recording answers in a table. (329)

encryption An encoding scheme used in the transmitting of messages that can-
not be read by other parties. (317)

Fibonacci numbers A sequence of numbers in which the ith number is the sum
of the two previous numbers. (304)

greatest common divisor (gcd) The greatest common divisor of two integers is
the largest integer that divides both of them. (314)

greedy algorithm An algorithm that makes locally optimal decisions at each
step—a simple but not always correct thing to do. (329)

induction A proof technique used to establish theorems that hold for positive
integers. (295)

inductive hypothesis The hypothesis that a theorem is true for some arbitrary
case and that, under this assumption, it is true for the next case. (296)

leaf In a tree, a node with no children. (306)
minimax strategy A strategy used for Tic-Tac-Toe and other strategic games,

which is based on the assumption of optimal play by both players. (334)
multiplicative inverse The solution to the equation AX ≡ 1(mod N).

(315)
1 X N<≤

on the internet 339

public key cryptography A type of cryptography in which each participant pub-
lishes the code others can use to send the participant encrypted messages
but keeps the decrypting code secret. (318)

recursive method A method that directly or indirectly makes a call to itself.
(297)

RSA cryptosystem A popular encryption method. (317)
rules of recursion 1. Base case: Always have at least one case that can be

solved without using recursion (298); 2. Make progress: Any recursive
call must progress toward a base case (298); 3. “You gotta believe”:
Always assume that the recursive call works (302); 4. Compound interest
rule: Never duplicate work by solving the same instance of a problem in
separate recursive calls. (305)

telescoping sum A procedure that generates large numbers of canceling terms.
(326)

tree A widely used data structure that consists of a set of nodes and a set of
edges that connect pairs of nodes. Throughout the text, we assume the
tree is rooted. (306)

common errors

1. The most common error in the use of recursion is forgetting a base case.

2. Be sure that each recursive call progresses toward a base case. Otherwise,
the recursion is incorrect.

3. Overlapping recursive calls must be avoided because they tend to yield
exponential algorithms.

4. Using recursion in place of a simple loop is bad style.

5. Recursive algorithms are analyzed by using a recursive formula. Do not
assume that a recursive call takes linear time.

on the internet

Most of the chapter’s code is provided, including a Tic-Tac-Toe program. An
improved version of the Tic-Tac-Toe algorithm that uses fancier data struc-
tures is discussed in Chapter 10. The following are the filenames.

RecSum.java The routine shown in Figure 7.1 with a simple main.
PrintInt.java The routine given in Figure 7.4 for printing a num-

ber in any base, plus a main.

340 chapter 7 recursion

Factorial.java The routine shown in Figure 7.10, for computing
factorials.

BinarySearchRecursive.java
Virtually the same as BinarySearch.java (in Chap-
ter 6), but with the binarySearch shown in
Figure 7.11.

Ruler.java The routine shown in Figure 7.13, ready to run. It
contains code that forces the drawing to be slow.

FractalStar.java The routine given in Figure 7.15, ready to run. It
contains code that allows the drawing to be slow.

Numerical.java The math routines presented in Section 7.4, the pri-
mality testing routine, and a main in RSA.java that
illustrates the RSA computations.

MaxSumTest.java The four maximum contiguous subsequence sum
routines.

MakeChange.java The routine shown in Figure 7.25, with a simple main.
TicTacSlow.java The Tic-Tac-Toe algorithm, with a primitive main.

See also Best.java.

exercises

IN SHORT

7.1 What are the four fundamental rules of recursion?

7.2 Modify the program given in Figure 7.1 so that zero is returned for
negative n. Make the minimum number of changes.

7.3 Following are four alternatives for line 11 of the routine power (in
Figure 7.16). Why is each alternative wrong?

long tmp = power(x * x, n/2, p);
long tmp = power(power(x, 2, p), n/2, p);
long tmp = power(power(x, n/2, p), 2, p);
long tmp = power(x, n/2, p) * power(x, n/2, p) % p;

7.4 Show how the recursive calls are processed in the calculation 263mod 37.

7.5 Compute gcd(1995, 1492).

7.6 Bob chooses p and q equal to 37 and 41, respectively. Determine accept-
able values for the remaining parameters in the RSA algorithm.

7.7 Show that the greedy change-making algorithm fails if 5-cent pieces
are not part of United States currency.

exercises 341

IN THEORY

7.8 Prove by induction the formula

7.9 Prove the following identities relating to the Fibonacci numbers.
a.

b.

c.

d.

e.

f.

g.

7.10 Show that if A ≡ B(mod N), then for any C, D, and P, the following are true.
a. A + C ≡ B + C(mod N)
b. AD ≡ BD(mod N)
c. AP ≡ BP(mod N)

7.11 Prove that if A ≥ B, then A mod B < A / 2. (Hint: Consider the cases
B ≤ A / 2 and B > A / 2 separately.) How does this result show that the
running time of gcd is logarithmic?

7.12 Prove by induction the formula for the number of calls to the recur-
sive method fib in Section 7.3.4.

7.13 Prove by induction that if A > B ≥ 0 and the invocation gcd(a,b) per-
forms k ≥ 1 recursive calls, then A ≥ Fk + 2 and B ≥ Fk + 1.

7.14 Prove by induction that in the extended gcd algorithm, and
.

7.15 Write an alternative gcd algorithm, based on the following observa-
tions (arrange that).
a. gcd(A, B) = 2 gcd(A / 2, B / 2) if A and B are both even.
b. gcd(A, B) = gcd(A / 2, B) if A is even and B is odd.
c. gcd(A, B) = gcd(A, B / 2) if A is odd and B is even.
d. gcd(A, B) = gcd((A + B) / 2, (A – B) / 2) if A and B are both odd.

7.16 Solve the following equation. Assume that A ≥ 1, B > 1, and P ≥ 0.

T(N) = AT(N / B) + O(NklogPN)

FN
1

5

1 5+()
2

---------------------⎝ ⎠
⎛ ⎞

N
1 5–

2
----------------⎝ ⎠

⎛ ⎞
N

–⎝ ⎠
⎛ ⎞=

F1 F2
… FN+ + + FN 2+ 1–=

F1 F3
… F2N 1–+ + + F2N=

F0 F2
… F2N+ + + F2N 1+ 1–=

FN 1– FN 1+ 1–()N FN
2+=

F1F2 F2F3
… F2N 1– F2N+ + + F2N

2=

F1F2 F2F3
… F2NF2N 1++ + + F2N 1+

2 1–=

FN
2 FN 1+

2+ F2N 1+=

X B<
Y A<

A B>

342 chapter 7 recursion

7.17 Solve the following recurrences, which in all cases have T(0) = T(1) = 1.
A Big-Oh answer will suffice.
a. T(N) = T(N / 2) + 1
b. T(N) = T(N / 2) + N
c. T(N) = T(N / 2) + N 2

d. T(N) = 3T(N / 2) + N
e. T(N) = 3T(N / 2) + N 2

f. T(N) = 4T(N / 2) + N
g. T(N) = 4T(N / 2) + N 2

h. T(N) = 4T(N / 2) + N 3

7.18 Solve the following recurrences, which in all cases have T(0) = T(1) = 1.
A Big-Oh answer will suffice.
a. T(N) = T(N / 2) + log N
b. T(N) = T(N / 2) + N log N
c. T(N) = T(N / 2) + N 2 log N
d. T(N) = 3T(N / 2) + N log N
e. T(N) = 3T(N / 2) + N 2 log N
f. T(N) = 4T(N / 2) + N log N
g. T(N) = 4T(N / 2) + N 2 log N
h. T(N) = 4T(N / 2) + N 3 log N

7.19 Solve the following recurrences, which in all cases have T(0) = 1. A
Big-Oh answer will suffice.
a. T(N) = T(N – 1) + 1
b. T(N) = T(N – 1) + log N
c. T(N) = T(N – 1) + N
d. T(N) = 2T(N – 1) + 1
e. T(N) = 2T(N – 1) + log N
f. T(N) = 2T(N – 1) + N

7.20 Strassen’s algorithm for matrix multiplication multiplies two N × N
matrices by performing seven recursive calls to multiply two
N / 2 × N / 2 matrices. The additional overhead is quadratic. What is
the running time of Strassen’s algorithm?

IN PRACTICE

7.21 Ackerman’s function is defined as follows.

Implement Ackerman’s function.

 A(m, n) = { n + 1 if m = 0
A(m – 1, 1) if m > 0 and n = 0
A(m – 1, A(m, n – 1)) if m > 0 and n > 0

exercises 343

7.22 The printInt method shown in Figure 7.4 may incorrectly handle the
case where N = Long.MIN_VALUE. Explain why and fix the method.

7.23 Write a recursive method that returns the number of 1s in the binary
representation of N. Use the fact that this number equals the number
of 1s in the representation of N / 2, plus 1, if N is odd.

7.24 Implement the one comparison per level binary search recursively.

7.25 An alternate formulation of the maximum contiguous subsequence
sum solution is to recursively solve the problems for items in posi-
tions low to mid–1 and then mid+1 to high. Notice that position mid is
not included. Show how this leads to an O(N log N) algorithm for
the entire problem and implement the algorithm, comparing its speed
to the algorithm in the text.

7.26 The maximum contiguous subsequence sum algorithm given in
Figure 7.20 gives no indication of the actual sequence. Modify it so
that it fills static class fields seqStart and seqEnd, as in Section 5.3.

7.27 For the change-making problem, give an algorithm that computes the
number of different ways to give exactly K cents in change.

7.28 The subset sum problem is as follows: Given N integers
 and an integer K, is there a group of integers that sums

exactly to K? Give an O(NK) algorithm to solve this problem.

7.29 Give an O(2N) algorithm for the subset sum problem described in
Exercise 7.28. (Hint: Use recursion.)

7.30 Method allSums returns a List<Integer> containing all the possible sums
that can be formed by using any of the items in the input array at most
once. For instance, if the input contains 3, 4, 7, then allSums returns [0,
3, 4, 7, 7, 10, 11, 13]. Note that the items do not have to be returned in
any particular order, but also note that if a sum can be produced multi-
ple ways, it has to be listed multiple times. Implement allSums recur-
sively. If the input has N items, what is the size of the returned list?

7.31 Write the routine with the declaration

public static void permute(String str);

that prints all the permutations of the characters in the string str. If
str is "abc", then the strings output are abc, acb, bac, bca, cab, and cba.
Use recursion.

7.32 Repeat Exercise 7.31, but have permute return a List<String> contain-
ing all the possible permutations.

A1 A2 … AN, , ,

344 chapter 7 recursion

7.33 An Entry is an object that represents either a String, or a list of other
Entry objects. The Entry interface is shown below.

interface Entry
{
 // Return true if Entry repesents an integer
 boolean isString();

 // Return the represented string, or throw an exception
 // if this Entry is representing a List of other entries.
 String getString();

 // Return the represented List, or throw an exception
 // if this Entry is representing a String.
 List<Entry> getList();
}

An example of an Entry is a file entry in Windows or Unix, in which
the file entry is either a single file or a folder (and the folder can con-
tain other files or more folders). Implement the public driver method
expandEntry, which will invoke a private recursive method that you
must also implement. The public method accepts an Entry as a param-
eter and returns all the Strings represented in the Entry (in a Set). If
the Entry is representing a single String, then the resulting Set will
have size 1. Otherwise, Entry is representing a list of other Entrys, and
you should recursively include the Strings represented by those
Entrys. (The logic stated above is most likely found in the private
recursive routine).

To simplify your code, you may assume that no Entry refers to itself,
either directly or indirectly.

7.34 Redo Exercise 7.33 so that it still works if an Entry refers to itself
either directly, or indirectly. To do so, have the private recursive rou-
tine accept a third parameter that maintains a set that stores all the
Entry objects that have been processed. Your routine can then avoid
processing an Entry twice. You may assume that Entry objects have
implemented any operations required to store a Set<Entry>.

7.35 Explain what happens if in Figure 7.15 we draw the central square
before making the recursive calls.

exercises 345

PROGRAMMING PROJECTS

7.36 The method printReverse takes a Scanner as a parameter, prints each
line in the Scanner stream, and closes the Scanner when it is done.
However, the lines are to be output in reverse order of their occur-
rence. In other words, the last line is output first, and the first line is
output last. Implement printReverse without using any Collections
API or user-written containers. Do so by using recursion (in which
you output the first line AFTER recursively outputting the subsequent
lines in reverse).

7.37 Function findMaxAndMin, defined below is intended to return (in an
array of length 2) the maximum and minimum item (if arr.length is
1, the maximum and minimum are the same):

// Precondition: arr.length >=1
// Postcondition: the 0th item in the return value is the maximum
// the 1st item in the return value is the minimum
public static double [] findMaxAndMin(double [] arr)

Write an appropriate private static recursive routine to implement
the public static driver findMaxAndMin declared above. Your recursive
routine must split a problem into roughly two halves, but should
never split into two odd-sized problems (in other words, a problem of
size 10 is to be split into 4 and 6, rather than 5 and 5).

7.38 The binomial coefficients C(N, k) can be defined recursively as
C(N, 0) = 1, C(N, N) = 1 and, for 0 < k < N, C(N, k) = C(N – 1, k) +
C(N – 1, k – 1). Write a method and give an analysis of the running
time to compute the binomial coefficients
a. Recursively
b. By using dynamic programming

7.39 Add a divide method to the Polynomial class in Exercise 3.33.
Implement divide using recursion.

7.40 Implement the RSA cryptosystem with the library BigInteger class.

7.41 Improve the TicTacToe class by making the supporting routines more
efficient.

7.42 Write routine getAllWords that takes as parameter a word and returns a
Set containing all the substrings of the word. The substrings do not
need to be real words, nor contiguous, but the letters in the substrings
must retain the same order as in the word. For instance, if the word is
cabb, words that set returned by getAllWords would be ["", "b", "bb",
"a", "ab", "abb", "c", "cb", "cbb", "ca", "cab", "cabb"].

346 chapter 7 recursion

7.43 Exercise 7.30 describes a method that returns all the sums that can be
formed from a collection of items. Implement method getOriginalItems,
which takes as parameter a List representing all the sums and returns
back the original input. For instance if the parameter to getOriginalItems
is [0, 3, 4, 7, 7, 10, 11, 13], then the return value is a list containing [3,
4, 7]. You may assume that there are no negative items in the output (and
thus the input).

7.44 Repeat Exercise 7.43, handling the case where there are negative
items. This is a much harder version of the problem.

7.45 Let A be a sequence of N distinct sorted numbers with
. Let B be a sequence of numbers, defined by

 (i < j). Let D be the sequence obtained by sorting B.
Both B and D may contain duplicates. Example: A = 0, 1, 5, 8. Then
D = 1, 3, 4, 5, 7, 8. Do the following.
a. Write a program that constructs D from A. This part is easy.
b. Write a program that constructs some sequence A that corresponds

to D. Note that A is not unique. Use a backtracking algorithm.

7.46 Consider an N × N grid in which some squares are occupied. Two
squares belong to the same group if they share a common edge. In
Figure 7.30 there is one group of four occupied squares, three groups
of two occupied squares, and two individual occupied squares.
Assume that the grid is represented by a two-dimensional array. Write
a program that

A1 A2 … AN, , ,
A1 0= N N 1–() 2⁄
Bi j, Aj Ai–=

figure 7.30

Grid for Exercise 7.46

exercises 347

a. Computes the size of a group when a square in the group is given
b. Computes the number of different groups
c. Lists all groups

7.47 Write a program that expands a C++ source file’s #include directives
(recursively). Do so by replacing lines of the form

#include "filename"

with the contents of filename.

7.48 Suppose a data file contains lines that consist of either a single inte-
ger, or the name of a file that contains more lines. Note that a data file
may reference several other files and the referenced files may them-
selves contain some additional file names, and so forth. Write a
method that reads a specified file and returns the sum of all the inte-
gers in the file and any files that are referenced. You may assume that
no file is referenced more than once.

7.49 Repeat Exercise 7.48, but add code that detects if a file is referenced
more than once. When such a situation is detected, the additional ref-
erences are ignored.

7.50 Method reverse shown below returns the reverse of a String.

String reverse(String str)

a. Implement reverse recursively. Do not worry about the ineffi-
ciency of string concatenation.

b. Implement reverse by having reverse be the driver for a private
recursive routine. reverse will create a StringBuffer and pass it to
the recursive routine.

7.51 a. Design a recursive algorithm to find the longest increasing
sequence of numbers in a rectangular grid. For example, if the
grid contains

97 47 56 36
35 57 41 13
89 36 98 75
25 45 26 17

then the longest increasing sequence of numbers is the sequence
of length eight consisting of 17, 26, 36, 41, 47, 56, 57, 97. Note
that there are no duplicates in the increasing sequence.

b. Design an algorithm that solves the same problem but allows for
nondecreasing sequences; thus there may be duplicates in the
increasing sequence.

348 chapter 7 recursion

7.52 Use dynamic programming to solve the longest increasing sequence
problem in Exercise 7.51 (a). Hint: Find the best sequence emanat-
ing from each grid element, and to do so, consider the grid elements
in decreasing sorted order (so that the grid element containing 98 is
considered first).

7.53 Consider the following two-player game: N coins c1, c2, ... cN (you
may assume that N is even) are placed in a line on a table. Players
alternate turns and at each turn a player selects either the first or last
coin in the row, removing the coin and keeping it. Devise an algo-
rithm that, given the array of coins, determines the maximum amount
of money that player #1 can definitely win.

7.54 A Koch star is formed starting with an equilateral triangle and then
recursively altering each line segment as follows:

1. divide the line segment into three segments of equal length.

2. draw an equilateral triangle that has the middle segment from step 1
as its base and points outward.

3. remove the line segment that is the base of the triangle from step 2.

The first three iterations of this procedure are shown in Figure 7.31.
Write a Java program to draw a Koch star.

references

Much of this chapter is based on the discussion in [3]. A description of the
RSA algorithm, with proof of correctness, is presented in [1], which also
devotes a chapter to dynamic programming. The shape-drawing examples are
adapted from [2].

figure 7.31

The first three
iterations of a Koch
star.

references 349

1. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms 3rd ed., MIT Press, Cambridge, MA, 2010.

2. R. Sedgewick, Algorithms in Java, Parts 1–4, 3rd ed., Addison-Wesley,
Reading, MA, 2003.

3. M. A. Weiss, Efficient C Programming: A Practical Approach, Prentice
Hall, Upper Saddle River, NJ, 1995.

This page intentionally left blank

chap te r 8

sorting algorithms

Sorting is a fundamental application for computers. Much of the
output eventually produced by a computation is sorted in some way, and
many computations are made efficient by invoking a sorting procedure inter-
nally. Thus sorting is perhaps the most intensively studied and important oper-
ation in computer science.

In this chapter we discuss the problem of sorting an array of elements. We
describe and analyze the various sorting algorithms. The sorts in this chapter
can be done entirely in main memory, so the number of elements is relatively
small (less than a few million). Sorts that cannot be performed in main mem-
ory and must be done on disk or tape are also quite important. We discuss this
type of sorting, called external sorting, in Section 21.6.

This discussion of sorting is a blend of theory and practice. We present
several algorithms that perform differently and show how an analysis of an
algorithm’s performance properties can help us make implementation deci-
sions that are not obvious.

In this chapter, we show

n That simple sorts run in quadratic time

n How to code Shellsort, which is a simple and efficient algorithm that
runs in subquadratic time

352 chapter 8 sorting algorithms

n How to write the slightly more complicated O(N log N) mergesort
and quicksort algorithms

n That Ω(N log N) comparisons are required for any general-purpose
sorting algorithm

8.1 why is sorting important?
Recall from Section 5.6 that searching a sorted array is much easier than
searching an unsorted array. This is especially true for people. That is, finding
a person’s name in a phone book is easy, for example, but finding a phone
number without knowing the person’s name is virtually impossible. As a
result, any significant amount of computer output is generally arranged in
some sorted order so that it can be interpreted. The following are some more
examples.

n Words in a dictionary are sorted (and case distinctions are ignored).

n Files in a directory are often listed in sorted order.

n The index of a book is sorted (and case distinctions are ignored).

n The card catalog in a library is sorted by both author and title.

n A listing of course offerings at a university is sorted, first by depart-
ment and then by course number.

n Many banks provide statements that list checks in increasing order by
check number.

n In a newspaper, the calendar of events in a schedule is generally
sorted by date.

n Musical compact disks in a record store are generally sorted by
recording artist.

n In the programs printed for graduation ceremonies, departments are
listed in sorted order and then students in those departments are listed
in sorted order.

An initial sort of the
data can signifi-
cantly enhance the
performance of an
algorithm.

Not surprisingly, much of the work in computing involves sorting. How-
ever, sorting also has indirect uses. For instance, suppose that we want to
decide whether an array has any duplicates. Figure 8.1 shows a simple method
that requires quadratic worst-case time. Sorting provides an alternative algo-
rithm. That is, if we sort a copy of the array, then any duplicates will be adja-
cent to each other and can be detected in a single linear-time scan of the array.
The cost of this algorithm is dominated by the time to sort, so if we can sort in

8.3 analysis of the insertion sort and other simple sorts 353

subquadratic time, we have an improved algorithm. The performance of many
algorithms is significantly enhanced when we initially sort the data.

The vast majority of significant programming projects use a sort some-
where, and in many cases, the sorting cost determines the running time. Thus
we want to be able to implement a fast and reliable sort.

8.2 preliminaries
The algorithms we describe in this chapter are all interchangeable. Each is
passed an array containing the elements, and only objects that implement the
Comparable interface can be sorted.

A comparison-
based sorting algo-
rithm makes order-
ing decisions only
on the basis of
comparisons.

The comparisons are the only operations allowed on the input data. An
algorithm that makes ordering decisions only on the basis of comparisons is
called a comparison-based sorting algorithm.1 In this chapter, N is the num-
ber of elements being sorted.

8.3 analysis of the insertion
sort and other simple sorts

An insertion sort is
quadratic in the
worst and average
cases. It is fast if
the input has
already been
sorted.

Insertion sort is a simple sorting algorithm that is appropriate for small
inputs. It is generally considered to be a good solution if only a few elements
need sorting because it is such a short algorithm and the time required to sort
is not likely to be an issue. However, if we are dealing with a large amount of
data, insertion sort is a poor choice because it is too time consuming. The
code is shown in Figure 8.2.

figure 8.1

A simple quadratic
algorithm for
detecting duplicates

1 // Return true if array a has duplicates; false otherwise
2 public static boolean duplicates(Object [] a)
3 {
4 for(int i = 0; i < a.length; i++)
5 for(int j = i + 1; j < a.length; j++)
6 if(a[i].equals(a[j]))
7 return true; // Duplicate found
8
9 return false; // No duplicates found

10 }

1. As shown in Section 4.8, changing the sorting interface by requiring a Comparator function
object is straightforward.

354 chapter 8 sorting algorithms

Insertion sort works as follows. In the initial state the first element, con-
sidering by itself, is sorted. In the final state all elements (assume that there
are N) , considered as a group, are to have been sorted. Figure 8.3 shows that
the basic action of insertion sort is to sort the elements in positions 0 through p
(where p ranges from 1 through N – 1). In each stage p increases by 1. That is
what the outer loop at line 7 in Figure 8.2 is controlling.

When the body of the for loop is entered at line 12, we are guaranteed
that the elements in array positions 0 through p–1 have already been sorted
and that we need to extend this to positions 0 to p. Figure 8.4 gives us a
closer look at what has to be done, detailing only the relevant part of the
array. At each step the element in boldface type needs to be added to the
previously sorted part of the array. We can easily do that by placing it in a

figure 8.2

Insertion sort
implementation

1 /**
2 * Simple insertion sort
3 */
4 public static <AnyType extends Comparable<? super AnyType>>
5 void insertionSort(AnyType [] a)
6 {
7 for(int p = 1; p < a.length; p++)
8 {
9 AnyType tmp = a[p];

10 int j = p;
11
12 for(; j > 0 && tmp.compareTo(a[j - 1]) < 0; j--)
13 a[j] = a[j - 1];
14 a[j] = tmp;
15 }
16 }

0 1 2 3 4 5

8 5 9 2 6 3

5 8 9 2 6 3

5 8 9 2 6 3

2 5 8 9 6 3

2 5 6 8 9 3

2

Array Position

Initial State

After a[0..1] is sorted

After a[0..2] is sorted

After a[0..3] is sorted

After a[0..4] is sorted

After a[0..5] is sorted 3 5 6 8 9

figure 8.3

Basic action of
insertion sort (the
shaded part is sorted)

8.3 analysis of the insertion sort and other simple sorts 355

temporary variable and sliding all the elements that are larger than it one
position to the right. Then we can copy the temporary variable into the
former position of the leftmost relocated element (indicated by lighter shad-
ing on the following line). We keep a counter j, which is the position to
which the temporary variable should be written back. Every time an element
is slid, j decreases by 1. Lines 9–14 implement this process.

The insertion sort is
quadratic in the
worst and average
cases. It is fast if
the input has
already been
sorted.

Because of the nested loops, each of which can take N iterations, the
insertion sort algorithm is O(N2). Furthermore, this bound is achievable
because input in reverse order really does take quadratic time. A precise cal-
culation shows that the tests at line 12 in Figure 8.2 can be executed at most
P + 1 times for each value of P. Summing over all P gives a total time of

However, if the input is presorted, the running time is O(N) because the test
at the top of the inner for loop always fails immediately. Indeed, if the input is
almost sorted (we define almost sorted more rigorously shortly), the insertion
sort will run quickly. Thus the running time depends not only on the amount of
input, but also on the specific ordering of the input. Because of this wide varia-
tion, analyzing the average-case behavior of this algorithm is worthwhile. The
average case turns out to be θ(N 2) for the insertion sort as well as a variety of
other simple sorting algorithms.

An inversion
measures
unsortedness.

An inversion is a pair of elements that are out of order in an array. In other
words, it is any ordered pair (i, j) having the property that i < j but . For
example, the sequence {8, 5, 9, 2, 6, 3} has 10 inversions that correspond to
the pairs (8, 5), (8, 2), (8, 6), (8, 3), (5, 2), (5, 3), (9, 2), (9, 6), (9, 3), and
(6, 3). Note that the number of inversions equals the total number of times
that line 13 in Figure 8.2 is executed. This condition is always true because

0 1 2 3 4 5

8 5

5 8 9

5 8 9 2

2 5 8 9 6

2 5 6 8 9 3

2

Array Position

Initial State

After a[0..1] is sorted

After a[0..2] is sorted

After a[0..3] is sorted

After a[0..4] is sorted

After a[0..5] is sorted 3 5 6 8 9

figure 8.4

A closer look at the
action of insertion sort
(the dark shading
indicates the sorted
area; the light shading
is where the new
element was placed)

P 1+()
P 1=
N 1–∑ i

i 2=
N∑ 2 3 4 … N+ + + + Θ N2()= = =

Ai Aj>

356 chapter 8 sorting algorithms

the effect of the assignment statement is to swap the two items a[j] and
a[j-1]. (We avoid the actual excessive swapping by using the temporary vari-
able, but nonetheless it is an abstract swap.) Swapping two elements that are
out of place removes exactly one inversion, and a sorted array has no inver-
sions. Thus, if there are I inversions at the start of the algorithm, we must have
I implicit swaps. As O(N) other work is involved in the algorithm, the running
time of the insertion sort is O(I + N) , where I is the number of inversions in
the original array. Thus the insertion sort runs in linear time if the number of
inversions is O(N) .

We can compute precise bounds on the average running time of the inser-
tion sort by computing the average number of inversions in an array. However,
defining average is difficult. We can assume that there are no duplicate ele-
ments (if we allow duplicates, it is not even clear what the average number of
duplicates is). We can also assume that the input is some arrangement of the
first N integers (as only relative ordering is important); these arrangements are
called permutations. We can further assume that all these permutations are
equally likely. Under these assumptions we can establish Theorem 8.1.

Theorem 8.1 implies that insertion sort is quadratic on average. It also can be
used to provide a very strong lower bound about any algorithm that exchanges
adjacent elements only. This lower bound is expressed as Theorem 8.2.

Theorem 8.1 The average number of inversions in an array of distinct numbers is .

Proof For any array of numbers, consider , which is the array in reverse order. For
example, the reverse of array 1, 5, 4, 2, 6, 3 is 3, 6, 2, 4, 5, 1. Consider any two num-
bers in the array, with . In exactly one of and , this ordered pair rep-
resents an inversion. The total number of these pairs in an array A and its reverse
is . Thus an average array has half this amount, or inver-
sions.

N N N 1–() 4⁄

A Ar

x y,() y x> A Ar

Ar

N N 1–() 2⁄ N N 1–() 4⁄

Theorem 8.2 Any algorithm that sorts by exchanging adjacent elements requires time on
average.

Proof The average number of inversions is initially . Each swap removes only
one inversion, so swaps are required.

Ω N 2()

N N 1–() 4⁄
Ω N 2()

8.4 shellsort 357

The lower-bound
proof shows that
quadratic perfor-
mance is inherent
in any algorithm
that sorts by per-
forming adjacent
comparisons.

This proof is an example of a lower-bound proof. It is valid not only for
the insertion sort, which performs adjacent exchanges implicitly, but also for
other simple algorithms such as the bubble sort and the selection sort, which
we do not describe here. In fact, it is valid over an entire class of algorithms,
including undiscovered ones, that perform only adjacent exchanges.

Unfortunately, any computational confirmation of a proof applying to a
class of algorithms would require running all algorithms in the class. That is
impossible because there are infinitely many possible algorithms. Hence any
attempt at confirmation would apply only to the algorithms that are run. This
restriction makes the confirmation of the validity of lower-bound proofs more
difficult than the usual single-algorithm upper bounds that we are accustomed
to. A computation could only disprove a lower-bound conjecture; it could
never prove it in general.

Although this lower-bound proof is rather simple, proving lower bounds is
in general much more complicated than proving upper bounds. Lower-bound
arguments are much more abstract than their upper-bound counterparts.

This lower bound shows us that, for a sorting algorithm to run in subqua-
dratic or o(N2) time, it must make comparisons and, in particular, exchanges
between elements that are far apart. A sorting algorithm progresses by elimi-
nating inversions. To run efficiently, it must eliminate more than just one
inversion per exchange.

8.4 shellsort
Shellsort is a sub-
quadratic algorithm
that works well in
practice and is sim-
ple to code. The
performance of
Shellsort is highly
dependent on the
increment
sequence and
requires a challeng-
ing (and not com-
pletely resolved)
analysis.

The first algorithm to improve on the insertion sort substantially was
Shellsort, which was discovered in 1959 by Donald Shell. Though it is not the
fastest algorithm known, Shellsort is a subquadratic algorithm whose code is
only slightly longer than the insertion sort, making it the simplest of the faster
algorithms.

Shell’s idea was to avoid the large amount of data movement, first by
comparing elements that were far apart and then by comparing elements that
were less far apart, and so on, gradually shrinking toward the basic insertion
sort. Shellsort uses a sequence called the increment sequence.
Any increment sequence will do as long as h1 = 1, but some choices are bet-
ter than others. After a phase, using some increment hk, we have

 for every i where i + hk is a valid index; all elements spaced
hk apart are sorted. The array is then said to be hk-sorted.

For example, Figure 8.5 shows an array after several phases of Shellsort.
After a 5-sort, elements spaced five apart are guaranteed to be in correct
sorted order. In the figure, elements spaced five apart are identically shaded

h1 h2 … ht, , ,

a i[] a i hk+[]≤

358 chapter 8 sorting algorithms

and are sorted relative to each other. Similarly, after a 3-sort, elements spaced
three apart are guaranteed to be in sorted order, relative to each other. An
important property of Shellsort (which we state without proof) is that an hk-
sorted array that is then hk –1-sorted remains hk-sorted. If this were not the
case, the algorithm would likely be of little value because work done by early
phases would be undone by later phases.

A diminishing gap
sort is another
name for Shellsort.

In general, an hk-sort requires that, for each position i in , ,
, we place the element in the correct spot among , and

so on. Although this order does not affect the implementation, careful exami-
nation shows that an hk-sort performs an insertion sort on hk independent sub-
arrays (shown in different shades in Figure 8.5). Therefore, not surprisingly,
in Figure 8.7, which we come to shortly, lines 9 to 17 represent a gap inser-
tion sort. In a gap insertion sort, after the loop has been executed, elements
separated by a distance of gap in the array are sorted. For instance, when gap is
1, the loop is identical, statement by statement, to an insertion sort.Thus
Shellsort is also known as diminishing gap sort.

Shell’s increment
sequence is an
improvement over
the insertion sort
(although better
sequences are
known).

As we have shown, when gap is 1 the inner loop is guaranteed to sort the
array a. If gap is never 1, there is always some input for which the array cannot
be sorted. Thus Shellsort sorts so long as gap eventually equals 1. The only
issue remaining, then, is to choose the increment sequence.

Shell suggested starting gap at and halving it until it reaches 1, after
which the program can terminate. Using these increments, Shellsort repre-
sents a substantial improvement over the insertion sort, despite the fact that it
nests three for loops instead of two, which is usually inefficient. By altering
the sequence of gaps, we can further improve the algorithm’s performance. A
summary of Shellsort’s performance with three different choices of increment
sequences is shown in Figure 8.6.

8.4.1 performance of shellsort

The running time of Shellsort depends heavily on the choice of increment
sequences, and in general the proofs can be rather involved. The average-case

figure 8.5

Shellsort after each
pass if the increment
sequence is {1, 3, 5}

Original 81 94 11 96 12 35 17 95 28 58 41 75 15

After 5-sort 35 17 11 28 12 41 75 15 96 58 81 94 95

After 3-sort 28 12 11 35 15 41 58 17 94 75 81 96 95

After 1-sort 11 12 15 17 28 35 41 58 75 81 94 95 96

hk hk 1+

… N 1–, i i hk– i 2hk–, ,

N 2⁄

8.4 shellsort 359

analysis of Shellsort is a long-standing open problem except for the most triv-
ial increment sequences.

In the worst case,
Shell’s increments
give quadratic
behavior.

When Shell’s increments are used, the worst case is O(N2) . This bound is
achievable if N is an exact power of 2, all the large elements are in even-
indexed array positions, and all the small elements are in odd-indexed array
positions. When the final pass is reached, all the large elements will still be in
the even-indexed array positions, and all the small elements will still be in the
odd-indexed array positions. A calculation of the number of remaining inver-
sions shows that the final pass will require quadratic time. The fact that this is
the worst that can happen follows from the fact that an hk-sort consists of hk
insertion sorts of roughly N /hk elements. Thus the cost of each pass is
O(hk(N/hk)

2), or O(N2/hk). When we sum this cost over all the passes, we
obtain O(N2Σ1/hk). The increments are roughly a geometric series, so the sum
is bounded by a constant. The result is a quadratic worst-case running time.
We can also prove via a complex argument that when N is an exact power of 2
the average running time is O(N3/2) . Thus, on average, Shell’s increments
give a significant improvement over insertion sort.

If consecutive
increments are rel-
atively prime, the
performance of
Shellsort is
improved.

A minor change to the increment sequence can prevent the quadratic
worst case from occurring. If we divide gap by 2 and it becomes even, we
can add 1 to make it odd. We can then prove that the worst case is not qua-
dratic but only O(N3/2). Although the proof is complicated, the basis for it
is that in this new increment sequence, consecutive increments share no
common factors (whereas in Shell’s increment sequence they do). Any
sequence that satisfies this property (and whose increments decrease

figure 8.6

Running time of the insertion sort and Shellsort for various increment sequences

 N Insertion Sort

Shellsort

Shell’s Increments Odd Gaps Only Dividing by 2.2

10,000 575 10 11 9

20,000 2,489 23 23 20

40,000 10,635 51 49 41

80,000 42,818 114 105 86

160,000 174,333 270 233 194

320,000 NA 665 530 451

640,000 NA 1,593 1,161 939

360 chapter 8 sorting algorithms

roughly geometrically) will have a worst-case running time of at most
O(N3/2).2 The average performance of the algorithm with these new incre-
ments is unknown but seems to be O(N5/4), based on simulations.

Dividing by 2.2
gives excellent
performance in
practice.

A third sequence, which performs well in practice but has no theoretical
basis, is to divide by 2.2 instead of 2. This divisor appears to bring the aver-
age running time to below O(N5/4)—perhaps to O(N7/6)—but this case is
completely unresolved. For 100,000 to 1,000,000 items, it typically improves
performance by about 25 to 35 percent over Shell’s increments, although
nobody knows why. A Shellsort implementation with this increment sequence
is coded in Figure 8.7. The complicated code at line 8 is necessary to avoid
setting gap to 0. If that happens, the algorithm is broken because we never see
a 1-sort. Line 8 ensures that, if gap is about to be set to 0, it is reset to 1.

 The entries in Figure 8.6 compare the performance of insertion sort and
Shellsort, with various gap sequences. We could easily conclude that
Shellsort, even with the simplest gap sequence, provides a significant
improvement over the insertion sort, at a cost of little additional code com-
plexity. A simple change to the gap sequence can further improve perfor-
mance. More improvement is possible (see in Exercise 8.25). Some of these
improvements have theoretical backing, but no known sequence markedly
improves the program shown in Figure 8.7.

2. To appreciate the subtlety involved, note that subtracting 1 instead of adding 1 does not
work. For instance, if N is 186, the resulting sequence is 93, 45, 21, 9, 3, 1, which all share
the common factor 3.

figure 8.7

Shellsort implementation

1 /**
2 * Shellsort, using a sequence suggested by Gonnet.
3 */
4 public static <AnyType extends Comparable<? super AnyType>>
5 void shellsort(AnyType [] a)
6 {
7 for(int gap = a.length / 2; gap > 0;
8 gap = gap == 2 ? 1 : (int) (gap / 2.2))
9 for(int i = gap; i < a.length; i++)

10 {
11 AnyType tmp = a[i];
12 int j = i;
13
14 for(; j >= gap && tmp.compareTo(a[j-gap]) < 0; j -= gap)
15 a[j] = a[j - gap];
16 a[j] = tmp;
17 }
18 }

8.5 mergesort 361

Shellsort is a good
choice for moder-
ate amounts of
input.

The performance of Shellsort is quite acceptable in practice, even for N in
the tens of thousands. The simplicity of the code makes it the algorithm of
choice for sorting up to moderately large input. It is also a fine example of a
very simple algorithm with an extremely complex analysis.

8.5 mergesort
Mergesort uses
divide-and-con-
quer to obtain an
O(N log N) run-
ning time.

Recall from Section 7.5 that recursion can be used to develop subquadratic
algorithms. Specifically, a divide-and-conquer algorithm in which two half-
size problems are solved recursively with an O(N) overhead results in the
algorithm O(N log N) . Mergesort is such an algorithm. It offers a better
bound, at least theoretically, than the bounds claimed for Shellsort.

The mergesort algorithm involves three steps.

1. If the number of items to sort is 0 or 1, return.

2. Recursively sort the first and second halves separately.

3. Merge the two sorted halves into a sorted group.

Merging of sorted
arrays can be done
in linear time.

To claim an O(N log N) algorithm, we need only to show that the merging of
two sorted groups can be performed in linear time. In this section we show how to
merge two input arrays, A and B, placing the result in a third array, C. We then
provide a simple implementation of mergesort. The merge routine is the corner-
stone of most external sorting algorithms, as demonstrated in Section 21.6.

8.5.1 linear-time merging of sorted arrays

The basic merge algorithm takes two input arrays, A and B, an output array, C,
and three counters, Actr, Bctr, and Cctr, which are initially set to the beginning
of their respective arrays. The smaller of A[Actr] and B[Bctr] is copied to the
next entry in C, and the appropriate counters are advanced. When either input
array is exhausted, the rest of the other array is copied to C.

An example of how the merge routine works is provided for the following
input:

1 13 24 26 2 15 27 38

BctrActr Cctr

362 chapter 8 sorting algorithms

If array A contains 1, 13, 24, 26 and B contains 2, 15, 27, 38, the algorithm
proceeds as follows. First, a comparison is made between 1 and 2, 1 is added
to C, and 13 and 2 are compared:

Then 2 is added to C, and 13 and 15 are compared:

Next, 13 is added to C, and 24 and 15 are compared:

The process continues until 26 and 27 are compared:

Then 26 is added to C, and the A array is exhausted:

1 13 24 26 2 15 27 38

BctrActr Cctr

1

1 13 24 26 2 15 27 38

BctrActr Cctr

1 2

1 13 24 26 2 15 27 38

BctrActr Cctr

1 2 13

1 13 24 26 2 15 27 38

BctrActr Cctr

1 2 13 15

1 13 24 26 2 15 27 38

BctrActr Cctr

1 2 13 15 24

1 13 24 26 2 15 27 38

BctrActr Cctr

1 2 13 15 24 26

8.5 mergesort 363

Finally, the remainder of the B array is copied to C:

The time needed to merge two sorted arrays is linear because each com-
parison advances Cctr (thus limiting the number of comparisons). As a result,
a divide-and-conquer algorithm that uses a linear merging procedure runs in
O(N log N) worst-case time. This running time also represents the average-
case and best-case times because the merging step is always linear.

An example of the mergesort algorithm would be sorting the 8-element
array 24, 13, 26, 1, 2, 27, 38, 15. After recursively sorting the first four and
last four elements, we obtain 1, 13, 24, 26, 2, 15, 27, 38. Then we merge the
two halves, obtaining the final array 1, 2, 13, 15, 24, 26, 27, 38.

8.5.2 the mergesort algorithm
Mergesort uses lin-
ear extra memory,
which is a practical
liability.

A straightforward implementation of mergesort is shown in Figure 8.8. The
one-parameter, nonrecursive mergeSort is a simple driver that declares a tempo-
rary array and calls recursive mergeSort with the boundaries of the array. The
merge routine follows the description given in Section 8.5.1. It uses the first half
of the array (indexed from left to center) as A, the second half (indexed from
center+1 to right) as B, and the temporary as C. Figure 8.9 implements the
merge routine. The temporary is then copied back into the original array.

Excessive copying
can be avoided
with more work, but
the linear extra
memory cannot be
removed without
excessive time
penalties.

Although mergesort’s running time is O(N log N) , it has the significant
problem that merging two sorted lists uses linear extra memory. The addi-
tional work involved in copying to the temporary array and back, throughout
the algorithm, slows the sort considerably. This copying can be avoided by
judiciously switching the roles of a and tmpArray at alternate levels in the
recursion. A variant of mergesort can also be implemented nonrecursively.

The running time of mergesort depends heavily on the relative costs of
comparing elements and moving elements in the array (and the temporary
array). In the case of sorting general objects in Java, an element comparison is
expensive because in a general setting, the comparison is done by function
objects. On the other hand, moving elements is inexpensive because the ele-
ments are not copied; instead, references simply change. Mergesort uses the
fewest number of comparisons of all the popular sorting algorithms and thus
is a good candidate for general-purpose sorting in Java. In fact, it is the algo-
rithm used in java.util.Arrays.sort to sort arrays of objects. These relative
costs do not apply in other languages, nor do they apply for sorting primitive

1 13 24 26 2 15 27 38

BctrActr Cctr

1 2 13 15 24 26 27 38

364 chapter 8 sorting algorithms

types in Java. An alternative algorithm is quicksort, which we describe in the
next section. Quicksort is the algorithm used in C++ to sort all types, and it is
used in java.util.Arrays.sort to sort arrays of primitive types.

8.6 quicksort
When properly
implemented,
quicksort is a fast
divide-and-
conquer algorithm.

As its name implies, quicksort is a fast divide-and-conquer algorithm. Its
average running time is O(N log N) . Its speed is mainly due to a very tight
and highly optimized inner loop. It has quadratic worst-case performance,
which can be made statistically unlikely to occur with a little effort. On
the one hand, the quicksort algorithm is relatively simple to understand
and prove correct because it relies on recursion. On the other hand, it is a
tricky algorithm to implement because minute changes in the code can

figure 8.8

Basic mergeSort routines

1 /**
2 * Mergesort algorithm.
3 * @param a an array of Comparable items.
4 */
5 public static <AnyType extends Comparable<? super AnyType>>
6 void mergeSort(AnyType [] a)
7 {
8 AnyType [] tmpArray = (AnyType []) new Comparable[a.length];
9 mergeSort(a, tmpArray, 0, a.length - 1);

10 }
11
12 /**
13 * Internal method that makes recursive calls.
14 * @param a an array of Comparable items.
15 * @param tmpArray an array to place the merged result.
16 * @param left the left-most index of the subarray.
17 * @param right the right-most index of the subarray.
18 */
19 private static <AnyType extends Comparable<? super AnyType>>
20 void mergeSort(AnyType [] a, AnyType [] tmpArray,
21 int left, int right)
22 {
23 if(left < right)
24 {
25 int center = (left + right) / 2;
26 mergeSort(a, tmpArray, left, center);
27 mergeSort(a, tmpArray, center + 1, right);
28 merge(a, tmpArray, left, center + 1, right);
29 }
30 }

8.6 quicksort 365

make significant differences in running time. We first describe the algo-
rithm in broad terms. We then provide an analysis that shows its best-,
worst-, and average-case running times. We use this analysis to make deci-
sions about how to implement certain details in Java, such as the handling
of duplicate items.

Consider the following simple sorting algorithm to sort a list: arbitrarily
choose any item, and then form three groups: those smaller than the chosen
item, those equal to the chosen item, and those larger than the chosen item.
Recursively sort the first and third groups, and then concatenate the three
groups. The result is guaranteed to be a sorted arrangement of the original
list (we will verify this soon). A direct implementation of this algorithm is
shown in Figure 8.10, and its performance is generally speaking, quite
respectable on most inputs. In fact, if the list contains large numbers of

figure 8.9

The merge routine

1 /**
2 * Internal method that merges two sorted halves of a subarray.
3 * @param a an array of Comparable items.
4 * @param tmpArray an array to place the merged result.
5 * @param leftPos the left-most index of the subarray.
6 * @param rightPos the index of the start of the second half.
7 * @param rightEnd the right-most index of the subarray.
8 */
9 private static <AnyType extends Comparable<? super AnyType>>

10 void merge(AnyType [] a, AnyType [] tmpArray,
11 int leftPos, int rightPos, int rightEnd)
12 {
13 int leftEnd = rightPos - 1;
14 int tmpPos = leftPos;
15 int numElements = rightEnd - leftPos + 1;
16
17 // Main loop
18 while(leftPos <= leftEnd && rightPos <= rightEnd)
19 if(a[leftPos].compareTo(a[rightPos]) <= 0)
20 tmpArray[tmpPos++] = a[leftPos++];
21 else
22 tmpArray[tmpPos++] = a[rightPos++];
23
24 while(leftPos <= leftEnd) // Copy rest of first half
25 tmpArray[tmpPos++] = a[leftPos++];
26
27 while(rightPos <= rightEnd) // Copy rest of right half
28 tmpArray[tmpPos++] = a[rightPos++];
29
30 // Copy tmpArray back
31 for(int i = 0; i < numElements; i++, rightEnd--)
32 a[rightEnd] = tmpArray[rightEnd];
33 }

366 chapter 8 sorting algorithms

duplicates with relatively few distinct items, as is sometimes the case, then
the performance is extremely good.

The algorithm we have described forms the basis of the classic sorting
algorithm, quicksort. However, by making the extra lists, and doing so recur-
sively, it is hard to see how we have improved upon mergesort. In fact so far,
we really haven’t. In order to do better, we must avoid using significant extra
memory and have inner loops that are clean. Thus quicksort is commonly
written in a manner that avoids creating the second group (the equal items),
and the algorithm has numerous subtle details that affect the performance.
The rest of the section describes the most common implementation of quick-
sort, namely one in which the input is an array, and which no extra arrays are
created by the algorithm.

figure 8.10

Simple recursive sorting algorithm

1 public static void sort(List<Integer> items)
2 {
3 if(items.size() > 1)
4 {
5 List<Integer> smaller = new ArrayList<Integer>();
6 List<Integer> same = new ArrayList<Integer>();
7 List<Integer> larger = new ArrayList<Integer>();
8
9 Integer chosenItem = items.get(items.size() / 2);

10 for(Integer i : items)
11 {
12 if(i < chosenItem)
13 smaller.add(i);
14 else if(i > chosenItem)
15 larger.add(i);
16 else
17 same.add(i);
18 }
19
20 sort(smaller); // Recursive call!
21 sort(larger); // Recursive call!
22
23 items.clear();
24 items.addAll(smaller);
25 items.addAll(same);
26 items.addAll(larger);
27 }
28 }

8.6 quicksort 367

The basic quick-
sort algorithm is
recursive. Details
include choosing
the pivot, deciding
how to partition,
and dealing with
duplicates. Wrong
decisions give qua-
dratic running times
for a variety of
common inputs.

8.6.1 the quicksort algorithm

The basic algorithm Quicksort(S) consists of the following four steps.

1. If the number of elements in S is 0 or 1, then return.

2. Pick any element v in S. It is called the pivot.

3. Partition S – {v} (the remaining elements in S) into two disjoint
groups: L = and R = .

4. Return the result of Quicksort(L) followed by v followed by
Quicksort(R).

The pivot divides
array elements into
two groups: those
smaller than the
pivot and those
larger than the
pivot.

Several points stand out when we look at these steps. First, the multibase case
of the recursion includes the possibility that S might be an empty (multi) set. This
provision is needed because the recursive calls could generate empty subsets. Sec-
ond, the algorithm allows any element to be used as the pivot. The pivot divides
array elements into two groups: elements that are smaller than the pivot and ele-
ments that are larger than the pivot. The analysis performed here shows that some
choices for the pivot are better than others. Thus, when we provide an actual imple-
mentation, we do not use just any pivot. Instead we try to make an educated choice.

In the partition step
every element
except the pivot is
placed in one of
two groups.

In the partition step, every element in S, except for the pivot, is placed in
either L (which stands for the left-hand part of the array) or R (which stands
for the right-hand part of the array). The intent is that elements that are
smaller than the pivot go to L and that elements larger than the pivot go to R.
The description in the algorithm, however, ambiguously describes what to do
with elements equal to the pivot. It allows each instance of a duplicate to go
into either subset, specifying only that it must go to one or the other. Part of a
good Java implementation is handling this case as efficiently as possible.
Again, the analysis allows us to make an informed decision.

Figure 8.11 shows the action of quicksort on a set of numbers. The pivot is
chosen (by chance) to be 65. The remaining elements in the set are partitioned
into two smaller subsets. Each group is then sorted recursively. Recall that, by
the third rule of recursion, we can assume that this step works. The sorted
arrangement of the entire group is then trivially obtained. In a Java implementa-
tion, the items would be stored in a part of an array delimited by low and high.
After the partitioning step, the pivot would wind up in some array cell p. The
recursive calls would then be on the parts from low to p-1 and then p+1 to high.

Because recursion allows us to take the giant leap of faith, the correctness
of the algorithm is guaranteed as follows.

n The group of small elements is sorted by virtue of the recursion.

n The largest element in the group of small elements is not larger than
the pivot by virtue of the partition.

x S v{ }– x v≤∈{ } x S v{ }–∈ x v≥{ }

368 chapter 8 sorting algorithms

n The pivot is not larger than the smallest element in the group of large
elements by virtue of the partition.

n The group of large elements is sorted by virtue of the recursion.

Quicksort is fast
because the parti-
tioning step can be
performed quickly
and in place.

Although the correctness of the algorithm is easily established, why it is
faster than mergesort is not clear. Like mergesort, it recursively solves two
subproblems and requires linear additional work (in the form of the partition-
ing step). Unlike mergesort, however, quicksort subproblems are not guaran-
teed to be of equal size, which is bad for performance. However, quicksort

81

13 43

92

31

65

57

26

75

0

81

13 43

92

31

65

57

26

75

0

8113 43 92
31 65

5726

750

8113 43 9231 655726 750

8113 43 9231 655726 750

Select pivot

Partition

Quicksort
small items

Quicksort
large items

figure 8.11

The steps of quicksort

8.6 quicksort 369

can be faster than mergesort because the partitioning step can be performed
significantly faster than the merging step can. In particular, the partitioning
step can be performed without using an extra array, and the code to implement
it is very compact and efficient. This advantage makes up for the lack of
equally sized subproblems.

8.6.2 analysis of quicksort

The algorithm description leaves several questions unanswered: How do we
choose the pivot? How do we perform the partition? What do we do if we see
an element that is equal to the pivot? All these questions can dramatically
affect the running time of the algorithm. We perform an analysis to help us
decide how to implement the unspecified steps in quicksort.

best case
The best case
occurs when the
partition always
splits into equal
subsets. The run-
ning time is
O(N log N).

The best case for quicksort is that the pivot partitions the set into two
equally sized subsets and that this partitioning happens at each stage of the
recursion. We then have two half-sized recursive calls plus linear overhead,
which matches the performance of mergesort. The running time for this case
is O(N log N) . (We have not actually proved that this is the best case.
Although such a proof is possible, we omit the details here.)

worst case
The worst case
occurs when the
partition repeatedly
generates an
empty subset. The
running time is
O(N2) .

Since equally sized subsets are good for quicksort, you might expect that
unequally sized subsets are bad. That indeed is the case. Let us suppose
that, in each step of the recursion, the pivot happens to be the smallest ele-
ment. Then the set of small elements L will be empty, and the set of large
elements R will have all the elements except the pivot. We then have to
recursively call quicksort on subset R. Suppose also that T(N) is the run-
ning time to quicksort N elements and we assume that the time to sort 0 or
1 element is just 1 time unit. Suppose further that we charge N units to
partition a set that contains N elements. Then for N > 1, we obtain a run-
ning time that satisfies

(8.1)

In other words, Equation 8.1 states that the time required to quicksort N
items equals the time to sort recursively the N – 1 items in the subset of
larger elements plus the N units of cost to perform the partition. This
assumes that in each step of the iteration we are unfortunate enough to pick
the smallest element as the pivot. To simplify the analysis, we normalize by

T N() T N 1–() N+=

370 chapter 8 sorting algorithms

throwing out constant factors and solve this recurrence by telescoping
Equation 8.1 repeatedly:

(8.2)

When we add everything in Equation 8.2, we obtain massive cancellations,
yielding

(8.3)

This analysis verifies the intuition that an uneven split is bad. We spend
N units of time to partition and then have to make a recursive call for N – 1
elements. Then we spend N – 1 units to partition that group, only to have to
make a recursive call for N – 2 elements. In that call we spend N – 2 units
performing the partition, and so on. The total cost of performing all the par-
titions throughout the recursive calls exactly matches what is obtained in
Equation 8.3. This result tells us that, when implementing the selection of
the pivot and the partitioning step, we do not want to do anything that might
encourage the size of the subsets to be unbalanced.

average case
The average case
is O(N log N)
Although this
seems intuitive, a
formal proof is
required.

The first two analyses tell us that the best and worst cases are widely different.
Naturally, we want to know what happens in the average case. We would
expect that, as each subproblem is half the original on average, the O(N log N)
would now become an average-case bound. Such an expectation, although cor-
rect for the particular quicksort application we examine here, does not consti-
tute a formal proof. Averages cannot be thrown around lightly. For example,
suppose that we have a pivot algorithm guaranteed to select only the smallest
or largest element, each with probability 1/2. Then the average size of the
small group of elements is roughly , as is the average size of the large
group of elements (because each is equally likely to have 0 or elements).
But the running time of quicksort with that pivot selection is always quadratic
because we always get a poor split of elements. Thus we must carefully assign
the label average. We can argue that the group of small elements is as likely to
contain 0, 1, 2, , or elements, which is also true for the group of large
elements. Under this assumption we can establish that the average-case run-
ning time is indeed O(N log N) .

T N() T N 1–() N+=

T N 1–() T N 2–() N 1–()+=

T N 2–() T N 3–() N 2–()+=
…

T 2() T 1() 2+=

T N() T 1() 2 3 … N+ + + + N N 1+()
2

---------------------- O N2()= = =

N 2⁄
N 1–

… N 1–

8.6 quicksort 371

Once we have
T(N) in terms of
T(N –1) only,
we attempt to
telescope.

The average cost of
a recursive call is
obtained by averag-
ing the costs of all
possible subprob-
lem sizes.

Because the cost to quicksort N items equals N units for the partitioning
step plus the cost of the two recursive calls, we need to determine the average
cost of each of the recursive calls. If T(N) represents the average cost to quick-
sort N elements, the average cost of each recursive call equals the average—
over all possible subproblem sizes—of the average cost of a recursive call on
the subproblem:

(8.4)

Equation 8.4 states that we are looking at the costs for each possible subset
size and averaging them. As we have two recursive calls plus linear time to
perform the partition, we obtain

(8.5)

The average run-
ning time is given
by T(N) . We solve
Equation 8.5 by
removing all but the
most recent recur-
sive value of T.

To solve Equation 8.5, we begin by multiplying both sides by N, obtaining

(8.6)

We then write Equation 8.6 for the case N – 1, with the idea being that we can
greatly simplify the equation by subtraction. Doing so yields

(8.7)

Now, if we subtract Equation 8.7 from Equation 8.6, we obtain

We rearrange terms and drop the insignificant –1 on the right-hand side,
obtaining

(8.8)

We now have a formula for T(N) in terms of T(N – 1) only. Again the idea is to
telescope, but Equation 8.8 is in the wrong form. If we divide Equation 8.8 by
N(N + 1), we get

T L() T R() T 0() T 1() T 2() … T N 1–()+ + + +
N

---= =

T N() 2 T 0() T 1() T 2() … T N 1–()+ + + +
N

---⎝ ⎠
⎛ ⎞ N+=

NT N() 2 T 0() T 1() T 2() … T N 1–()+ + + +() N 2+=

N 1–()T N 1–() 2 T 0() T 1() … T N 2–()+ + +() N 1–()2+=

NT N() N 1–()T N 1–()– 2T N 1–() 2N 1–+=

NT N() N 1+()T N 1–() 2N+=

T N()
N 1+

T N 1–()
N

2

N 1+
-------------+=

372 chapter 8 sorting algorithms

Now we can telescope:

(8.9)

If we add all the equations in Equation 8.9, we have

(8.10)

We use the fact
that the Nth har-
monic number is
O (logN).

The last line in Equation 8.10 follows from Theorem 5.5. When we multiply
both sides by , we obtain the final result:

(8.11)

8.6.3 picking the pivot

Now that we have established that quicksort will run in O(N log N) time on
average, our primary concern is to ensure that the worst case does not occur.
By performing a complex analysis, we can compute the standard deviation
of quicksort’s running time. The result is that, if a single random permuta-
tion is presented, the running time used to sort it will almost certainly be
close to the average. Thus we must see to it that degenerate inputs do not
result in bad running times. Degenerate inputs include data that have
already been sorted and data that contain only N completely identical ele-
ments. Sometimes it is the easy cases that give algorithms trouble.

T N()
N 1+

T N 1–()
N

2

N 1+
-------------+=

T N 1–()
N

T N 2–()

N 1–

2
N
----+=

T N 2–()
N 1–

T N 3–()

N 2–

2
N 1–
-------------+=

…
T 2()

3

T 1()
2

2
3
---+=

T N()
N 1+
------------- T 1()

2
----------- 2 1

3

1
4
--- … 1

N

1
N 1+
-------------+ + + +⎝ ⎠

⎛ ⎞+=

2 1 1
2

1
3
--- … 1

N 1+
-------------+ + + +⎝ ⎠

⎛ ⎞ 5
2
---–=

O Nlog()=

N 1+

T N() O N Nlog()=

8.6 quicksort 373

a wrong way
Picking the pivot is
crucial to good per-
formance. Never
choose the first
element as pivot.

The popular, uninformed choice is to use the first element (i.e., the element in
position low) as the pivot. This selection is acceptable if the input is random,
but if the input has been presorted or is in reverse order, the pivot provides a
poor partition because it is an extreme element. Moreover, this behavior will
continue recursively. As we demonstrated earlier in the chapter, we would end
up with quadratic running time to do absolutely nothing. Needless to say, that
would be embarrassing. Never use the first element as the pivot.

Another popular alternative is to choose the larger of the first two distinct
keys3 as the pivot, but this selection has the same bad effects as choosing the
first key. Stay away from any strategy that looks only at some key near the
front or end of the input group.

a safe choice
The middle element
is a reasonable but
passive choice.

A perfectly reasonable choice for the pivot is the middle element (i.e., the ele-
ment in array cell (low+high)/2). When the input has already been sorted, this
selection gives the perfect pivot in each recursive call. Of course, we could
construct an input sequence that forces quadratic behavior for this strategy
(see Exercise 8.8). However, the chances of randomly running into a case that
took even twice as long as the average case is extremely small.

median-of-three partitioning
In median-of-three
partitioning, the
median of the first,
middle, and last
elements is used as
the pivot. This
approach simplifies
the partitioning
stage of quicksort.

Choosing the middle element as the pivot avoids the degenerate cases that
arise from nonrandom inputs. Note that this is a passive choice, however. That
is, we do not attempt to choose a good pivot. Instead, we merely try to avoid
picking a bad pivot. Median-of-three partitioning is an attempt to pick a better
than average pivot. In median-of-three partitioning, the median of the first,
middle, and last elements is used as the pivot.

The median of a group of N numbers is the th smallest number.
The best choice for the pivot clearly is the median because it guarantees an
even split of the elements. Unfortunately, the median is hard to calculate, which
would slow quicksort considerably. So we want to get a good estimate of the
median without spending too much time doing so. We can obtain such an esti-
mate by sampling—the classic method used in opinion polls. That is, we pick a
subset of these numbers and find their median. The larger the sample, the more
accurate the estimate. However, the larger sample takes longer to evaluate. A
sample size of 3 gives a small improvement in the average running time of
quicksort and also simplifies the resulting partitioning code by eliminating

3. In a complex object, the key is usually the part of the object on which the comparison is based.

N 2⁄

374 chapter 8 sorting algorithms

some special cases. Large sample sizes do not significantly improve perfor-
mance and thus are not worth using.

The three elements used in the sample are the first, middle, and last ele-
ments. For instance, with input 8, 1, 4, 9, 6, 3, 5, 2, 7, 0, the leftmost element
is 8, the rightmost element is 0, and the center element is 6; thus the pivot
would be 6. Note that for already sorted items, we keep the middle element as
the pivot, and in this case, the pivot is the median.

8.6.4 a partitioning strategy

There are several commonly used partitioning strategies. The one that we
describe in this section gives good results. The simplest partitioning strategy
consists of three steps. In Section 8.6.6 we show the improvements that occur
when median-of-three pivot selection is used.

Step 1: Swap the
pivot with the ele-
ment at the end.

The first step in the partitioning algorithm is to get the pivot element out
of the way by swapping it with the last element. The result for our sample
input is shown in Figure 8.12. The pivot element is shown in the darkest shade
at the end of the array.

For now we assume that all the elements are distinct and leave for later
what to do in the presence of duplicates. As a limiting case, our algorithm
must work properly when all the elements are identical.

Step 2: Run i from
left to right and j
from right to left.
When i encoun-
ters a large ele-
ment, i stops.
When j encoun-
ters a small ele-
ment, j stops. If i
and j have not
crossed, swap their
items and con-
tinue. Otherwise,
stop this loop.

In step 2, we use our partitioning strategy to move all the small elements
to the left in the array and all the large elements to the right. Small and large
are relative to the pivot. In Figures 8.12–8.17, white cells are those that we
know are correctly placed. The lightly shaded cells are not necessarily cor-
rectly placed.

We search from left to right, looking for a large element, using a counter
i, initialized at position low. We also search from right to left, looking for a
small element, using a counter j, initialized to start at high-1. Figure 8.13
shows that the search for a large element stops at 8 and the search for a small
element stops at 2. These cells have been lightly shaded. Note that, by skip-
ping past 7, we know that 7 is not small and thus is correctly placed. Thus it is

8 1 4 9 0 3 5 2 7 6

figure 8.12

Partitioning algorithm:
Pivot element 6 is
placed at the end.

8 1 4 9 0 3 5 2 7 6

figure 8.13

Partitioning algorithm:
i stops at large
element 8; j stops at
small element 2.

8.6 quicksort 375

a white cell. Now, we have a large element, 8, on the left-hand side of the
array and a small element, 2, on the right-hand side of the array. We must
swap these two elements to place them correctly, as shown in Figure 8.14.

As the algorithm continues, i stops at large element 9 and j stops at small
element 5. Once again, elements that i and j skip during the scan are guaran-
teed to be correctly placed. Figure 8.15 shows the result: The ends of the array
(not counting the pivot) are filled with correctly placed elements.

Next, swap the elements that i and j are indexing, as shown in Figure 8.16.
The scan continues, with i stopping at large element 9 and j stopping at
small element 3. However, at this point i and j have crossed positions in the
array. Consequently, a swap would be useless. Hence Figure 8.17 shows that
the item being accessed by j is already correctly placed and should not
move.

Step 3: Swap the
element in position
i with the pivot.

Figure 8.17 shows that all but two items are correctly placed. Wouldn’t it
be nice if we could just swap them and be done? Well, we can. All we need to
do is swap the element in position i and the element in the last cell (the pivot),
as shown in Figure 8.18. The element that i is indexing clearly is large, so
moving it to the last position is fine.

2 1 4 9 0 3 5 8 7 6

figure 8.14

Partitioning algorithm:
The out-of-order
elements 8 and 2 are
swapped.

2 1 4 9 0 3 5 8 7 6

figure 8.15

Partitioning algorithm:
i stops at large
element 9; j stops at
small element 5.

2 1 4 5 0 3 9 8 7 6

figure 8.16

Partitioning algorithm:
The out-of-order
elements 9 and 5 are
swapped.

2 1 4 5 0 3 9 8 7 6

figure 8.17

Partitioning algorithm:
i stops at large
element 9; j stops at
small element 3.

2 1 4 5 0 3 6 8 7 9

figure 8.18

Partitioning algorithm:
Swap pivot and
element in position i.

376 chapter 8 sorting algorithms

Note that the partitioning algorithm requires no extra memory and that
each element is compared exactly once with the pivot. When the code is writ-
ten, this approach translates to a very tight inner loop.

8.6.5 keys equal to the pivot

One important detail that we must consider is how to handle keys that are
equal to the pivot. Should i stop when it encounters a key equal to the pivot,
and should j stop when it encounters a key equal to the pivot? Counters i and
j should do the same thing; otherwise, the partitioning step is biased. For
instance, if i stops and j does not, all keys that are equal to the pivot wind up
on the right-hand side.

Let us consider the case in which all elements in the array are identical. If
both i and j stop, many swaps will occur between identical elements. Although
these actions seem useless, the positive effect is that i and j cross in the mid-
dle, so when the pivot is replaced the partition creates two nearly equal subsets.
Thus the best-case analysis applies, and the running time is O(N log N) .

If neither i nor j stops, then i winds up at the last position (assuming of
course that it does stop at the boundary), and no swaps are performed. This
result seems great until we realize that the pivot is then placed as the last ele-
ment because that is the last cell that i touches. The result is widely uneven
subsets and a running time that matches the worst-case bound of O(N2). The
effect is the same as using the first element as a pivot for presorted input: It
takes quadratic time to do nothing.

Counters i and j
must stop when
they encounter an
item equal to the
pivot to guarantee
good performance.

We conclude that doing the unnecessary swaps and creating even subsets
is better than risking widely uneven subsets. Therefore we have both i and j
stop if they encounter an element equal to the pivot. This action turns out to be
the only one of the four possibilities that does not take quadratic time for this
input.

At first glance, worrying about an array of identical elements may seem
silly. After all, why would anyone want to sort 5,000 identical elements?
However, recall that quicksort is recursive. Suppose that there are 100,000
elements, of which 5,000 are identical. Eventually quicksort could make the
recursive call on only the 5,000 identical elements. Then, ensuring that 5,000
identical elements can be sorted efficiently really is important.

8.6.6 median-of-three partitioning

When we do median-of-three partitioning, we can do a simple optimization
that saves a few comparisons and also greatly simplifies the code. Figure 8.19
shows the original array.

8.6 quicksort 377

Computing the
median-of-three
involves sorting
three elements.
Hence we can give
the partitioning
step a head start
and also never
worry about run-
ning off the end of
the array.

Recall that median-of-three partitioning requires that we find the median
of the first, middle, and last elements. The easiest way to do so is to sort them
in the array. The result is shown in Figure 8.20. Note the resulting shading:
The element that winds up in the first position is guaranteed to be smaller than
(or equal to) the pivot, and the element in the last position is guaranteed to be
larger than (or equal to) the pivot. This outcome tells us four things.

n We should not swap the pivot with the element in the last position.
Instead, we should swap it with the element in the next-to-last posi-
tion, as shown in Figure 8.21.

n We can start i at low+1 and j at high-2.

n We are guaranteed that, whenever i searches for a large element, it
will stop because in the worst case it will encounter the pivot (and we
stop on equality).

n We are guaranteed that, whenever j searches for a small element, it
will stop because in the worst case it will encounter the first element
(and we stop on equality).

All these optimizations are incorporated into the final Java code.

8.6.7 small arrays
Sort 10 or fewer
items by insertion
sort. Place this test
in the recursive
quicksort routine.

Our final optimization concerns small arrays. Is using a high-powered routine
such as quicksort worthwhile when there are only 10 elements to sort? The
answer is of course not. A simple routine, such as the insertion sort, probably
is faster for small arrays. The recursive nature of quicksort tells us that we

8 1 4 9 6 3 5 2 7 0

figure 8.19

Original array

0 1 4 9 6 3 5 2 7 8

figure 8.20

Result of sorting three
elements (first, middle,
and last)

0 1 4 9 7 3 5 2 6 8

figure 8.21

Result of swapping
the pivot with the
next-to-last element

378 chapter 8 sorting algorithms

would generate many calls that have only small subsets. Thus testing the size
of the subset is worthwhile. If it is smaller than some cutoff, we apply inser-
tion sort; otherwise, we use quicksort.

A good cutoff is 10 elements, although any cutoff between 5 and 20 is
likely to produce similar results. The actual best cutoff is machine dependent.
Using a cutoff saves us from degenerate cases. For example, finding the
median of three elements does not make much sense when there are not three
elements.

In the past, many thought that an even better alternative was to leave the
array slightly unsorted by doing absolutely nothing when the subset size was
below the cutoff. Because the insertion sort is so efficient for nearly sorted
arrays, we could show mathematically that running a final insertion sort to
clean up the array was faster than running all the smaller insertion sorts. The
savings were roughly the overhead of the insertion sort method calls.

Now, method calls are not as expensive as they used to be. Furthermore a
second scan of the array for the insertion sort is expensive. Because of a tech-
nique called caching, we are better off doing the insertion sort on the small
arrays. Localized memory accesses are faster than nonlocalized accesses. On
many machines, touching memory twice in one scan is faster than touching
memory once in each of two separate scans.

The idea of combining a second sorting algorithm when recursive calls to
quicksort seem inappropriate can also be used to guarantee an O(N log N)
worst case for quicksort. In Exercise 8.20 you are asked to explore combining
quicksort and mergesort to get quicksort’s average-case performance almost
all the time with mergesort’s worst-case guarantee. In practice, instead of
mergesort we use another algorithm, namely heapsort, which we discuss in
Section 21.5.

8.6.8 java quicksort routine
We use a driver to
set things up.

The actual implementation of quicksort is shown in Figure 8.22. The one-
parameter quicksort, declared at lines 4 to 8, is merely a driver that calls the
recursive quicksort. Thus we discuss only the implementation of the recursive
quicksort.

At line 17 we test for small subarrays and call the insertion sort (not
shown) when the problem instance is below some specified value given by the
constant CUTOFF. Otherwise, we proceed with the recursive procedure. Lines 21
to 27 sort the low, middle, and high elements in place. In keeping with our
previous discussion, we use the middle element as the pivot and swap it with
the element in the next-to-last position at lines 30 and 31. We then do the par-
titioning phase. We initialize the counters i and j to 1 past their true initial val-
ues because the prefix increment and decrement operators will immediately

8.6 quicksort 379

figure 8.22

Quicksort with
median-of-three
partitioning and cutoff
for small arrays

1 /**
2 * Quicksort algorithm (driver)
3 */
4 public static <AnyType extends Comparable<? super AnyType>>
5 void quicksort(AnyType [] a)
6 {
7 quicksort(a, 0, a.length - 1);
8 }
9

10 /**
11 * Internal quicksort method that makes recursive calls.
12 * Uses median-of-three partitioning and a cutoff.
13 */
14 private static <AnyType extends Comparable<? super AnyType>>
15 void quicksort(AnyType [] a, int low, int high)
16 {
17 if(low + CUTOFF > high)
18 insertionSort(a, low, high);
19 else
20 { // Sort low, middle, high
21 int middle = (low + high) / 2;
22 if(a[middle].compareTo(a[low]) < 0)
23 swapReferences(a, low, middle);
24 if(a[high].compareTo(a[low]) < 0)
25 swapReferences(a, low, high);
26 if(a[high].compareTo(a[middle]) < 0)
27 swapReferences(a, middle, high);
28
29 // Place pivot at position high - 1
30 swapReferences(a, middle, high - 1);
31 AnyType pivot = a[high - 1];
32
33 // Begin partitioning
34 int i, j;
35 for(i = low, j = high - 1; ;)
36 {
37 while(a[++i].compareTo(pivot) < 0)
38 ;
39 while(pivot.compareTo(a[--j]) < 0)
40 ;
41 if(i >= j)
42 break;
43 swapReferences(a, i, j);
44 }
45 // Restore pivot
46 swapReferences(a, i, high - 1);
47
48 quicksort(a, low, i - 1); // Sort small elements
49 quicksort(a, i + 1, high); // Sort large elements
50 }
51 }

380 chapter 8 sorting algorithms

adjust them before the array accesses at lines 37 and 39. When the first while
loop at line 37 exits, i will be indexing an element that is greater than or pos-
sibly equal to the pivot. Likewise, when the second loop ends, j will be index-
ing an element that is less than or possibly equal to the pivot. If i and j have
not crossed, these elements are swapped and we continue scanning. Other-
wise, the scan is terminated and the pivot is restored at line 46. The sort is fin-
ished when the two recursive calls are made at lines 48 and 49.

The inner loop of
quicksort is very
tight and efficient.

The fundamental operations occur at lines 37 through 40. The scans con-
sist of simple operations: increments, array accesses, and simple comparisons,
accounting for the “quick” in quicksort. To ensure that the inner loops are
tight and efficient, we want to be sure that the swap at line 43 comprises the
three assignments that we expect and does not incur the overhead of a method
call. Thus we declare that the swapReferences routine is a final static method,
or in some cases, we write the three assignments explicitly (e.g., if the com-
piler exercises its right to not perform inline optimization).

Quicksort is a clas-
sic example of
using an analysis to
guide program
implementation.

Although the code looks straightforward now, that is only because of the
analysis we performed prior to coding. Additionally, some traps are still lurk-
ing (see Exercise 8.16). Quicksort is a classic example of using an analysis to
guide a program implementation.

8.7 quickselect
Selection is finding
the k th smallest
element of an array.

A problem closely related to sorting is selection, or finding the kth smallest
element in an array of N items. An important special case is finding the
median, or the N / 2th smallest element. Obviously, we can sort the items,
but as selection requests less information than sorting, we hope that selec-
tion would be a faster process. That turns out to be true. By making a small
change to quicksort, we can solve the selection problem in linear time on
average, giving us the algorithm quickselect. The steps for Quickselect(S, k)
are as follows.

1. If the number of elements in S is 1, presumably k is also 1, so we can
return the single element in S.

2. Pick any element v in S. It is the pivot.

3. Partition S – {v} into L and R, exactly as was done for quicksort.

4. If k is less than or equal to the number of elements in L, the item we
are searching for must be in L. Call Quickselect(L, k) recursively.
Otherwise, if k is exactly equal to 1 more than the number of items
in L, the pivot is the kth smallest element, and we can return it as the

8.8 a lower bound for sorting 381

answer. Otherwise, the kth smallest element lies in R, and it is the
(k – |L| – 1)th smallest element in R. Again, we can make a recur-
sive call and return the result.

Quickselect is used
to perform a selec-
tion. It is similar to
quicksort but
makes only one
recursive call. The
average running
time is linear.

Quickselect makes only one recursive call compared to quicksort’s two.
The worst case of quickselect is identical to that of quicksort and is qua-
dratic. It occurs when one of the recursive calls is on an empty set. In such
cases quickselect does not save much. We can show that the average time is
linear, however, by using an analysis similar to that used for quicksort (see
Exercise 8.9).

The implementation of quickselect, shown in Figure 8.23, is simpler than
our abstract description implies. Except for the extra parameter, k, and the
recursive calls, the algorithm is identical to quicksort. When it terminates, the
kth smallest element is in its correct position in the array. As the array begins
at index 0, the fourth smallest element is in position 3. Note that the original
ordering is destroyed. If this situation is undesirable, we can have the driver
routine pass a copy of the array instead.

The linear worst-
case algorithm is a
classic result even
though it is imprac-
tical.

Using median-of-three partitioning makes the chance of the worst case
occurring almost negligible. By carefully choosing the pivot, we can ensure
that the worst case never occurs and that the running time is linear even in
the worst-case scenario. The resulting algorithm is entirely of theoretical
interest, however, because the constant that the Big-Oh notation hides is
much larger than the constant obtained in the normal median-of-three
implementation.

8.8 a lower bound for sorting
Any comparison-
based sorting algo-
rithm must use
roughly N log N
comparisons on
average and in the
worst case.

Although we have O(N log N) algorithms for sorting, it is not clear that this is
as good as we can do. In this section we prove that any algorithm for sorting
that uses only comparisons requires Ω(N log N) comparisons (and hence
time) in the worst case. In other words, any algorithm that sorts by using ele-
ment comparisons must use at least roughly N log N comparisons for some
input sequence. We can use a similar technique to show that this condition
holds on average.

The proofs are
abstract; we show
the worst-case
lower bound.

Must every sorting algorithm work by using comparisons? The answer is
no. However, algorithms that do not involve the use of general comparisons
are likely to work only for restricted types, such as integers. Although we may
often need to sort only integers (see Exercise 8.17), we cannot make such
sweeping assumptions about the input of a general-purpose sorting algorithm.

382 chapter 8 sorting algorithms

figure 8.23

Quickselect with
median-of-three
partitioning and cutoff
for small arrays

1 /**
2 * Internal selection method that makes recursive calls.
3 * Uses median-of-three partitioning and a cutoff.
4 * Places the kth smallest item in a[k-1].
5 * @param a an array of Comparable items.
6 * @param low the left-most index of the subarray.
7 * @param high the right-most index of the subarray.
8 * @param k the desired rank (1 is minimum) in the entire array.
9 */

10 private static <AnyType extends Comparable<? super AnyType>>
11 void quickSelect(AnyType [] a, int low, int high, int k)
12 {
13 if(low + CUTOFF > high)
14 insertionSort(a, low, high);
15 else
16 {
17 // Sort low, middle, high
18 int middle = (low + high) / 2;
19 if(a[middle].compareTo(a[low]) < 0)
20 swapReferences(a, low, middle);
21 if(a[high].compareTo(a[low]) < 0)
22 swapReferences(a, low, high);
23 if(a[high].compareTo(a[middle]) < 0)
24 swapReferences(a, middle, high);
25
26 // Place pivot at position high - 1
27 swapReferences(a, middle, high - 1);
28 AnyType pivot = a[high - 1];
29
30 // Begin partitioning
31 int i, j;
32 for(i = low, j = high - 1; ;)
33 {
34 while(a[++i].compareTo(pivot) < 0)
35 ;
36 while(pivot.compareTo(a[--j]) < 0)
37 ;
38 if(i >= j)
39 break;
40 swapReferences(a, i, j);
41 }
42 // Restore pivot
43 swapReferences(a, i, high - 1);
44
45 // Recurse; only this part changes
46 if(k <= i)
47 quickSelect(a, low, i - 1, k);
48 else if(k > i + 1)
49 quickSelect(a, i + 1, high, k);
50 }
51 }

summary 383

We may assume only the given—namely, that, because the items need to be
sorted, any two items can be compared.

Next, we prove one of the most fundamental theorems in computer sci-
ence, as Theorem 8.3. Recall first that the product of the first N positive inte-
gers is N!. The proof is an existence proof, which is somewhat abstract. It
shows that some bad input must always exist.

How large is ⎡log (N!)⎤? It is approximately N log N – 1.44N.

summary

For most general internal sorting applications, an insertion sort, Shellsort,
mergesort, or quicksort is the method of choice. The decision regarding which
to use depends on the size of the input and on the underlying environment.

Insertion sort is appropriate for very small amounts of input. Shellsort is a
good choice for sorting moderate amounts of input. With a proper increment
sequence, it gives excellent performance and uses only a few lines of code.
Mergesort has O(N log N) worst-case performance but requires additional

Any algorithm that sorts by using element comparisons only must use at least
⎡log (N!)⎤ comparisons for some input sequence.

Theorem 8.3

We may regard the possible inputs as any of the permutations of 1, 2, , N because
only the relative order of the input items matters, not their actual values. Thus the num-
ber of possible inputs is the number of different arrangements of N items, which is
exactly N!. Let be the number of permutations that are consistent with the results
after the algorithm has processed i comparisons. Let F be the number of comparisons
processed when the sort terminates. We know the following: (a) because all
permutations are possible before the first comparison; (b) because, if more
than one permutation were possible, the algorithm could not terminate with confidence
that it produced the correct output; (c) there exists a permutation such that

 because, after a comparison, each permutation goes into one of two
groups: the still-possible group and the no-longer-possible group. The larger of these
two groups must have at least half the permutations. Furthermore, there is at least one
permutation for which we can apply this logic throughout the comparison sequence.
The action of a sorting algorithm is thus to go from the state , in which all N! permu-
tations are possible, to the final state , in which only one permutation is possible,
with the restriction that there exists an input such that in each comparison only half of
the permutations can be eliminated. By the halving principle, we know that at least
⎡log (N!)⎤ comparisons are required for that input.

Proof …

Pi

P0 N!=
PF 1=

Pi Pi 1– 2⁄≥

P0

PF

384 chapter 8 sorting algorithms

code to avoid some of the extra copying. Quicksort is tricky to code. Asymp-
totically, it has almost certain O(N log N) performance with a careful imple-
mentation, and we showed that this outcome is essentially as good as we can
expect. In Section 21.5 we discuss another popular internal sort, heapsort.

To test and compare the merits of the various sorting algorithms, we need
to be able to generate random inputs. Randomness is an important topic in
general, and we discuss it in Chapter 9.

key concepts

comparison-based sorting algorithm An algorithm that makes ordering deci-
sions only on the basis of comparisons. (353)

diminishing gap sort Another name for Shellsort. (358)
inversion A pair of elements that are out of order in an array. Used to mea-

sure unsortedness. (355)
lower-bound proof for sorting Confirms that any comparison-based sorting

algorithm must use at least roughly N log N comparisons on average and
in the worst case. (381)

median-of-three partitioning The median of the first, middle, and last elements
is used as the pivot. This approach simplifies the partitioning stage of
quicksort. (373)

mergesort A divide-and-conquer algorithm that obtains an O(N log N) sort. (361)
partition The step of quicksort that places every element except the pivot in

one of two groups, one consisting of elements that are smaller than or
equal to the pivot and one consisting of elements that are larger than or
equal to the pivot. (367)

pivot For quicksort, an element that divides an array into two groups; one that
is smaller than the pivot and one that is larger than the pivot. (367)

quickselect An algorithm used to perform a selection that is similar to quicksort
but makes only one recursive call. The average running time is linear. (380)

quicksort A fast divide-and-conquer algorithm when properly implemented; in many
situations it is the fastest comparison-based sorting algorithm known. (364)

selection The process of finding the kth smallest element of an array. (380)
Shellsort A subquadratic algorithm that works well in practice and is simple

to code. The performance of Shellsort is highly dependent on the incre-
ment sequence and requires a challenging (and not completely resolved)
analysis. (357)

exercises 385

common errors

1. The sorts coded in this chapter begin at array position 0, not position 1.

2. Using the wrong increment sequence for Shellsort is a common error. Be
sure that the increment sequence terminates with 1 and avoid sequences
that are known to give poor performance.

3. Quicksort has many traps. The most common errors deal with sorted
inputs, duplicate elements, and degenerate partitions.

4. For small inputs an insertion sort is appropriate, but using it for large
inputs is wrong.

on the internet

All the sorting algorithms and an implementation of quickselect are in a single file.

Duplicate.java Contains the routine in Figure 8.1 and a test program.
Sort.java Contains all the sorting algorithms and the selection

algorithm.

exercises

IN SHORT

8.1 Sort the sequence 8, 1, 4, 1, 5, 9, 2, 6, 5 by using
a. Insertion sort
b. Shellsort for the increments {1, 3, 5}
c. Mergesort
d. Quicksort, with the middle element as pivot and no cutoff (show

all steps)
e. Quicksort, with median-of-three pivot selection and a cutoff of 3

8.2 A sorting algorithm is stable if elements with equal keys are left in
the same order as they occur in the input. Which of the sorting algo-
rithms in this chapter are stable and which are not? Why?

8.3 Explain why the elaborate quicksort in the text is better than ran-
domly permuting the input and choosing the middle element as pivot.

386 chapter 8 sorting algorithms

IN THEORY

8.4 When all keys are equal, what is the running time of
a. Insertion sort
b. Shellsort
c. Mergesort
d. Quicksort

8.5 When the input has been sorted, what is the running time of
a. Insertion sort
b. Shellsort
c. Mergesort
d. Quicksort

8.6 When the input has been sorted in reverse order, what is the running
time of
a. Insertion sort
b. Shellsort
c. Mergesort
d. Quicksort

8.7 Suppose that we exchange elements a[i] and a[i+k], which were
originally out of order. Prove that at least 1 and at most 2k – 1 inver-
sions are removed.

8.8 Construct a worst-case input for quicksort with
a. The middle element as pivot
b. Median-of-three pivot partitioning

8.9 Show that the quickselect algorithm has linear average performance.
Do so by solving Equation 8.5 with the constant 2 replaced by 1.

8.10 Using Stirling’s formula, , derive an estimate for
log (N!).

8.11 Prove that any comparison-based algorithm used to sort four elements
requires at least five comparisons for some input. Then show that an
algorithm that sorts four elements using at most five comparisons
does indeed exist.

8.12 What is the worse-case number of comparisons used by mergesort to
sort six numbers? Is this optimal?

8.13 When implementing quicksort, if the array contains lots of duplicates,
you may find it best to perform a three-way partition (into elements less
than, equal to, and greater than the pivot) and make smaller recursive
calls. Assume that you can use three-way comparisons.

N! N e⁄()N 2πN≥

exercises 387

a. Give an algorithm that performs a three-way in-place partition of
an N element subarray using only N–1 three-way comparisons.
If there are d items equal to the pivot, you may use d additional
Comparable swaps, above and beyond the two-way partitioning
algorithm. (Hint: As i and j move toward each other, maintain
the five groups of elements shown.)

 EQUAL SMALL UNKNOWN LARGE EQUAL
 i j

b. Prove that, using the algorithm in part (a), sorting an N-element
array that contains only d different values takes O(d N) time.

8.14 Suppose that both arrays A and B are sorted and contain N elements.
Give an O(log N) algorithm to find the median of .

8.15 Selection can be solved in linear worst case time, if the pivot is care-
fully chosen. Suppose we form N / 5 groups of 5 elements and for
each group, we find the median. Then we use as pivot the median of
the N / 5 medians.
a. Show that the median of 5 elements can be obtained in 6 compar-

isons.
b. Let T(N) be the time to solve the selection problem on an N-item

instance. What is the time to find the median of the N / 5 medi-
ans? Hint: Can recursion be used to find the median of the N / 5
medians?

c. After the partitioning step is performed, the selection algorithm
will make a single recursive call. Show that if the pivot is chosen
to be the median of the N / 5 medians, the size of the recursive
call is limited to at most roughly 7N / 10.

IN PRACTICE

8.16 A student alters the quicksort routine in Figure 8.22 by making the
following changes to lines 35 to 40. Is the result equivalent to the
original routine?

35 for(i = low + 1, j = high - 2; ;)
36 {
37 while(a[i] < pivot)
38 i++;
39 while(pivot < a[j])
40 j--;

A B∪

388 chapter 8 sorting algorithms

8.17 If you know more information about the items being sorted, you can
sort them in linear time. Show that a collection of N 16-bit integers
can be sorted in O(N) time. (Hint: Maintain an array indexed from 0
to 65,535.)

8.18 The quicksort in the text uses two recursive calls. Remove one of the
calls as follows.
a. Rewrite the code so that the second recursive call is uncondition-

ally the last line in quicksort. Do so by reversing the if/else, and
returning after the call to insertionSort.

b. Remove the tail recursion by writing a while loop and altering low.

8.19 Continuing from Exercise 8.18, after part (a),
a. Perform a test so that the smaller subarray is processed by the

first recursive call and the larger subarray is processed by the sec-
ond recursive call.

b. Remove the tail recursion by writing a while loop and altering low
or high, as necessary.

c. Prove that the number of recursive calls is logarithmic in the
worst case.

8.20 Suppose that the recursive quicksort receives an int parameter, depth,
from the driver that is initially approximately 2 log N.
a. Modify the recursive quicksort to call mergeSort on its current

subarray if the level of recursion has reached depth. (Hint: Decre-
ment depth as you make recursive calls; when it is 0, switch to
mergesort.)

b. Prove that the worst-case running time of this algorithm is
O(N log N) .

c. Conduct experiments to determine how often mergeSort gets called.
d. Implement this technique in conjunction with tail recursion

removal in Exercise 8.18.
e. Explain why the technique in Exercise 8.19 would no longer be

needed.

8.21 An array contains N numbers, and you want to determine whether
two of the numbers sum to a given number K. For instance, if the
input is 8, 4, 1, 6 and K is 10, the answer is yes (4 and 6). A number
may be used twice. Do the following.
a. Give an O(N 2) algorithm to solve this problem.
b. Give an O(N log N) algorithm to solve this problem. (Hint: Sort the

items first. After doing so, you can solve the problem in linear time.)
c. Code both solutions and compare the running times of your

algorithms.

exercises 389

8.22 Repeat Exercise 8.21 for four numbers. Try to design an O(N2log N)
algorithm. (Hint: Compute all possible sums of two elements, sort
these possible sums, and then proceed as in Exercise 8.21.)

8.23 Repeat Exercise 8.21 for three numbers. Try to design an O(N2)
algorithm.

8.24 In Exercise 5.41 you were asked to find the single integral solution to
A5 + B5 + C5 + D5 + E5 = F5 with 0 < A ≤ B ≤ C ≤ D ≤ E ≤ F ≤ N,
where N is 75. Use the ideas explored in Exercise 8.22 to obtain a solu-
tion relatively quickly by sorting all possible values of A5 + B5 + C5

and F5 – (D5 + E5), and then seeing if a number in the first group is
equal to a number in the second group. In terms of N, how much
space and time does the algorithm require?

PROGRAMMING PROJECTS

8.25 Compare the performance of Shellsort with various increment
sequences, as follows. Obtain an average time for some input size N
by generating several random sequences of N items. Use the same
input for all increment sequences. In a separate test obtain the average
number of Comparable comparisons and Comparable assignments. Set
the number of repeated trials to be large but doable within 1 hour of
CPU time. The increment sequences are
a. Shell’s original sequence (repeatedly divide by 2).
b. Shell’s original sequence, adding 1 if the result is nonzero but

even.
c. Gonnet’s sequence shown in the text, with repeated division by

2.2.
d. Hibbard’s increments: 1, 3, 7, , .
e. Knuth’s increments: 1, 4, 13, , .
f. Sedgewick’s increments: 1, 5, 19, 41, 109, , with each term

having the form of either or .

8.26 Code both Shellsort and quicksort and compare their running times.
Use the best implementations in the text and run them on
a. Integers
b. Real numbers of type double
c. Strings

8.27 Write a method that removes all duplicates in an array A of N items.
Return the number of items that remain in A. Your method must run in
O(N log N) average time (use quicksort as a preprocessing step), and
should make no use of the Collections API.

… 2k 1–
… 3k 1–() 2⁄

…
9 4k⋅ 9 2k⋅– 1+ 4k 3 2k⋅– 1+

390 chapter 8 sorting algorithms

8.28 Exercise 8.2 addressed stable sorting. Write a method that performs a
stable quicksort. To do so, create an array of objects; each object is to
contain a data item and its initial position in the array. (This is the Com-
posite pattern; see Section 3.9.) Then sort the array; if two objects have
identical data items, use the initial position to break the tie. After the
array of objects has been sorted, rearrange the original array.

8.29 Write a simple sorting utility, sort. The sort command takes a filename
as a parameter, and the file contains one item per line. By default the
lines are considered strings and are sorted by normal lexicographic
order (in a case-sensitive manner). Add two options: The -c option
means that the sort should be case insensitive; the -n option means that
the lines are to be considered integers for the purpose of the sort.

8.30 Write a program that reads N points in a plane and outputs any group
of four or more colinear points (i.e., points on the same line). The
obvious brute-force algorithm requires O(N4) time. However, there is
a better algorithm that makes use of sorting and runs in O(N2 log N)
time.

8.31 Suppose a DoubleKeyed object has two keys: a primary key, and a sec-
ondary key. When sorting, if there are ties among the primary key, the
secondary key is used to determine ordering. Rather than modify an
existing algorithm, write a sort routine that invokes quicksort as
needed to sort an array of DoubleKeyed objects.

8.32 In quicksort, instead of selecting three elements, as is done for
median-of-three partitioning, suppose we are willing to select nine
elements, including the first and last, with the other seven equally
spaced in the array.
a. Write code to implement median-of-nine partitioning.
b. Consider the following alternate to median-of-nine: group the

items into three groups of three. Find the medians of the three
groups. Then use the median of those medians. Write code to
implement this alternative, and compare its performance to
median-of-nine partitioning.

8.33 Two words are anagrams if they contain the same letters in the same
frequency. For instance, stale and least are anagrams of each other.
A simple way to check this is to sort the characters in each word; if
you get the same answer (in the example, we get aelst), the words are
anagrams of each other. Write a method that tests if two words are
anagrams of each other.

references 391

8.34 Write a method that takes an array of Strings and returns the largest
group of words that are anagrams of each other. Do to this, sort the
array with a Comparator that compares the sorted character representa-
tion of the words. After the sort, any group of words that are ana-
grams of each other will be adjacent in the array. Test your method by
writing a program that use words read from a file.

references

The classic reference for sorting algorithms is [5]. Another reference is [3].
The Shellsort algorithm first appeared in [8]. An empirical study of its run-
ning time was done in [9]. Quicksort was discovered by Hoare [4]; that
paper also includes the quickselect algorithm and details many important
implementation issues. A thorough study of the quicksort algorithm, includ-
ing analysis for the median-of-three variant, appears in [7]. A detailed C
implementation that includes additional improvements is presented in [1].
Exercise 8.20 is based on [6]. The Ω(N log N) lower bound for comparison-
based sorting is taken from [2]. The presentation of Shellsort is adapted
from [10].

1. J. L. Bentley and M. D. McElroy, “Engineering a Sort Function,” Soft-
ware—Practice and Experience 23 (1993), 1249–1265.

2. L. R. Ford and S. M. Johnson, “A Tournament Problem,” American Math-
ematics Monthly 66 (1959), 387–389.

3. G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data
Structures, 2d ed., Addison-Wesley, Reading, MA, 1991.

4. C. A. R. Hoare, “Quicksort,” Computer Journal 5 (1962), 10–15.

5. D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and
Searching, 2d ed., Addison-Wesley, Reading, MA, 1998.

6. D. R. Musser, “Introspective Sorting and Selection Algorithms,”
Software—Practice and Experience 27 (1997), 983–993.

7. R. Sedgewick, Quicksort, Garland, New York, 1978. (Originally pre-
sented as the author’s Ph.D. dissertation, Stanford University, 1975.)

8. D. L. Shell, “A High-Speed Sorting Procedure,” Communications of the
ACM 2 7 (1959), 30–32.

9. M. A. Weiss, “Empirical Results on the Running Time of Shellsort,” Com-
puter Journal 34 (1991), 88–91.

10. M. A. Weiss, Efficient C Programming: A Practical Approach, Prentice
Hall, Upper Saddle River, NJ, 1995.

This page intentionally left blank

chap te r 9

randomization

Many situations in computing require the use of random numbers. For
example, modern cryptography, simulation systems, and, surprisingly, even
searching and sorting algorithms rely on random number generators. Yet good
random number generators are difficult to implement. In this chapter we discuss
the generation and use of random numbers.

In this chapter, we show

n How random numbers are generated

n How random permutations are generated

n How random numbers allow the design of efficient algorithms, using
a general technique known as the randomized algorithm

9.1 why do we need
random numbers?

Random numbers are used in many applications. In this section we discuss a
few of the most common ones.

394 chapter 9 randomization

Random numbers
have many impor-
tant uses, including
cryptography, simu-
lation, and program
testing.

One important application of random numbers is in program testing. Sup-
pose, for example, that we want to test whether a sorting algorithm written in
Chapter 8 actually works. Of course, we could provide some small amount of
input, but if we want to test the algorithms for the large data sets they were
designed for, we need lots of input. Providing sorted data as input tests one
case, but more convincing tests would be preferable. For instance, we would
want to test the program by perhaps running 5,000 sorts for inputs of size
1,000. To do so requires writing a routine to generate the test data, which in
turn requires the use of random numbers.

A permutation of
1, 2, ..., N is a
sequence of N inte-
gers that includes
each of 1, 2, ..., N
exactly once.

Once we have the random number inputs, how do we know whether the
sorting algorithm works? One test is to determine whether the sort arranged
the array in nondecreasing order. Clearly, we can run this test in a linear-time
sequential scan. But how do we know that the items present after the sort are
the same as those prior to the sort? One method is to fix the items in an
arrangement of 1, 2, ..., N. In other words, we start with a random permutation
of the first N integers. A permutation of 1, 2, ..., N is a sequence of N integers
that includes each of 1, 2, ..., N exactly once. Then, no matter what permuta-
tion we start with, the result of the sort will be the sequence 1, 2, ..., N, which
is also easily tested.

In addition to helping us generate test data to verify program correctness,
random numbers are useful in comparing the performance of various algo-
rithms. The reason is that, once again, they can be used to provide a large
number of inputs.

Another use of random numbers is in simulations. If we want to know the
average time required for a service system (for example, teller service in a bank)
to process a sequence of requests, we can model the system on a computer. In this
computer simulation we generate the request sequence with random numbers.

Still another use of random numbers is in the general technique called the
randomized algorithm, wherein a random number is used to determine the
next step performed in the algorithm. The most common type of randomized
algorithm involves selecting from among several possible alternatives that are
more or less indistinguishable. For instance, in a commercial computer chess
program, the computer generally chooses its first move randomly rather than
playing deterministically (i.e., rather than always playing the same move). In
this chapter we look at several problems that can be solved more efficiently by
using a randomized algorithm.

9.2 random number generators
How are random numbers generated? True randomness is impossible to
achieve on a computer, because any numbers obtained depend on the algorithm

9.2 random number generators 395

used to generate them and thus cannot possibly be random. Generally, it is
sufficient to produce pseudorandom numbers, or numbers that appear to be
random because they satisfy many of the properties of random numbers. Pro-
ducing them is much easier said than done.

Suppose that we need to simulate a coin flip. One way to do so is to exam-
ine the system clock. Presumably, the system clock maintains the number of
seconds as part of the current time. If this number is even, we can return 0 (for
heads); if it is odd, we can return 1 (for tails). The problem is that this strategy
does not work well if we need a sequence of random numbers. One second is
a long time, and the clock might not change at all while the program is run-
ning, generating all 0s or all 1s, which is hardly a random sequence. Even if
the time were recorded in units of microseconds (or smaller) and the program
were running by itself, the sequence of numbers generated would be far from
random because the time between calls to the generator would be essentially
identical on every program invocation.

In a uniform distri-
bution, all numbers
in the specified
range are equally
likely to occur.

What we really need is a sequence of pseudorandom numbers, that is, a
sequence with the same properties as a random sequence. Suppose that we
want random numbers between 0 and 999, uniformly distributed. In a uniform
distribution, all numbers in the specified range are equally likely to occur.
Other distributions are also widely used. The class skeleton shown in
Figure 9.1 supports several distributions, and some of the basic methods are
identical to the java.util.Random class. Most distributions can be derived from
the uniform distribution, so that is the one we consider first. The following
properties hold if the sequence 0, ..., 999 is a true uniform distribution.

n The first number is equally likely to be 0, 1, 2, ..., 999.

n The ith number is equally likely to be 0, 1, 2, ..., 999.

n The expected average of all the generated numbers is 499.5.

Typically a random
sequence, rather
than one random
number, is required.

These properties are not particularly restrictive. For instance, we could
generate the first number by examining a system clock that was accurate to
1 ms and then using the number of milliseconds. We could generate subse-
quent numbers by adding 1 to the preceding number, and so on. Clearly, after
1,000 numbers are generated, all the previous properties hold. However,
stronger properties do not.

Two stronger properties that would hold for uniformly distributed random
numbers are the following.

n The sum of two consecutive random numbers is equally likely to be
even or odd.

n If 1,000 numbers are randomly generated, some will be duplicated.
(Roughly 368 numbers will never appear.)

Pseudorandom
numbers have
many properties of
random numbers.
Good random num-
ber generators are
hard to find.

396 chapter 9 randomization

figure 9.1

Skeleton for the Random class that generates random numbers

1 package weiss.util;
2
3 // Random class
4 //
5 // CONSTRUCTION: with (a) no initializer or (b) an integer
6 // that specifies the initial state of the generator.
7 // This random number generator is really only 31 bits,
8 // so it is weaker than the one in java.util.
9 //

10 // ******************PUBLIC OPERATIONS*********************
11 // Return a random number according to some distribution:
12 // int nextInt() --> Uniform, [1 to 2^31-1)
13 // double nextDouble() --> Uniform, (0 to 1)
14 // int nextInt(int high) --> Uniform [0..high)
15 // int nextInt(int low, int high) --> Uniform [low..high]
16 // int nextPoisson(double expectedVal) --> Poisson
17 // double nextNegExp(double expectedVal) --> Negative exponential
18 // void permute(Object [] a) --> Randomly permutate
19
20 /**
21 * Random number class, using a 31-bit
22 * linear congruential generator.
23 */
24 public class Random
25 {
26 public Random()
27 { /* Figure 9.2 */ }
28 public Random(int initialValue)
29 { /* Figure 9.2 */ }
30 public int nextInt()
31 { /* Figure 9.2 */ }
32 public int nextInt(int high)
33 { /* Implementation in online code. */ }
34 public double nextDouble()
35 { /* Implementation in online code. */ }
36 public int nextInt(int low, int high)
37 { /* Implementation in online code. */ }
38 public int nextPoisson(double expectedValue)
39 { /* Figure 9.4 */ }
40 public double nextNegExp(double expectedValue)
41 { /* Figure 9.5 */ }
42 public static final void permute(Object [] a)
43 { /* Figure 9.6 */ }
44 private void swapReferences(Object [] a, int i, int j)
45 { /* Implementation in online code. */ }
46
47 private int state;
48 }

9.2 random number generators 397

Our numbers do not satisfy these properties. Consecutive numbers always
sum to an odd number, and our sequence is duplicate-free. We say then that
our simple pseudorandom number generator has failed two statistical tests.
All pseudorandom number generators fail some statistical tests, but the good
generators fail fewer tests than the bad ones. (See Exercise 9.16 for a common
statistical test.)

The linear congru-
ential generator is a
good algorithm for
generating uniform
distributions.

In this section we describe the simplest uniform generator that passes a
reasonable number of statistical tests. By no means is it the best generator.
However, it is suitable for use in applications wherein a good approximation
to a random sequence is acceptable. The method used is the linear congruen-
tial generator, which was first described in 1951. The linear congruential gen-
erator is a good algorithm for generating uniform distributions. It is a random
number generator in which numbers , , are generated that satisfy

(9.1)

Equation 9.1 states that we can get the th number by multiplying the
ith number by some constant A and computing the remainder when the result
is divided by M. In Java we would have

x[i + 1] = A * x[i] % M

The seed is the ini-
tial value of the
random number
generator.

We specify the constants A and M shortly. Note that all generated numbers will be
smaller than M. Some value must be given to start the sequence. This initial
value of the random number generator is the seed. If , the sequence is not
random because it generates all zeros. But if A and M are carefully chosen, any
other seed satisfying is equally valid. If M is prime, is never 0. For
example, if , , and the seed , the numbers generated are

7, 5, 2, 3, 10, 4, 6, 9, 8, 1, 7, 5, 2, ... (9.2)

Generating a number a second time results in a repeating sequence. In our
case the sequence repeats after numbers. The length of a
sequence until a number is repeated is called the period of the sequence. The
period obtained with this choice of A is clearly as good as possible because all
nonzero numbers smaller than M are generated. (We must have a repeated
number generated on the 11th iteration.)

If M is prime, several choices of A give a full period of , and this
type of random number generator is called a full-period linear congruential
generator. Some choices of A do not give a full period. For instance, if
and , the sequence has a short period of 5:

5, 3, 4, 9, 1, 5, 3, 4, ... (9.3)

X1 X2 …

Xi 1+ AXi modM()=

i 1+()

X0

X0 0=

1 X0≤ M< Xi

M 11= A 7= X0 1=

M 1– 10=

M 1–

A 5=
X0 1=

The length of a
sequence until a
number is repeated
is called its period.
A random number
generator with
period P generates
the same sequence
of numbers after P
iterations.

A full-period linear
congruential gener-
ator has period
M – 1.

398 chapter 9 randomization

If we choose M to be a 31-bit prime, the period should be significantly
large for many applications. The 31-bit prime = 2,147,483,647
is a common choice. For this prime, A = 48,271 is one of the many values that
gives a full-period linear congruential generator. Its use has been well studied
and is recommended by experts in the field. As we show later in the chapter,
tinkering with random number generators usually means breaking, so you are
well advised to stick with this formula until told otherwise.

Implementing this routine seems simple enough. If state represents the
last value computed by the nextInt routine, the new value of state should be
given by

state = (A * state) % M; // Incorrect

Because of over-
flow, we must rear-
range calculations.

Unfortunately, if this computation is done on 32-bit integers, the multipli-
cation is certain to overflow. Although Java provides a 64-bit long, using it
is more computationally expensive than working with ints, not all lan-
guages support 64-bit math, and even so, at that point, a larger value of
would be warranted. Later in this section, we use a 48-bit M, but for now
we use 32-bit arithmetic. If we stick with the 32-bit int, we could argue
that the result is part of the randomness. However, overflow is unacceptable
because we would no longer have the guarantee of a full period. A slight
reordering allows the computation to proceed without overflow. Specifi-
cally, if Q and R are the quotient and remainder of , then we can
rewrite Equation 9.1 as

(9.4)

and the following conditions hold (see Exercise 9.5).

n The first term can always be evaluated without overflow.

n The second term can be evaluated without overflow if .

n δ(Xi) evaluates to 0 if the result of the subtraction of the first two terms is
positive; it evaluates to 1 if the result of the subtraction is negative.

Stick with these
numbers until you
are told otherwise.

For the values of M and A, we have Q = 44,488 and R = 3,399. Consequently,
and a direct application now gives an implementation of the Random class

for generating random numbers. The resulting code is shown in Figure 9.2. The
class works as long as int is capable of holding M. The routine nextInt returns the
value of the state.

Several additional methods are provided in the skeleton given in
Figure 9.1. One generates a random real number in the open interval from 0 to 1,
and another generates a random integer in a specified closed interval (see the
online code).

M 231 1–=

M

M A⁄

Xi 1+ A Xi mod Q()() R Xi/Q– Mδ Xi()+=

R Q<

R Q<

9.2 random number generators 399

Finally, the Random class provides a generator for nonuniform random
numbers when they are required. In Section 9.3 we provide the implementa-
tion for the methods nextPoisson and nextNegExp.

It may seem that we can get a better random number generator by adding
a constant to the equation. For instance, we might conclude that

would somehow be more random. However, when we use this equation, we
see that

(48,271 ⋅ 179,424,105 + 1) mod (231 – 1) = 179,424,105

Hence, if the seed is 179,424,105, the generator gets stuck in a cycle of period 1,
illustrating how fragile these generators are.

You might be tempted to assume that all machines have a random number
generator at least as good as the one shown in Figure 9.2. Sadly, that is not the
case. Many libraries have generators based on the function

where B is chosen to match the number of bits in the machine’s integer, and
C is odd. These libraries, like the nextInt routine in Figure 9.2, also return
the newly computed state directly, instead of (for example) a value between
0 and 1. Unfortunately, these generators always produce values of that
alternate between even and odd—obviously an undesirable property.
Indeed, the lower k bits cycle with a period of (at best). Many other ran-
dom number generators have much smaller cycles than the one we provided.
These generators are not suitable for any application requiring long
sequences of random numbers. The Java library has a generator of this form.
However, it uses a 48-bit linear congruential generator and returns only the
high 32 bits, thus avoiding the cycling problem in lower-order bits. The con-
stants are A = 25,214,903,917, B = 48, and C = 11.

This generator is also the basis for drand48 used in the C and C++ librar-
ies. Because Java provides 64-bit longs, implementing a basic 48-bit ran-
dom number generator in standard Java can be illustrated in only a page of
code. It is somewhat slower than the 31-bit random number generator, but
not much so and yields a significantly longer period. Figure 9.3 shows a
respectable implementation of this random number generator.

Lines 10-13 show the basic constants of the random number generator.
Because M is a power of 2, we can use bitwise operators (see Appendix C
for more information on the bitwise operators). M = can be computed

Xi 1+ 48,271Xi 1+() mod 231 1–()=

Xi 1+ AXi C+() mod 2B=

Xi

2k

2B

400 chapter 9 randomization

figure 9.2

Random number generator that works if INT_MAX is at least 231–1

1 private static final int A = 48271;
2 private static final int M = 2147483647;
3 private static final int Q = M / A;
4 private static final int R = M % A;
5
6 /**
7 * Construct this Random object with
8 * initial state obtained from system clock.
9 */

10 public Random()
11 {
12 this((int) (System.nanoTime() % Integer.MAX_VALUE));
13 }
14
15 /**
16 * Construct this Random object with
17 * specified initial state
18 * @param initialValue the initial state.
19 */
20 public Random(int initialValue)
21 {
22 if(initialValue < 0)
23 {
24 initialValue += M;
25 initialValue++;
26 }
27
28 state = initialValue;
29 if(state <= 0)
30 state = 1;
31 }
32
33 /**
34 * Return a pseudorandom int, and change the
35 * internal state.
36 * @return the pseudorandom int.
37 */
38 public int nextInt()
39 {
40 int tmpState = A * (state % Q) - R * (state / Q);
41 if(tmpState >= 0)
42 state = tmpState;
43 else
44 state = tmpState + M;
45
46 return state;
47 }

9.2 random number generators 401

figure 9.3

48-Bit Random Number Generator

1 package weiss.util;
2
3 /**
4 * Random number class, using a 48-bit
5 * linear congruential generator.
6 * @author Mark Allen Weiss
7 */
8 public class Random48
9 {

10 private static final long A = 25214903917L;
11 private static final long B = 48;
12 private static final long C = 11;
13 private static final long M = (1L<<B);
14 private static final long MASK = M-1;
15
16 public Random48()
17 { this(System.nanoTime()); }
18
19 public Random48(long initialValue)
20 { state = initialValue & MASK; }
21
22 public int nextInt()
23 { return next(32); }
24
25 public int nextInt(int N)
26 { return (int) (Math.abs(nextLong()) % N); }
27
28 public double nextDouble()
29 { return (((long) (next(26)) << 27) + next(27)) / (double)(1L << 53); }
30
31 public long nextLong()
32 { return ((long) (next(32)) << 32) + next(32); }
33
34 /**
35 * Return specified number of random bits
36 * @param bits number of bits to return
37 * @return specified random bits
38 * @throws IllegalArgumentException if bits is more than 32
39 */
40 private int next(int bits)
41 {
42 if(bits <= 0 || bits > 32)
43 throw new IllegalArgumentException();
44
45 state = (A * state + C) & MASK;
46
47 return (int) (state >>> (B - bits));
48 }
49
50 private long state;
51 }

402 chapter 9 randomization

by a bit shift, and instead of using the modulus operator %, we can use a bit-
wise and operator. This is because MASK=M-1 consists of the low 48 bits all set
to 1, and a bitwise and operator with MASK thus has the effect of yielding a
48-bit result.

The next routine returns a specified number (at most 32) of random bits
from the computed state, using the high order bits which are more random
than the lower bits. Line 45 is a direct application of the previously stated
linear congruential formula, and line 47 is a bitwise shift (zero-filled in the
high bits to avoid negative numbers). Zero-parameter nextInt obtains 32 bits;
nextLong obtains 64 bits in two separate calls; nextDouble obtains 53 bits (repre-
senting the mantissa; the other 11 bits of a double represent the exponent) also
in two separate calls; and one-parameter nextInt uses a mod operator to obtain
a pseudorandom number in the specified range. The exercises suggest some
improvements that are possible for the one-parameter nextInt, when the param-
eter N is a power of 2.

The 48-bit random number generator (and even the 31-bit generator) is
quite adequate for many applications, simple to implement in 64-bit arithmetic,
and uses little space. However linear congruential generators are unsuitable for
some applications, such as cryptography or in simulations that require large
numbers of highly independent and uncorrelated random numbers.

9.3 nonuniform random numbers
Not all applications require uniformly distributed random numbers. For
example, grades in a large course are generally not uniformly distributed.
Instead, they satisfy the classic bell curve distribution, more formally
known as the normal or Gaussian distribution. A uniform random number
generator can be used to generate random numbers that satisfy other distri-
butions.

The Poisson distri-
bution models the
number of occur-
rences of a rare
event and is used in
simulations.

An important nonuniform distribution that occurs in simulations is the
Poisson distribution, which models the number of occurrences of a rare
event. Occurrences that happen under the following circumstances satisfy
the Poisson distribution.

1. The probability of one occurrence in a small region is proportional to
the size of the region.

2. The probability of two occurrences in a small region is proportional
to the square of the size of the region and is usually small enough to
be ignored.

9.3 nonuniform random numbers 403

3. The event of getting k occurrences in one region and the event of get-
ting j occurrences in another region disjoint from the first region are
independent. (Technically this statement means that you can get the
probability of both events simultaneously occurring by multiplying
the probability of individual events.)

4. The mean number of occurrences in a region of some size is known.

If the mean number of occurrences is the constant a, the probability of
exactly k occurrences is .

The Poisson distribution generally applies to events that have a low prob-
ability of a single occurrence. For example, consider the event of purchasing a
winning lottery ticket, where the odds of winning the jackpot are 14,000,000
to 1. Presumably the picked numbers are more or less random and indepen-
dent. If a person buys 100 tickets, the odds of winning become 140,000 to 1
(the odds improve by a factor of 100), so condition 1 holds. The odds of the
person holding two winning tickets are negligible, so condition 2 holds. If
someone else buys 10 tickets, that person’s odds of winning are 1,400,000 to
1, and these odds are independent of the first person’s, so condition 3 holds.
Suppose that 28,000,000 tickets are sold. The mean number of winning tick-
ets in this situation is 2 (the number we need for condition 4). The actual num-
ber of winning tickets is a random variable with an expected value of 2, and it
satisfies the Poisson distribution. Thus the probability that exactly k winning
tickets have been sold is , which gives the distribution shown in
Figure 9.4. If the expected number of winners is the constant a, the probabil-
ity of k winning tickets is .

To generate a random unsigned integer according to a Poisson distribution
that has an expected value of a, we can adopt the following strategy (whose
mathematical justification is beyond the scope of this book): Repeatedly gen-
erate uniformly distributed random numbers in the interval (0, 1) until their
product is smaller than (or equal to) . The code shown in Figure 9.5 does
just that, using a mathematically equivalent technique that is less sensitive to
overflow. The code adds the logarithm of the uniform random numbers until
their sum is smaller than (or equal to) –a.

ake a– k!⁄

2ke 2– k!⁄

figure 9.4

Distribution of lottery
winners if the
expected number of
winners is 2

Winning Tickets 0 1 2 3 4 5

Frequency 0.135 0.271 0.271 0.180 0.090 0.036

ake a– k!⁄

e a–

404 chapter 9 randomization

The negative expo-
nential distribution
has the same mean
and variance. It is
used to model the
time between
occurrences of ran-
dom events.

Another important nonuniform distribution is the negative exponential
distribution, shown in Figure 9.6, which has the same mean and variance
and is used to model the time between occurrences of random events. We
use it in the simulation application shown in Section 13.2.

Many other distributions are commonly used. Our main purpose here is to
show that most can be generated from the uniform distribution. Consult any
book on probability and statistics to find out more about these functions.

9.4 generating a random
permutation

Consider the problem of simulating a card game. The deck consists of 52
distinct cards, and in the course of a deal, we must generate cards from the deck,
without duplicates. In effect, we need to shuffle the cards and then iterate

figure 9.5

Generation of a
random number
according to the
Poisson distribution

1 /**
2 * Return an int using a Poisson distribution, and
3 * change the internal state.
4 * @param expectedValue the mean of the distribution.
5 * @return the pseudorandom int.
6 */
7 public int nextPoisson(double expectedValue)
8 {
9 double limit = -expectedValue;

10 double product = Math.log(nextDouble());
11 int count;
12
13 for(count = 0; product > limit; count++)
14 product += Math.log(nextDouble());
15
16 return count;
17 }

figure 9.6

Generation of a
random number
according to the
negative exponential
distribution

1 /**
2 * Return a double using a negative exponential
3 * distribution, and change the internal state.
4 * @param expectedValue the mean of the distribution.
5 * @return the pseudorandom double.
6 */
7 public double nextNegExp(double expectedValue)
8 {
9 return - expectedValue * Math.log(nextDouble());

10 }

9.4 generating a random permutation 405

through the deck. We want the shuffle to be fair. That is, each of the 52! possible
orderings of the deck should be equally likely as a result of the shuffle.

A random permuta-
tion can be gener-
ated in linear time,
using one random
number per item.

This type of problem involves the use of a random permutation. In general,
the problem is to generate a random permutation of 1, 2, ..., N, with all permuta-
tions being equally likely. The randomness of the random permutation is, of
course, limited by the randomness of the pseudorandom number generator. Thus
all permutations being equally likely is contingent on all the random numbers
being uniformly distributed and independent. We demonstrate that random per-
mutations can be generated in linear time, using one random number per item.

A routine, permute, to generate a random permutation is shown in
Figure 9.7. The loop performs a random shuffling. In each iteration of the loop,
we swap a[j] with some array element in positions 0 to j (it is possible to per-
form no swap).

The correctness of
permute is subtle.

Clearly, permute generates shuffled permutations. But are all permutations
equally likely? The answer is both yes and no. The answer, based on the algo-
rithm, is yes. There are N! possible permutations, and the number of different
possible outcomes of the N – 1 calls to nextInt at line 11 is also N! The reason is
that the first call produces 0 or 1, so it has two outcomes. The second call pro-
duces 0, 1, or 2, so it has three outcomes. The last call has N outcomes. The total
number of outcomes is the product of all these possibilities because each ran-
dom number is independent of the previous random numbers. All we have to
show is that each sequence of random numbers corresponds to only one permu-
tation. We can do so by working backward (see Exercise 9.6).

However, the answer is actually no—all permutations are not equally
likely. There are only 231 – 2 initial states for the random number generator,
so there can be only 231 – 2 different permutations. This condition could be a
problem in some situations. For instance, a program that generates 1,000,000
permutations (perhaps by splitting the work among many computers) to mea-
sure the performance of a sorting algorithm almost certainly generates some
permutations twice—unfortunately. Better random number generators are
needed to help the practice meet the theory.

figure 9.7

A permutation routine

1 /**
2 * Randomly rearrange an array.
3 * The random numbers used depend on the time and day.
4 * @param a the array.
5 */
6 public static final void permute(Object [] a)
7 {
8 Random r = new Random();
9

10 for(int j = 1; j < a.length; j++)
11 swapReferences(a, j, r.nextInt(0, j));
12 }

406 chapter 9 randomization

Note that rewriting the call to swap with the call to r.nextInt(0,n-1) does
not work, even for three elements. There are 3! = 6 possible permutations, and
the number of different sequences that could be computed by the three calls to
nextInt is 33 = 27. Because 6 does not divide 27 exactly, some permutations
must be more likely than others.

9.5 randomized algorithms
Suppose that you are a professor who is giving weekly programming assign-
ments. You want to ensure that the students are doing their own programs or,
at the very least, that they understand the code that they are submitting. One
solution is to give a quiz on the day each program is due. However, these
quizzes take time from class and doing so might be practical for only roughly
half the programs. Your problem is to decide when to give the quizzes.

Of course, if you announce the quizzes in advance, that could be interpreted
as an implicit license to cheat for the 50 percent of the programs that will not get a
quiz. You could adopt the unannounced strategy of giving quizzes on alternate
programs, but students would quickly figure out that strategy. Another possibility
is to give quizzes on what seem like the important programs, but that would likely
lead to similar quiz patterns from semester to semester. Student grapevines being
what they are, this strategy would probably be worthless after one semester.

One method that seems to eliminate these problems is to flip a coin. You
make a quiz for every program (making quizzes is not nearly as time consum-
ing as grading them), and at the start of class, you flip a coin to decide
whether the quiz is to be given. This way neither you nor your students can
know before class whether a quiz will be given. Also, the patterns do not
repeat from semester to semester. The students can expect a quiz to occur with
50 percent probability, regardless of previous quiz patterns. The disadvantage
of this strategy is that you could end up giving no quizzes during an entire
semester. Assuming a large number of programming assignments, however,
this is not likely to happen unless the coin is suspect. Each semester the
expected number of quizzes is half the number of programs, and with high
probability, the number of quizzes will not deviate much from this.

A randomized algo-
rithm uses
random numbers
rather than
deterministic deci-
sions to control
branching.

This example illustrates the randomized algorithm, which uses random
numbers, rather than deterministic decisions, to control branching. The run-
ning time of the algorithm depends not only on the particular input, but also
on the random numbers that occur.

The worst-case running time of a randomized algorithm is almost always
the same as the worst-case running time of the nonrandomized algorithm. The

9.5 randomized algorithms 407

important difference is that a good randomized algorithm has no bad inputs—
only bad random numbers (relative to the particular input). This difference
may seem only philosophical, but actually it is quite important, as we show in
the following example.

The running time of
a randomized algo-
rithm depends on
the random num-
bers that occur, as
well as the particu-
lar input.

Let us say that your boss asks you to write a program to determine the
median of a group of 1,000,000 numbers. You are to submit the program
and then run it on an input that the boss will choose. If the correct answer
is given within a few seconds of computing time (which would be expected
for a linear algorithm), your boss will be very happy, and you will get a
bonus. But if your program does not work or takes too much time, your
boss will fire you for incompetence. Your boss already thinks that you are
overpaid and is hoping to be able to take the second option. What should
you do?

The quickselect algorithm described in Section 8.7 might seem like the
way to go. Although the algorithm (see Figure 8.23) is very fast on average,
recall that it has quadratic worst-case time if the pivot is continually poor.
By using median-of-three partitioning, we have guaranteed that this worst case will
not occur for common inputs, such as those that have been sorted or that contain a
lot of duplicates. However, there is still a quadratic worst case, and as Exercise 8.8
showed, the boss will read your program, realize how you are choosing the
pivot, and be able to construct the worst case. Consequently, you will be
fired.

Randomized quick-
select is statistically
guaranteed to work
in linear time.

By using random numbers, you can statistically guarantee the safety of
your job. You begin the quickselect algorithm by randomly shuffling the input
by using lines 10 and 11 in Figure 9.7.1 As a result, your boss essentially loses
control of specifying the input sequence. When you run the quickselect algo-
rithm, it will now be working on random input, so you expect it to take linear
time. Can it still take quadratic time? The answer is yes. For any original
input, the shuffling may get you to the worst case for quickselect, and thus the
result would be a quadratic-time sort. If you are unfortunate enough to have
this happen, you lose your job. However, this event is statistically impossible.
For a million items, the chance of using even twice as much time as the aver-
age would indicate is so small that you can essentially ignore it. The computer
is much more likely to break. Your job is secure.

Instead of using a shuffling technique, you can achieve the same result
by choosing the pivot randomly instead of deterministically. Take a random
item in the array and swap it with the item in position low. Take another

1. You need to be sure that the random number generator is sufficiently random and that its
output cannot be predicted by the boss.

408 chapter 9 randomization

random item and swap it with the item in position high. Take a third ran-
dom item and swap it with the item in the middle position. Then continue
as usual. As before, degenerate partitions are always possible, but they now
happen as a result of bad random numbers, not bad inputs.

Let us look at the differences between randomized and nonrandomized
algorithms. So far we have concentrated on nonrandomized algorithms.
When calculating their average running times, we assume that all inputs
are equally likely. This assumption does not hold, however, because nearly
sorted input, for instance, occurs much more often than is statistically
expected. This situation can cause problems for some algorithms, such as
quicksort. But when we use a randomized algorithm, the particular input is
no longer important. The random numbers are important, and we get an
expected running time, in which we average over all possible random num-
bers for any particular input. Using quickselect with random pivots (or a
shuffle preprocessing step) gives an O(N) expected time algorithm. That
is, for any input, including already sorted input, the running time is
expected to be O(N) , based on the statistics of random numbers. On the
one hand an expected time bound is somewhat stronger than an average-
case time bound because the assumptions used to generate it are weaker
(random numbers versus random input) but it is weaker than the corre-
sponding worst-case time bound. On the other hand, in many instances
solutions that have good worst-case bounds frequently have extra overhead
built in to assure that the worst case does not occur. The O(N) worst-case
algorithm for selection, for example, is a marvelous theoretical result but
is not practical.

Some randomized
algorithms work in
a fixed amount of
time but randomly
make mistakes
(presumably with
low probability).
These mistakes are
false positives or
false negatives.

Randomized algorithms come in two basic forms. The first, as already
shown, always gives a correct answer but it could take a long time, depend-
ing on the luck of the random numbers. The second type is what we exam-
ine in the remainder of this chapter. Some randomized algorithms work in a
fixed amount of time but randomly make mistakes (presumably with low
probability), called false positives or false negatives. This technique is
commonly accepted in medicine. False positives and false negatives for
most tests are actually fairly common, and some tests have surprisingly
high error rates. Furthermore, for some tests the errors depend on the indi-
vidual, not random numbers, so repeating the test is certain to produce
another false result. In randomized algorithms we can rerun the test on the
same input using different random numbers. If we run a randomized algo-
rithm 10 times and get 10 positives—and if a single false positive is an
unlikely occurrence (say, 1 chance in 100)—the probability of 10 consecu-
tive false positives (1 chance in 10010 or one hundred billion billion) is
essentially zero.

9.6 randomized primality testing 409

9.6 randomized primality testing
Recall that in Section 7.4 we described some numerical algorithms and
showed how they could be used to implement the RSA encryption scheme. An
important step in the RSA algorithm is to produce two prime numbers p and
q. We can find a prime number by repeatedly trying successive odd numbers
until we find one that is prime. Thus the issue boils down to determining
whether a given number is prime.

Trial division is the
simplest algorithm
for primality test-
ing. It is fast for
small (32-bit) num-
bers but cannot be
used for larger
numbers.

The simplest algorithm for primality testing is trial division. In this algo-
rithm, an odd number greater than 3 is prime if it is not divisible by any other
odd number smaller than or equal to . A direct implementation of this
strategy is shown in Figure 9.8.

Trial division is reasonably fast for small (32-bit) numbers, but it is unus-
able for larger numbers because it could require the testing of roughly
divisors, thus using time.2 What we need is a test whose running time
is of the same order of magnitude as the power routine in Section 7.4.2. A
well-known theorem, called Fermat’s Little Theorem, looks promising. We
state and provide a proof of it in Theorem 9.1 for completeness, but the proof
is not needed for an understanding of the primality-testing algorithm.

Fermat’s Little The-
orem is necessary
but not sufficient to
establish primality.

If the converse of Fermat’s Little Theorem were true, then we would have
a primality-testing algorithm that would be computationally equivalent to
modular exponentiation (i.e., O(log N)). Unfortunately, the converse is not
true. For example, 2340 ≡ 1(mod 341), but 341 is composite (11 × 31).

2. Though may seem small, if N is a 100-digit number, then is still a 50-digit num-
ber; tests that take time are thus out of the question for the BigInteger type.

N

N 2⁄
O N()

N N
O N()

Fermat’s Little Theorem: If P is prime and , then AP – 1 ≡ 1(mod P). Theorem 9.1

Consider any . Clearly, Ak ≡ 0(mod P) is impossible because P is prime and
is greater than A and k. Now consider any . would imply

, which is impossible by the previous argument because
. Thus the sequence , when considered (mod P), is a

permutation of . The product of both sequences (mod P) must be
equivalent (and non-zero), yielding the equivalence AP – 1(P – 1)! ≡ (P – 1)! (mod P)
from which the theorem follows.

Proof

0 A P< <

1 k P<≤
1 i j P< <≤ Ai Aj mod P()≡

A j i–() 0 mod P()≡
1 j i– P<≤ A 2A … P 1–()A, , ,

1 2 … P 1–, , ,

410 chapter 9 randomization

To do the primality test, we need an additional theorem, Theorem 9.2.

A combination of Theorems 9.1 and 9.2 is useful. Let A be any integer
between 2 and N – 2. If we compute AN – 1(mod N) and the result is not 1, we
know that N cannot be prime; otherwise, we would contradict Fermat’s Little
Theorem. As a result, A is a value that proves that N is not prime. We say then
that A is a witness to N’s compositeness. Every composite number N has some
witnesses A, but for some numbers, called the Carmichael numbers, these
witnesses are hard to find. We need to be sure that we have a high probability
of finding a witness no matter what the choice of N is. To improve our
chances, we use Theorem 9.1.

In the course of computing , we compute . So we let
and . Note that X and Y are computed automatically as

part of the power routine. If Y is 1 and if X is not ±1(mod N) , then by Theorem
9.1, N cannot be prime. We can return 0 for the value of when that condi-
tion is detected, and N will appear to have failed the test of primality implied
by Fermat’s Little Theorem.

The routine witness, shown in Figure 9.9, computes Ai(mod P), aug-
mented to return 0 if a violation of Theorem 9.1 is detected. If witness does
not return 1, then A is a witness to the fact that N cannot be prime. Lines 12
through 14 make a recursive call and produce X. We then compute , as is

figure 9.8

Primality testing by
trial division

1 /**
2 * Returns true if odd integer n is prime.
3 */
4 public static boolean isPrime(long n)
5 {
6 for(int i = 3; i * i <= n; i += 2)
7 if(n % i == 0)
8 return false; // not prime
9

10 return true; // prime
11 }

Theorem 9.2 If P is prime and X2 ≡ 1(mod P), then X ≡ ±1(mod P).

Proof Because X2 – 1 ≡ 0(mod P) implies (X – 1)(X + 1) ≡ 0(mod P) and P is prime, then
X – 1 or X + 1 ≡ 0(mod P).

Ai A i 2⁄()2

X A i 2⁄= Y X 2=

Ai

X 2

9.6 randomized primality testing 411

figure 9.9

A randomized test for primality

1 /**
2 * Private method that implements the basic primality test.
3 * If witness does not return 1, n is definitely composite.
4 * Do this by computing a^i (mod n) and looking for
5 * nontrivial square roots of 1 along the way.
6 */
7 private static long witness(long a, long i, long n)
8 {
9 if(i == 0)

10 return 1;
11
12 long x = witness(a, i / 2, n);
13 if(x == 0) // If n is recursively composite, stop
14 return 0;
15
16 // n is not prime if we find a nontrivial square root of 1
17 long y = (x * x) % n;
18 if(y == 1 && x != 1 && x != n - 1)
19 return 0;
20
21 if(i % 2 != 0)
22 y = (a * y) % n;
23
24 return y;
25 }
26
27 /**
28 * The number of witnesses queried in randomized primality test.
29 */
30 public static final int TRIALS = 5;
31
32 /**
33 * Randomized primality test.
34 * Adjust TRIALS to increase confidence level.
35 * @param n the number to test.
36 * @return if false, n is definitely not prime.
37 * If true, n is probably prime.
38 */
39 public static boolean isPrime(long n)
40 {
41 Random r = new Random();
42
43 for(int counter = 0; counter < TRIALS; counter++)
44 if(witness(r.nextInt((int) n - 3) + 2, n - 1, n) != 1)
45 return false;
46
47 return true;
48 }

412 chapter 9 randomization

normal for the power computation. We check whether Theorem 9.1 is violated,
returning 0 if it is. Otherwise, we complete the power computation.

If the algorithm
declares a number
not to be prime, it is
not prime with 100
percent certainty.
Each random
attempt has at
most a 25 percent
false positive rate.

The only remaining issue is correctness. If our algorithm declares that N
is composite, then N must be composite. If N is composite, are all

witnesses? The answer, unfortunately, is no. That is, some
choices of A will trick our algorithm into declaring that N is prime. In fact, if
we choose A randomly, we have at most a 1/4 chance of failing to detect a
composite number and thus making an error. Note that this outcome is true for
any N. If it were obtained only by averaging over all N, we would not have a
good enough routine. Analogous to medical tests, our algorithm generates
false positives at most 25 percent of the time for any N.

Some composites
will pass the test
and be declared
prime. A composite
is very unlikely to
pass 20 consecu-
tive independent
random tests.

These odds do not seem very good because a 25 percent error rate gener-
ally is considered very high. However, if we independently use 20 values of
A, the chances that none of them will witness a composite number is 1/420,
which is about one in a million million. Those odds are much more reasonable
and can be made even better by using more trials. The routine isPrime, which
is also shown in Figure 9.9, uses five trials.3

summary

In this chapter we described how random numbers are generated and used.
The linear congruential generator is a good choice for simple applications, so
long as care is taken in choosing the parameters A and M. Using a uniform
random number generator, we can derive random numbers for other distribu-
tions, such as the Poisson and negative exponential distributions.

Random numbers have many uses, including the empirical study of algo-
rithms, the simulation of real-life systems, and the design of algorithms that
probabilistically avoid the worst case. We use random numbers in other parts
of this text, notably in Section 13.2 and Exercise 21.21.

This concludes Part Two of the book. In Part Three we look at some sim-
ple applications, beginning with a discussion of games in Chapter 10 that
illustrates three important problem-solving techniques.

key concepts

false positives / false negatives Mistakes randomly made (presumably with
low probability) by some randomized algorithms that work in a fixed
amount of time. (408)

2 A N 2–≤ ≤

3. These bounds are typically pessimistic, and the analysis involves number theory that is
much too involved for this text.

common errors 413

Fermat’s Little Theorem States that if P is prime and , then
. It is necessary but not sufficient to establish primality.

(409)
full-period linear congruential generator A random number generator that has

period . (397)
linear congruential generator A good algorithm for generating uniform distri-

butions. (397)
negative exponential distribution A form of distribution used to model the time

between occurrences of random events. Its mean equals its variance. (404)
period The length of the sequence until a number is repeated. A random num-

ber generator with period P generates the same random sequence of ran-
dom numbers after P iterations. (397)

permutation A permutation of 1, 2, , N is a sequence of N integers that
includes each of 1, 2, , N exactly once. (394)

Poisson distribution A distribution that models the number of occurrences of a
rare event. (402)

pseudorandom numbers Numbers that have many properties of random num-
bers. Good generators of pseudorandom numbers are hard to find. (395)

random permutation A random arrangement of N items. Can be generated in
linear time using one random number per item. (405)

randomized algorithm An algorithm that uses random numbers rather than
deterministic decisions to control branching. (406)

seed The initial value of a random number generator. (397)
trial division The simplest algorithm for primality testing. It is fast for small

(32-bit) numbers but cannot be used for larger numbers. (409)
uniform distribution A distribution in which all numbers in the specified range

are equally likely to occur. (395)
witness to compositeness A value of A that proves that a number is not prime,

using Fermat’s Little Theorem. (410)

common errors

1. Using an initial seed of zero gives bad random numbers.

2. Inexperienced users occasionally reinitialize the seed prior to generating a
random permutation. This action guarantees that the same permutation
will be repeatedly produced, which is probably not intended.

3. Many random number generators are notoriously bad; for serious applica-
tions in which long sequences of random numbers are required, the linear
congruential generator is also unsatisfactory.

0 A P< <
AP 1– 1 mod P()≡

M 1–

…
…

414 chapter 9 randomization

4. The low-order bits of linear congruential generators are known to be some-
what nonrandom, so avoid using them. For example, nextInt()%2 is often a
bad way to flip a coin.

5. When random numbers are being generated in some interval, a common
error is to be slightly off at the boundaries and either allow some number
outside the interval to be generated or not allow the smallest number to be
generated with fair probability.

6. Many random permutation generators do not generate all permutations
with equal likelihood. As discussed in the text, our algorithm is limited by
the random number generator.

7. Tinkering with a random number generator is likely to weaken its statisti-
cal properties.

on the internet

Most of the code in this chapter is available.

Random.java Contains both Random class implementations.
Numerical.java Contains the primality-testing routine shown in

Figure 9.9 and the math routines presented in Section 7.4.

exercises

IN SHORT

9.1 For the random number generator described in the text, determine the
first 10 values of state, assuming that it is initialized with a value of 1.

9.2 Show the result of running the primality-testing algorithm for N = 561
with values of A ranging from 2 to 5.

9.3 If 42,000,000 lottery tickets are sold (with 14,000,000 to 1 odds of a
ticket being a winner), what is the expected number of winners? What
are the odds that there will be no winners? One winner?

9.4 Why can’t zero be used as a seed for the linear congruential
generator?

IN THEORY

9.5 Prove that Equation 9.4 is equivalent to Equation 9.1 and that the
resulting program in Figure 9.2 is correct.

9.6 Complete the proof that each permutation obtained in Figure 9.7 is
equally likely.

exercises 415

9.7 Suppose that you have a biased coin that comes up heads with
probability p and tails with probability 1 – p. Show how to design
an algorithm that uses the coin to generate a 0 or 1 with equal
probability.

IN PRACTICE

9.8 Write a program that calls nextInt (that returns an int in the specified
interval) 100,000 times to generate numbers between 1 and 1,000.
Does it meet the stronger statistical tests given in Section 9.2?

9.9 Run the Poisson generator shown in Figure 9.5 1,000,000 times,
using an expected value of 2. Does the distribution agree with
Figure 9.4?

9.10 Consider a two-candidate election in which the winner received a frac-
tion p of the vote. If the votes are counted sequentially, what is the
probability that the winner was ahead (or tied) at every stage of the
election? This problem is the so-called ballot problem. Write a pro-
gram that verifies the answer, , assuming that and that large
numbers of votes are the case. (Hint: Simulate an election of 10,000
voters. Generate random arrays of 10,000p ones and 10,000(1 – p)
zeros. Then verify in a sequential scan that the difference between 1s
and 0s is never negative.)

9.11 In the one-parameter Random constructor in Figure 9.2, why do we not
simply write initialValue+=(M+1); ?

9.12 In class Random48, prove that nextLong does not return all possible long
values.

PROGRAMMING PROJECTS

9.13 An alternative permutation algorithm is to fill the array a from a[0]
to a[n-1], as follows. To fill a[i], generate random numbers until
you get one that has not been used previously. Use an array of Bool-
eans to perform that test. Give an analysis of the expected running
time (this is tricky) and then write a program that compares this run-
ning time with both your analysis and the routine shown in
Figure 9.7.

9.14 Suppose that you want to generate a random permutation of N distinct
items drawn from the range 1, 2, ..., M. (The case M = N, of course,
has already been discussed.) Floyd’s algorithm does the following.
First, it recursively generates a permutation of N – 1 distinct items

2
1
p---– p 1

2
--->

416 chapter 9 randomization

drawn from the range M – 1. It then generates a random integer in the
range 1 to M. If the random integer is not already in the permutation
we add it; otherwise, we add M.
a. Prove that this algorithm does not add duplicates.
b. Prove that each permutation is equally likely.
c. Give a recursive implementation of the algorithm.
d. Give an iterative implementation of the algorithm.

9.15 A random walk in two dimensions is the following game played on
the x–y coordinate system. Starting at the origin (0, 0), each itera-
tion consists of a random step either 1 unit left, up, right, or down.
The walk terminates when the walker returns to the origin. (The
probability of this happening is 1 in two dimensions but less than 1
in three dimensions.) Write a program that performs 100 indepen-
dent random walks and computes the average number of steps taken
in each direction.

9.16 A simple and effective statistical test is the chi-square test. Suppose
that you generate N positive numbers that can assume one of M val-
ues (for example, we could generate numbers between 1 and M,
inclusive). The number of occurrences of each number is a random
variable with mean . For the test to work, you should have

. Let be the number of times i is generated. Then compute
the chi-square value . The result should be close
to M. If the result is consistently more than away from M (i.e.,
more than once in 10 tries), then the generator has failed the test.
Implement the chi-square test and run it on your implementation of
the nextInt method (with low = 1 and high = 100).

9.17 In class Random48, the low b bits of state cycle with period 2b.
a. What is the period of zero-parameter nextInt?
b. Show that one-parameter nextInt will then cycle with a length 216N

if is invoked with N that is a power of 2.
c. Modify nextInt to detect if N is a power of 2 and if so, use the high

order bits of state, rather than the low order bits.

9.18 In class Random48, suppose one-parameter nextInt invokes zero-parameter
nextInt instead of nextLong (and cleans up the corner case concerning
Math.abs(Integer.MIN_VALUE)).
a. Show that in that case, if N is very large then some remainders are

significantly more likely to occur than others. Consider, for instance
N = 230 + 1.

b. Suggest a remedy to the above problem.
c. Does the same situation occur when we invoke nextLong?

μ N M⁄=
μ 10> f i

V f i μ–()2 μ⁄∑=
2 M

references 417

references

A good discussion of elementary random number generators is provided in [3].
The permutation algorithm is due to R. Floyd and is presented in [1]. The ran-
domized primality-testing algorithm is taken from [2] and [4]. More informa-
tion on random numbers is available in any good book on statistics or
probability.

1. J. Bentley, “Programming Pearls,” Communications of the ACM 30
(1987), 754–757.

2. G. L. Miller, “Riemann’s Hypothesis and Tests for Primality,” Journal of
Computer and System Science 13 (1976), 300–317.

3. S. K. Park and K. W. Miller, “Random Number Generators: Good Ones
Are Hard to Find,” Communications of the ACM 31 (1988) 1192–1201.
(See also Technical Correspondence in 36 (1993) 105–110, which pro-
vides the value of A used in Figure 9.2.)

4. M. O. Rabin, “Probabilistic Algorithms for Testing Primality,” Journal of
Number Theory 12 (1980), 128–138.

This page intentionally left blank

par t
th ree Applications

chapter 10 fun and games

chapter 11 stacks and compilers

chapter 12 utilities

chapter 13 simulation

chapter 14 graphs and paths

This page intentionally left blank

chap te r 10

fun and games

In this chapter we introduce three important algorithmic techniques and
show how to use them by implementing programs to solve two recreational
problems. The first problem is the word search puzzle and involves finding
words in a two-dimensional grid of characters. The second is optimal play in
the game of Tic-Tac-Toe.

In this chapter, we show

n How to use the binary search algorithm to incorporate information
from unsuccessful searches and to solve large instances of a word
search problem in under 1 sec

n How to use the alpha–beta pruning algorithm to speed up the recur-
sive algorithm presented in Section 7.7

n How to use maps to increase the speed of the Tic-Tac-Toe algorithm

10.1 word search puzzles
The input to the word search puzzle problem is a two-dimensional array of
characters and a list of words, and the object is to find the words in the grid.
These words may be horizontal, vertical, or diagonal in any direction (for a
total of eight directions). As an example, the grid shown in Figure 10.1

422 chapter 10 fun and games

The word search
puzzle requires
searching for
words in a two-
dimensional grid of
letters. Words may
be oriented in one
of eight directions.

contains the words this, two, fat, and that. The word this begins at row 0,
column 0—the point (0, 0)—and extends to (0, 3); two goes from (0, 0) to
(2, 0); fat goes from (3, 0) to (1, 2); and that goes from (3, 3) to (0, 0).
(Additional, mostly shorter, words are not listed here.)

10.1.1 theory
The brute-force
algorithm searches
each word in the
word list.

We can use any of several naive algorithms to solve the word search puzzle
problem. The most direct is the following brute-force approach:

for each word W in the word list
 for each row R
 for each column C
 for each direction D
 check if W exists at row R, column C in direction D

An alternative algo-
rithm searches
from each point in
the grid in each
direction for each
word length and
looks for the word
in the word list.

Because there are eight directions, this algorithm requires eight word/row/
column (8WRC) checks. Typical puzzles published in magazines feature 40 or
so words and a 16 × 16 grid, which involves roughly 80,000 checks. That
number is certainly easy to compute on any modern machine. Suppose, how-
ever, that we consider the variation in which only the puzzle board is given
and the word list is essentially an English dictionary. In this case, the number
of words might be 40,000 instead of 40, resulting in 80,000,000 checks. Dou-
bling the grid would require 320,000,000 checks, which is no longer a trivial
calculation. We want an algorithm that can solve a puzzle of this size in a
fraction of a second (not counting disk I/O time), so we must consider an
alternative algorithm:

for each row R
 for each column C
 for each direction D
 for each word length L
 check if L chars starting at row R column C
 in direction D form a word

figure 10.1

A sample word
search grid

0 1 2 3

0 t h i s

1 w a t s

2 o a h g

3 f g d t

10.1 word search puzzles 423

Our implementa-
tion follows the
algorithm
description.

The lookups can be
done by a binary
search.

This algorithm rearranges the loop to avoid searching for every word in the word
list. If we assume that words are limited to 20 characters, the number of checks
used by the algorithm is 160RC. For a 32 × 32 puzzle, this number is roughly
160,000 checks. The problem, of course, is that we must now decide whether a
word is in the word list. If we use a linear search, we lose. If we use a good data
structure, we can expect an efficient search. If the word list is sorted, which is to be
expected for an online dictionary, we can use a binary search (shown in
Figure 5.12) and perform each check in roughly string comparisons. For
40,000 words, doing so involves perhaps 16 comparisons per check, for a total of
less than 3,000,000 string comparisons. This number of comparisons can certainly
be done in a few seconds and is a factor of 100 better than the previous algorithm.

If a character
sequence is not a
prefix of any word
in the dictionary, we
can terminate
searching in that
direction.

We can further improve the algorithm based on the following observation.
Suppose that we are searching in some direction and see the character
sequence qx. An English dictionary will not contain any words beginning with
qx. So is it worth continuing the innermost loop (over all word lengths)? The
answer obviously is no: If we detect a character sequence that is not a prefix
of any word in the dictionary, we can immediately look in another direction.
This algorithm is given by the following pseudocode:

for each row R
 for each column C
 for each direction D
 for each word length L
 check if L chars starting at row R column
 C in direction D form a word
 if they do not form a prefix,
 break; // the innermost loop

Prefix testing can
also be done by
binary search.

The only remaining algorithmic detail is the implementation of the prefix
test: Assuming that the current character sequence is not in the word list, how can
we decide whether it is a prefix of some word in the word list? The answer turns
out to be simple. Recall from Section 6.4.3 that the binarySearch method in the
Collections API returns either the index of a match or the position of the smallest
element that is at least as large as the target (as a negative number). The caller
can easily check on whether a match is found. If a match is not found, verifying
that the character sequence is a prefix of some word in the list also is easy,
because, if it is, it must be a prefix of the word in the position implied in the
return value (in Exercise 10.3 you are asked to prove this outcome).

10.1.2 java implementation

Our Java implementation follows the algorithm description almost verbatim.
We design a WordSearch class to store the grid and word list, as well as the corre-
sponding input streams. The class skeleton is shown in Figure 10.2. The public

Wlog

424 chapter 10 fun and games

part of the class consists of a constructor and a single method, solvePuzzle. The
private part includes the data members and supporting routines.

figure 10.2

The WordSearch
class skeleton

1 import java.io.BufferedReader;
2 import java.io.FileReader;
3 import java.io.InputStreamReader;
4 import java.io.IOException;
5
6 import java.util.Arrays;
7 import java.util.ArrayList;
8 import java.util.Iterator;
9 import java.util.List;

10
11
12 // WordSearch class interface: solve word search puzzle
13 //
14 // CONSTRUCTION: with no initializer
15 // ******************PUBLIC OPERATIONS******************
16 // int solvePuzzle() --> Print all words found in the
17 // puzzle; return number of matches
18
19 public class WordSearch
20 {
21 public WordSearch() throws IOException
22 { /* Figure 10.3 */ }
23 public int solvePuzzle()
24 { /* Figure 10.7 */ }
25
26 private int rows;
27 private int columns;
28 private char theBoard[][];
29 private String [] theWords;
30 private BufferedReader puzzleStream;
31 private BufferedReader wordStream;
32 private BufferedReader in = new
33 BufferedReader(new InputStreamReader(System.in));
34
35 private static int prefixSearch(String [] a, String x)
36 { /* Figure 10.8 */ }
37 private BufferedReader openFile(String message)
38 { /* Figure 10.4 */ }
39 private void readWords() throws IOException
40 { /* Figure 10.5 */ }
41 private void readPuzzle() throws IOException
42 { /* Figure 10.6 */ }
43 private int solveDirection(int baseRow, int baseCol,
44 int rowDelta, int colDelta)
45 { /* Figure 10.8 */ }
46 }

10.1 word search puzzles 425

The constructor
opens and reads
the data files. We
skimp on error
checks for brevity.

Figure 10.3 gives the code for the constructor. It merely opens and reads
the two files corresponding to the grid and the word list. The supporting rou-
tine openFile, shown in Figure 10.4, repeatedly prompts for a file until an open
is successful. The readWords routine, shown in Figure 10.5, reads the word list.

figure 10.3

The WordSearch
class constructor

1 /**
2 * Constructor for WordSearch class.
3 * Prompts for and reads puzzle and dictionary files.
4 */
5 public WordSearch() throws IOException
6 {
7 puzzleStream = openFile("Enter puzzle file");
8 wordStream = openFile("Enter dictionary name");
9 System.out.println("Reading files...");

10 readPuzzle();
11 readWords();
12 }

1 /**
2 * Print a prompt and open a file.
3 * Retry until open is successful.
4 * Program exits if end of file is hit.
5 */
6 private BufferedReader openFile(String message)
7 {
8 String fileName = "";
9 FileReader theFile;

10 BufferedReader fileIn = null;
11
12 do
13 {
14 System.out.println(message + ": ");
15
16 try
17 {
18 fileName = in.readLine();
19 if(fileName == null)
20 System.exit(0);
21 theFile = new FileReader(fileName);
22 fileIn = new BufferedReader(theFile);
23 }
24 catch(IOException e)
25 { System.err.println("Cannot open " + fileName); }
26 } while(fileIn == null);
27
28 System.out.println("Opened " + fileName);
29 return fileIn;
30 }

figure 10.4

The openFile routine
for opening either the
grid or word list file

426 chapter 10 fun and games

The code includes an error check to ensure that the word list has been sorted.
Similarly, readPuzzle, shown in Figure 10.6, reads the grid and is also con-
cerned with error handling. We need to be sure that we can handle missing
puzzles, and we want to warn the user if the grid is not rectangular.

We use two loops
to iterate over the
eight directions.

The solvePuzzle routine shown in Figure 10.7 nests the row, column, and
direction loops and then calls the private routine solveDirection for each pos-
sibility. The return value is the number of matches found. We give a direction
by indicating a column direction and then a row direction. For instance, south
is indicated by cd=0 and rd=1 and northeast by cd=1 and rd=-1; cd can range
from -1 to 1 and rd from -1 to 1, except that both cannot be 0 simultaneously.
All that remains to be done is to provide solveDirection, which is coded in
Figure 10.8. The solveDirection routine constructs a string by starting at the
base row and column and extending in the appropriate direction.

We also assume that one-letter matches are not allowed (because any one-
letter match would be reported eight times). At lines 14 through 16, we iterate
and extend the string while ensuring that we do not go past the grid’s bound-
ary. At line 18 we tack on the next character, using +=, and perform a binary

figure 10.5

The readWords routine for reading the word list

1 /**
2 * Routine to read the dictionary.
3 * Error message is printed if dictionary is not sorted.
4 */
5 private void readWords() throws IOException
6 {
7 List<String> words = new ArrayList<String>();
8
9 String lastWord = null;

10 String thisWord;
11
12 while((thisWord = wordStream.readLine()) != null)
13 {
14 if(lastWord != null && thisWord.compareTo(lastWord) < 0)
15 {
16 System.err.println("Dictionary is not sorted... skipping");
17 continue;
18 }
19 words.add(thisWord);
20 lastWord = thisWord;
21 }
22
23 theWords = new String[words.size()];
24 theWords = words.toArray(theWords);
25 }

10.2 the game of tic-tac-toe 427

The minimax strat-
egy examines lots
of positions. We can
get by with less
without losing any
information.

search at line 19. If we do not have a prefix, we can stop looking and return.
Otherwise, we know that we have to continue after checking at line 26 for a
possible exact match. Line 35 returns the number of matches found when the
call to solveDirection can find no more words. A simple main program is
shown in Figure 10.9.

10.2 the game of tic-tac-toe
Recall from Section 7.7 a simple algorithm, known as the minimax strategy,
allows the computer to select an optimal move in a game of Tic-Tac-Toe. This
recursive strategy involves the following decisions.

figure 10.6

The readPuzzle routine for reading the grid

1 /**
2 * Routine to read the grid.
3 * Checks to ensure that the grid is rectangular.
4 * Checks to make sure that capacity is not exceeded is omitted.
5 */
6 private void readPuzzle() throws IOException
7 {
8 String oneLine;
9 List<String> puzzleLines = new ArrayList<String>();

10
11 if((oneLine = puzzleStream.readLine()) == null)
12 throw new IOException("No lines in puzzle file");
13
14 columns = oneLine.length();
15 puzzleLines.add(oneLine);
16
17 while((oneLine = puzzleStream.readLine()) != null)
18 {
19 if(oneLine.length() != columns)
20 System.err.println("Puzzle is not rectangular; skipping row");
21 else
22 puzzleLines.add(oneLine);
23 }
24
25 rows = puzzleLines.size();
26 theBoard = new char[rows][columns];
27
28 int r = 0;
29 for(String theLine : puzzleLines)
30 theBoard[r++] = theLine.toCharArray();
31 }

428 chapter 10 fun and games

1. A terminal position can immediately be evaluated, so if the position is
terminal, return its value.

2. Otherwise, if it is the computer’s turn to move, return the maximum
value of all positions reachable by making one move. The reachable
values are calculated recursively.

A refutation is a
countermove that
proves that a pro-
posed move is not
an improvement
over moves previ-
ously considered. If
we find a refutation,
we do not have to
examine any more
moves and the
recursive call can
return.

3. Otherwise, it is the human player’s turn to move. Return the mini-
mum value of all positions reachable by making one move. The
reachable values are calculated recursively.

10.2.1 alpha–beta pruning

Although the minimax strategy gives an optimal Tic-Tac-Toe move, it per-
forms a lot of searching. Specifically, to choose the first move, it makes
roughly a half-million recursive calls. One reason for this large number of
calls is that the algorithm does more searching than necessary. Suppose that
the computer is considering five moves: C1, C2, C3, C4, and C5. Suppose also
that the recursive evaluation of C1 reveals that C1 forces a draw. Now C2 is
evaluated. At this stage, we have a position from which it would be the human
player’s turn to move. Suppose that in response to C2, the human player can
consider H2a, H2b, H2c, and H2d. Further, suppose that an evaluation of H2a
shows a forced draw. Automatically, C2 is at best a draw and possibly even a
loss for the computer (because the human player is assumed to play opti-
mally). Because we need to improve on C1, we do not have to evaluate any of
H2b, H2c, and H2d. We say that H2a is a refutation, meaning that it proves that

figure 10.7

The solvePuzzle
routine for searching
in all directions from
all starting points

1 /**
2 * Routine to solve the word search puzzle.
3 * Performs checks in all eight directions.
4 * @return number of matches
5 */
6 public int solvePuzzle()
7 {
8 int matches = 0;
9

10 for(int r = 0; r < rows; r++)
11 for(int c = 0; c < columns; c++)
12 for(int rd = -1; rd <= 1; rd++)
13 for(int cd = -1; cd <= 1; cd++)
14 if(rd != 0 || cd != 0)
15 matches += solveDirection(r, c, rd, cd);
16
17 return matches;
18 }

10.2 the game of tic-tac-toe 429

figure 10.8

Implementation of a
single search

1 /**
2 * Search the grid from a starting point and direction.
3 * @return number of matches
4 */
5 private int solveDirection(int baseRow, int baseCol,
6 int rowDelta, int colDelta)
7 {
8 String charSequence = "";
9 int numMatches = 0;

10 int searchResult;
11
12 charSequence += theBoard[baseRow][baseCol];
13
14 for(int i = baseRow + rowDelta, j = baseCol + colDelta;
15 i >= 0 && j >= 0 && i < rows && j < columns;
16 i += rowDelta, j += colDelta)
17 {
18 charSequence += theBoard[i][j];
19 searchResult = prefixSearch(theWords, charSequence);
20
21 if(searchResult == theWords.length)
22 break;
23 if(!theWords[searchResult].startsWith(charSequence))
24 break;
25
26 if(theWords[searchResult].equals(charSequence))
27 {
28 numMatches++;
29 System.out.println("Found " + charSequence + " at " +
30 baseRow + " " + baseCol + " to " +
31 i + " " + j);
32 }
33 }
34
35 return numMatches;
36 }
37
38 /**
39 * Performs the binary search for word search.
40 * Returns the last position examined this position
41 * either matches x, or x is a prefix of the mismatch, or there is
42 * no word for which x is a prefix.
43 */
44 private static int prefixSearch(String [] a, String x)
45 {
46 int idx = Arrays.binarySearch(a, x);
47
48 if(idx < 0)
49 return -idx - 1;
50 else
51 return idx;
52 }

430 chapter 10 fun and games

C2 is not a better move than what has already been seen. Thus we return that
C2 is a draw and keep C1 as the best move seen so far, as shown in
Figure 10.10. In general, then, a refutation is a countermove that proves that a
proposed move is not an improvement over moves previously considered.

figure 10.9

A simple main routine
for the word search
puzzle problem

1 // Cheap main
2 public static void main(String [] args)
3 {
4 WordSearch p = null;
5
6 try
7 {
8 p = new WordSearch();
9 }

10 catch(IOException e)
11 {
12 System.out.println("IO Error: ");
13 e.printStackTrace();
14 return;
15 }
16
17 System.out.println("Solving...");
18 p.solvePuzzle();
19 }

H2a

C1

H2b H2c

C2 C3

H2d

DRAW DRAW ? ? ?

Use best result

Use worst result

figure 10.10

Alpha–beta pruning:
After H2a is evaluated,
C2, which is the
minimum of the H2’s,
is at best a draw.
Consequently, it
cannot be an
improvement over C2.
We therefore do not
need to evaluate H2b ,
H2c , and H2d and can
proceed directly to C3.

10.2 the game of tic-tac-toe 431

Alpha–beta prun-
ing is used to
reduce the number
of positions evalu-
ated in a minimax
search. Alpha is the
value that the
human player has
to refute, and beta
is the value that the
computer has to
refute.

We do not need to evaluate each node completely; for some nodes, a refu-
tation suffices and some loops can terminate early. Specifically, when the
human player evaluates a position, such as C2, a refutation, if found, is just as
good as the absolute best move. The same logic applies to the computer. At
any point in the search, alpha is the value that the human player has to refute,
and beta is the value that the computer has to refute. When a search is done on
the human player’s side, any move less than alpha is equivalent to alpha; when
a search is done on the computer side, any move greater than beta is equiva-
lent to beta. This strategy of reducing the number of positions evaluated in a
minimax search is commonly called alpha–beta pruning.

As Figure 10.11 shows, alpha–beta pruning requires only a few changes
to chooseMove. Both alpha and beta are passed as additional parameters. Ini-
tially, chooseMove is started with alpha and beta representing HUMAN_WIN and
COMPUTER_WIN, respectively. Lines 17 and 21 reflect a change in the initializa-
tion of value. The move evaluation is only slightly more complex than origi-
nally shown in Figure 7.29. The recursive call at line 30 includes the
parameters alpha and beta, which are adjusted at line 37 or 39 if needed. The
only other change is at line 42, which provides for an immediate return when
a refutation is found.

Alpha–beta pruning
works best when it
finds refutations
early.

To take full advantage of alpha–beta pruning, game programs usually try
to apply heuristics to place the best moves early in the search. This approach
results in even more pruning than we would expect from a random search of
positions. In practice, alpha–beta pruning limits the searching to
nodes, where N is the number of nodes that would be examined without
alpha–beta pruning, resulting in a huge savings. The Tic-Tac-Toe example is
not ideal because there are so many identical values. Even so, the initial
search is reduced to roughly 18,000 positions.

10.2.2 transposition tables
A transposition
table stores previ-
ously evaluated
positions.

Another commonly employed practice is to use a table to keep track of all
positions that have been evaluated. For instance, in the course of searching for
the first move, the program will examine the positions shown in Figure 10.12.
If the values of the positions are saved, the second occurrence of a position
need not be recomputed; it essentially becomes a terminal position. The data
structure that records and stores previously evaluated positions is called a
transposition table; it is implemented as a map of positions to values.1

O N()

1. We discussed this generic technique, which avoids repeated recursive calls by storing values
in a table, in a different context in Section 7.6. This technique is also known as memoizing.
The term transposition table is slightly misleading because fancier implementations of this
technique recognize and avoid searching not only exactly identical positions, but also sym-
metrically identical positions.

432 chapter 10 fun and games

figure 10.11

The chooseMove routine for computing an optimal Tic-Tac-Toe move, using alpha–beta pruning

1 // Find optimal move
2 private Best chooseMove(int side, int alpha, int beta, int depth)
3 {
4 int opp; // The other side
5 Best reply; // Opponent's best reply
6 int dc; // Placeholder
7 int simpleEval; // Result of an immediate evaluation
8 int bestRow = 0;
9 int bestColumn = 0;

10 int value;
11
12 if((simpleEval = positionValue()) != UNCLEAR)
13 return new Best(simpleEval);
14
15 if(side == COMPUTER)
16 {
17 opp = HUMAN; value = alpha;
18 }
19 else
20 {
21 opp = COMPUTER; value = beta;
22 }
23
24 Outer:
25 for(int row = 0; row < 3; row++)
26 for(int column = 0; column < 3; column++)
27 if(squareIsEmpty(row, column))
28 {
29 place(row, column, side);
30 reply = chooseMove(opp, alpha, beta, depth + 1);
31 place(row, column, EMPTY);
32
33 if(side == COMPUTER && reply.val > value ||
34 side == HUMAN && reply.val < value)
35 {
36 if(side == COMPUTER)
37 alpha = value = reply.val;
38 else
39 beta = value = reply.val;
40
41 bestRow = row; bestColumn = column;
42 if(alpha >= beta)
43 break Outer; // Refutation
44 }
45 }
46
47 return new Best(value, bestRow, bestColumn);
48 }

10.2 the game of tic-tac-toe 433

A map is used to
implement the
transposition table.
Often the underly-
ing implementation
is a hash table.

We do not need an ordered map—so the HashMap—an unordered map,
with a data structure called a hash table as the underlying implementation
is used to implement the transposition table. We discuss hash tables in
Chapter 20.

To implement the transposition table we first define a Position class, as
shown in Figure 10.13, which we use to store each position. Values in the board
will be HUMAN, COMPUTER, or EMPTY (defined shortly in the TicTacToe class, as
shown in Figure 10.14). The HashMap requires that we define equals and hash-
Code. Recall that if equals declares two Position objects as equal, hashCode must
yield identical values for those objects. We also provide a constructor that can
be initialized with a matrix representing the board.

We do not store
positions that are at
the bottom of the
recursion in the
transposition table.

An important issue concerns whether including all positions in the trans-
position table is worthwhile. The overhead of maintaining the table suggests
that positions near the bottom of the recursion ought not be saved because

n There are so many.

n The point of alpha–beta pruning and transposition tables is to reduce
search times by avoiding recursive calls early in the game; saving a
recursive call very deep in the search does not greatly reduce the
number of positions examined because that recursive call would
examine only a few positions anyway.

The chooseMove
method has addi-
tional parameters,
all of which have
defaults.

We show how this technique applies to the game of Tic-Tac-Toe when we
implement the transposition table. The changes needed in the TicTacToe class
are shown in Figure 10.14. The additions are the new data member at line 7 and
the new declaration for chooseMove at line 14. We now pass alpha and beta (as in
alpha–beta pruning) and also the depth of the recursion, which is zero by
default. The initial call to chooseMove is shown at line 11.

X

X O X X O X

XOXOX
figure 10.12

Two searches that
arrive at identical
positions

434 chapter 10 fun and games

Figures 10.15 and 10.16 show the new chooseMove. At line 8, we declare a
Position object, thisPosition. When the time comes it will be placed in the
transposition table. tableDepth tells us how deep in the search to allow posi-
tions to be placed in the transposition table. By experimenting we found that
depth 5 was optimal. Allowing positions at depth 6 to be saved hurt because

figure 10.13

The Position class

1 final class Position
2 {
3 private int [][] board;
4
5 public Position(int [][] theBoard)
6 {
7 board = new int[3][3];
8 for(int i = 0; i < 3; i++)
9 for(int j = 0; j < 3; j++)

10 board[i][j] = theBoard[i][j];
11 }
12
13 public boolean equals(Object rhs)
14 {
15 if(! (rhs instanceof Position))
16 return false;
17
18 Position other = (Position) rhs;
19
20 for(int i = 0; i < 3; i++)
21 for(int j = 0; j < 3; j++)
22 if(board[i][j] != ((Position) rhs).board[i][j])
23 return false;
24 return true;
25 }
26
27 public int hashCode()
28 {
29 int hashVal = 0;
30
31 for(int i = 0; i < 3; i++)
32 for(int j = 0; j < 3; j++)
33 hashVal = hashVal * 4 + board[i][j];
34
35 return hashVal;
36 }
37 }

10.2 the game of tic-tac-toe 435

the extra cost of maintaining the larger transposition table was not offset by
the fewer examined positions.

The code has a few
little tricks but
nothing major.

Lines 17 to 24 are new. If we are in the first call to chooseMove, we initial-
ize the transposition table. Otherwise, if we are at an appropriate depth, we
determine whether the current position has been evaluated; if it has, we return
its value. The code has two tricks. First, we can transpose only at depth 3 or
higher, as Figure 10.12 suggests. The only other difference is the addition of
lines 57 and 58. Immediately before the return, we store the value of the posi-
tion in the transposition table.

The use of the transposition table in this Tic-Tac-Toe algorithm removes
about half the positions from consideration, with only a slight cost for the
transposition table operations. The program’s speed is almost doubled.

10.2.3 computer chess
Terminal positions
cannot be searched
in computer chess.
In the best pro-
grams, consider-
able knowledge is
built into the evalu-
ation function.

In a complex game such as Chess or Go, it is infeasible to search all the way
to the terminal nodes: Some estimates claim that there are roughly 10100 legal
chess positions, and all the tricks in the world will not bring it down to a man-
ageable level. In this case, we have to stop the search after a certain depth of
recursion is reached. The nodes at which the recursion is stopped become
terminal nodes. These terminal nodes are evaluated with a function that esti-
mates the value of the position. For instance, in a chess program, the

figure 10.14

Changes to the TicTacToe class to incorporate transposition table and alpha–beta pruning

1 // Original import directives plus:
2 import java.util.Map;
3 import java.util.HashMap;
4
5 class TicTacToe
6 {
7 private Map<Position,Integer> transpositions
8 = new HashMap<Position,Integer>();
9

10 public Best chooseMove(int side)
11 { return chooseMove(side, HUMAN_WIN, COMPUTER_WIN, 0); }
12
13 // Find optimal move
14 private Best chooseMove(int side, int alpha, int beta, int depth)
15 { /* Figures 10.15 and 10.16 */ }
16
17 ...
18 }

436 chapter 10 fun and games

evaluation function measures such variables as the relative amount and
strength of pieces and other positional factors.

The best computer
chess programs
play at grandmaster
level.

Computers are especially adept at playing moves involving deep combi-
nations that result in exchanges of material. The reason is that the strength of
pieces is easily evaluated. However, extending the search depth merely one
level requires an increase in processing speed by a factor of about 6 (because
the number of positions increases by about a factor of 36). Each extra level of
search greatly enhances the ability of the program, up to a certain limit
(which appears to have been reached by the best programs). On the other

figure 10.15

The Tic-Tac-Toe algorithm with alpha–beta pruning and transposition table (part 1)

1 // Find optimal move
2 private Best chooseMove(int side, int alpha, int beta, int depth)
3 {
4 int opp; // The other side
5 Best reply; // Opponent's best reply
6 int dc; // Placeholder
7 int simpleEval; // Result of an immediate evaluation
8 Position thisPosition = new Position(board);
9 int tableDepth = 5; // Max depth placed in Trans. table

10 int bestRow = 0;
11 int bestColumn = 0;
12 int value;
13
14 if((simpleEval = positionValue()) != UNCLEAR)
15 return new Best(simpleEval);
16
17 if(depth == 0)
18 transpositions.clear();
19 else if(depth >= 3 && depth <= tableDepth)
20 {
21 Integer lookupVal = transpositions.get(thisPosition);
22 if(lookupVal != null)
23 return new Best(lookupVal);
24 }
25
26 if(side == COMPUTER)
27 {
28 opp = HUMAN; value = alpha;
29 }
30 else
31 {
32 opp = COMPUTER; value = beta;
33 }

10.2 the game of tic-tac-toe 437

hand, computers generally are not as good at playing quiet positional games
in which more subtle evaluations and knowledge of the game is required.
However, this shortcoming is apparent only when the computer is playing
very strong opposition. The mass-marketed computer chess programs are
better than all but a small fraction of today’s players.

In 1997, the computer program Deep Blue, using an enormous amount of
computational power (evaluating as many as 200 million moves per second),
was able to defeat the reigning world chess champion in a six-game match. Its
evaluation function, although top secret, is known to contain a large number
of factors, was aided by several chess grandmasters, and was the result of
years of experimentation. Writing the top computer chess program is certainly
not a trivial task.

figure 10.16

The Tic-Tac-Toe algorithm with alpha–beta pruning and transposition table (part 2)

34 Outer:
35 for(int row = 0; row < 3; row++)
36 for(int column = 0; column < 3; column++)
37 if(squareIsEmpty(row, column))
38 {
39 place(row, column, side);
40 reply = chooseMove(opp, alpha, beta, depth + 1);
41 place(row, column, EMPTY);
42
43 if(side == COMPUTER && reply.val > value ||
44 side == HUMAN && reply.val < value)
45 {
46 if(side == COMPUTER)
47 alpha = value = reply.val;
48 else
49 beta = value = reply.val;
50
51 bestRow = row; bestColumn = column;
52 if(alpha >= beta)
53 break Outer; // Refutation
54 }
55 }
56
57 if(depth <= tableDepth)
58 transpositions.put(thisPosition, value);
59
60 return new Best(value, bestRow, bestColumn);
61 }

438 chapter 10 fun and games

summary

In this chapter we introduced an application of binary search and some algo-
rithmic techniques that are commonly used in solving word search puzzles
and in game-playing programs such as Chess, Checkers, and Othello. The top
programs for these games are all world class. The game of Go, however,
appears too complex for computer searching.

key concepts

alpha–beta pruning A technique used to reduce the number of positions that
are evaluated in a minimax search. Alpha is the value that the human
player has to refute, and beta is the value that the computer has to refute.
(431)

minimax strategy A recursive strategy that allows the computer to select an
optimal move in a game of Tic-Tac-Toe. (427)

refutation A countermove that proves that a proposed move is not an improve-
ment over moves previously considered. If we find a refutation, we do not
have to examine any more moves and the recursive call can return. (428)

terminal position A position in a game that can be evaluated immediately.
(428)

transposition table A map that stores previously evaluated positions. (431)
word search puzzle A program that requires searching for words in a two-

dimensional grid of letters. Words may be oriented in one of eight direc-
tions. (422)

common errors

1. When using a transposition table, you should limit the number of stored
positions to avoid running out of memory.

2. Verifying your assumptions is important. For instance, in the word search
puzzle, be sure that the dictionary is sorted. A common error is to forget
to check your assumptions.

on the internet

Both the word search and the game Tic-Tac-Toe are completely coded,
although the interface for the latter leaves a little to be desired.

WordSearch.java Contains the word search puzzle algorithm.

exercises 439

TicTacToe.java Contains the TicTacToe class; a main is supplied sepa-
rately in TicTacMain.java.

exercises

IN SHORT

10.1 What error checks are missing from Figure 10.6?

10.2 For the situation in Figure 10.17
a. Which of the responses to move C2 is a refutation?
b. What is the value of the position?

IN THEORY

10.3 Verify that, if x is a prefix of some word in the sorted array a, then x is
a prefix of the word at the index that prefixSearch returns.

10.4 Explain how the running time of the word search algorithm changes
when
a. The number of words doubles.
b. The number of rows and columns double (simultaneously).

figure 10.17

Alpha–beta pruning
example for Exercise
10.2

H2a

C1

H2b H2c

C2 C3

H2d H3a H3b

DRAW DRAW LOSS LOSSWIN WIN WIN

440 chapter 10 fun and games

IN PRACTICE

10.5 For the word search problem, replace the binary search with a sequen-
tial search. How does that change affect performance?

10.6 Compare the performance of the word search algorithm with and
without the prefix search.

10.7 Replace the HashMap with the TreeMap in the Tic-Tac-Toe program and
compare the performance of the two versions.

10.8 Even if the computer has a move that gives an immediate win, it may
not make it if it detects another move that is also guaranteed to win.
Some early chess programs had the problem that they would get into
a repetition of position when a forced win was detected, allowing the
opponent to claim a draw. In the Tic-Tac-Toe program this outcome is
not a problem because the program eventually will win. Modify the
Tic-Tac-Toe algorithm so that when a winning position is found, the
move that leads to the shortest win is always taken. You can do so by
adding 9-depth to COMPUTER_WIN, so that a quicker win gives the highest
value.

10.9 Compare the performance of the Tic-Tac-Toe program with and with-
out alpha–beta pruning.

10.10 Implement the Tic-Tac-Toe algorithm and measure the performance
when various depths are allowed to be stored in the transposition
table. Also measure the performance when no transposition table is
used. How are the results affected by alpha–beta pruning?

PROGRAMMING PROJECTS

10.11 Write a program to play 5 × 5 Tic-Tac-Toe, where 4 in a row wins.
Can you search to terminal nodes?

10.12 The game of Boggle consists of a grid of letters and a word list. The
object is to find words in the grid subject to the constraint that two
adjacent letters must be adjacent in the grid (i.e., north, south, east, or
west of each other) and each item in the grid can be used at most once
per word. Write a program to play Boggle.

10.13 Write a program to play MAXIT. The board is represented as an
N × N grid of numbers randomly placed at the start of the game. One
position is designated as the initial current position. Two players
alternate turns. At each turn, a player must select a grid element in the
current row or column. The value of the selected position is added to
the player’s score, and that position becomes the current position and

references 441

cannot be selected again. Players alternate until all grid elements in
the current row and column have been selected, at which point the
game ends and the player with the highest score wins.

10.14 Othello played on a 6 × 6 board is a forced win for black. Prove this
assertion by writing a program. What is the final score if play on both
sides is optimal?

references

If you are interested in computer games, a good starting point for information
is the article cited in [1]. In this special issue of the journal, devoted exclu-
sively to the subject, you will also find plenty of information and references to
other works covering Chess, Checkers, and other computer games.

1. K. Lee and S. Mahajan, “The Development of a World Class Othello
Program,” Artificial Intelligence 43 (1990), 21–36.

This page intentionally left blank

chap te r 11

stacks and
compilers

S tacks are used extensively in compilers. In this chapter we present two
simple components of a compiler: a balanced symbol checker and a simple
calculator. We do so to show simple algorithms that use stacks and to show
how the Collections API classes described in Chapter 6 are used.

In this chapter, we show

n How to use a stack to check for balanced symbols

n How to use a state machine to parse symbols in a balanced symbol
program

n How to use operator precedence parsing to evaluate infix expressions
in a simple calculator program

11.1 balanced-symbol checker
As discussed in Section 6.6, compilers check your programs for syntax errors.
Frequently, however, a lack of one symbol (such as a missing */ comment
ender or }) can cause the compiler to produce numerous lines of diagnostics
without identifying the real error. A useful tool to help debug compiler error

444 chapter 11 stacks and compilers

messages is a program that checks whether symbols are balanced. In other
words, every { must correspond to a }, every [to a], and so on. However,
simply counting the numbers of each symbol is insufficient. For example, the
sequence [()] is legal, but the sequence [(]) is wrong.

11.1.1 basic algorithm
A stack can be
used to detect mis-
matched symbols.

A stack is useful here because we know that when a closing symbol such as)
is seen, it matches the most recently seen unclosed (. Therefore, by placing an
opening symbol on a stack, we can easily determine whether a closing symbol
makes sense. Specifically, we have the following algorithm.

1. Make an empty stack.

2. Read symbols until the end of the file.

a. If the symbol is an opening symbol, push it onto the stack.
b. If it is a closing symbol, do the following.

i. If the stack is empty, report an error.
ii. Otherwise, pop the stack. If the symbol popped is not the cor-

responding opening symbol, report an error.

3. At the end of the file, if the stack is not empty, report an error.

In this algorithm, illustrated in Figure 11.1, the fourth, fifth, and sixth sym-
bols all generate errors. The } is an error because the symbol popped from the
top of the stack is a (, so a mismatch is detected. The) is an error because the
stack is empty, so there is no corresponding (. The [is an error detected when
the end of input is encountered and the stack is not empty.

figure 11.1

Stack operations
in a balanced-
symbol algorithm

Symbols: ([] }) [

(

(((

[

[

] eof*}*)* [

[

Errors (indicated by *):
{ when expecting)
(with no matching opening symbol
[unmatched at end of input

11.1 balanced-symbol checker 445

Symbols in com-
ments, string
constants, and
character con-
stants need not be
balanced.

To make this technique work for Java programs, we need to consider all
the contexts in which parentheses, braces, and brackets need not match. For
example, we should not consider a parenthesis as a symbol if it occurs inside a
comment, string constant, or character constant. We thus need routines to skip
comments, string constants, and character constants. A character constant in
Java can be difficult to recognize because of the many escape sequences pos-
sible, so we need to simplify things. We want to design a program that works
for the bulk of inputs likely to occur.

Line numbers are
needed for mean-
ingful error mes-
sages.

For the program to be useful, we must not only report mismatches but also
attempt to identify where the mismatches occur. Consequently, we keep track of
the line numbers where the symbols are seen. When an error is encountered,
obtaining an accurate message is always difficult. If there is an extra }, does that
mean that the } is extraneous? Or was a { missing earlier? We keep the error han-
dling as simple as possible, but once one error has been reported, the program
may get confused and start flagging many errors. Thus only the first error can be
considered meaningful. Even so, the program developed here is very useful.

11.1.2 implementation
Tokenization is the
process of generat-
ing the sequence of
symbols (tokens)
that need to be
recognized.

The program has two basic components. One part, called tokenization, is the
process of scanning an input stream for opening and closing symbols
(the tokens) and generating the sequence of tokens that need to be recognized.
The second part is running the balanced symbol algorithm, based on the
tokens. The two basic components are represented as separate classes.

Figure 11.2 shows the Tokenizer class skeleton, and Figure 11.3 shows the
Balance class skeleton. The Tokenizer class provides a constructor that
requires a Reader and then provides a set of accessors that can be used to get

n The next token (either an opening/closing symbol for the code in this
chapter or an identifier for the code in Chapter 12)

n The current line number

n The number of errors (mismatched quotes and comments)

The Tokenizer class maintains most of this information in private data mem-
bers. The Balance class also provides a similar constructor, but its only pub-
licly visible routine is checkBalance, shown at line 24. Everything else is a
supporting routine or a class data member.

We begin by describing the Tokenizer class. It is a reference to a
PushbackReader object and is initialized at construction. Because of the
I/O hierarchy (see Section 4.5.3), it may be constructed with any
Reader object. The current character being scanned is stored in ch, and

446 chapter 11 stacks and compilers

figure 11.2

The Tokenizer class
skeleton, used to
retrieve tokens from
an input stream

1 import java.io.Reader;
2 import java.io.PushbackReader;
3 import java.io.IOException;
4
5 // Tokenizer class.
6 //
7 // CONSTRUCTION: with a Reader object
8 // ******************PUBLIC OPERATIONS***********************
9 // char getNextOpenClose() --> Get next opening/closing symbol

10 // int getLineNumber() --> Return current line number
11 // int getErrorCount() --> Return number of parsing errors
12 // String getNextID() --> Get next Java identifier
13 // (see Section 12.2)
14 // ******************ERRORS**********************************
15 // Error checking on comments and quotes is performed
16
17 public class Tokenizer
18 {
19 public Tokenizer(Reader inStream)
20 { errors = 0; ch = '\0'; currentLine = 1;
21 in = new PushbackReader(inStream); }
22
23 public static final int SLASH_SLASH = 0;
24 public static final int SLASH_STAR = 1;
25
26 public int getLineNumber()
27 { return currentLine; }
28 public int getErrorCount()
29 { return errors; }
30 public char getNextOpenClose()
31 { /* Figure 11.7 */ }
32 public char getNextID()
33 { /* Figure 12.29 */ }
34
35 private boolean nextChar()
36 { /* Figure 11.4 */ }
37 private void putBackChar()
38 { /* Figure 11.4 */ }
39 private void skipComment(int start)
40 { /* Figure 11.5 */ }
41 private void skipQuote(char quoteType)
42 { /* Figure 11.6 */ }
43 private void processSlash()
44 { /* Figure 11.7 */ }
45 private static final boolean isIdChar(char ch)
46 { /* Figure 12.27 */ }
47 private String getRemainingString()
48 { /* Figure 12.28 */ }
49
50 private PushbackReader in; // The input stream
51 private char ch; // Current character
52 private int currentLine; // Current line
53 private int errors; // Number of errors seen
54 }

11.1 balanced-symbol checker 447

figure 11.3

Class skeleton
for a balanced-
symbol program

1 import java.io.Reader;
2 import java.io.FileReader;
3 import java.io.IOException;
4 import java.io.InputStreamReader;
5
6 import java.util.Stack;
7
8
9 // Balance class: check for balanced symbols

10 //
11 // CONSTRUCTION: with a Reader object
12 // ******************PUBLIC OPERATIONS***********************
13 // int checkBalance() --> Print mismatches
14 // return number of errors
15 // ******************ERRORS**********************************
16 // Error checking on comments and quotes is performed
17 // main checks for balanced symbols.
18
19 public class Balance
20 {
21 public Balance(Reader inStream)
22 { errors = 0; tok = new Tokenizer(inStream); }
23
24 public int checkBalance()
25 { /* Figure 11.8 */ }
26
27 private Tokenizer tok;
28 private int errors;
29
30 /**
31 * Symbol nested class;
32 * represents what will be placed on the stack.
33 */
34 private static class Symbol
35 {
36 public char token;
37 public int theLine;
38
39 public Symbol(char tok, int line)
40 {
41 token = tok;
42 theLine = line;
43 }
44 }
45
46 private void checkMatch(Symbol opSym, Symbol clSym)
47 { /* Figure 11.9 */ }
48 }

448 chapter 11 stacks and compilers

the current line number is stored in currentLine. Finally, an integer that
counts the number of errors is declared at line 53. The constructor,
shown at lines 19 to 21, initializes the error count to 0 and the current
line number to 1 and sets the PushbackReader reference.

Lexical analysis is
used to ignore
comments and rec-
ognize symbols.

We can now implement the class methods, which as we mentioned, are
concerned with keeping track of the current line and attempting to differ-
entiate symbols that represent opening and closing tokens from those that
are inside comments, character constants, and string constants. This gen-
eral process of recognizing tokens in a stream of symbols is called lexical
analysis. Figure 11.4 shows a pair of routines, nextChar and putBackChar.
The nextChar method reads the next character from in, assigns it to ch, and
updates currentLine if a newline is encountered. It returns false only if the
end of the file has been reached. The complementary procedure putBackChar

figure 11.4

The nextChar routine for reading the next character, updating currentLine if necessary, and returning true if not at
the end of file; and the putBackChar routine for putting back ch and updating currentLine if necessary

1 /**
2 * nextChar sets ch based on the next character in the input stream.
3 * putBackChar puts the character back onto the stream.
4 * It should be used only once after a call to nextChar.
5 * Both routines adjust currentLine if necessary.
6 */
7 private boolean nextChar()
8 {
9 try

10 {
11 int readVal = in.read();
12 if(readVal == -1)
13 return false;
14 ch = (char) readVal;
15 if(ch == '\n')
16 currentLine++;
17 return true;
18 }
19 catch(IOException e)
20 { return false; }
21 }
22
23 private void putBackChar()
24 {
25 if(ch == '\n')
26 currentLine--;
27 try
28 { in.unread((int) ch); }
29 catch(IOException e) { }
30 }

11.1 balanced-symbol checker 449

puts the current character, ch, back onto the input stream, and decrements
currentLine if the character is a newline. Clearly, putBackChar should be
called at most once between calls to nextChar; as it is a private routine, we
do not worry about abuse on the part of the class user. Putting characters
back onto the input stream is a commonly used technique in parsing. In
many instances we have read one too many characters, and undoing the read
is useful. In our case this occurs after processing a /. We must determine
whether the next character begins the comment start token; if it does not, we
cannot simply disregard it because it could be an opening or closing symbol
or a quote. Thus we pretend that it is never read.

Next is the routine skipComment, shown in Figure 11.5. Its purpose is to skip
over the characters in the comment and position the input stream so that the next
read is the first character after the comment ends. This technique is complicated
by the fact that comments can either begin with //, in which case the line ends
the comment, or /*, in which case */ ends the comment.1 In the // case, we con-
tinually get the next character until either the end of file is reached (in which

1. We do not consider deviant cases involving \, nor /**/.

figure 11.5

The skipComment
routine for moving
past an already
started comment

1 /**
2 * Precondition: We are about to process a comment;
3 * have already seen comment-start token
4 * Postcondition: Stream will be set immediately after
5 * comment-ending token
6 */
7 private void skipComment(int start)
8 {
9 if(start == SLASH_SLASH)

10 {
11 while(nextChar() && (ch != '\n'))
12 ;
13 return;
14 }
15
16 // Look for a */ sequence
17 boolean state = false; // True if we have seen *
18
19 while(nextChar())
20 {
21 if(state && ch == '/')
22 return;
23 state = (ch == '*');
24 }
25 errors++;
26 System.out.println("Unterminated comment!");
27 }

450 chapter 11 stacks and compilers

case, the first half of the && operator fails) or we get a newline. At that point we
return. Note that the line number is updated automatically by nextChar. Other-
wise, we have the /* case, which is processed starting at line 17.

The state machine
is a common tech-
nique used to parse
symbols; at any
point, it is in some
state, and each
input character
takes it to a new
state. Eventually,
the state machine
reaches a state in
which a symbol has
been recognized.

The skipComment routine uses a simplified state machine. The state
machine is a common technique used to parse symbols; at any point, it is in
some state, and each input character takes it to a new state. Eventually, it
reaches a state at which a symbol has been recognized.

In skipComment, at any point, it has matched 0, 1, or 2 characters of the */
terminator, corresponding to states 0, 1, and 2. If it matches two characters, it
can return. Thus, inside the loop, it can be in only state 0 or 1 because, if it is
in state 1 and sees a /, it returns immediately. Thus the state can be repre-
sented by a Boolean variable that is true if the state machine is in state 1. If it
does not return, it either goes back to state 1 if it encounters a * or goes back
to state 0 if it does not. This procedure is stated succinctly at line 23.

If we never find the comment-ending token, eventually nextChar returns
false and the while loop terminates, resulting in an error message. The
skipQuote method, shown in Figure 11.6, is similar. Here, the parameter is the
opening quote character, which is either " or '. In either case, we need to see
that character as the closing quote. However, we must be prepared to handle
the \ character; otherwise, our program will report errors when it is run on its

figure 11.6

The skipQuote routine
for moving past an
already started
character or string
constant

1 /**
2 * Precondition: We are about to process a quote;
3 * have already seen beginning quote.
4 * Postcondition: Stream will be set immediately after
5 * matching quote
6 */
7 private void skipQuote(char quoteType)
8 {
9 while(nextChar())

10 {
11 if(ch == quoteType)
12 return;
13 if(ch == '\n')
14 {
15 errors++;
16 System.out.println("Missing closed quote at line " +
17 currentLine);
18 return;
19 }
20 else if(ch == '\\')
21 nextChar();
22 }
23 }

11.1 balanced-symbol checker 451

own source. Thus we repeatedly digest characters. If the current character is a
closing quote, we are done. If it is a newline, we have an unterminated charac-
ter or string constant. And if it is a backslash, we digest an extra character
without examining it.

Once we’ve written the skipping routine, writing getNextOpenClose is eas-
ier. The bulk of the logic is deferred to processSlash. If the current character is
a /, we read a second character to see whether we have a comment. If so, we
call skipComment; if not, we undo the second read. If we have a quote, we call
skipQuote. If we have an opening or closing symbol, we can return. Other-
wise, we keep reading until we eventually run out of input or find an opening
or closing symbol. Both getNextOpenClose and processSlash are shown in
Figure 11.7.

The getLineNumber and getErrorCount methods are one-liners that return
the values of the corresponding data members and are shown in Figure 11.2.
We discuss the getNextID routine in Section 12.2.2 when it is needed.

In the Balance class, the balanced symbol algorithm requires that we place
opening symbols on a stack. In order to print diagnostics, we store a line num-
ber with each symbol, as shown previously in the Symbol nested class at lines
34 to 44 in Figure 11.3.

The checkBalance routine is implemented as shown in Figure 11.8. It fol-
lows the algorithm description almost verbatim. A stack that stores pending
opening symbols is declared at line 9. Opening symbols are pushed onto the
stack with the current line number. When a closing symbol is encountered and
the stack is empty, the closing symbol is extraneous; otherwise, we remove
the top item from the stack and verify that the opening symbol that was on the
stack matches the closing symbol just read. To do so we use the checkMatch
routine, which is shown in Figure 11.9. Once the end of input is encountered,
any symbols on the stack are unmatched; they are repeatedly output in the
while loop that begins at line 40. The total number of errors detected is then
returned.

The checkBalance
routine does all the
algorithmic work.

The current implementation allows multiple calls to checkBalance. How-
ever, if the input stream is not reset externally, all that happens is that the end
of the file is immediately detected and we return immediately. We can add
functionality to the Tokenizer class, allowing it to change the stream source,
and then add functionality to the Balance class to change the input stream
(passing on the change to the Tokenizer class). We leave this task for you to do
as Exercise 11.9.

Figure 11.10 shows that we expect a Balance object to be created and then
checkBalance to be invoked. In our example, if there are no command-line argu-
ments, the associated Reader is attached to System.in (via an InputStreamReader
bridge); otherwise, we repeatedly use Readers associated with the files given in
the command-line argument list.

452 chapter 11 stacks and compilers

figure 11.7

The getNextOpenClose
routine for skipping
comments and quotes
and returning the next
opening or closing
character, along with
the processSlash
routine

1 /**
2 * Get the next opening or closing symbol.
3 * Return false if end of file.
4 * Skip past comments and character and string constants
5 */
6 public char getNextOpenClose()
7 {
8 while(nextChar())
9 {

10 if(ch == '/')
11 processSlash();
12 else if(ch == '\'' || ch == '”')
13 skipQuote(ch);
14 else if(ch == '(' || ch == '[' || ch == '{' ||
15 ch == ')' || ch == ']' || ch == '}')
16 return ch;
17 }
18 return '\0'; // End of file
19 }
20
21 /**
22 * After the opening slash is seen deal with next character.
23 * If it is a comment starter, process it; otherwise putback
24 * the next character if it is not a newline.
25 */
26 private void processSlash()
27 {
28 if(nextChar())
29 {
30 if(ch == '*')
31 {
32 // Javadoc comment
33 if(nextChar() && ch != '*')
34 putBackChar();
35 skipComment(SLASH_STAR);
36 }
37 else if(ch == '/')
38 skipComment(SLASH_SLASH);
39 else if(ch != '\n')
40 putBackChar();
41 }
42 }

11.1 balanced-symbol checker 453

figure 11.8

The checkBalance algorithm

1 /**
2 * Print an error message for unbalanced symbols.
3 * @return number of errors detected.
4 */
5 public int checkBalance()
6 {
7 char ch;
8 Symbol match = null;
9 Stack<Symbol> pendingTokens = new Stack<Symbol>();

10
11 while((ch = tok.getNextOpenClose()) != '\0')
12 {
13 Symbol lastSymbol = new Symbol(ch, tok.getLineNumber());
14
15 switch(ch)
16 {
17 case '(': case '[': case '{':
18 pendingTokens.push(lastSymbol);
19 break;
20
21 case ')': case ']': case '}':
22 if(pendingTokens.isEmpty())
23 {
24 errors++;
25 System.out.println("Extraneous " + ch +
26 " at line " + tok.getLineNumber());
27 }
28 else
29 {
30 match = pendingTokens.pop();
31 checkMatch(match, lastSymbol);
32 }
33 break;
34
35 default: // Cannot happen
36 break;
37 }
38 }
39
40 while(!pendingTokens.isEmpty())
41 {
42 match = pendingTokens.pop();
43 System.out.println("Unmatched " + match.token +
44 " at line " + match.theLine);
45 errors++;
46 }
47 return errors + tok.getErrorCount();
48 }

454 chapter 11 stacks and compilers

11.2 a simple calculator
Some of the techniques used to implement compilers can be used on a smaller
scale in the implementation of a typical pocket calculator. Typically, calcula-
tors evaluate infix expressions, such as 1+2, which consist of a binary operator
with arguments to its left and right. This format, although often fairly easy to
evaluate, can be more complex. Consider the expression

1 + 2 * 3

In an infix expres-
sion a binary opera-
tor has arguments
to its left and right.

Mathematically, this expression evaluates to 7 because the multiplication
operator has higher precedence than addition. Some calculators give the
answer 9, illustrating that a simple left-to-right evaluation is not sufficient; we
cannot begin by evaluating 1+2. Now consider the expressions

10 - 4 - 3
2 ^ 3 ^ 3

When there are
several operators,
precedence and
associativity deter-
mine how the oper-
ators are
processed.

in which ^ is the exponentiation operator. Which subtraction and which exponen-
tiation get evaluated first? On the one hand, subtractions are processed left-to-
right, giving the result 3. On the other hand, exponentiation is generally processed
right-to-left, thereby reflecting the mathematical rather than . Thus sub-
traction associates left-to-right, whereas exponentiation associates from right-to-
left. All of these possibilities suggest that evaluating an expression such as

figure 11.9

The checkMatch routine for checking that the closing symbol matches the opening symbol

1 /**
2 * Print an error message if clSym does not match opSym.
3 * Update errors.
4 */
5 private void checkMatch(Symbol opSym, Symbol clSym)
6 {
7 if(opSym.token == '(' && clSym.token != ')' ||
8 opSym.token == '[' && clSym.token != ']' ||
9 opSym.token == '{' && clSym.token != '}')

10 {
11 System.out.println("Found " + clSym.token + " on line " +
12 tok.getLineNumber() + "; does not match " + opSym.token
13 + " at line " + opSym.theLine);
14 errors++;
15 }
16 }

233 23()3

11.2 a simple calculator 455

1 - 2 - 4 ^ 5 * 3 * 6 / 7 ^ 2 ^ 2

would be quite challenging.
If the calculations are performed in integer math (i.e., rounding down on

division), the answer is -8. To show this result, we insert parentheses to clarify
ordering of the calculations:

(1 - 2) - ((((4 ^ 5) * 3) * 6) / (7 ^ (2 ^ 2)))

figure 11.10

The main routine with
command-line
arguments

1 // main routine for balanced symbol checker.
2 // If no command line parameters, standard output is used.
3 // Otherwise, files in command line are used.
4 public static void main(String [] args)
5 {
6 Balance p;
7
8 if(args.length == 0)
9 {

10
11 p = new Balance(new InputStreamReader(System.in));
12 if(p.checkBalance() == 0)
13 System.out.println("No errors!");
14 return;
15 }
16
17 for(int i = 0; i < args.length; i++)
18 {
19 FileReader f = null;
20 try
21 {
22 f = new FileReader(args[i]);
23
24 System.out.println(args[i] + ": ");
25 p = new Balance(f);
26 if(p.checkBalance() == 0)
27 System.out.println(" ...no errors!");
28 }
29 catch(IOException e)
30 { System.err.println(e + args[i]); }
31 finally
32 {
33 try
34 { if(f != null) f.close(); }
35 catch(IOException e)
36 { }
37 }
38 }
39 }

456 chapter 11 stacks and compilers

Although the parentheses make the order of evaluations unambiguous, they do not
necessarily make the mechanism for evaluation any clearer. A different expression
form, called a postfix expression, which can be evaluated by a postfix machine
without using any precedence rules, provides a direct mechanism for evaluation.
In the next several sections we explain how it works. First, we examine the postfix
expression form and show how expressions can be evaluated in a simple left-to-
right scan. Next, we show algorithmically how the previous expressions, which
are presented as infix expressions, can be converted to postfix. Finally, we give a
Java program that evaluates infix expressions containing additive, multiplicative,
and exponentiation operators—as well as overriding parentheses. We use an algo-
rithm called operator precedence parsing to convert an infix expression to a post-
fix expression in order to evaluate the infix expression.

11.2.1 postfix machines

A postfix expression is a series of operators and operands. A postfix machine is
used to evaluate a postfix expression as follows. When an operand is seen, it is
pushed onto a stack. When an operator is seen, the appropriate number of operands
are popped from the stack, the operator is evaluated, and the result is pushed back
onto the stack. For binary operators, which are the most common, two operands are
popped. When the complete postfix expression is evaluated, the result should be a
single item on the stack that represents the answer. The postfix form represents a
natural way to evaluate expressions because precedence rules are not required.

A simple example is the postfix expression

1 2 3 * +

The evaluation proceeds as follows: 1, then 2, and then 3 are each pushed onto the
stack. To process *, we pop the top two items on the stack: 3 and then 2. Note that
the first item popped becomes the rhs parameter to the binary operator and that
the second item popped is the lhs parameter; thus parameters are popped in
reverse order. For multiplication, the order does not matter, but for subtraction and
division, it does. The result of the multiplication is 6, and that is pushed back onto
the stack. At this point, the top of the stack is 6; below it is 1. To process the +, the
6 and 1 are popped, and their sum, 7, is pushed. At this point, the expression has
been read and the stack has only one item. Thus the final answer is 7.

Every valid infix expression can be converted to postfix form. For exam-
ple, the earlier long infix expression can be written in postfix notation as

1 2 - 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / -

Evaluation of a
postfix expression
takes linear time.

Figure 11.11 shows the steps used by the postfix machine to evaluate this expres-
sion. Each step involves a single push. Consequently, as there are 9 operands and

A postfix expression
can be evaluated as
follows. Operands
are pushed onto a
single stack. An
operator pops its
operands and then
pushes the result.
At the end of the
evaluation, the stack
should contain only
one element, which
represents the
result.

11.2 a simple calculator 457

8 operators, there are 17 steps and 17 pushes. Clearly, the time required to evalu-
ate a postfix expression is linear.

The remaining task is to write an algorithm to convert from infix notation
to postfix notation. Once we have it, we also have an algorithm that evaluates
an infix expression.

11.2.2 infix to postfix conversion
The operator pre-
cedence parsing
algorithm converts
an infix expression
to a postfix expres-
sion, so we can
evaluate the infix
expression.

The basic principle involved in the operator precedence parsing algorithm,
which converts an infix expression to a postfix expression, is the following.
When an operand is seen, we can immediately output it. However, when we
see an operator, we can never output it because we must wait to see the second
operand, so we must save it. In an expression such as

1 + 2 * 3 ^ 4

which in postfix form is

1 2 3 4 ^ * +

a postfix expression in some cases has operators in the reverse order than
they appear in an infix expression. Of course, this order can occur only if the

Postfix Expression: 1 2 - 4 5 ^ 3 * 6 * 7 2 2 ^ ^ / -

1

1

2
1

2

4
-1

4

5
4
-1

5

1024
-1

^

3
1024

-1

3

-1

-

3072
-1

*

6
3072

-1

6

18432
-1

*

7
18432

-1

7

2
7

18432
-1

2

2
2
7

18432
-1

2

4
7

18432
-1

^

2401
18432

-1

^

7
-1

/

-8

-

figure 11.11

Steps in the
evaluation of a postfix
expression

458 chapter 11 stacks and compilers

precedence of the involved operators is increasing as we go from left to right.
Even so, this condition suggests that a stack is appropriate for storing opera-
tors. Following this logic, then, when we read an operator it must somehow
be placed on a stack. Consequently, at some point the operator must get off
the stack. The rest of the algorithm involves deciding when operators go on
and come off the stack.

In another simple infix expression

2 ^ 5 - 1

When an operator
is seen on the
input, operators of
higher priority (or
left-associative
operators of equal
priority) are
removed from the
stack, signaling that
they should be
applied. The input
operator is then
placed on the
stack.

when we reach the - operator, 2 and 5 have been output and ^ is on the stack.
Because - has lower precedence than ^, the ^ needs to be applied to 2 and 5.
Thus we must pop the ^ and any other operands of higher precedence than -
from the stack. After doing so, we push the -. The resulting postfix expression
is

2 5 ^ 1 -

In general, when we are processing an operator from input, we output those
operators from the stack that the precedence (and associativity) rules tell us
need to be processed.

A second example is the infix expression

3 * 2 ^ 5 - 1

When we reach the ^ operator, 3 and 2 have been output and * is on the stack.
As ^ has higher precedence than *, nothing is popped and ^ goes on the stack.
The 5 is output immediately. Then we encounter a - operator. Precedence
rules tell us that ^ is popped, followed by the *. At this point, nothing is left to
pop, we are done popping, and - goes onto the stack. We then output 1. When
we reach the end of the infix expression, we can pop the remaining operators
from the stack. The resulting postfix expression is

3 2 5 ^ * 1 -

Before the summarizing algorithm, we need to answer a few questions.
First, if the current symbol is a + and the top of the stack is a +, should the + on
the stack be popped or should it stay? The answer is determined by deciding
whether the input + implies that the stack + has been completed. Because +
associates from left to right, the answer is yes. However, if we are talking
about the ^ operator, which associates from right to left, the answer is no.
Therefore, when examining two operators of equal precedence, we look at the
associativity to decide, as shown in Figure 11.12.

What about parentheses? A left parenthesis can be considered a high-
precedence operator when it is an input symbol, a low-precedence operator

A left parenthesis is
treated as a high-
precedence opera-
tor when it is an
input symbol but as
a low-precedence
operator when it is
on the stack. A left
parenthesis is
removed only by a
right parenthesis.

An operator stack is
used to store oper-
ators that have
been seen but not
yet output.

11.2 a simple calculator 459

when it is on the stack. Consequently, the input left parenthesis is simply
placed on the stack. When a right parenthesis appears on the input, we pop the
operator stack until we come to a left parenthesis. The operators are written,
but the parentheses are not.

The following is a summary of the various cases in the operator prece-
dence parsing algorithm. With the exception of parentheses, everything
popped from the stack is output.

n Operands: Immediately output.

n Close parenthesis: Pop stack symbols until an open parenthesis
appears.

n Operators: Pop all stack symbols until a symbol of lower precedence
or a right-associative symbol of equal precedence appears. Then push
the operator.

n End of input: Pop all remaining stack symbols.

As an example, Figure 11.13 shows how the algorithm processes

1 - 2 ^ 3 ^ 3 - (4 + 5 * 6) * 7

Below each stack is the symbol read. To the right of each stack, in boldface, is
any output.

11.2.3 implementation
The Evaluator class
will parse and eval-
uate infix expres-
sions.

We now have the theoretical background required to implement a simple cal-
culator. Our calculator supports addition, subtraction, multiplication, division,
and exponentiation. We write an Evaluator class that works on long integers.
We make a simplifying assumption: Negative numbers are not allowed. Dis-
tinguishing between the binary minus operator and the unary minus requires
extra work in the scanning routine and also complicates matters because it
introduces a nonbinary operator. Incorporating unary operators is not difficult,
but the extra code does not illustrate any unique concepts and thus we leave it
for you to do as an exercise.

figure 11.12

Examples of using
associativity to break
ties in precedence

Infix
Expression

Postfix
Expression Associativity

2 + 3 + 4 2 3 + 4 + Left-associative: Input + is lower than stack +.

2 ^ 3 ^ 4 2 3 4 ^ ^ Right-associative: Input ^ is higher than stack ^.

460 chapter 11 stacks and compilers

We need two
stacks: an operator
stack and a stack
for the postfix
machine.

Figure 11.14 shows the Evaluator class skeleton, which is used to process
a single string of input. The basic evaluation algorithm requires two stacks.
The first stack is used to evaluate the infix expression and generate the postfix
expression. It is the stack of operators declared at line 34. An int represents
different kinds of tokens, such as PLUS, MINUS, and so on. These constants are
shown later. Rather than explicitly outputting the postfix expression, we send
each postfix symbol to the postfix machine as it is generated. Thus we also
need a stack that stores operands; the postfix machine stack is declared at
line 35. The remaining data member is a StringTokenizer object used to step
through the input line.

As was the case with the balanced symbol checker, we can write a Tokenizer
class that can be used to give us the token sequence. Although we could reuse
code, there is in fact little commonality, so we write a Tokenizer class for this
application only. Here, however, the tokens are a little more complex because, if
we read an operand, the type of token is VALUE, but we must also know what the
value is that has been read. To avoid confusion we name the class EvalTokenizer
and make it nested. Its placement is shown at line 22; its implementation, along
with the nested Token class, is shown in Figure 11.15. A Token stores both a token
type, and if the token is a VALUE, its numeric value. Accessors can be used to obtain
information about a token. (The getValue method could be made more robust by
signaling an error if type is not VALUE.) The EvalTokenizer class has one method.

Infix: 1 - 2 ^ 3 ^ 3 - (4 + 5 * 6) * 7

1

-

-

-

2

^
-

^

^
-

3

^
^
-

^

-

-

(
-

(

(
-

4

+
(
-

+

+
(
-

5

^
^
-

3

*
+
(
-

6

-

)

*
-

*

*
-

7

*
+
(
-

*

* -7* +6

3 4 5

1 2 3

^^-

Postfix: 1 2 3 3 ^ ^ - 4 5 6 * + 7 * -

figure 11.13

Infix to postfix
conversion

11.2 a simple calculator 461

figure 11.14

The Evaluator class skeleton

1 import java.util.Stack;
2 import java.util.StringTokenizer;
3 import java.io.IOException;
4 import java.io.BufferedReader;
5 import java.io.InputStreamReader;
6
7 // Evaluator class interface: evaluate infix expressions.
8 //
9 // CONSTRUCTION: with a String

10 //
11 // ******************PUBLIC OPERATIONS***********************
12 // long getValue() --> Return value of infix expression
13 // ******************ERRORS**********************************
14 // Some error checking is performed
15
16 public class Evaluator
17 {
18 private static class Precendence
19 { /* Figure 11.20 */ }
20 private static class Token
21 { /* Figure 11.15 */ }
22 private static class EvalTokenizer
23 { /* Figure 11.15 */ }
24
25 public Evaluator(String s)
26 {
27 opStack = new Stack<Integer>(); opStack.push(EOL);
28 postfixStack = new Stack<Long>();
29 str = new StringTokenizer(s, "+*-/^() ", true);
30 }
31 public long getValue()
32 { /* Figure 11.17 */ }
33
34 private Stack<Integer> opStack; // Operator stack for conversion
35 private Stack<Long> postfixStack; // Stack for postfix machine
36 private StringTokenizer str; // StringTokenizer stream
37
38 private void processToken(Token lastToken)
39 { /* Figure 11.21 */ }
40 private long getTop()
41 { /* Figure 11.18 */ }
42 private void binaryOp(int topOp)
43 { /* Figure 11.19 */ }
44 }

462 chapter 11 stacks and compilers

Figure 11.16 shows the getToken routine. Line 10 checks for the end of the
input line. When getToken gets past line 11, we know that more tokens are available.
If we have not reached the end of line, we check to see whether we match any of the
one-character operators. If so, we return the appropriate token. Otherwise, we
expect that what remains is an operand, so we use Long.parseLong to get the value,
and then return a Token object by explicitly constructing a Token object based on the
value read.

We can now discuss the methods of the Evaluator class. The only publicly
visible method is getValue. Shown in Figure 11.17, getValue repeatedly reads
a token and processes it until the end of line is detected. At that point the item
at the top of the stack is the answer.

figure 11.15

The Token and
EvalTokenizer nested
classes

1 private static class Token
2 {
3 public Token()
4 { this(EOL); }
5 public Token(int t)
6 { this(t, 0); }
7 public Token(int t, long v)
8 { type = t; value = v; }
9

10 public int getType()
11 { return type; }
12 public long getValue()
13 { return value; }
14
15 private int type = EOL;
16 private long value = 0;
17 }
18
19 private static class EvalTokenizer
20 {
21 public EvalTokenizer(StringTokenizer is)
22 { str = is; }
23
24 /**
25 * Find the next token, skipping blanks, and return it.
26 * For VALUE token, place the
27 * processed value in currentValue.
28 * Print error message if input is unrecognized.
29 */
30 public Token getToken()
31 { /* Figure 11.16 */ }
32
33 private StringTokenizer str;
34 }

11.2 a simple calculator 463

Figures 11.18 and 11.19 show the routines used to implement the postfix
machine. The routine in Figure 11.18 is used to pop the postfix stack and print
an error message if needed. The binaryOp routine in Figure 11.19 applies topOp
(which is expected to be the top item in the operator stack) to the top two
items on the postfix stack and replaces them with the result. It also pops the
operator stack (at line 33), signifying that processing for topOp is complete.

Figure 11.20 declares a precedence table, which stores the operator pre-
cedences and is used to decide what is removed from the operator stack. The
operators are listed in the same order as the token constants.

figure 11.16

The getToken routine for returning the next token in the input stream

1 /**
2 * Find the next token, skipping blanks, and return it.
3 * For VALUE token, place the processed value in currentValue.
4 * Print error message if input is unrecognized.
5 */
6 public Token getToken()
7 {
8 long theValue;
9

10 if(!str.hasMoreTokens())
11 return new Token();
12
13 String s = str.nextToken();
14 if(s.equals(" ")) return getToken();
15 if(s.equals("^")) return new Token(EXP);
16 if(s.equals("/")) return new Token(DIV);
17 if(s.equals("*")) return new Token(MULT);
18 if(s.equals("(")) return new Token(OPAREN);
19 if(s.equals(")")) return new Token(CPAREN);
20 if(s.equals("+")) return new Token(PLUS);
21 if(s.equals("-")) return new Token(MINUS);
22
23 try
24 { theValue = Long.parseLong(s); }
25 catch(NumberFormatException e)
26 {
27 System.err.println("Parse error");
28 return new Token();
29 }
30
31 return new Token(VALUE, theValue);
32 }

A precedence table
is used to decide
what is removed
from the operator
stack. Left-
associative opera-
tors have the
operator stack
precedence set
at 1 higher than the
input symbol
precedence. Right-
associative opera-
tors go the other
way.

464 chapter 11 stacks and compilers

figure 11.17

The getValue routine
for reading and
processing tokens
and then returning the
item at the top of the
stack

1 /**
2 * Public routine that performs the evaluation.
3 * Examine the postfix machine to see if a single result is
4 * left and if so, return it; otherwise print error.
5 * @return the result.
6 */
7 public long getValue()
8 {
9 EvalTokenizer tok = new EvalTokenizer(str);

10 Token lastToken;
11
12 do
13 {
14 lastToken = tok.getToken();
15 processToken(lastToken);
16 } while(lastToken.getType() != EOL);
17
18 if(postfixStack.isEmpty())
19 {
20 System.err.println("Missing operand!");
21 return 0;
22 }
23
24 long theResult = postfixStack.pop();
25 if(!postfixStack.isEmpty())
26 System.err.println("Warning: missing operators!");
27
28 return theResult;
29 }

figure 11.18

The routines for
popping the top item
in the postfix stack

1 /*
2 * topAndPop the postfix machine stack; return the result.
3 * If the stack is empty, print an error message.
4 */
5 private long postfixPop()
6 {
7 if (postfixStack.isEmpty())
8 {
9 System.err.println("Missing operand");

10 return 0;
11 }
12 return postfixStack.pop();
13 }

11.2 a simple calculator 465

We want to assign a number to each level of precedence. The higher the
number, the higher is the precedence. We could assign the additive operators
precedence 1, multiplicative operators precedence 3, exponentiation prece-
dence 5, and parentheses precedence 99. However, we also need to take into
account associativity. To do so, we assign each operator a number that repre-
sents its precedence when it is an input symbol and a second number that
represents its precedence when it is on the operator stack. A left-associative
operator has the operator stack precedence set at 1 higher than the input sym-
bol precedence, and a right-associative operator goes the other way. Thus the
precedence of the + operator on the stack is 2.

figure 11.19

The BinaryOp routine
for applying topOp to
the postfix stack

1 /**
2 * Process an operator by taking two items off the postfix
3 * stack, applying the operator, and pushing the result.
4 * Print error if missing closing parenthesis or division by 0.
5 */
6 private void binaryOp(int topOp)
7 {
8 if(topOp == OPAREN)
9 {

10 System.err.println("Unbalanced parentheses");
11 opStack.pop();
12 return;
13 }
14 long rhs = postfixPop();
15 long lhs = postfixPop();
16
17 if(topOp == EXP)
18 postfixStack.push(pow(lhs, rhs));
19 else if(topOp == PLUS)
20 postfixStack.push(lhs + rhs);
21 else if(topOp == MINUS)
22 postfixStack.push(lhs - rhs);
23 else if(topOp == MULT)
24 postfixStack.push(lhs * rhs);
25 else if(topOp == DIV)
26 if(rhs != 0)
27 postfixStack.push(lhs / rhs);
28 else
29 {
30 System.err.println("Division by zero");
31 postfixStack.push(lhs);
32 }
33 opStack.pop();
34 }

466 chapter 11 stacks and compilers

A consequence of this rule is that any two operators that have different
precedences are still correctly ordered. However, if a + is on the operator stack
and is also the input symbol, the operator on the top of the stack will appear to
have higher precedence and thus will be popped. This is what we want for
left-associative operators.

Similarly, if a ^ is on the operator stack and is also the input symbol, the
operator on the top of the stack will appear to have lower precedence and thus
it will not be popped. That is what we want for right-associative operators.
The token VALUE never gets placed on the stack, so its precedence is meaning-
less. The end-of-line token is given lowest precedence because it is placed on

figure 11.20

Table of precedences
used to evaluate an
infix expression

1 private static final int EOL = 0;
2 private static final int VALUE = 1;
3 private static final int OPAREN = 2;
4 private static final int CPAREN = 3;
5 private static final int EXP = 4;
6 private static final int MULT = 5;
7 private static final int DIV = 6;
8 private static final int PLUS = 7;
9 private static final int MINUS = 8;

10
11 private static class Precedence
12 {
13 public int inputSymbol;
14 public int topOfStack;
15
16 public Precedence(int inSymbol, int topSymbol)
17 {
18 inputSymbol = inSymbol;
19 topOfStack = topSymbol;
20 }
21 }
22
23 // precTable matches order of Token enumeration
24 private static Precedence [] precTable =
25 {
26 new Precedence(0, -1), // EOL
27 new Precedence(0, 0), // VALUE
28 new Precedence(100, 0), // OPAREN
29 new Precedence(0, 99), // CPAREN
30 new Precedence(6, 5), // EXP
31 new Precedence(3, 4), // MULT
32 new Precedence(3, 4), // DIV
33 new Precedence(1, 2), // PLUS
34 new Precedence(1, 2) // MINUS
35 }

11.2 a simple calculator 467

the stack for use as a sentinel (which is done in the constructor). If we treat it
as a right-associative operator, it is covered under the operator case.

The remaining method is processToken, which is shown in Figure 11.21.
When we see an operand, we push it onto the postfix stack. When we see a
closing parenthesis, we repeatedly pop and process the top operator on the
operator stack until the opening parenthesis appears (lines 18–19). The open-
ing parenthesis is then popped at line 21. (The test at line 20 is used to avoid
popping the sentinel in the event of a missing opening parenthesis.) Otherwise,

figure 11.21

The processToken routine for processing lastToken, using the operator precedence parsing algorithm

1 /**
2 * After a token is read, use operator precedence parsing
3 * algorithm to process it; missing opening parentheses
4 * are detected here.
5 */
6 private void processToken(Token lastToken)
7 {
8 int topOp;
9 int lastType = lastToken.getType();

10
11 switch(lastType)
12 {
13 case VALUE:
14 postfixStack.push(lastToken.getValue());
15 return;
16
17 case CPAREN:
18 while((topOp = opStack.peek()) != OPAREN && topOp != EOL)
19 binaryOp(topOp);
20 if(topOp == OPAREN)
21 opStack.pop(); // Get rid of opening parenthesis
22 else
23 System.err.println("Missing open parenthesis");
24 break;
25
26 default: // General operator case
27 while(precTable[lastType].inputSymbol <=
28 precTable[topOp = opStack.peek()].topOfStack)
29 binaryOp(topOp);
30 if(lastType != EOL)
31 opStack.push(lastType);
32 break;
33 }
34 }

468 chapter 11 stacks and compilers

we have the general operator case, which is succinctly described by the code
in lines 27–31.

A simple main routine is given in Figure 11.22. It repeatedly reads a line
of input, instantiates an Evaluator object, and computes its value.

11.2.4 expression trees

Figure 11.23 shows an example of an expression tree, the leaves of which are
operands (e.g., constants or variable names) and the other nodes contain
operators. This particular tree happens to be binary because all the operations
are binary. Although it is the simplest case, nodes can have more than two
children. A node also may have only one child, as is the case with the unary
minus operator.

figure 11.22

A simple main for
evaluating
expressions
repeatedly

1 /**
2 * Simple main to exercise Evaluator class.
3 */
4 public static void main(String [] args)
5 {
6 String str;
7 Scanner in = new Scanner(System.in);
8
9 System.out.println(“Enter expressions, one per line:”);

10 while(in.hasNextLine())
11 {
12 str = in.nextLine();
13 System.out.println(“Read: “ + str);
14 Evaluator ev = new Evaluator(str);
15 System.out.println(ev.getValue());
16 System.out.println(“Enter next expression:”);
17 }
18 }

figure 11.23

Expression tree for
(a+b)*(a-b)

a b a b

+ _

*

In an expression
tree, the leaves
contain operands
and the other
nodes contain
operators.

summary 469

We evaluate an expression tree T by applying the operator at the root to
the values obtained by recursively evaluating the left and right subtrees. In
this example, the left subtree evaluates to (a+b) and the right subtree evaluates
to (a-b). The entire tree therefore represents ((a+b)*(a-b)). We can produce
an (overly parenthesized) infix expression by recursively producing a paren-
thesized left expression, printing out the operator at the root, and recursively
producing a parenthesized right expression. This general strategy (left, node,
right) is called an inorder traversal. This type of traversal is easy to remember
because of the type of expression it produces.

Recursive printing
of the expression
tree can be used to
obtain an infix,
postfix, or prefix
expression.

A second strategy is to print the left subtree recursively, then the right
subtree, and then the operator (without parentheses). Doing so, we obtain the
postfix expression, so this strategy is called a postorder traversal of the tree. A
third strategy for evaluating a tree results in a prefix expression. We discuss all
these strategies in Chapter 18. The expression tree (and its generalizations)
are useful data structures in compiler design because they allow us to see an
entire expression. This capability makes code generation easier and in some
cases greatly enhances optimization efforts.

Expression trees
can be constructed
from a postfix
expression similar
to postfix evalua-
tion.

Of interest is the construction of an expression tree given an infix expres-
sion. As we have already shown, we can always convert an infix expression to
a postfix expression, so we merely need to show how to construct an expres-
sion tree from a postfix expression. Not surprisingly, this procedure is simple.
We maintain a stack of trees. When we see an operand, we create a single-
node tree and push it onto our stack. When we see an operator, we pop and
merge the top two trees on the stack. In the new tree, the node is the operator,
the right child is the first tree popped from the stack, and the left child is the
second tree popped. We then push the result back onto the stack. This algo-
rithm is essentially the same as that used in a postfix evaluation, with tree cre-
ation replacing the binary operator computation.

summary

In this chapter we examined two uses of stacks in programming language and
compiler design. We demonstrated that, even though the stack is a simple
structure, it is very powerful. Stacks can be used to decide whether a sequence
of symbols is well balanced. The resulting algorithm requires linear time and,
equally important, consists of a single sequential scan of the input. Operator
precedence parsing is a technique that can be used to parse infix expressions.
It, too, requires linear time and a single sequential scan. Two stacks are used
in the operator precedence parsing algorithm. Although the stacks store differ-
ent types of objects, the generic stack code allows the use of a single stack
implementation for both types of objects.

470 chapter 11 stacks and compilers

key concepts

expression tree A tree in which the leaves contain operands and the other
nodes contain operators. (468)

infix expression An expression in which a binary operator has arguments to its
left and right. When there are several operators, precedence and associa-
tivity determine how the operators are processed. (454)

lexical analysis The process of recognizing tokens in a stream of symbols.
(448)

operator precedence parsing An algorithm that converts an infix expression to
a postfix expression in order to evaluate the infix expression. (457)

postfix expression An expression that can be evaluated by a postfix machine
without using any precedence rules. (456)

postfix machine Machine used to evaluate a postfix expression. The algorithm
it uses is as follows: Operands are pushed onto a stack and an operator
pops its operands and then pushes the result. At the end of the evaluation,
the stack should contain exactly one element, which represents the result.
(456)

precedence table A table used to decide what is removed from the operator
stack. Left-associative operators have the operator stack precedence set at
1 higher than the input symbol precedence. Right-associative operators go
the other way. (463)

state machine A common technique used to parse symbols; at any point, the
machine is in some state, and each input character takes it to a new state.
Eventually, the state machine reaches a state at which a symbol has been
recognized. (450)

tokenization The process of generating the sequence of symbols (tokens) from
an input stream. (445)

common errors

1. In production code, input errors must be handled as carefully as possible.
Being lax in this regard leads to programming errors.

2. For the balanced symbol routine, handling quotes incorrectly is a com-
mon error.

3. For the infix to postfix algorithm, the precedence table must reflect the
correct precedence and associativity.

exercises 471

on the internet

Both application programs are available. You should probably download the
balancing program; it may help you debug other Java programs.

Balance.java Contains the balanced symbol program.
Tokenizer.java Contains the Tokenizer class implementation for check-

ing Java programs.
Evaluator.java Contains the expression evaluator.

exercises

IN SHORT

11.1 Show the result of running the balanced symbol program on
a. }
b. (}
c. [[[
d.) (
e. [)]

11.2 Show the postfix expression for
a. 1 + 2 - 3 ^ 4
b. 1 ^ 2 - 3 * 4
c. 1 + 2 * 3 - 4 ^ 5 + 6
d. (1 + 2) * 3 - (4 ^ (5 - 6))

11.3 For the infix expression a + b ^ c * d ^ e ^ f - g - h / (i + j),
do the following:
a. Show how the operator precedence parsing algorithm generates

the corresponding postfix expression.
b. Show how a postfix machine evaluates the resulting postfix

expression.
c. Draw the resulting expression tree.

IN THEORY

11.4 For the balanced symbol program, explain how to print out an error
message that is likely to reflect the probable cause.

11.5 In general terms, explain how unary operators are incorporated into
expression evaluators. Assume that the unary operators precede their
operands and have high precedence. Include a description of how
they are recognized by the state machine.

472 chapter 11 stacks and compilers

IN PRACTICE

11.6 Use of the ^ operator for exponentiation is likely to confuse Java pro-
grammers (because it is the bitwise exclusive-or operator). Rewrite the
Evaluator class with ** as the exponentiation operator.

11.7 The infix evaluator accepts illegal expressions in which the operators
are misplaced.
a. What will 1 2 3 + * be evaluated as?
b. How can we detect these illegalities?
c. Modify the Evaluator class to do so.

PROGRAMMING PROJECTS

11.8 Modify the expression evaluator to handle negative input numbers.

11.9 For the balanced symbol checker, modify the Tokenizer class by add-
ing a public method that can change the input stream. Then add a
public method to Balance that allows Balance to change the source of
the input stream.

11.10 Implement a complete Java expression evaluator. Handle all Java
operators that can accept constants and make arithmetic sense (e.g.,
do not implement []).

11.11 Implement a Java expression evaluator that includes variables. Assume
that there are at most 26 variables—namely, A through Z—and that a
variable can be assigned to by an = operator of low precedence.

11.12 Write a program that reads an infix expression and generates a postfix
expression.

11.13 Write a program that reads a postfix expression and generates an infix
expression.

references

The infix to postfix algorithm (operator precedence parsing) was first
described in [3]. Two good books on compiler construction are [1] and [2].

1. A. V. Aho, M. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles,
Techniques, and Tools, 2nd ed., Addison-Wesley, Reading, MA, 2007.

2. C. N. Fischer and R. J. LeBlanc, Crafting a Compiler with C, Benjamin
Cummings, Redwood City, CA, 1991.

3. R. W. Floyd, “Syntactic Analysis and Operator Precedence,” Journal of
the ACM 10:3 (1963), 316–333.

chap te r 12

utilities

In this chapter we discuss two utility applications of data structures: data
compression and cross-referencing. Data compression is an important tech-
nique in computer science. It can be used to reduce the size of files stored on
disk (in effect increasing the capacity of the disk) and also to increase the
effective rate of transmission by modems (by transmitting less data). Virtually
all newer modems perform some type of compression. Cross-referencing is a
scanning and sorting technique that is done, for example, to make an index for
a book.

In this chapter, we show

n An implementation of a file-compression algorithm called Huffman’s
algorithm

n An implementation of a cross-referencing program that lists, in sorted
order, all identifiers in a program and gives the line numbers on which
they occur

474 chapter 12 utilities

12.1 file compression
A standard encod-
ing of C characters
uses ⎡log C⎤ bits.

The ASCII character set consists of roughly 100 printable characters. To dis-
tinguish these characters, bits are required. Seven bits allow
the representation of 128 characters, so the ASCII character set adds some
other “unprintable” characters. An eighth bit is added to allow parity checks.
The important point, however, is that if the size of the character set is C, then

 bits are needed in a standard fixed-length encoding.
Suppose that you have a file that contains only the characters a, e, i, s, and

t, blank spaces (sp), and newlines (nl). Suppose further that the file has 10 a’s,
15 e’s, 12 i’s, 3 s’s, 4 t’s, 13 blanks, and 1 newline. As Figure 12.1 shows, rep-
resenting this file requires 174 bits because there are 58 characters and each
character requires 3 bits.

Reducing the num-
ber of bits required
for data represen-
tation is called
compression, which
actually consists of
two phases: the
encoding phase
(compressing) and
the decoding phase
(uncompressing).

In real life, files can be quite large. Many very large files are the output of
some program, and there is usually a big disparity between the most fre-
quently and least frequently used characters. For instance, many large data
files have an inordinately large number of digits, blanks, and newlines but few
q’s and x’s.

In many situations reducing the size of a file is desirable. For instance, disk
space is precious on virtually every machine, so decreasing the amount of space
required for files increases the effective capacity of the disk. When data are being
transmitted across phone lines by a modem, the effective rate of transmission is
increased if the amount of data transmitted can be reduced. Reducing the number
of bits required for data representation is called compression, which actually con-
sists of two phases: the encoding phase (compression) and the decoding phase
(uncompression). A simple strategy discussed in this chapter achieves 25 percent
savings on some large files and as much as 50 or 60 percent savings on some large
data files. Extensions provide somewhat better compression.

100log 7=

Clog

figure 12.1

A standard coding
scheme

Character Code Frequency Total Bits

a 000 10 30

e 001 15 45

i 010 12 36

s 011 3 9

t 100 4 12

sp 101 13 39

nl 110 1 3

Total 174

12.1 file compression 475

In a variable-length
code, the most-
frequent characters
have the shortest
representation.

The general strategy is to allow the code length to vary from character to
character and to ensure that frequently occurring characters have short codes.
If all characters occur with the same or very similar frequency, you cannot
expect any savings.

12.1.1 prefix codes
In a binary trie, a left
branch represents
0 and a right
branch represents 1.
The path to a node
indicates its
representation.

The binary code presented in Figure 12.1 can be represented by the binary
tree shown in Figure 12.2. In this data structure, called a binary trie (pro-
nounced “try”), characters are stored only in leaf nodes; the representation of
each character is found by starting at the root and recording the path, using a 0
to indicate the left branch and a 1 to indicate the right branch. For instance, s
is reached by going left, then right, and finally right. This is encoded as 011. If
character is at depth and occurs fi times, the cost of the code is di fi.

We can obtain a better code than the one given in Figure 12.2 by recog-
nizing that nl is an only child. By placing it one level higher (replacing its par-
ent), we obtain the new tree shown in Figure 12.3. This new tree has a cost of
173 but is still far from optimal.

Note that the tree in Figure 12.3 is a full tree, in which all nodes either are
leaves or have two children. An optimal code always has this property; other-
wise, as already shown, nodes with only one child could move up a level. If
the characters are placed only at the leaves, any sequence of bits can always
be decoded unambiguously.

a e i s t sp nl

figure 12.2

Representation of the
original code by a tree

ci di ∑

a e i s t sp

nl

figure 12.3

A slightly better tree

In a full tree, all
nodes either are
leaves or have two
children.

476 chapter 12 utilities

For instance, suppose that the encoded string is 010011110001011000
1000111. Figure 12.3 shows that 0 and 01 are not character codes but that 010
represents i, so the first character is i. Then 011 follows, which is an s. Then
11 follows, which is a newline (nl). The remainder of the code is a, sp, t, i, e,
and nl.

In a prefix code, no
character code is a
prefix of another
character code.
This is guaranteed
if the characters
are only in leaves. A
prefix code can
be decoded
unambiguously.

The character codes can be different lengths, as long as no character code
is a prefix of another character code, an encoding called a prefix code. Con-
versely, if a character is contained in a nonleaf node, guaranteeing unambigu-
ous decoding is no longer possible.

Thus our basic problem is to find the full binary tree of minimum cost (as
defined previously) in which all characters are contained in the leaves. The
tree shown in Figure 12.4 is optimal for our sample alphabet. As shown in
Figure 12.5, this code requires only 146 bits. There are many optimal codes,
which can be obtained by swapping children in the encoding tree.

a

e i

s

sp

nl

t

figure 12.4

An optimal prefix
code tree

figure 12.5

Optimal prefix code
Character Code Frequency Total Bits

a 001 10 30

e 01 15 30

i 10 12 24

s 00000 3 15

t 0001 4 16

sp 11 13 26

nl 00001 1 5

Total 146

12.1 file compression 477

12.1.2 huffman’s algorithm
Huffman’s algorithm
constructs an opti-
mal prefix code. It
works by repeat-
edly merging the
two minimum-
weight trees.

How is the coding tree constructed? The coding system algorithm was given
by Huffman in 1952. Commonly called Huffman’s algorithm, it constructs an
optimal prefix code by repeatedly merging trees until the final tree is obtained.

Throughout this section, the number of characters is C. In Huffman’s
algorithm we maintain a forest of trees. The weight of a tree is the sum of the
frequencies of its leaves. times, two trees, and , of smallest
weight are selected, breaking ties arbitrarily, and a new tree is formed with
subtrees and . At the beginning of the algorithm, there are C single-
node trees (one for each character). At the end of the algorithm, there is one
tree, giving an optimal Huffman tree. In Exercise 12.4 you are asked to prove
Huffman’s algorithm gives an optimal tree.

Ties are broken
arbitrarily.

An example helps make operation of the algorithm clear. Figure 12.6
shows the initial forest; the weight of each tree is shown in small type at the
root. The two trees of lowest weight are merged, creating the forest shown in
Figure 12.7. The new root is T1. We made s the left child arbitrarily; any tie-
breaking procedure can be used. The total weight of the new tree is just the
sum of the weights of the old trees and can thus be easily computed.

Now there are six trees, and we again select the two trees of smallest
weight, T1 and t. They are merged into a new tree with root T2 and weight 8,
as shown in Figure 12.8. The third step merges T2 and a, creating T3, with
weight . Figure 12.9 shows the result of this operation.

After completion of the third merge, the two trees of lowest weight are the
single-node trees representing i and sp. Figure 12.10 shows how these trees
are merged into the new tree with root T4. The fifth step is to merge the trees
with roots e and T3 because these trees have the two smallest weights, giving
the result shown in Figure 12.11.

Finally, an optimal tree, shown previously in Figure 12.4, is obtained by merg-
ing the two remaining trees. Figure 12.12 shows the optimal tree, with root T6.

C 1– T 1 T 2

T 1 T 2

s nla te i sp
10 15 12 3 4 13 1 figure 12.6

Initial stage of
Huffman’s algorithm

t nla spe i s
10 15 12 4 13

4

T1

figure 12.7

Huffman’s algorithm
after the first merge

10 8+ 18=

478 chapter 12 utilities

nla spe i s
10 15 12 13

T1 t

8

T 2
figure 12.8

Huffman’s algorithm
after the second
merge

nl

a

spe i s
15 12 13

T1 t

T 2

18

T 3

figure 12.9

Huffman’s algorithm
after the third merge

nl

a

spe i s
15

25

T1 t

T2

18

T3

T4

figure 12.10

Huffman’s algorithm
after the fourth merge

nl

a

spi s

25

T1 t

T 2

T 3

T4

e

33

T 5

figure 12.11

Huffman’s algorithm
after the fifth merge

12.1 file compression 479

12.1.3 implementation

We now provide an implementation of the Huffman coding algorithm, with-
out attempting to perform any significant optimizations; we simply want a
working program that illustrates the basic algorithmic issues. After discussing
the implementation we comment on possible enhancements. Although signifi-
cant error checking needs to be added to the program, we have not done so
because we did not want to obscure the basic ideas.

Figure 12.13 illustrates some of the I/O classes and constants to be used.
We maintain a priority queue of tree nodes (recall that we are to select two
trees of lowest weight).

a

e i

s

sp

nl

t

58

T1

T 2

T 3

T 5

T 6

T4

figure 12.12

Huffman’s algorithm
after the final merge

figure 12.13

The import directives
and some constants
used in the main
compression program
algorithms

1 import java.io.IOException;
2 import java.io.InputStream;
3 import java.io.OutputStream;
4 import java.io.FileInputStream;
5 import java.io.FileOutputStream;
6 import java.io.DataInputStream;
7 import java.io.DataOutputStream;
8 import java.io.BufferedInputStream;
9 import java.io.BufferedOutputStream;

10 import java.util.PriorityQueue;
11
12 interface BitUtils
13 {
14 public static final int BITS_PER_BYTES = 8;
15 public static final int DIFF_BYTES = 256;
16 public static final int EOF = 256;
17 }

480 chapter 12 utilities

In addition to the standard I/O classes, our program consists of several
additional classes. Because we need to perform bit-at-a-time I/O, we write
wrapper classes representing bit-input and bit-output streams. We write other
classes to maintain character counts and create and return information about a
Huffman coding tree. Finally, we write compression and uncompression
stream wrappers. To summarize, the classes that we write are

BitInputStream Wraps an Inputstream and provides bit-at-a-time input.
BitOutputStream Wraps an Outputstream and provides bit-at-a-time

output.
CharCounter Maintains character counts.
HuffmanTree Manipulates Huffman coding trees.
HZIPInputStream Contains an uncompression wrapper.
HZIPOutputStream Contains a compression wrapper.

bit-input and bit-output stream classes
The BitInputStream and BitOutputStream classes are similar and are shown in
Figures 12.14 and 12.15, respectively. Both work by wrapping a stream. A
reference to the stream is stored as a private data member. Every eighth
readBit of the BitInputStream (or writeBit of the BitOutputStream classes)
causes a byte to be read (or written) on the underlying stream. The byte is
stored in a buffer, appropriately named buffer, and bufferPos provides an indi-
cation of how much of the buffer is unused.

The getBit and setBit methods are used to access an individual bit in
an 8-bit byte; they work by using bit operations. (Appendix C describes
the bit operators in more detail.) In readBit, we check at line 19 to find out
whether the bits in the buffer have already been used. If so, we get 8 more
bits at line 21 and reset the position indicator at line 24. Then we can call
getBit at line 27.

The BitOutputStream class is similar to BitInputStream. One difference is
that we provide a flush method because there may be bits left in the buffer at
the end of a sequence of writeBit calls. The flush method is called when a call
to writeBit fills the buffer and also is called by close.

Neither class performs error checking; instead they propagate any
IOExceptions. Thus full error checking is available.

12.1 file compression 481

figure 12.14

The BitInputStream
class

1 // BitInputStream class: Bit-input stream wrapper class.
2 //
3 // CONSTRUCTION: with an open InputStream.
4 //
5 // ******************PUBLIC OPERATIONS***********************
6 // int readBit() --> Read one bit as a 0 or 1
7 // void close() --> Close underlying stream
8
9 public class BitInputStream

10 {
11 public BitInputStream(InputStream is)
12 {
13 in = is;
14 bufferPos = BitUtils.BITS_PER_BYTES;
15 }
16
17 public int readBit() throws IOException
18 {
19 if(bufferPos == BitUtils.BITS_PER_BYTES)
20 {
21 buffer = in.read();
22 if(buffer == -1)
23 return -1;
24 bufferPos = 0;
25 }
26
27 return getBit(buffer, bufferPos++);
28 }
29
30 public void close() throws IOException
31 {
32 in.close();
33 }
34
35 private static int getBit(int pack, int pos)
36 {
37 return (pack & (1 << pos)) != 0 ? 1 : 0;
38 }
39
40 private InputStream in;
41 private int buffer;
42 private int bufferPos;
43 }

482 chapter 12 utilities

figure 12.15

The BitOutputStream
class

1 // BitOutputStream class: Bit-output stream wrapper class.
2 //
3 // CONSTRUCTION: with an open OutputStream.
4 //
5 // ******************PUBLIC OPERATIONS***********************
6 // void writeBit(val) --> Write one bit (0 or 1)
7 // void writeBits(vals) --> Write array of bits
8 // void flush() --> Flush buffered bits
9 // void close() --> Close underlying stream

10
11 public class BitOutputStream
12 {
13 public BitOutputStream(OutputStream os)
14 { bufferPos = 0; buffer = 0; out = os; }
15
16 public void writeBit(int val) throws IOException
17 {
18 buffer = setBit(buffer, bufferPos++, val);
19 if(bufferPos == BitUtils.BITS_PER_BYTES)
20 flush();
21 }
22
23 public void writeBits(int [] val) throws IOException
24 {
25 for(int i = 0; i < val.length; i++)
26 writeBit(val[i]);
27 }
28
29 public void flush() throws IOException
30 {
31 if(bufferPos == 0)
32 return;
33 out.write(buffer);
34 bufferPos = 0;
35 buffer = 0;
36 }
37
38 public void close() throws IOException
39 { flush(); out.close(); }
40
41 private int setBit(int pack, int pos, int val)
42 {
43 if(val == 1)
44 pack |= (val << pos);
45 return pack;
46 }
47
48 private OutputStream out;
49 private int buffer;
50 private int bufferPos;
51 }

12.1 file compression 483

the character-counting class
Figure 12.16 provides the CharCounter class, which is used to obtain the char-
acter counts in an input stream (typically a file). Alternatively, the character
counts can be set manually and then obtained later. (Implicitly, we are treating
eight-bit bytes as ASCII characters for this program.)

the huffman tree class
The tree is maintained as a collection of nodes. Each node has links to its left
child, right child, and parent (in Chapter 18 we discuss the implementation of
trees in detail). The node declaration is shown in Figure 12.17.

The HuffmanTree class skeleton is provided in Figure 12.18. We can create
a HuffmanTree object by providing a CharCounter object, in which case the tree
is built immediately. Alternatively, it can be created without a CharCounter
object. In that case, the character counts are read by a subsequent call to
readEncodingTable, and at that point the tree is built.

figure 12.16

The CharCounter class

1 // CharCounter class: A character counting class.
2 //
3 // CONSTRUCTION: with no parameters or an open InputStream.
4 //
5 // ******************PUBLIC OPERATIONS***********************
6 // int getCount(ch) --> Return # occurrences of ch
7 // void setCount(ch, count) --> Set # occurrences of ch
8 // ******************ERRORS**********************************
9 // No error checks.

10
11 class CharCounter
12 {
13 public CharCounter()
14 { }
15
16 public CharCounter(InputStream input) throws IOException
17 {
18 int ch;
19 while((ch = input.read()) != -1)
20 theCounts[ch]++;
21 }
22
23 public int getCount(int ch)
24 { return theCounts[ch & 0xff]; }
25
26 public void setCount(int ch, int count)
27 { theCounts[ch & 0xff] = count; }
28
29 private int [] theCounts = new int[BitUtils.DIFF_BYTES];
30 }

484 chapter 12 utilities

The HuffmanTree class provides the writeEncodingTable method to write the
tree out to an output stream (in a form suitable for a call to readEncodingTable).
It also provides public methods to convert from a character to a code, and vice
versa.1 Codes are represented by an int[] or String, as appropriate, in which
each element is either a 0 or 1.

Internally, root is a reference to the root node of the tree, and theCounts is a
CharCounter object that can be used to initialize the tree nodes. We also maintain
an array, theNodes, which maps each character to the tree node that contains it.

Figure 12.19 shows the constructors and the routine (public method and
private helper) to return the code for a given character. The constructors
start with empty trees, and the one-parameter constructor initializes the
CharCounter object, and immediately calls the private routine createTree. The
CharCounter object is initialized to be empty in the zero-parameter constructor.

For getCode, by consulting theNodes, we obtain the tree node that stores
the character whose code we are looking for. If the character is not repre-
sented, we signal an error by returning a null reference. Otherwise we use a
straightforward loop up the tree, following parent links, until we reach the
root (which has no parent). Each step prepends a 0 or 1 to a string, which is
converted to an array of int prior to returning (of course, this creates many
temporary strings; we leave it to the reader to optimize this step).

figure 12.17

Node declaration for
the Huffman coding
tree

1 // Basic node in a Huffman coding tree.
2 class HuffNode implements Comparable<HuffNode>
3 {
4 public int value;
5 public int weight;
6
7 public int compareTo(HuffNode rhs)
8 {
9 return weight - rhs.weight;

10 }
11
12 HuffNode left;
13 HuffNode right;
14 HuffNode parent;
15
16 HuffNode(int v, int w, HuffNode lt, HuffNode rt, HuffNode pt)
17 { value = v; weight = w; left = lt; right = rt; parent = pt; }
18 }

1. Technical alert: An int is used instead of byte to allow all characters and the EOF symbol.

12.1 file compression 485

figure 12.18

The HuffmanTree class skeleton

1 // Huffman tree class interface: manipulate Huffman coding tree.
2 //
3 // CONSTRUCTION: with no parameters or a CharCounter object.
4 //
5 // ******************PUBLIC OPERATIONS***********************
6 // int [] getCode(ch) --> Return code given character
7 // int getChar(code) --> Return character given code
8 // void writeEncodingTable(out) --> Write coding table to out
9 // void readEncodingTable(in) --> Read encoding table from in

10 // ******************ERRORS**********************************
11 // Error check for illegal code.
12
13 class HuffmanTree
14 {
15 public HuffmanTree()
16 { /* Figure 12.19 */ }
17 public HuffmanTree(CharCounter cc)
18 { /* Figure 12.19 */ }
19
20 public static final int ERROR = -3;
21 public static final int INCOMPLETE_CODE = -2;
22 public static final int END = BitUtils.DIFF_BYTES;
23
24 public int [] getCode(int ch)
25 { /* Figure 12.19 */ }
26 public int getChar(String code)
27 { /* Figure 12.20 */ }
28
29 // Write the encoding table using character counts
30 public void writeEncodingTable(DataOutputStream out) throws IOException
31 { /* Figure 12.21 */ }
32 public void readEncodingTable(DataInputStream in) throws IOException
33 { /* Figure 12.21 */ }
34
35 private CharCounter theCounts;
36 private HuffNode [] theNodes = new HuffNode[BitUtils.DIFF_BYTES + 1];
37 private HuffNode root;
38
39 private void createTree()
40 { /* Figure 12.22 */ }
41 }

486 chapter 12 utilities

The getChar method shown in Figure 12.20 is simpler: We start at the root
and branch left or right, as directed by the code. Reaching null prematurely

figure 12.19

Some of the Huffman
tree methods,
including constructors
and the routine for
returning a code for a
given character

1 public HuffmanTree()
2 {
3 theCounts = new CharCounter();
4 root = null;
5 }
6
7 public HuffmanTree(CharCounter cc)
8 {
9 theCounts = cc;

10 root = null;
11 createTree();
12 }
13
14 /**
15 * Return the code corresponding to character ch.
16 * (The parameter is an int to accommodate EOF).
17 * If code is not found, return an array of length 0.
18 */
19 public int [] getCode(int ch)
20 {
21 HuffNode current = theNodes[ch];
22 if(current == null)
23 return null;
24
25 String v = "";
26 HuffNode par = current.parent;
27
28 while (par != null)
29 {
30 if(par.left == current)
31 v = "0" + v;
32 else
33 v = "1" + v;
34 current = current.parent;
35 par = current.parent;
36 }
37
38 int [] result = new int[v.length()];
39 for(int i = 0; i < result.length; i++)
40 result[i] = v.charAt(i) == '0' ? 0 : 1;
41
42 return result;
43 }

12.1 file compression 487

generates an error. Otherwise, we return the value stored in the node (which
for nonleaf nodes turns out to be the symbol INCOMPLETE).

In Figure 12.21 we have routines to read and write the encoding table. The
format that we use is simple and is not necessarily the most space-efficient.
For each character that has a code, we write it out (using one byte) and then
write out its character count (using four bytes). We signal the end of the table
by writing out an extra entry containing a null terminator character '\0' with a
count of zero. The count of zero is the special signal.

The readEncodingTable method initializes all the character counts to zero and
then reads the table, and updates the counts as they are read. It calls createTree,
shown in Figure 12.22, to build the Huffman tree.

In that routine, we maintain a priority queue of tree nodes. To do so we
must provide a comparison function for tree nodes. Recall from Figure 12.17
that HuffNode implements Comparable<HuffNode>, ordering HuffNode objects on
the basis of node weight.

We then search for characters that have appeared at least once. When the test
at line 9 succeeds, we have such a character. We create a new tree node at lines
11 and 12, add it to theNodes at line 13, and then add it to the priority queue at
line 14. At lines 17 and 18 we add the end-of-file symbol. The loop that extends
from lines 20 to 28 is a line-for-line translation of the tree construction algorithm.
While we have two or more trees, we extract two trees from the priority queue,
merge the result, and put it back in the priority queue. At the end of the loop, only
one tree is left in the priority queue, and we can extract it and set root.

figure 12.20

A routine for decoding
(generating a
character, given the
code)

1 /**
2 * Get the character corresponding to code.
3 */
4 public int getChar(String code)
5 {
6 HuffNode p = root;
7 for(int i = 0; p != null && i < code.length(); i++)
8 if(code.charAt(i) == '0')
9 p = p.left;

10 else
11 p = p.right;
12
13 if(p == null)
14 return ERROR;
15
16 return p.value;
17 }

488 chapter 12 utilities

figure 12.21

Routines for reading and writing encoding tables

1 /**
2 * Writes an encoding table to an output stream.
3 * Format is character, count (as bytes).
4 * A zero count terminates the encoding table.
5 */
6 public void writeEncodingTable(DataOutputStream out) throws IOException
7 {
8 for(int i = 0; i < BitUtils.DIFF_BYTES; i++)
9 {

10 if(theCounts.getCount(i) > 0)
11 {
12 out.writeByte(i);
13 out.writeInt(theCounts.getCount(i));
14 }
15 }
16 out.writeByte(0);
17 out.writeInt(0);
18 }
19
20 /**
21 * Read the encoding table from an input stream in format
22 * given and then construct the Huffman tree.
23 * Stream will then be positioned to read compressed data.
24 */
25 public void readEncodingTable(DataInputStream in) throws IOException
26 {
27 for(int i = 0; i < BitUtils.DIFF_BYTES; i++)
28 theCounts.setCount(i, 0);
29
30 int ch;
31 int num;
32
33 for(; ;)
34 {
35 ch = in.readByte();
36 num = in.readInt();
37 if(num == 0)
38 break;
39 theCounts.setCount(ch, num);
40 }
41
42 createTree();
43 }

12.1 file compression 489

The tree produced by createTree is dependent on how the priority queue
breaks ties. Unfortunately, this means that if the program is compiled on two
different machines, with two different priority queue implementations, it is
possible to compress a file on the first machine, and then be unable to obtain
the original when attempting to uncompress on the second machine. Avoiding
this problem requires some additional work.

figure 12.22

A routine for constructing the Huffman coding tree

1 /**
2 * Construct the Huffman coding tree.
3 */
4 private void createTree()
5 {
6 PriorityQueue<HuffNode> pq = new PriorityQueue<HuffNode>();
7
8 for(int i = 0; i < BitUtils.DIFF_BYTES; i++)
9 if(theCounts.getCount(i) > 0)

10 {
11 HuffNode newNode = new HuffNode(i,
12 theCounts.getCount(i), null, null, null);
13 theNodes[i] = newNode;
14 pq.add(newNode);
15 }
16
17 theNodes[END] = new HuffNode(END, 1, null, null, null);
18 pq.add(theNodes[END]);
19
20 while(pq.size() > 1)
21 {
22 HuffNode n1 = pq.remove();
23 HuffNode n2 = pq.remove();
24 HuffNode result = new HuffNode(INCOMPLETE_CODE,
25 n1.weight + n2.weight, n1, n2, null);
26 n1.parent = n2.parent = result;
27 pq.add(result);
28 }
29
30 root = pq.element();
31 }

490 chapter 12 utilities

compression stream classes
All that is left to do is to write a compression and uncompression stream
wrapper and then a main that calls them. We repeat our earlier disclaimer
about skimping on error checking so that we can illustrate the basic algorith-
mic ideas.

The HZIPOutputStream class is shown in Figure 12.23. The constructor
initiates a DataOutputStream, on which we can write the compressed stream.
We also maintain a ByteArrayOutputStream. Each call to write appends onto
the ByteArrayOutputStream. When close is called, the actual compressed
stream is written.

The close routine extracts all the bytes that have been stored in the
ByteArrayOutputStream for reading at line 26. It then constructs a CharCounter
object at line 29 and a HuffmanTree object at line 32. Since CharCounter needs
an InputStream, we construct a ByteArrayInputStream from the array of bytes
that were just extracted. At line 33 we write out the encoding table.

At this point we are ready to do the main encoding. We create a bit-output
stream object at line 35. The rest of the algorithm repeatedly gets a character
and writes its code (line 38). There is a tricky piece of code at line 38: The int
passed to getCode may be confused with EOF if we simply use the byte because
the high bit can be interpreted as a sign bit. Thus we use a bit mask. When we
exit the loop, we have reached the end of file, so we write out the end-of-file
code at line 39. The BitOutputStream close flushes any remaining bits to the
output file, so an explicit call to flush is not needed.

The HZIPInputStream class is next, in Figure 12.24. The constructor creates
a DataInputStream and constructs a HuffmanTree object by reading the encoding
table (lines 15 and 16) from the compressed stream. We then create a bit-input
stream at line 18. The dirty work is done in the read method.

The bits object, declared at line 23, represents the (Huffman) code that
we are currently examining. Each time we read a bit at line 29, we add the bit
to the end of the Huffman code (at line 33). We then look up the Huffman
code at line 34. If it is incomplete, we continue the loop (lines 35 and 36). If
there is an illegal Huffman code, we throw an IOException (lines 37 to 38). If
we reach the end-of-file code, we return –1, as is standard for read (lines 39
and 40); otherwise, we have a match, so we return the character that matches
the Huffman code (line 42).

12.1 file compression 491

figure 12.23

The HZIPOutputStream class

1 import java.io.IOException;
2 import java.io.OutputStream;
3 import java.io.DataOutputStream;
4 import java.io.ByteArrayInputStream;
5 import java.io.ByteArrayOutputStream;
6
7 /**
8 * Writes to HZIPOutputStream are compressed and
9 * sent to the output stream being wrapped.

10 * No writing is actually done until close.
11 */
12 public class HZIPOutputStream extends OutputStream
13 {
14 public HZIPOutputStream(OutputStream out) throws IOException
15 {
16 dout = new DataOutputStream(out);
17 }
18
19 public void write(int ch) throws IOException
20 {
21 byteOut.write(ch);
22 }
23
24 public void close() throws IOException
25 {
26 byte [] theInput = byteOut.toByteArray();
27 ByteArrayInputStream byteIn = new ByteArrayInputStream(theInput);
28
29 CharCounter countObj = new CharCounter(byteIn);
30 byteIn.close();
31
32 HuffmanTree codeTree = new HuffmanTree(countObj);
33 codeTree.writeEncodingTable(dout);
34
35 BitOutputStream bout = new BitOutputStream(dout);
36
37 for(int i = 0; i < theInput.length; i++)
38 bout.writeBits(codeTree.getCode(theInput[i] & 0xff));
39 bout.writeBits(codeTree.getCode(BitUtils.EOF));
40
41 bout.close();
42 byteOut.close();
43 }
44
45 private ByteArrayOutputStream byteOut = new ByteArrayOutputStream();
46 private DataOutputStream dout;
47 }

492 chapter 12 utilities

figure 12.24

The HZIPInputStream
class

1 import java.io.IOException;
2 import java.io.InputStream;
3 import java.io.DataInputStream;
4
5 /**
6 * HZIPInputStream wraps an input stream. read returns an
7 * uncompressed byte from the wrapped input stream.
8 */
9 public class HZIPInputStream extends InputStream

10 {
11 public HZIPInputStream(InputStream in) throws IOException
12 {
13 DataInputStream din = new DataInputStream(in);
14
15 codeTree = new HuffmanTree();
16 codeTree.readEncodingTable(din);
17
18 bin = new BitInputStream(in);
19 }
20
21 public int read() throws IOException
22 {
23 String bits = "";
24 int bit;
25 int decode;
26
27 while(true)
28 {
29 bit = bin.readBit();
30 if(bit == -1)
31 throw new IOException("Unexpected EOF");
32
33 bits += bit;
34 decode = codeTree.getChar(bits);
35 if(decode == HuffmanTree.INCOMPLETE_CODE)
36 continue;
37 else if(decode == HuffmanTree.ERROR)
38 throw new IOException("Decoding error");
39 else if(decode == HuffmanTree.END)
40 return -1;
41 else
42 return decode;
43 }
44 }
45
46 public void close() throws IOException
47 { bin.close(); }
48
49 private BitInputStream bin;
50 private HuffmanTree codeTree;
51 }

12.1 file compression 493

the main routine
The main routine is shown in the online code. If invoked with the -c argument,
it compresses; with the -u argument it uncompresses. Figure 12.25 illustrates
the wrapping of streams for compression and uncompression. Compression
adds a “.huf” to the filename; uncompression adds a “.uc” to the filename, to
avoid clobbering original files.

improving the program
The program, as written, serves its main purpose of illustrating the basics of
the Huffman coding algorithm. It achieves some compression, even on mod-
erately sized files. For instance, it obtains roughly 40 percent compression
when run on its own source file, Hzip.java. However, the program could be
improved in several ways.

1. The error checking is limited. A production program should rigor-
ously ensure that the file being decompressed is actually a com-
pressed file. (One way to have it do so is to write extra information in
the encoding table.) The internal routines should have more checks.

2. Little effort has been made to minimize the size of the encoding table.
For large files this lack is of little consequence, but for smaller files a
large encoding table can be unacceptable because the encoding table
takes up space itself.

3. A robust program checks the size of the resulting compressed file and
aborts if the size is larger than the original.

4. In many places we made little attempt to optimize for speed.
Memoization could be used to avoid repeated searching of the tree for
codes.

Further improvements to the program are left for you to do as Exer-
cises 12.14–12.16.

494 chapter 12 utilities

figure 12.25

A simple main for file compression and uncompression

1 class Hzip
2 {
3 public static void compress(String inFile) throws IOException
4 {
5 String compressedFile = inFile + ".huf";
6 InputStream in = new BufferedInputStream(
7 new FileInputStream(inFile));
8 OutputStream fout = new BufferedOutputStream(
9 new FileOutputStream(compressedFile));

10 HZIPOutputStream hzout = new HZIPOutputStream(fout);
11 int ch;
12 while((ch = in.read()) != -1)
13 hzout.write(ch);
14 in.close();
15 hzout.close();
16 }
17
18 public static void uncompress(String compressedFile) throws IOException
19 {
20 String inFile;
21 String extension;
22
23 inFile = compressedFile.substring(0, compressedFile.length() - 4);
24 extension = compressedFile.substring(compressedFile.length() - 4);
25
26 if(!extension.equals(".huf"))
27 {
28 System.out.println("Not a compressed file!");
29 return;
30 }
31
32 inFile += ".uc"; // for debugging, to not clobber original
33 InputStream fin = new BufferedInputStream(
34 new FileInputStream(compressedFile));
35 DataInputStream in = new DataInputStream(fin);
36 HZIPInputStream hzin = new HZIPInputStream(in);
37
38 OutputStream fout = new BufferedOutputStream(
39 new FileOutputStream(inFile));
40 int ch;
41 while((ch = hzin.read()) != -1)
42 fout.write(ch);
43
44 hzin.close();
45 fout.close();
46 }
47 }

12.2 a cross-reference generator 495

12.2 a cross-reference generator
A cross-reference
generator lists iden-
tifiers and their line
numbers. It is a
common applica-
tion because it is
similar to creating
an index.

In this section, we design a program called a cross-reference generator that
scans a Java source file, sorts the identifiers, and outputs all the identifiers,
along with the line numbers on which they occur. One compiler application is
to list, for each method, the names of all other methods that it directly calls.

However, this is a general problem that occurs in many other contexts.
For instance, it can be used to generalize the creation of an index for a book.
Another use, spell checking, is described in Exercise 12.23. As a spelling
checker detects misspelled words in a document, those words are gathered,
along with the lines on which they occur. This process avoids repeatedly
printing out the same misspelled word and indicates where the errors are.

12.2.1 basic ideas
We use a map to
store identifiers and
their line numbers.
We store the line
numbers for each
identifier in a list.

Our main algorithmic idea is to use a map to store each identifier and the line
numbers on which it occurs. In the map, the identifier is the key, and the list of
line numbers is the value. After the source file has been read and the map
built, we can iterate over the collection, outputting identifiers and their corre-
sponding line numbers.

12.2.2 java implementation

The Xref class skeleton is shown in Figure 12.26. It is similar to (but simpler than)
the Balance class shown in Figure 11.3, which was part of a balanced symbol pro-
gram. Like that class, it makes use of the Tokenizer class defined in Figure 11.2.

We can now discuss the implementation of the two remaining routines in
the Tokenizer class: getNextID and getRemainingString. These new parsing rou-
tines deal with recognizing an identifier.

The parsing rou-
tines are straight-
forward, though as
usual they require
some effort.

The routine shown in Figure 12.27 tests whether a character is part of an
identifier. In the getRemainingString routine shown in Figure 12.28 we assume
that the first character of an identifier has already been read and is stored in
the Tokenizer class data member ch. It repeatedly reads characters until one
that is not part of an identifier appears. At that point we put the character back
(at line 12) and then return a String. The StringBuilder is used to avoid
repeated, expensive, String concatenations. Section 15.4 describes the issues
involved.

496 chapter 12 utilities

The getNextID routine shown in Figure 12.29 is similar to the routine
shown in Figure 11.7. The difference is that here at line 17, if the first charac-
ter of an identifier is encountered, we call getRemainingString to return the

figure 12.26

The Xref class
skeleton

1 import java.io.InputStreamReader;
2 import java.io.IOException;
3 import java.io.FileReader;
4 import java.io.Reader;
5 import java.util.Set
6 import java.util.TreeMap;
7 import java.util.List;
8 import java.util.ArrayList;
9 import java.util.Iterator;

10 import java.util.Map;
11
12 // Xref class interface: generate cross-reference
13 //
14 // CONSTRUCTION: with a Reader object
15 //
16 // ******************PUBLIC OPERATIONS***********************
17 // void generateCrossReference() --> Name says it all ...
18 // ******************ERRORS**********************************
19 // Error checking on comments and quotes is performed
20
21 public class Xref
22 {
23 public Xref(Reader inStream)
24 { tok = new Tokenizer(inStream); }
25
26 public void generateCrossReference()
27 { /* Figure 12.30 */ }
28
29 private Tokenizer tok; // tokenizer object
30 }

figure 12.27

A routine for testing
whether a character
could be part of an
identifier

1 /**
2 * Return true if ch can be part of a Java identifier
3 */
4 private static final boolean isIdChar(char ch)
5 {
6 return Character.isJavaIdentifierPart(ch);
7 }

12.2 a cross-reference generator 497

token. The fact that getNextID and getNextOpenClose are so similar suggests
that it would have been worthwhile to write a private member function that
performs their common tasks.

figure 12.28

A routine for returning
a String from input

1 /**
2 * Return an identifier read from input stream
3 * First character is already read into ch
4 */
5 private String getRemainingString()
6 {
7 StringBuilder result = new StringBuilder(ch);
8
9 for(; nextChar(); result.append(ch))

10 if(!isIdChar(ch))
11 {
12 putBackChar();
13 break;
14 }
15
16 return new String(result);
17 }

figure 12.29

A routine for returning
the next identifier

1 /**
2 * Return next identifier, skipping comments
3 * string constants, and character constants.
4 * Place identifier in currentIdNode.word and return false
5 * only if end of stream is reached.
6 */
7 public String getNextID()
8 {
9 while(nextChar())

10 {
11 if(ch == '/')
12 processSlash();
13 else if(ch == '\\')
14 nextChar();
15 else if(ch == '\'' || ch == '"')
16 skipQuote(ch);
17 else if(!Character.isDigit(ch) && isIdChar(ch))
18 return getRemainingString();
19 }
20 return null; // End of file
21 }

498 chapter 12 utilities

With all the supporting routines written, let us consider the only method,
generateCrossReference, shown in Figure 12.30. Lines 6 and 7 create an empty
map. We read the input and build the map at lines 11–20. At each iteration, we

figure 12.30

The main cross-reference algorithm

1 /**
2 * Output the cross reference
3 */
4 public void generateCrossReference()
5 {
6 Map<String,List<Integer>> theIdentifiers =
7 new TreeMap<String,List<Integer>>();
8 String current;
9

10 // Insert identifiers into the search tree
11 while((current = tok.getNextID()) != null)
12 {
13 List<Integer> lines = theIdentifiers.get(current);
14 if(lines == null)
15 {
16 lines = new ArrayList<Integer>();
17 theIdentifiers.put(current, lines);
18 }
19 lines.add(tok.getLineNumber());
20 }
21
22 // Iterate through search tree and output
23 // identifiers and their line number
24 Set entries = theIdentifiers.entrySet();
25 for(Map.Entry<String,List<Integer>> thisNode : entries)
26 {
27 Iterator<Integer> lineItr = thisNode.getValue().iterator();
28
29 // Print identifier and first line where it occurs
30 System.out.print(thisNode.getKey() + ": ");
31 System.out.print(lineItr.next());
32
33 // Print all other lines on which it occurs
34 while(lineItr.hasNext())
35 System.out.print(", " + lineItr.next());
36 System.out.println();
37 }
38 }

summary 499

have the current identifier. Let us see how the loop body works. There are two
cases:

1. The current identifier is in the map. In this case, lines gives a refer-
ence to the List of line numbers, and the new line number is added to
the end of the List.

2. The current identifier is not in the map. In this case, lines 16 and 17
add current to the map with an empty List. Thus the call to add
appends the new line number to the list, and as a result, the List con-
tains the single line number, as desired.

The output is
obtained by using a
map traversal and
an enhanced for
loop on the entry
set. A list iterator is
used to get the line
numbers.

Once we have built the map, we merely iterate through it by using an
enhanced for loop on the underlying entry set. The map is visited in key-
sorted order because the map is a TreeMap. Each time a map entry appears, we
need to print out information for the identifier currently being examined by
the map iterator.

Recall that an entry set iterator looks at Map.Entrys; in Map.Entry, the key is
given by the method getKey, and the value is given by the method getValue.
Thus the identifier being scanned is given by thisNode.getKey(), as shown at
line 30. To access individual lines, we need a list iterator; the iterator at
line 27 refers to the line numbers of the current entry.

We print the word and the first line number at lines 30 and 31 (we are
guaranteed that the list is not empty). Then, so long as we have not reached the
end of the list, we repeatedly output line numbers in the loop that extends from
line 34 to 35. We print out a newline at line 36. We do not provide a main pro-
gram here because it is essentially the same as that shown in Figure 11.10.

The use of a map in this manner, in which the key is something simple
and the value is a list or some other collection is quite common. The exercises
detail several other examples that make use of this idiom.

summary

In this chapter we presented implementations of two important utilities: text
compression and cross-referencing. Text compression is an important tech-
nique that allows us to increase both effective disk capacity and effective
modem speed. It is an area of active research. The simple method described
here—namely, Huffman’s algorithm—typically achieves compression of 25 per-
cent on text files. Other algorithms and extensions of Huffman’s algorithm per-
form better. Cross-referencing is a general approach that has many applications.

500 chapter 12 utilities

key concepts

binary trie A data structure in which a left branch represents 0 and a right
branch represents 1. The path to a node indicates its representation. (475)

compression The act of reducing the number of bits required for data repre-
sentation, which actually has two phases: the encoding phase (compres-
sion) and the decoding phase (uncompression). (474)

cross-reference generator A program that lists identifiers and their line numbers.
It is a common application because it is similar to creating an index. (495)

full tree A tree whose nodes either are leaves or have two children. (475)
Huffman’s algorithm An algorithm that constructs an optimal prefix code by

repeatedly merging the two minimum weight trees. (477)
prefix code Code in which no character code is a prefix of another character

code. This condition is guaranteed in a trie if the characters are only in
leaves. A prefix code can be decoded unambiguously. (476)

common errors

1. When working with character I/O, you often need to use an int to store
the characters because of the additional EOF symbol. There are several
other tricky coding issues.

2. Using too much memory to store the compression table is a common mis-
take. Doing so limits the amount of compression that can be achieved.

on the internet

The compression program and cross-reference generator is available.

Hzip.java Contains the source for the Huffman coding compression and
uncompression program. See also HZIPInputStream.java,
HZIPOutputStream.java, and Tokenizer.java.

Xref.java Contains the source for the cross-reference generator.

exercises

IN SHORT

12.1 Show the Huffman tree that results from the following distribution
of punctuation characters and digits: colon (100), space (605), new-
line (100), comma (705), 0 (431), 1 (242), 2 (176), 3 (59), 4 (185),
5 (250), 6 (174), 7 (199), 8 (205), and 9 (217).

exercises 501

12.2 Most systems come with a compression program. Compress several
types of files to determine the typical compression rate on your sys-
tem. How large do the files have to be to make compression worth-
while? Compare their performance with the Huffman coding program
(Hzip) provided in the online source code.

12.3 What happens if a file compressed with Huffman’s algorithm is used
to transmit data over a phone line and a single bit is accidentally lost?
What can be done in this situation?

IN THEORY

12.4 Prove the correctness of Huffman’s algorithm by expanding the fol-
lowing steps.
a. Show that no node has only one child.
b. Show that the two least frequent characters must be the two deep-

est nodes in the tree.
c. Show that the characters in any two nodes at the same depth can

be swapped without affecting optimality.
d. Use induction: As trees are merged, consider the new character

set to be the characters in the tree roots.

12.5 Under what circumstances could a Huffman tree of ASCII characters
generate a 2-bit code for some character? Under what circumstances
could it generate a 20-bit code?

12.6 Show that, if the symbols have already been sorted by frequency,
Huffman’s algorithm can be implemented in linear time.

12.7 Huffman’s algorithm occasionally generates compressed files that
are not smaller than the original. Prove that all compression algo-
rithms must have this property (i.e., no matter what compression
algorithm you design, some input files must always exist for which
the algorithm generates compressed files that are not smaller than
the originals).

IN PRACTICE

12.8 In the cross-reference generator, store the line numbers in a
LinkedList instead of an ArrayList and compare performance.

12.9 If a word occurs twice on a line, the cross-reference generator will list
it twice. Modify the algorithm so that duplicates are only listed once.

12.10 Modify the algorithm so that, if a word appears on consecutive lines,
a range is indicated. For example,

if: 2, 4, 6-9, 11

502 chapter 12 utilities

12.11 In the class graderoll, a nine-digit student identification number is
reported with a code consisting five leading Xs and the last four digits.
For instance the code for Student ID 999-44-8901 is XXX-XX-8901.
Write a method that takes as input an array consisting of student identi-
fication numbers and returns a List<String> containing all codes that
correspond to two or more students.

12.12 Write routine groupWords that takes an array of String as its parameter,
and returns a Map in which the keys are numbers representing the
length of a String and the corresponding value is a List of all String
of that length. The Map must be sorted by string length.

12.13 You are given a Map that contains an email mailing list address book.
In the Map, the keys are aliases, and the corresponding values are lists
consisting of email addresses and other aliases. An email address is
guaranteed to contain the @ sign and an alias is guaranteed to not
contain the @ sign. An example of a Map is

{ faculty=[fran48@fiu.edu,pat37@fiu.edu],
 staff=[jls123@fiu.edu,moe45@cis.fiu.edu],
 facstaff=[faculty,staff],
 all=[facstaff,president@fiu.edu,provost@fiu.edu] }

Write routine expandAlias that takes a Map and an alias and returns the
Set of all email address that the alias expands to. For example,
expanding all yields a Set containing six email addresses.

Note that if the alias parameter is an email address, expandAlias
returns a Set of size one. If the alias parameter is not an email
address, but is an invalid alias (i.e. not in the map), you can return a
Set of size zero. In writing your code, first assume that there are no
cycles in which an alias eventually includes itself. Eventually handle
the case in which an alias appears more than once in an expansion (by
keeping track of aliases that have already been expanded).

PROGRAMMING PROJECTS

12.14 Storing the character counts in the encoding table gives the uncom-
pression algorithm the ability to perform extra consistency checks.
Add code that verifies that the result of the uncompression has the
same character counts as the encoding table claimed.

12.15 Describe and implement a method of storing the encoding table that
uses less space than the trivial method of storing character counts.

exercises 503

12.16 Add the robust error checks for the compression program suggested
at the end of Section 12.1.3.

12.17 Analyze empirically the performance of the compression program
and determine whether its speed can be significantly improved. If so,
make the required changes.

12.18 Split the Tokenizer class into three classes: an abstract base class
that handles the common functionality and two separate derived
classes (one that handles the tokenization for the balanced symbol
program, and another that handles the tokenization for the cross-
reference generator).

12.19 Generate an index for a book. The input file consists of a set of index
entries. Each line consists of the string IX:, followed by an index
entry name enclosed in braces and then by a page number enclosed in
braces. Each ! in an index entry name represents a sublevel. A |(rep-
resents the start of a range and a |) represents the end of the range.
Occasionally, this range will be the same page. In that case, output
only a single page number. Otherwise, do not collapse or expand
ranges on your own. As an example, Figure 12.31 shows sample input
and Figure 12.32 shows the corresponding output.

12.20 Use a map to implement a spelling checker. Assume that the dictio-
nary comes from two sources: one file containing an existing large
dictionary and a second file containing a personal dictionary. Output

figure 12.31

Sample input for
Exercise 12.19

IX: {Series|(} {2}
IX: {Series!geometric|(} {4}
IX: {Euler's constant} {4}
IX: {Series!geometric|)} {4}
IX: {Series!arithmetic|(} {4}
IX: {Series!arithmetic|)} {5}
IX: {Series!harmonic|(} {5}
IX: {Euler's constant} {5}
IX: {Series!harmonic|)} {5}
IX: {Series|)} {5}

figure 12.32

Sample output for
Exercise 12.19

Euler's constant: 4, 5
Series: 2-5
 arithmetic: 4-5
 geometric: 4
 harmonic: 5

504 chapter 12 utilities

all misspelled words and the line numbers on which they occur (note
that keeping track of the misspelled words and their line numbers is
identical to generating a cross-reference). Also, for each misspelled
word, list any words in the dictionary that are obtainable by applying
any of the following rules.
a. Add one character.
b. Remove one character.
c. Exchange adjacent characters.

12.21 Two words are anagrams if they contain the same set of letters (with
same frequencies). For instance, least and steal are anagrams. Use a
map to implement a program that finds large groups of words (five
words or more) in which each word in the group is an anagram of
every other word in the group. For instance, least, steal, tales, stale,
and slate are anagrams of each other and form a large group of ana-
grams. Assume that there is a large list of words in a file. For each
word, compute its representative. The representative is the characters
of the word in sorted order. For instance, the representative for the
word enraged is adeegnr. Observe that words that are anagrams will
have the same representative. Thus the representative for grenade is
also adeegnr. You will use a Map in which the key is a String that is a
representative, and the value is a List of all words that have the key as
their representative. After constructing the Map, you simply need to
find all values whose Lists have size five or higher and print those
Lists. Ignore any case distinctions.

12.22 Implement a sorting algorithm using a TreeMap. Because a TreeMap
does not allow duplicates, each value in the TreeMap is a list containing
duplicates.

12.23 Assume that you have a Map in which the keys are names of students
(String), and for each student, the value is a List of courses (each
course name is a String). Write a routine that computes the inverse
map, in which the keys are the names of the courses and the values
are lists of enrolled students.

12.24 Static method computeCounts takes as input an array of strings and
returns a map that stores the strings as keys and the number of occur-
rences of each string as values.
a. Implement computeCounts and provide the running time of your

implementation.
b. Write a routine, mostCommonStrings, that takes the map generated

in part (a) and returns a list of the strings that occur most often
(i.e., if there are k strings that are tied as the most common, the

exercises 505

return list will have size k), and provide the running time of your
routine.

12.25 Many companies like to have phone numbers that can be spelled on
the phone pad, rather than being random digits. For instance, 1-800-
DRWEISS is actually 1-800-379-3477. Also, numbers, such as
account numbers can sometimes be more easily remembered when
they can be spelled out on a phone pad. For instance, the account
number 7378378377, which is hard to remember would be easier to
remember if one observes that the word "REQUESTERS" types the
same sequence of buttons on a phone pad. This account number is
special, because "PERVERTERS" also types the same sequence.

Assume that you have a file containing one word per line. Write a
program that finds the account numbers that contain the MOST
matching words in the file. If there are several such account numbers,
print each of them out, along with the words that they match.

12.26 Suppose you have an array consisting exclusively of five letter
words. Two words are transformable to each other if they are identi-
cal in every position except one. Thus, “blood” and “blond” are
transformable. “blood” and “flood” are also transformable. Write a
method that takes as parameter an array of String containing only
five letter words and outputs the word that is transformable to the
most other words. In case of a tie, you should output all such words.
Your algorithm must run in sub-quadratic time, so you cannot simply
compare each pair of words.
Hint: Create five separate maps, with map i grouping together
words that are identical except for position i. Use those maps to
create a sixth map that tells you all the words than any word is
transformable to.

12.27 A MultiSet, as described in Exercise 6.32 is like a Set, but allows
duplicates. Exercise 6.32 suggested an implementation that uses a
Map, in which the value represents a count of the number of duplicates.
However, that implementation loses information. For instance if we
add a BigDecimal representing 4.0 and another BigDecimal representing
4.000 (note that for these two objects, compareTo yields 0, but equals
yields false), the first occurrence will be inserted with a count of 2,
and toString will necessarily lose information about 4.000 being in
the multiset. Consequently, an alternative implementation would be
to use a Map, in which the value represents a list of all additional
instances of the key. Write a complete implementation of the MultiSet,
and test it by adding several logically equal BigDecimals.

506 chapter 12 utilities

references

The original paper on Huffman’s algorithm is [3]. Variations on the algorithm are
discussed in [2] and [4]. Another popular compression scheme is Ziv-Lempel
encoding, described in [7] and [6]. It works by generating a series of fixed-length
codes. Typically, we would generate 4,096 12-bit codes that represent the most
common substrings in the file. References [1] and [5] are good surveys of the
common compression schemes.

1. T. Bell, I. H. Witten, and J. G. Cleary, “Modelling for Text Compression,”
ACM Computing Surveys 21 (1989), 557–591.

2. R. G. Gallager, “Variations on a Theme by Huffman,” IEEE Transactions
on Information Theory IT-24 (1978), 668–674.

3. D. A. Huffman, “A Model for the Construction of Minimum Redundancy
Codes,” Proceedings of the IRE 40 (1952), 1098–1101.

4. D. E. Knuth, “Dynamic Huffman Coding,” Journal of Algorithms 6
(1985), 163–180.

5. D. A. Lelewer and D. S. Hirschberg, “Data Compression,” ACM Comput-
ing Surveys 19 (1987), 261–296.

6. T. A. Welch, “A Technique for High-Performance Data Compression,”
Computer 17 (1984), 8–19.

7. J. Ziv and A. Lempel, “Compression of Individual Sequences via Variable-
Rate Coding,” IEEE Transactions on Information Theory IT-24 (1978),
530–536.

chap te r 13

simulation

An important use of
computers is simu-
lation, in which the
computer is used to
emulate the opera-
tion of a real sys-
tem and gather
statistics.

An important use of computers is for simulation, in which the computer
is used to emulate the operation of a real system and gather statistics. For
example, we might want to simulate the operation of a bank with k tellers to
determine the minimum value of k that gives reasonable service time. Using
a computer for this task has many advantages. First, the information would
be gathered without involving real customers. Second, a simulation by com-
puter can be faster than the actual implementation because of the speed of
the computer. Third, the simulation could be easily replicated. In many cases,
the proper choice of data structures can help us improve the efficiency of the
simulation.

In this chapter, we show

n How to simulate a game modeled on the Josephus problem

n How to simulate the operation of a computer modem bank

13.1 the josephus problem
The Josephus problem is the following game: N people, numbered 1 to N, are
sitting in a circle; starting at person 1, a hot potato is passed; after M passes,

508 chapter 13 simulation

the person holding the hot potato is eliminated, the circle closes ranks, and the
game continues with the person who was sitting after the eliminated person
picking up the hot potato; the last remaining person wins. A common assump-
tion is that M is a constant, although a random number generator can be used
to change M after each elimination.

In the Josephus
problem, a hot
potato is repeatedly
passed; when pass-
ing terminates, the
player holding the
potato is elimi-
nated; the game
continues, and the
last remaining
player wins.

The Josephus problem arose in the first century A.D. in a cave on a moun-
tain in Israel where Jewish zealots were being besieged by Roman soldiers.
The historian Josephus was among them. To Josephus’s consternation, the
zealots voted to enter into a suicide pact rather than surrender to the Romans.
He suggested the game that now bears his name. The hot potato was the sen-
tence of death to the person next to the one who got the potato. Josephus
rigged the game to get the last lot and convinced the remaining intended vic-
tim that the two of them should surrender. That is how we know about this
game; in effect, Josephus cheated.1

If M = 0, the players are eliminated in order, and the last player always
wins. For other values of M, things are not so obvious. Figure 13.1 shows that
if N = 5 and M = 1, the players are eliminated in the order 2, 4, 1, 5. In this
case, player 3 wins. The steps are as follows.

1. At the start, the potato is at player 1. After one pass, it is at player 2.

2. Player 2 is eliminated. Player 3 picks up the potato, and after one
pass, it is at player 4.

3. Player 4 is eliminated. Player 5 picks up the potato and passes it to
player 1.

4. Player 1 is eliminated. Player 3 picks up the potato and passes it to
player 5.

5. Player 5 is eliminated, so player 3 wins.

1. Thanks to David Teague for relaying this story. The version that we solve differs from the
historical description. In Exercise 13.11 you are asked to solve the historical version.

2 3 1 31 31 3

4 55 5

3

5 4

(a) (b) (c) (d) (e)

figure 13.1

The Josephus
problem: At each step,
the darkest circle
represents the initial
holder and the lightly
shaded circle
represents the player
who receives the hot
potato (and is
eliminated). Passes
are made clockwise.

13.1 the josephus problem 509

First, we write a program that simulates, pass for pass, a game for any val-
ues of N and M. The running time of the simulation is O(MN) , which is
acceptable if the number of passes is small. Each step takes O(M) time
because it performs M passes. We then show how to implement each step in
O(log N) time, regardless of the number of passes performed. The running
time of the simulation becomes O(N log N) .

13.1.1 the simple solution
We can represent
the players by a
linked list and use
the iterator to simu-
late the passing.

The passing stage in the Josephus problem suggests that we represent the
players in a linked list. We create a linked list in which the elements 1, 2, ,
N are inserted in order. We then set an iterator to the front element. Each pass
of the potato corresponds to a next operation on the iterator. At the last player
(currently remaining) in the list we implement the pass by creating a new iter-
ator positioned prior to the first element. This action mimics the circle. When
we have finished passing, we remove the element on which the iterator has
landed.

An implementation is shown in Figure 13.2. The linked list and iterator
are declared at lines 8 and 15, respectively. We construct the initial list by
using the loop at lines 11 and 12.

In Figure 13.2, the code at lines 18 to 25 plays one step of the algorithm
by passing the potato (lines 18 to 24) and then eliminating a player (line 25).
This procedure is repeated until the test at line 16 tells us that only one player
remains. At that point we return the player’s number at line 30.

The running time of this routine is O(MN) because that is exactly the
number of passes that occur during the algorithm. For small M, this running
time is acceptable, although we should mention that the case M = 0 does not
yield a running time of O(0); obviously the running time is O(N) . We do not
merely multiply by zero when trying to interpret a Big-Oh expression. Note
that we can replace LinkedList with ArrayList, without affecting the running
time. We can also use a TreeSet, but the cost of construction will not be O(N) .

13.1.2 a more efficient algorithm
If we implement
each round of
passing in a single
logarithmic opera-
tion, the simulation
will be faster.

A more efficient algorithm can be obtained if we use a data structure that sup-
ports accessing the kth smallest item (in logarithmic time). Doing so allows us
to implement each round of passing in a single operation. Figure 13.1 shows
why. Suppose that we have N players remaining and are currently at player P
from the front. Initially N is the total number of players and P is 1. After M
passes, a calculation tells us that we are at player ((P + M) mod N) from the
front, except if that would give us player 0, in which case, we go to player N.
The calculation is fairly tricky, but the concept is not.

…

510 chapter 13 simulation

The calculation is
tricky because of
the circle.

Applying this calculation to Figure 13.1, we observe that M is 1, N is ini-
tially 5, and P is initially 1. So the new value of P is 2. After the deletion, N
drops to 4, but we are still at position 2, as part (b) of the figure suggests. The
next value of P is 3, also shown in part (b), so the third element in the list is
deleted and N falls to 3. The next value of P is 4 mod 3, or 1, so we are back at
the first player in the remaining list, as shown in part (c). This player is
removed and N becomes 2. At this point, we add M to P, obtaining 2. Because
2 mod 2 is 0, we set P to player N, and thus the last player in the list is the one
that is removed. This action agrees with part (d). After the removal, N is 1 and
we are done.

All we need then is a data structure that efficiently supports the findKth
operation. The findKth operation returns the kth (smallest) item, for any

figure 13.2

Linked list
implementation of the
Josephus problem

1 /**
2 * Return the winner in the Josephus problem.
3 * Linked list implementation.
4 * (Can replace with ArrayList or TreeSet).
5 */
6 public static int josephus(int people, int passes)
7 {
8 Collection<Integer> theList = new LinkedList<Integer>();
9

10 // Construct the list
11 for(int i = 1; i <= people; i++)
12 theList.add(i);
13
14 // Play the game;
15 Iterator<Integer> itr = theList.iterator();
16 while(people-- != 1)
17 {
18 for(int i = 0; i <= passes; i++)
19 {
20 if(!itr.hasNext())
21 itr = theList.iterator();
22
23 itr.next();
24 }
25 itr.remove();
26 }
27
28 itr = theList.iterator();
29
30 return itr.next();
31 }

13.1 the josephus problem 511

parameter k.2 Unfortunately, no Collections API data structures support the
findKth operation. However, we can use one of the generic data structures that
we implement in Part Four. Recall from the discussion in Section 6.7 that the
data structures we implement in Chapter 19 follow a basic protocol that uses
insert, remove, and find. We can then add findKth to the implementation.

There are several similar alternatives. All of them use the fact that, as
discussed in Section 6.7, TreeSet could have supported the ranking operation
in logarithmic time on average or logarithmic time in the worst case if we
had used a sophisticated binary search tree. Consequently, we can expect an
O(N log N) algorithm if we exercise care.

The simplest method is to insert the items sequentially into a worst-case
efficient binary search tree such as a red-black tree, an AA-tree, or a splay tree
(we discuss these trees in later chapters). We can then call findKth and remove,
as appropriate. It turns out that a splay tree is an excellent choice for this
application because the findKth and insert operations are unusually efficient
and remove is not terribly difficult to code. We use an alternative here, how-
ever, because the implementations of these data structures that we provide in
the later chapters leave implementing findKth for you to do as an exercise.

A balanced search
tree will work, but it
is not needed if we
are careful and
construct a simple
binary search tree
that is not unbal-
anced at the start.
A class method can
be used to con-
struct a perfectly
balanced tree in lin-
ear time.

We use the BinarySearchTreeWithRank class that supports the findKth oper-
ation and is completely implemented in Section 19.2. It is based on the simple
binary search tree and thus does not have logarithmic worst-case performance
but merely average-case performance. Consequently, we cannot merely insert
the items sequentially; that would cause the search tree to exhibit its worst-
case performance.

There are several options. One is to insert a random permutation of 1, ...,
N into the search tree. The other is to build a perfectly balanced binary search
tree with a class method. Because a class method would have access to the
inner workings of the search tree, it could be done in linear time. This routine
is left for you to do as Exercise 19.18 when search trees are discussed.

We construct the
same tree by recur-
sive insertions but
use O(N log N)
time.

The method we use is to write a recursive routine that inserts items in a
balanced order. By inserting the middle item at the root and recursively build-
ing the two subtrees in the same manner, we obtain a balanced tree. The cost
of our routine is an acceptable O(N log N) . Although not as efficient as the
linear-time class routine, it does not adversely affect the asymptotic running
time of the overall algorithm. The remove operations are then guaranteed to be
logarithmic. This routine is called buildTree; it and the josephus method are
then coded as shown in Figure 13.3.

2. The parameter k for findKth ranges from 1 to N, inclusive, where N is the number of items in
the data structure.

findKth can be sup-
ported by a search
tree.

512 chapter 13 simulation

figure 13.3

An O(N log N) solution of the Josephus problem

1 /**
2 * Recursively construct a perfectly balanced BinarySearchTreeWithRank
3 * by repeated insertions in O(N log N) time.
4 * t should be empty on the initial call.
5 */
6 public static void buildTree(BinarySearchTreeWithRank<Integer> t,
7 int low, int high)
8 {
9 int center = (low + high) / 2;

10
11 if(low <= high)
12 {
13 t.insert(center);
14
15 buildTree(t, low, center - 1);
16 buildTree(t, center + 1, high);
17 }
18 }
19
20 /**
21 * Return the winner in the Josephus problem.
22 * Search tree implementation.
23 */
24 public static int josephus(int people, int passes)
25 {
26 BinarySearchTreeWithRank<Integer> t =
27 new BinarySearchTreeWithRank<Integer>();
28
29 buildTree(t, 1, people);
30
31 int rank = 1;
32 while(people > 1)
33 {
34 rank = (rank + passes) % people;
35 if(rank == 0)
36 rank = people;
37
38 t.remove(t.findKth(rank));
39 people--;
40 }
41
42 return t.findKth(1);
43 }

13.2 event-driven simulation 513

13.2 event-driven simulation
Let us return to the bank simulation problem described in the introduction.
Here, we have a system in which customers arrive and wait in line until one of
k tellers is available. Customer arrival is governed by a probability distribu-
tion function, as is the service time (the amount of time to be served once a
teller becomes available). We are interested in statistics such as how long on
average a customer has to wait and what percentage of the time tellers are
actually servicing requests. (If there are too many tellers, some will not do
anything for long periods.)

With certain probability distributions and values of k, we can compute
these answers exactly. However, as k gets larger the analysis becomes consid-
erably more difficult and the use of a computer to simulate the operation of
the bank is extremely helpful. In this way, bank officers can determine how
many tellers are needed to ensure reasonably smooth service. Most simula-
tions require a thorough knowledge of probability, statistics, and queueing
theory.

13.2.1 basic ideas

A discrete event simulation consists of processing events. Here, the two
events are (1) a customer arriving and (2) a customer departing, thus freeing
up a teller.

The tick is the
quantum unit of
time in a simulation.

We can use a probability function to generate an input stream consisting
of ordered pairs of arrival and service time for each customer, sorted by
arrival time.3 We do not need to use the exact time of day. Rather, we can use
a quantum unit, referred to as a tick.

A discrete time-
driven simulation
processes each
unit of time con-
secutively. It is inap-
propriate if the
interval between
successive events
is large.

In a discrete time-driven simulation we might start a simulation clock at zero
ticks and advance the clock one tick at a time, checking to see whether an event
occurs. If so, we process the event(s) and compile statistics. When no customers
are left in the input stream and all the tellers are free, the simulation is over.

The problem with this simulation strategy is that its running time does not
depend on the number of customers or events (there are two events per cus-
tomer in this case). Rather, it depends on the number of ticks, which is not
really part of the input. To show why this condition is important, let us change
the clock units to microticks and multiply all the times in the input by
1,000,000. The simulation would then take 1,000,000 times longer.

3. The probability function generates interarrival times (times between arrivals), thus guaran-
teeing that arrivals are generated chronologically.

514 chapter 13 simulation

An event-driven
simulation
advances the cur-
rent time to the
next event.

The key to avoiding this problem is to advance the clock to the next event
time at each stage, called an event-driven simulation, which is conceptually
easy to do. At any point, the next event that can occur is either the arrival of
the next customer in the input stream or the departure of one of the customers
from a teller’s station. All the times at which the events will happen are avail-
able, so we just need to find the event that happens soonest and process that
event (setting the current time to the time that the event occurs).

If the event is a departure, processing includes gathering statistics for the
departing customer and checking the line (queue) to determine whether
another customer is waiting. If so, we add that customer, process whatever
statistics are required, compute the time when the customer will leave, and
add that departure to the set of events waiting to happen.

If the event is an arrival, we check for an available teller. If there is none,
we place the arrival in the line (queue). Otherwise, we give the customer a
teller, compute the customer’s departure time, and add the departure to the set
of events waiting to happen.

The event set (i.e.,
events waiting to
happen) is orga-
nized as a priority
queue.

The waiting line for customers can be implemented as a queue. Because
we need to find the next soonest event, the set of events should be organized
in a priority queue. The next event is thus an arrival or departure (whichever is
sooner); both are easily available. An event-driven simulation is appropriate if
the number of ticks between events is expected to be large.

13.2.2 example: a call bank simulation

The main algorithmic item in a simulation is the organization of the events in
a priority queue. To focus on this requirement, we write a simple simulation.
The system we simulate is a call bank at a large company.

The call bank
removes the wait-
ing line from the
simulation. Thus
there is only one
data structure.

A call bank consists of a large number of operators who handle phone
calls. An operator is reached by dialing one telephone number. If any of
the operators are available, the user is connected to one of them. If all the
operators are already taking a phone call, the phone will give a busy signal.
This can be viewed as the mechanism that is used by an automated customer
service facility. Our simulation models the service provided by the pool of
operators. The variables are

n The number of operators in the bank

n The probability distribution that governs dial-in attempts

n The probability distribution that governs connect time

n The length of time the simulation is to be run

The call bank simulation is a simplified version of the bank teller simula-
tion because there is no waiting line. Each dial-in is an arrival, and the total

13.2 event-driven simulation 515

time spent once a connection has been established is the service time. By
removing the waiting line, we remove the need to maintain a queue. Thus we
have only one data structure, the priority queue. In Exercise 13.17 you are
asked to incorporate a queue; as many as L calls will be queued if all the
operators are busy.

We list each event
as it happens; gath-
ering statistics is a
simple extension.

To simplify matters, we do not compute statistics. Instead, we list each
event as it is processed. We also assume that attempts to connect occur at con-
stant intervals; in an accurate simulation, we would model this interarrival
time by a random process. Figure 13.4 shows the output of a simulation.

The Event class rep-
resents events. In a
complex simulation,
it would derive all
possible types of
events as sub-
classes. Using inher-
itance for the Event
class would compli-
cate the code.

The simulation class requires another class to represent events. The Event
class is shown in Figure 13.5. The data members consist of the customer num-
ber, the time that the event will occur, and an indication of what type of event
(DIAL_IN or HANG_UP) it is. If this simulation were more complex, with several
types of events, we would make Event an abstract base class and derive sub-
classes from it. We do not do that here because that would complicate things
and obscure the basic workings of the simulation algorithm. The Event class
contains a constructor and a comparison function used by the priority queue.
The Event class grants package visible status to the call bank simulation class so

figure 13.4

Sample output for the
call bank simulation
involving three phone
lines: A dial-in is
attempted every
minute; the average
connect time is 5
minutes; and the
simulation is run for
18 minutes

1 User 0 dials in at time 0 and connects for 1 minute
2 User 0 hangs up at time 1
3 User 1 dials in at time 1 and connects for 5 minutes
4 User 2 dials in at time 2 and connects for 4 minutes
5 User 3 dials in at time 3 and connects for 11 minutes
6 User 4 dials in at time 4 but gets busy signal
7 User 5 dials in at time 5 but gets busy signal
8 User 6 dials in at time 6 but gets busy signal
9 User 1 hangs up at time 6

10 User 2 hangs up at time 6
11 User 7 dials in at time 7 and connects for 8 minutes
12 User 8 dials in at time 8 and connects for 6 minutes
13 User 9 dials in at time 9 but gets busy signal
14 User 10 dials in at time 10 but gets busy signal
15 User 11 dials in at time 11 but gets busy signal
16 User 12 dials in at time 12 but gets busy signal
17 User 13 dials in at time 13 but gets busy signal
18 User 3 hangs up at time 14
19 User 14 dials in at time 14 and connects for 6 minutes
20 User 8 hangs up at time 14
21 User 15 dials in at time 15 and connects for 3 minutes
22 User 7 hangs up at time 15
23 User 16 dials in at time 16 and connects for 5 minutes
24 User 17 dials in at time 17 but gets busy signal
25 User 15 hangs up at time 18
26 User 18 dials in at time 18 and connects for 7 minutes

516 chapter 13 simulation

that Event’s internal members can be accessed by CallSim methods. The Event
class is nested inside the CallSim class.

The call bank simulation class skeleton, CallSim, is shown in Figure 13.6. It
consists of a lot of data members, a constructor, and two methods. The data
members include a random number object r shown at line 27. At line 28 the
eventSet is maintained as a priority queue of Event objects. The remaining
data members are availableOperators, which is initially the number of opera-
tors in the simulation but changes as users connect and hang up, and avgCallLen
and freqOfCalls, which are parameters of the simulation. Recall that a dial-in
attempt will be made every freqOfCalls ticks. The constructor, declared at
line 15 and implemented in Figure 13.7, initializes these members and places
the first arrival in the eventSet priority queue.

figure 13.5

The Event class used
for call bank
simulation

1 /**
2 * The event class.
3 * Implements the Comparable interface
4 * to arrange events by time of occurrence.
5 * (nested in CallSim)
6 */
7 private static class Event implements Comparable<Event>
8 {
9 static final int DIAL_IN = 1;

10 static final int HANG_UP = 2;
11
12 public Event()
13 {
14 this(0, 0, DIAL_IN);
15 }
16
17 public Event(int name, int tm, int type)
18 {
19 who = name;
20 time = tm;
21 what = type;
22 }
23
24 public int compareTo(Event rhs)
25 {
26 return time - rhs.time;
27 }
28
29 int who; // the number of the user
30 int time; // when the event will occur
31 int what; // DIAL_IN or HANG_UP
32 }

13.2 event-driven simulation 517

The nextCall
method adds a dial-
in request to the
event set.

The simulation class consists of only two methods. First, nextCall, shown
in Figure 13.8, adds a dial-in request to the event set. It maintains two private
variables: the number of the next user who will attempt to dial in and when
that event will occur. Again, we have made the simplifying assumption that
calls are made at regular intervals. In practice, we would use a random num-
ber generator to model the arrival stream.

figure 13.6

The CallSim class
skeleton

1 import weiss.util.Random;
2 import java.util.PriorityQueue;
3
4 // CallSim clas interface: run a simulation
5 //
6 // CONSTRUCTION: with three parameters: the number of
7 // operators, the average connect time, and the
8 // interarrival time
9 //

10 // ******************PUBLIC OPERATIONS*********************
11 // void runSim() --> Run a simulation
12
13 public class CallSim
14 {
15 public CallSim(int operators, double avgLen, int callIntrvl)
16 { /* Figure 13.7 */ }
17
18 // Run the simulation.
19 public void runSim(long stoppingTime)
20 { /* Figure 13.9 */ }
21
22 // Add a call to eventSet at the current time,
23 // and schedule one for delta in the future.
24 private void nextCall(int delta)
25 { /* Figure 13.8 */ }
26
27 private Random r; // A random source
28 private PriorityQueue<Event> eventSet; // Pending events
29
30 // Basic parameters of the simulation
31 private int availableOperators; // Number of available operators
32 private double avgCallLen; // Length of a call
33 private int freqOfCalls; // Interval between calls
34
35 private static class Event implements Comparable<Event>
36 { /* Figure 13.5 */ }
37 }

518 chapter 13 simulation

The runSim method
runs the simulation.

The other method is runSim, which is called to run the entire simulation.
The runSim method does most of the work and is shown in Figure 13.9. It is
called with a single parameter that indicates when the simulation should end.
As long as the event set is not empty, we process events. Note that it should
never be empty because at the time we arrive at line 12 there is exactly one
dial-in request in the priority queue and one hang-up request for every cur-
rently connected caller. Whenever we remove an event at line 12 and it is con-
firmed to be a dial-in, we generate a replacement dial-in event at line 40. A
hang-up event is also generated at line 35 if the dial-in succeeds. Thus the
only way to finish the routine is if nextCall is set up not to generate an event
eventually or (more likely) by executing the break statement at line 15.

figure 13.7

The CallSim
constructor

1 /**
2 * Constructor.
3 * @param operator number of operators.
4 * @param avgLen averge length of a call.
5 * @param callIntrvl the average time between calls.
6 */
7 public CallSim(int operators, double avgLen, int callIntrvl)
8 {
9 eventSet = new PriorityQueue<Event>();

10 availableOperators = operators;
11 avgCallLen = avgLen;
12 freqOfCalls = callIntrvl;
13 r = new Random();
14 nextCall(freqOfCalls); // Schedule first call
15 }

figure 13.8

The nextCall method
places a new DIAL_IN
event in the event
queue and advances
the time when the
next DIAL_IN event will
occur

1 private int userNum = 0;
2 private int nextCallTime = 0;
3
4 /**
5 * Place a new DIAL_IN event into the event queue.
6 * Then advance the time when next DIAL_IN event will occur.
7 * In practice, we would use a random number to set the time.
8 */
9 private void nextCall(int delta)

10 {
11 Event ev = new Event(userNum++, nextCallTime, Event.DIAL_IN);
12 eventSet.add(ev);
13 nextCallTime += delta;
14 }

13.2 event-driven simulation 519

figure 13.9

The basic simulation routine

1 /**
2 * Run the simulation until stoppingTime occurs.
3 * Print output as in Figure 13.4.
4 */
5 public void runSim(long stoppingTime)
6 {
7 Event e = null;
8 int howLong;
9

10 while(!eventSet.isEmpty())
11 {
12 e = eventSet.remove();
13
14 if(e.time > stoppingTime)
15 break;
16
17 if(e.what == Event.HANG_UP) // HANG_UP
18 {
19 availableOperators++;
20 System.out.println("User " + e.who +
21 " hangs up at time " + e.time);
22 }
23 else // DIAL_IN
24 {
25 System.out.print("User " + e.who +
26 " dials in at time " + e.time + " ");
27 if(availableOperators > 0)
28 {
29 availableOperators--;
30 howLong = r.nextPoisson(avgCallLen);
31 System.out.println("and connects for "
32 + howLong + " minutes");
33 e.time += howLong;
34 e.what = Event.HANG_UP;
35 eventSet.add(e);
36 }
37 else
38 System.out.println("but gets busy signal");
39
40 nextCall(freqOfCalls);
41 }
42 }
43 }

520 chapter 13 simulation

A hang-up increases
avaliableOpera-
tors. A dial-in
checks on whether
an operator is avail-
able and if so
decreases avail-
ableOperators.

Let us summarize how the various events are processed. If the event is a
hang-up, we increment availableOperators at line 19 and print a message at
lines 20 and 21. If the event is a dial-in, we generate a partial line of output that
records the attempt, and then, if any operators are available, we connect the
user. To do so, we decrement availableOperators at line 29, generate a connec-
tion time (using a Poisson distribution rather than a uniform distribution) at line
30, print the rest of the output at lines 31–32, and add a hang-up to the event set
(lines 33–35). Otherwise, no operators are available, and we give the busy sig-
nal message. Either way, an additional dial-in event is generated. Figure 13.10
shows the state of the priority queue after each deleteMin for the early stages of
the sample output shown in Figure 13.4. The time at which each event occurs is
shown in boldface, and the number of free operators (if any) are shown to the
right of the priority queue. (Note that the call length is not actually stored in
an Event object; we include it, when appropriate, to make the figure more self-
contained. A ‘?’ for the call length signifies a dial-in event that eventually will
result in a busy signal; however, that outcome is not known at the time the event is
added to the priority queue.) The sequence of priority queue steps is as follows.

1. The first DIAL_IN request is inserted.

2. After DIAL_IN is removed, the request is connected, thereby resulting
in a HANG_UP and a replacement DIAL_IN request.

3. A HANG_UP request is processed.

4. A DIAL_IN request is processed resulting in a connect. Thus both a
HANG_UP event and a DIAL_IN event are added (three times).

5. A DIAL_IN request fails; a replacement DIAL_IN is generated (three
times).

6. A HANG_UP request is processed (twice).

7. A DIAL_IN request succeeds, and HANG_UP and DIAL_IN are added.

The simulation uses
a poor model. Neg-
ative exponential
distributions would
more accurately
model the time
between dial-in
attempts and total
connect time.

Again, if Event were an abstract base class, we would expect a procedure
doEvent to be defined through the Event hierarchy; then we would not need
long chains of if/else statements. However to access the priority queue,
which is in the simulation class, we would need Event to store a reference to
the simulation CallSim class as a data member. We would insert it at construc-
tion time.

A minimal (in the truest sense) main routine is shown for completeness in
Figure 13.11. Note that using a Poisson distribution to model connect time is not
appropriate. A better choice would be to use a negative exponential distribution

13.2 event-driven simulation 521

figure 13.10

The priority queue for
the call bank
simulation after each
step

0 DIAL_IN
User 0, Len 1

1 HANG_UP
User 0, Len 1

1 DIAL_IN
User 1, Len 5

6 HANG_UP
User 1, Len 5 2 DIAL_IN

User 2, Len 4

6 HANG_UP
User 1, Len 5 6 HANG_UP

User 2, Len 4 3 DIAL_IN
User 3, Len 11

6 HANG_UP
User 1, Len 5

6 HANG_UP
User 1, Len 5

6 HANG_UP
User 1, Len 5

6 HANG_UP
User 1, Len 5

6 HANG_UP
User 2, Len 4

14 HANG_UP
User 3, Len 11

14 HANG_UP
User 3, Len 11

14 HANG_UP
User 3, Len 11

7 DIAL_IN
User 7, Len 8

15 HANG_UP
User 7, Len 8

7 DIAL_IN
User 7, Len 8

8 DIAL_IN
User 8, Len 6

1 DIAL_IN
User 1, Len 5

6 HANG_UP
User 2, Len 4 14 HANG_UP

User 3, Len 11 4 DIAL_IN
User 4, Len ?

6 HANG_UP
User 2, Len 4 14 HANG_UP

User 3, Len 11 5 DIAL_IN
User 5, Len ?

6 HANG_UP
User 2, Len 4 14 HANG_UP

User 3, Len 11 6 DIAL_IN
User 6, Len ?

6 HANG_UP
User 2, Len 4 14 HANG_UP

User 3, Len 11 7 DIAL_IN
User 7, Len 8

3

2

3

2

1

1

2

1

522 chapter 13 simulation

(but the reasons for doing so are beyond the scope of this text). Additionally,
assuming a fixed time between dial-in attempts is also inaccurate. Again, a nega-
tive exponential distribution would be a better model. If we change the simula-
tion to use these distributions, the clock would be represented as a double. In
Exercise 13.13 you are asked to implement these changes.

summary

Simulation is an important area of computer science and involves many more
complexities than we could discuss here. A simulation is only as good as the
model of randomness, so a solid background in probability, statistics, and
queueing theory is required in order for the modeler to know what types of
probability distributions are reasonable to assume. Simulation is an important
application area for object-oriented techniques.

key concepts

discrete time-driven simulation A simulation in which each unit of time is pro-
cessed consecutively. It is inappropriate if the interval between successive
events is large. (513)

event-driven simulation A simulation in which the current time is advanced to
the next event. (514)

Josephus problem A game in which a hot potato is repeatedly passed; when
passing terminates, the player holding the potato is eliminated; the game
then continues, and the last remaining player wins. (508)

simulation An important use of computers, in which the computer is used to
emulate the operation of a real system and gather statistics. (507)

tick The quantum unit of time in a simulation. (513)

figure 13.11

A simple main to test
the simulation

1 /**
2 * Quickie main for testing purposes.
3 */
4 public static void main(String [] args)
5 {
6 CallSim s = new CallSim(3, 5.0, 1);
7 s.runSim(20);
8 }

exercises 523

common errors

1. The most common error in simulation is using a poor model. A simulation
is only as good as the accuracy of its random input.

on the internet

Both examples in this chapter are available online.

Josephus.java Contains both implementations of josephus and a
main to test them.

CallSim.java Contains the code for the call bank simulation.

exercises

IN SHORT

13.1 If M = 0, who wins the Josephus game?

13.2 Show the operation of the Josephus algorithm in Figure 13.3 for the
case of seven people with three passes. Include the computation of
rank and a picture that contains the remaining elements after each
iteration.

13.3 Are there any values of M for which player 1 wins a 30-person Jose-
phus game?

13.4 Show the state of the priority queue after each of the first 10 lines of
the simulation depicted in Figure 13.4.

IN THEORY

13.5 Let N = 2k for any integer k. Prove that if M is 1, then player 1 always
wins the Josephus game.

13.6 Let J(N) be the winner of an N-player Josephus game with M = 1.
Show that
a. If N is even, then J(N) = 2J(N / 2) – 1.
b. If N is odd and J(⎡N / 2⎤) ≠ 1, then J(N) = 2J(⎡N / 2⎤) – 3.
c. If N is odd and J(⎡N / 2⎤) = 1, then J(N) = N.

13.7 Use the results in Exercise 13.6 to write an algorithm that returns the
winner of an N-player Josephus game with M = 1. What is the run-
ning time of your algorithm?

524 chapter 13 simulation

13.8 Give a general formula for the winner of an N-player Josephus game
with M = 2.

13.9 Using the algorithm for N = 20, determine the order of insertion into
the BinarySearchTreeWithRank.

IN PRACTICE

13.10 Suppose that the Josephus algorithm shown in Figure 13.2 is imple-
mented with a TreeSet instead of a LinkedList. If the change worked,
what would be the running time?

13.11 Write a program that solves the historical version of the Josephus
problem. Give both the linked list and search tree algorithms.

13.12 Implement the Josephus algorithm with a queue. Each pass of the
potato is a dequeue, followed by an enqueue.

13.13 Rework the simulation so that the clock is represented as a double, the
time between dial-in attempts is modeled with a negative exponential
distribution, and the connect time is modeled with a negative expo-
nential distribution.

13.14 Rework the call bank simulation so that Event is an abstract base class
and DialInEvent and HangUpEvent are derived classes. The Event class
should store a reference to a CallSim object as an additional data mem-
ber, which is initialized on construction. It should also provide an
abstract method named doEvent that is implemented in the derived
classes and that can be called from runSim to process the event.

PROGRAMMING PROJECTS

13.15 Implement the Josephus algorithm with splay trees (see Chapter 22)
and sequential insertion. (The splay tree class is available online, but
it will need a findKth method.) Compare the performance with that in
the text and with an algorithm that uses a linear-time, balanced tree-
building algorithm.

13.16 Rewrite the Josephus algorithm shown in Figure 13.3 to use a median
heap (see Exercise 6.31). Use a simple implementation of the median
heap; the elements are maintained in sorted order. Compare the run-
ning time of this algorithm with the time obtained by using the binary
search tree.

exercises 525

13.17 Suppose the call back has installed a system that queues phone calls
when all operators are busy. Rewrite the simulation routine to allow
for queues of various sizes. Make an allowance for an “infinite”
queue.

13.18 Rewrite the call bank simulation to gather statistics rather than output
each event. Then compare the speed of the simulation, assuming sev-
eral hundred operators and a very long simulation, with some other
possible priority queues (some of which are available online)—
namely, the following.
a. An asymptotically inefficient priority queue representation

described in Exercise 6.26
b. An asymptotically inefficient priority queue representation

described in Exercise 6.27
c. Splay trees (see Chapter 22)
d. Skew heaps (see Chapter 23)
e. Pairing heaps (see Chapter 23)

This page intentionally left blank

chap te r 14

graphs and paths

In this chapter we examine the graph and show how to solve a particular
kind of problem—namely, calculation of shortest paths. The computation of
shortest paths is a fundamental application in computer science because many
interesting situations can be modeled by a graph. Finding the fastest routes for
a mass transportation system, and routing electronic mail through a network
of computers are but a few examples. We examine variations of the shortest
path problems that depend on an interpretation of shortest and the graph’s
properties. Shortest-path problems are interesting because, although the algo-
rithms are fairly simple, they are slow for large graphs unless careful attention
is paid to the choice of data structures.

In this chapter, we show

n Formal definitions of a graph and its components

n The data structures used to represent a graph

n Algorithms for solving several variations of the shortest-path problem,
with complete Java implementations

528 chapter 14 graphs and paths

14.1 definitions
A graph consists of
a set of vertices
and a set of edges
that connect the
vertices. If the edge
pair is ordered, the
graph is a directed
graph.

A graph consists of a set of vertices and a set of edges that connect the verti-
ces. That is, G = (V, E), where V is the set of vertices and E is the set of edges.
Each edge is a pair (v, w), where v, w ∈ V. Vertices are sometimes called nodes,

and edges are sometimes called arcs. If the edge pair is ordered, the graph is
called a directed graph. Directed graphs are sometimes called digraphs. In a
digraph, vertex w is adjacent to vertex v if and only if (v, w) ∈ E. Sometimes
an edge has a third component, called the edge cost (or weight) that measures
the cost of traversing the edge. In this chapter, all graphs are directed.

Vertex w is adjacent
to vertex v if there
is an edge from v
to w.

The graph shown in Figure 14.1 has seven vertices,

and 12 edges,

A path is a
sequence of verti-
ces connected by
edges.

The following vertices are adjacent to V3: V2, V4, V5, and V6. Note that V0 and
V1 are not adjacent to V3. For this graph, and ; here,
represents the size of set S.

A path in a graph is a sequence of vertices connected by edges. In other
words, the sequence of vertices is such that (wi , wi + 1) ∈ E for

. The path length is the number of edges on the path—namely,
—also called the unweighted path length. The weighted path length is

the sum of the costs of the edges on the path. For example, is a

V2

V0

V3 V4

V1

V5 V61

2

34

5 68

10

2

2

1

4

figure 14.1

A directed graph

V V0 V1 V2 V3 V4 V5 V6, , , , , ,{ }=

E

V0 V1 2, ,() V0 V3 1, ,() V1 V3 3, ,() V1 V4 10, ,(), , ,
V3 V4 2, ,() V3 V6 4, ,() V3 V5 8, ,() V3 V2 2, ,(), , ,
V2 V0 4, ,() V2 V5 5, ,() V4 V6 6, ,() V6 V5 1, ,(), , ,⎩ ⎭

⎪ ⎪
⎨ ⎬
⎪ ⎪
⎧ ⎫

=

V 7= E 12= S

w1 w2 … wN, , ,
1 i N<≤
N 1–

V0 V3 V5, ,

The unweighted
path length mea-
sures the number of
edges on a path.

14.1 definitions 529

The weighted path
length is the sum of
the edge costs on a
path.

A cycle in a directed
graph is a path that
begins and ends at
the same vertex and
contains at least
one edge.

A directed acyclic
graph has no cycles.
Such graphs are an
important class of
graphs.

path from vertex to . The path length is two edges—the shortest path
between and , and the weighted path length is 9. However, if cost is
important, the weighted shortest path between these vertices has cost 6 and is

. A path may exist from a vertex to itself. If this path contains
no edges, the path length is 0, which is a convenient way to define an other-
wise special case. A simple path is a path in which all vertices are distinct,
except that the first and last vertices can be the same.

A cycle in a directed graph is a path that begins and ends at the same ver-
tex and contains at least one edge. That is, it has a length of at least 1 such that

; this cycle is simple if the path is simple. A directed acyclic graph
(DAG) is a type of directed graph having no cycles.

An example of a real-life situation that can be modeled by a graph is the
airport system. Each airport is a vertex. If there is a nonstop flight between
two airports, two vertices are connected by an edge. The edge could have a
weight representing time, distance, or the cost of the flight. In an undirected
graph, an edge (v, w) would imply an edge (w, v). However, the costs of the
edges might be different because flying in different directions might take
longer (depending on prevailing winds) or cost more (depending on local
taxes). Thus we use a directed graph with both edges listed, possibly with dif-
ferent weights. Naturally, we want to determine quickly the best flight
between any two airports; best could mean the path with the fewest edges or
one, or all, of the weight measures (distance, cost, and so on).

A second example of a real-life situation that can be modeled by a graph
is the routing of electronic mail through computer networks. Vertices repre-
sent computers, the edges represent links between pairs of computers, and the
edge costs represent communication costs (phone bill per megabyte), delay
costs (seconds per megabyte), or combinations of these and other factors.

A graph is dense if
the number of
edges is large
(generally qua-
dratic). Typical
graphs are not
dense. Instead, they
are sparse.

For most graphs, there is likely at most one edge from any vertex v to any
other vertex w (allowing one edge in each direction between v and w). Conse-
quently, . When most edges are present, we have . Such
a graph is considered to be a dense graph—that is, it has a large number of edges,
generally quadratic.

In most applications, however, a sparse graph is the norm. For instance,
in the airport model, we do not expect direct flights between every pair of air-
ports. Instead, a few airports are very well connected and most others have
relatively few flights. In a complex mass transportation system involving buses
and trains, for any one station we have only a few other stations that are directly
reachable and thus represented by an edge. Moreover, in a computer network
most computers are attached to a few other local computers. So, in most
cases, the graph is relatively sparse, where or perhaps slightly
more (there is no standard definition of sparse). The algorithms that we
develop, then, must be efficient for sparse graphs.

V0 V5

V0 V5

V0 V3 V6 V5, , ,

w1 wN=

E V 2≤ E Θ V 2()=

E Θ V()=

530 chapter 14 graphs and paths

14.1.1 representation

The first thing to consider is how to represent a graph internally. Assume that
the vertices are sequentially numbered starting from 0, as the graph shown in
Figure 14.1 suggests. One simple way to represent a graph is to use a
two-dimensional array called an adjacency matrix. For each edge (v, w), we
set a[v][w] equal to the edge cost; nonexistent edges can be initialized with a
logical INFINITY. The initialization of the graph seems to require that the entire
adjacency matrix be initialized to INFINITY. Then, as an edge is encountered,
an appropriate entry is set. In this scenario, the initialization takes time.
Although the quadratic initialization cost can be avoided (see Exercise 14.6),
the space cost is still , which is fine for dense graphs but completely
unacceptable for sparse graphs.

An adjacency list
represents a graph,
using linear space.

For sparse graphs, a better solution is an adjacency list, which represents
a graph by using linear space. For each vertex, we keep a list of all adjacent
vertices. An adjacency list representation of the graph in Figure 14.1 using a
linked list is shown in Figure 14.2. Because each edge appears in a list node,
the number of list nodes equals the number of edges. Consequently,
space is used to store the list nodes. We have lists, so additional
space is also required. If we assume that every vertex is in some edge, the
number of edges is at least . Hence we may disregard any
terms when an term is present. Consequently, we say that the space
requirement is , or linear in the size of the graph.

Adjacency lists can
be constructed in
linear time from a
list of edges.

The adjacency list can be constructed in linear time from a list of edges.
We begin by making all the lists empty. When we encounter an edge

, we add an entry consisting of w and the cost to v’s adja-
cency list. The insertion can be anywhere; inserting it at the front can be
done in constant time. Each edge can be inserted in constant time, so the
entire adjacency list structure can be constructed in linear time. Note that

O V 2()

O V 2()

1 (2)

4 (10)

0 (4)

4 (2)

3 (1)

3 (3)

5 (5)

6 (4) 5 (8) 2 (2)

6 (6)

5 (1)

0

1

2

3

4

5

6

figure 14.2

Adjacency list
representation of the
graph shown in
Figure 14.1; the
nodes in list i
represent vertices
adjacent to i and the
cost of the connecting
edge.

O E()
V O V()

V 2⁄ O V()
O E()

O E()

v w cv w,, ,() cv w,

An adjacency matrix
represents a graph
and uses quadratic
space.

14.1 definitions 531

when inserting an edge, we do not check whether it is already present. That
cannot be done in constant time (using a simple linked list), and doing the
check would destroy the linear-time bound for construction. In most cases,
ignoring this check is unimportant. If there are two or more edges of differ-
ent cost connecting a pair of vertices, any shortest-path algorithm will
choose the lower cost edge without resorting to any special processing. Note
also that ArrayLists can be used instead of linked lists, with the constant-
time add operation replacing insertions at the front.

A map can be used
to map vertex
names to internal
numbers.

In most real-life applications the vertices have names, which are unknown at
compile time, instead of numbers. Consequently, we must provide a way to
transform names to numbers. The easiest way to do so is to provide a map by
which we map a vertex name to an internal number ranging from 0 to
(the number of vertices is determined as the program runs). The internal numbers
are assigned as the graph is read. The first number assigned is 0. As each edge is
input, we check whether each of the two vertices has been assigned a number, by
looking in the map. If it has been assigned an internal number, we use it. Other-
wise, we assign to the vertex the next available number and insert the vertex
name and number in the map. With this transformation, all the graph algorithms
use only the internal numbers. Eventually, we have to output the real vertex
names, not the internal numbers, so for each internal number we must also
record the corresponding vertex name. One way to do so is to keep a string for
each vertex. We use this technique to implement a Graph class. The class and the
shortest-path algorithms require several data structures—namely, a list, a queue,
a map, and a priority queue. The import directives are shown in Figure 14.3. The
queue (implemented with a linked list) and priority queue are used in various
shortest-path calculations. The adjacency list is represented with LinkedList. A
HashMap is also used to represent the graph.

V 1–

figure 14.3

The import directives
for the Graph class

1 import java.io.FileReader;
2 import java.io.InputStreamReader;
3 import java.io.BufferedReader;
4 import java.io.IOException;
5 import java.util.StringTokenizer;
6
7 import java.util.Collection;
8 import java.util.List;
9 import java.util.LinkedList;

10 import java.util.Map;
11 import java.util.HashMap;
12 import java.util.Iterator;
13 import java.util.Queue;
14 import java.util.PriorityQueue;
15 import java.util.NoSuchElementException;

532 chapter 14 graphs and paths

When we write an actual Java implementation, we do not need internal
vertex numbers. Instead, each vertex is stored in a Vertex object, and instead
of using a number, we can use a reference to the Vertex object as its (uniquely
identifying) number. However, when describing the algorithms, assuming that
vertices are numbered is often convenient, and we occasionally do so.

Before we show the Graph class skeleton, let us examine Figures 14.4 and
14.5, which show how our graph is to be represented. Figure 14.4 shows the
representation in which we use internal numbers. Figure 14.5 replaces the
internal numbers with Vertex variables, as we do in our code. Although this
simplifies the code, it greatly complicates the picture. Because the two figures
represent identical inputs, Figure 14.4 can be used to follow the complications
in Figure 14.5.

As indicated in the part labeled Input, we can expect the user to provide a
list of edges, one per line. At the start of the algorithm, we do not know the
names of any of the vertices, how many vertices there are, or how many edges
there are. We use two basic data structures to represent the graph. As we men-
tioned in the preceding paragraph, for each vertex we maintain a Vertex object
that stores some information. We describe the details of Vertex (in particular,
how different Vertex objects interact with each other) last.

As mentioned earlier, the first major data structure is a map that allows us
to find, for any vertex name, the Vertex object that represents it. This map is
shown in Figure 14.5 as vertexMap (Figure 14.4 maps the name to an int in the
component labeled Dictionary).

figure 14.4

An abstract scenario
of the data structures
used in a shortest-
path calculation, with
an input graph taken
from a file. The
shortest weighted
path from A to C is A to
B to E to D to C (cost is
76).

C D E

A B

D C
A B
D B
A D
E D
B E
C A

10
12
23
87
43
11
19

dist

0

1

2

3

4

D

C

A

B

E

Graph tableInput

Visual representation of graph Dictionary

prev name adj

3 (23),1 (10)

2 (19)

0 (87),3 (12)

4 (11)

0 (43)

D (0)

B (3)

E (4)

C (1)
A (2)

19
87

23

11

12

4310

4

0

-1

2

3

66

76

0

12

23

14.1 definitions 533

The second major data structure is the Vertex object that stores informa-
tion about all the vertices. Of particular interest is how it interacts with other
Vertex objects. Figures 14.4 and 14.5 show that a Vertex object maintains four
pieces of information for each vertex.

n name: The name corresponding to this vertex is established when the
vertex is placed in the map and never changes. None of the shortest-
path algorithms examines this member. It is used only to print a final
path.

figure 14.5

Data structures used
in a shortest-path
calculation, with an
input graph taken
from a file; the
shortest weighted
path from A to C is
A to B to E to D to C
(cost is 76).

D

C

A

B

E

D C
A B
D B
A D
E D
B E
C A

10
12
23
87
43
11
19

Input

C D E

A B

Visual representation of graph

19
87

23

11

12

4310

D

C

A

B

E

10 23 66

19 76

12 87 0

11 12

43 23

vertexMap

Legend: Dark-bordered boxes are Vertex objects. The unshaded portion in each box
contains the name and adjacency list and does not change when shortest-path computation
is performed. Each adjacency list entry contains an Edge that stores a reference to another
Vertex object and the edge cost. Shaded portion is dist and prev, filled in after shortest path
computation runs.

Dark arrows emanate from vertexMap. Light arrows are adjacency list entries. Dashed arrows
are the prev data member that results from a shortest-path computation.

534 chapter 14 graphs and paths

n adj: This list of adjacent vertices is established when the graph is read.
None of the shortest-path algorithms changes the list. In the abstract,
Figure 14.4 shows that it is a list of Edge objects that each contain an
internal vertex number and edge cost. In reality, Figure 14.5 shows
that each Edge object contains a reference to a Vertex and an edge cost
and that the list is actually stored by using an ArrayList or LinkedList.

n dist: The length of the shortest path (either weighted or unweighted,
depending on the algorithm) from the starting vertex to this vertex as
computed by the shortest-path algorithm.

n prev: The previous vertex on the shortest path to this vertex, which
in the abstract (Figure 14.4) is an int but in reality (the code and
Figure 14.5) is a reference to a Vertex.

To be more specific, in Figures 14.4 and 14.5 the unshaded items are not
altered by any of the shortest-path calculations. They represent the input
graph and do not change unless the graph itself changes (perhaps by addition
or deletion of edges at some later point). The shaded items are computed by
the shortest-path algorithms. Prior to the calculation we can assume that they
are uninitialized.1

The shortest-path
algorithms are sin-
gle source algo-
rithms that compute
the shortest paths
from some starting
point to all vertices.

The shortest-path algorithms are all single-source algorithms, which
begin at some starting point and compute the shortest paths from it to all ver-
tices. In this example the starting point is A, and by consulting the map we can
find its Vertex object. Note that the shortest-path algorithm declares that the
shortest path to A is 0.

The prev data member allows us to print out the shortest path, not just its length.
For instance, by consulting the Vertex object for C, we see that the shortest path from
the starting vertex to C has a total cost of 76. Obviously, the last vertex on this path is
C. The vertex before C on this path is D, before D is E, before E is B, and before B is A—
the starting vertex. Thus, by tracing back through the prev data member, we can
construct the shortest path. Although this trace gives the path in reverse order, unre-
versing it is a simple matter. In the remainder of this section we describe how the
unshaded parts of all the Vertex objects are constructed and give the method that
prints out a shortest path, assuming that the dist and prev data members have been
computed. We discuss individually the algorithms used to fill in the shortest path.

Figure 14.6 shows the Edge class that represents the basic item placed
in the adjacency list. The Edge consists of a reference to a Vertex and the
edge cost. The Vertex class is shown in Figure 14.7. An additional member
named scratch is provided and has different uses in the various algorithms.

1. The computed information (shaded) could be separated into a separate class, with Vertex
maintaining a reference to it, making the code more reusable but more complex.

The prev member
can be used to
extract the actual
path.

The item in an adja-
cency list is a refer-
ence to the Vertex
object of the adja-
cent vertex and the
edge cost.

14.1 definitions 535

Everything else follows from our preceding description. The reset method
is used to initialize the (shaded) data members that are computed by the
shortest-path algorithms; it is called when a shortest-path computation is
restarted.

We are now ready to examine the Graph class skeleton, which is shown
in Figure 14.8. The vertexMap field stores the map. The rest of the class pro-
vides methods that perform initialization, add vertices and edges, print the
shortest path, and perform various shortest-path calculations. We discuss
each routine when we examine its implementation.

First, we consider the constructor. The default creates an empty map
via field initialization; that works, so we accept it.

figure 14.6

The basic item stored
in an adjacency list

1 // Represents an edge in the graph.
2 class Edge
3 {
4 public Vertex dest; // Second vertex in Edge
5 public double cost; // Edge cost
6
7 public Edge(Vertex d, double c)
8 {
9 dest = d;

10 cost = c;
11 }
12 }

figure 14.7

The Vertex class
stores information for
each vertex

1 // Represents a vertex in the graph.
2 class Vertex
3 {
4 public String name; // Vertex name
5 public List<Edge> adj; // Adjacent vertices
6 public double dist; // Cost
7 public Vertex prev; // Previous vertex on shortest path
8 public int scratch;// Extra variable used in algorithm
9

10 public Vertex(String nm)
11 { name = nm; adj = new LinkedList<Edge>(); reset(); }
12
13 public void reset()
14 { dist = Graph.INFINITY; prev = null; pos = null; scratch = 0; }
15 }

536 chapter 14 graphs and paths

figure 14.8

The Graph class skeleton

1 // Graph class: evaluate shortest paths.
2 //
3 // CONSTRUCTION: with no parameters.
4 //
5 // ******************PUBLIC OPERATIONS**********************
6 // void addEdge(String v, String w, double cvw)
7 // --> Add additional edge
8 // void printPath(String w) --> Print path after alg is run
9 // void unweighted(String s) --> Single-source unweighted

10 // void dijkstra(String s) --> Single-source weighted
11 // void negative(String s) --> Single-source negative weighted
12 // void acyclic(String s) --> Single-source acyclic
13 // ******************ERRORS*********************************
14 // Some error checking is performed to make sure that graph is ok
15 // and that graph satisfies properties needed by each
16 // algorithm. Exceptions are thrown if errors are detected.
17
18 public class Graph
19 {
20 public static final double INFINITY = Double.MAX_VALUE;
21
22 public void addEdge(String sourceName, String destName, double cost)
23 { /* Figure 14.10 */ }
24 public void printPath(String destName)
25 { /* Figure 14.13 */ }
26 public void unweighted(String startName)
27 { /* Figure 14.22 */ }
28 public void dijkstra(String startName)
29 { /* Figure 14.27 */ }
30 public void negative(String startName)
31 { /* Figure 14.29 */ }
32 public void acyclic(String startName)
33 { /* Figure 14.32 */ }
34
35 private Vertex getVertex(String vertexName)
36 { /* Figure 14.9 */ }
37 private void printPath(Vertex dest)
38 { /* Figure 14.12 */ }
39 private void clearAll()
40 { /* Figure 14.11 */ }
41
42 private Map<String,Vertex> vertexMap = new HashMap<String,Vertex>();
43 }
44
45 // Used to signal violations of preconditions for
46 // various shortest path algorithms.
47 class GraphException extends RuntimeException
48 {
49 public GraphException(String name)
50 { super(name); }
51 }

14.1 definitions 537

Edges are added
by insertions in the
appropriate adja-
cency list.

We can now look at the main methods. The getVertex method is shown
in Figure 14.9. We consult the map to get the Vertex entry. If the Vertex
does not exist, we create a new Vertex and update the map. The addEdge
method, shown in Figure 14.10 is short. We get the corresponding Vertex
entries and then update an adjacency list.

The clearAll rou-
tine clears out the
data members so
that the shortest
path algorithms
can begin.

The members that are eventually computed by the shortest-path algo-
rithm are initialized by the routine clearAll, shown in Figure 14.11. The
next routine, printPath, prints a shortest path after the computation has
been performed. As we mentioned earlier, we can use the prev member to
trace back the path, but doing so gives the path in reverse order. This order
is not a problem if we use recursion: The vertices on the path to dest are
the same as those on the path to dest’s previous vertex (on the path), fol-
lowed by dest. This strategy translates directly into the short recursive
routine shown in Figure 14.12, assuming of course that a path actually
exists. The printPath routine, shown in Figure 14.13, performs this check
first and then prints a message if the path does not exist. Otherwise, it calls
the recursive routine and outputs the cost of the path.

figure 14.9

The getVertex routine
returns the Vertex
object that represents
vertexName, creating
the object if it needs
to do so

1 /**
2 * If vertexName is not present, add it to vertexMap.
3 * In either case, return the Vertex.
4 */
5 private Vertex getVertex(String vertexName)
6 {
7 Vertex v = vertexMap.get(vertexName);
8 if(v == null)
9 {

10 v = new Vertex(vertexName);
11 vertexMap.put(vertexName, v);
12 }
13 return v;
14 }

figure 14.10

Add an edge to the graph

1 /**
2 * Add a new edge to the graph.
3 */
4 public void addEdge(String sourceName, String destName, double cost)
5 {
6 Vertex v = getVertex(sourceName);
7 Vertex w = getVertex(destName);
8 v.adj.add(new Edge(w, cost));
9 }

The printPath rou-
tine prints the
shortest path after
the algorithm has
run.

538 chapter 14 graphs and paths

figure 14.11

Private routine for
initializing the output
members for use by
the shortest-path
algorithms

1 /**
2 * Initializes the vertex output info prior to running
3 * any shortest path algorithm.
4 */
5 private void clearAll()
6 {
7 for(Vertex v : vertexMap.values())
8 v.reset();
9 }

figure 14.12

A recursive routine for
printing the shortest
path

1 /**
2 * Recursive routine to print shortest path to dest
3 * after running shortest path algorithm. The path
4 * is known to exist.
5 */
6 private void printPath(Vertex dest)
7 {
8 if(dest.prev != null)
9 {

10 printPath(dest.prev);
11 System.out.print(" to ");
12 }
13 System.out.print(dest.name);
14 }

figure 14.13

A routine for printing
the shortest path by
consulting the graph
table (see Figure
14.5)

1 /**
2 * Driver routine to handle unreachables and print total cost.
3 * It calls recursive routine to print shortest path to
4 * destNode after a shortest path algorithm has run.
5 */
6 public void printPath(String destName)
7 {
8 Vertex w = vertexMap.get(destName);
9 if(w == null)

10 throw new NoSuchElementException();
11 else if(w.dist == INFINITY)
12 System.out.println(destName + " is unreachable");
13 else
14 {
15 System.out.print("(Cost is: " + w.dist + ") ");
16 printPath(w);
17 System.out.println();
18 }
19 }

14.2 unweighted shortest-path problem 539

The Graph class is
easy to use.

We provide a simple test program that reads a graph from an input
file, prompts for a start vertex and a destination vertex, and then runs one
of the shortest-path algorithms. Figure 14.14 illustrates that to construct
the Graph object, we repeatedly read one line of input, assign the line to a
StringTokenizer object, parse that line, and call addEdge. Using a
StringTokenizer allows us to verify that every line has the three pieces cor-
responding to an edge.

Once the graph has been read, we repeatedly call processRequest, shown
in Figure 14.15. This version prompts for a starting and ending vertex and
then calls one of the shortest-path algorithms. This algorithm throws a
GraphException if, for instance, it is asked for a path between vertices that are
not in the graph. Thus processRequest catches any GraphException that might
be generated and prints an appropriate error message.

14.2 unweighted shortest-path
problem

The unweighted
path length mea-
sures the number
of edges on a path.

Recall that the unweighted path length measures the number of edges. In this
section we consider the problem of finding the shortest unweighted path
length between specified vertices.

unweighted single-source, shortest-path problem
Find the shortest path (measured by number of edges) from a designated vertex S
to every vertex.

All variations of the
shortest-path prob-
lem have similar
solutions.

The unweighted shortest-path problem is a special case of the weighted
shortest-path problem (in which all weights are 1). Hence it should have a
more efficient solution than the weighted shortest-path problem. That
turns out to be true, although the algorithms for all the path problems are
similar.

14.2.1 theory

To solve the unweighted shortest-path problem, we use the graph previously shown
in Figure 14.1, with as the starting vertex S. For now, we are concerned with
finding the length of all shortest paths. Later, we maintain the corresponding paths.

We can see immediately that the shortest path from S to is a path of
length 0. This information yields the graph shown in Figure 14.16. Now we
can start looking for all vertices that are distance 1 from S. We can find them
by looking at the vertices adjacent to S. If we do so, we see that and are
one edge away from S, as shown in Figure 14.17.

V2

V2

V0 V5

540 chapter 14 graphs and paths

figure 14.14

A simple main

1 /**
2 * A main routine that:
3 * 1. Reads a file (supplied as a command-line parameter)
4 * containing edges.
5 * 2. Forms the graph;
6 * 3. Repeatedly prompts for two vertices and
7 * runs the shortest path algorithm.
8 * The data file is a sequence of lines of the format
9 * source destination cost

10 */
11 public static void main(String [] args)
12 {
13 Graph g = new Graph();
14 try
15 {
16 FileReader fin = new FileReader(args[0]);
17 Scanner graphFile = new Scanner(fin);
18
19 // Read the edges and insert
20 String line;
21 while(graphFile.hasNextLine())
22 {
23 line = graphFile.nextLine();
24 StringTokenizer st = new StringTokenizer(line);
25
26 try
27 {
28 if(st.countTokens() != 3)
29 {
30 System.err.println("Skipping bad line " + line);
31 continue;
32 }
33 String source = st.nextToken();
34 String dest = st.nextToken();
35 int cost = Integer.parseInt(st.nextToken());
36 g.addEdge(source, dest, cost);
37 }
38 catch(NumberFormatException e)
39 { System.err.println("Skipping bad line " + line); }
40 }
41 }
42 catch(IOException e)
43 { System.err.println(e); }
44
45 System.out.println("File read...");
46
47 Scanner in = new Scanner(System.in);
48 while(processRequest(in, g))
49 ;
50 }

14.2 unweighted shortest-path problem 541

figure 14.15

For testing purposes,
processRequest calls
one of the shortest-
path algorithms

1 /**
2 * Process a request; return false if end of file.
3 */
4 public static boolean processRequest(Scanner in, Graph g)
5 {
6 try
7 {
8 System.out.print("Enter start node:");
9 String startName = in.nextLine();

10
11 System.out.print("Enter destination node:");
12 String destName = in.nextLine();
13
14 System.out.print("Enter algorithm (u, d, n, a): ");
15 String alg = in.nextLine();
16
17 if(alg.equals("u"))
18 g.unweighted(startName);
19 else if(alg.equals("d"))
20 g.dijkstra(startName);
21 else if(alg.equals("n"))
22 g.negative(startName);
23 else if(alg.equals("a"))
24 g.acyclic(startName);
25
26 g.printPath(destName);
27 }
28 catch(NoSuchElementException e)
29 { return false; }
30 catch(GraphException e)
31 { System.err.println(e); }
32 return true;
33 }

V2

V0

V3 V4

V1

V5 V6

0

figure 14.16

The graph after the
starting vertex has
been marked as
reachable in zero
edges

542 chapter 14 graphs and paths

Next, we find each vertex whose shortest path from S is exactly 2. We do
so by finding all the vertices adjacent to or (the vertices at distance 1)
whose shortest paths are not already known. This search tells us that the short-
est path to and is 2. Figure 14.18 shows our progress so far.

Finally, by examining the vertices adjacent to the recently evaluated
and ,we find that and have a shortest path of 3 edges. All vertices have
now been calculated. Figure 14.19 shows the final result of the algorithm.

This strategy for searching a graph is called breadth-first search, which
operates by processing vertices in layers: Those closest to the start are evalu-
ated first, and those most distant are evaluated last.

V2

V0

V3 V4

V1

V5 V6

0

1

1
figure 14.17

The graph after all the
vertices whose path
length from the
starting vertex is 1
have been found

V0 V5

V1 V3

V2

V0

V3 V4

V1

V5 V6

0

1

1

2

2
figure 14.18

The graph after all the
vertices whose
shortest path from the
starting vertex is 2
have been found

V1

V3 V4 V6

V2

V0

V3 V4

V1

V5 V6

0

1

1

2

2

3

3

figure 14.19

The final shortest
paths

Breadth-first search
processes vertices
in layers: Those
closest to the start
are evaluated first.

14.2 unweighted shortest-path problem 543

Figure 14.20 illustrates a fundamental principle: If a path to vertex v has
cost Dv and w is adjacent to v, then there exists a path to w of cost Dw = Dv + 1.
All the shortest-path algorithms work by starting with Dw = ∞ and reducing its
value when an appropriate v is scanned. To do this task efficiently, we must scan
vertices v systematically. When a given v is scanned, we update the vertices w
adjacent to v by scanning through v’s adjacency list.

The roving eyeball
moves from vertex
to vertex and
updates distances
for adjacent verti-
ces.

From the preceding discussion, we conclude that an algorithm for solving
the unweighted shortest-path problem is as follows. Let Di be the length of the
shortest path from S to i. We know that DS = 0 and that Di = ∞ initially for all
i ≠ S. We maintain a roving eyeball that hops from vertex to vertex and is ini-
tially at S. If v is the vertex that the eyeball is currently on, then, for all w that
are adjacent to v, we set Dw = Dv + 1 if Dw = ∞. This reflects the fact that we
can get to w by following a path to v and extending the path by the edge
(v, w)—again, illustrated in Figure 14.20. So we update vertices w as they are
seen from the vantage point of the eyeball. Because the eyeball processes each
vertex in order of its distance from the starting vertex and the edge adds
exactly 1 to the length of the path to w, we are guaranteed that the first time
Dw is lowered from ∞, it is lowered to the value of the length of the shortest
path to w. These actions also tell us that the next-to-last vertex on the path to w
is v, so one extra line of code allows us to store the actual path.

After we have processed all of v’s adjacent vertices, we move the eyeball
to another vertex u (that has not been visited by the eyeball) such that

. If that is not possible, we move to a u that satisfies . If
that is not possible, we are done. Figure 14.21 shows how the eyeball visits
vertices and updates distances. The lightly shaded node at each stage repre-
sents the position of the eyeball. In this picture and those that follow, the
stages are shown top to bottom, left to right.

All vertices adja-
cent to v are found
by scanning v ’s
adjacency list.

The remaining detail is the data structure, and there are two basic actions
to take. First, we repeatedly have to find the vertex at which to place the eye-
ball. Second, we need to check all w’s adjacent to v (the current vertex)
throughout the algorithm. The second action is easily implemented by iterat-
ing through v’s adjacency list. Indeed, as each edge is processed only once,

figure 14.20

If w is adjacent to v
and there is a path to
v, there also is a path
to w.

v w
Dv Dv +1

S
0

Du Dv≡ Du Dv 1+=

544 chapter 14 graphs and paths

the total cost of all the iterations is . The first action is more challeng-
ing: We cannot simply scan through the graph table (see Figure 14.4) looking
for an appropriate vertex because each scan could take time and we
need to perform it times. Thus the total cost would be , which is
unacceptable for sparse graphs. Fortunately, this technique is not needed.

When a vertex w has its Dw lowered from ∞, it becomes a candidate for
an eyeball visitation at some point in the future. That is, after the eyeball
visits vertices in the current distance group , it visits the next distance
group Dv + 1, which is the group containing w. Thus w just needs to wait in

V2

V0

V3 V4

V1

V5 V6

0

1

V0

V3 V4

V1

V5 V6

0

1

1

2

2

3

V3 V4

V1

V6

0

1

1

2

2

3

5

V4

V6

0

1

1

2

2

3

3

7

V2

V0

V3 V4

V1

V5 V6

0

1

1

2

V3 V4

V1

V5 V6

0

1

1

2

2

4

V3 V4

V6

0

1

1

2

2

3

3

6

V6

0

1

1

2

2

3

3

8

V2

V0

V2

V0

V2

V0

V2

V0

V2

V0

V2

V3 V4

V1

V5

V1

V5V5

V3

V1

V5

figure 14.21

Searching the graph
in the unweighted
shortest-path
computation. The
darkest-shaded
vertices have already
been completely
processed, the
lightest vertices have
not yet been used as
v, and the medium-
shaded vertex is the
current vertex, v. The
stages proceed left to
right, top to bottom, as
numbered.

O E()

O V()
V O V 2()

Dv

14.3 positive-weighted, shortest-path problem 545

line for its turn. Also, as it clearly does not need to go before any other ver-
tices that have already had their distances lowered, w needs to be placed at
the end of a queue of vertices waiting for an eyeball visitation.

To select a vertex v for the eyeball, we merely choose the front vertex from
the queue. We start with an empty queue and then we enqueue the starting ver-
tex S. A vertex is enqueued and dequeued at most once per shortest-path calcu-
lation, and queue operations are constant time, so the cost of choosing the
vertex to select is only for the entire algorithm. Thus the cost of the
breadth-first search is dominated by the scans of the adjacency list and is

, or linear, in the size of the graph.

14.2.2 java implementation
Implementation is
much simpler than
it sounds. It follows
the algorithm
description verba-
tim.

The unweighted shortest-path algorithm is implemented by the method
unweighted, as shown in Figure 14.22. The code is a line-for-line translation of
the algorithm described previously. The initialization at lines 6–13 makes all
the distances infinity, sets DS to 0, and then enqueues the start vertex. The
queue is declared at line 12. While the queue is not empty, there are vertices to
visit. Thus at line 17 we move to the vertex v that is at the front of the queue.
Line 19 iterates over the adjacency list and produces all the w’s that are adja-
cent to v. The test Dw = ∞ is performed at line 23. If it returns true, the update
Dw = Dv + 1 is performed at line 25 along with the update of w’s prev data
member and enqueueing of w at lines 26 and 27, respectively.

14.3 positive-weighted,
shortest-path problem

The weighted path
length is the sum of
the edge costs on a
path.

Recall that the weighted path length of a path is the sum of the edge costs on
the path. In this section we consider the problem of finding the weighted
shortest path, in a graph whose edges have nonnegative cost. We want to find
the shortest weighted path from some starting vertex to all vertices. As we
show shortly, the assumption that edge costs are nonnegative is important
because it allows a relatively efficient algorithm. The method used to solve the
positive-weighted, shortest-path problem is known as Dijkstra’s algorithm. In
the next section we examine a slower algorithm that works even if there are
negative edge costs.

positive-weighted, single-source, shortest-path problem
Find the shortest path (measured by total cost) from a designated vertex S to
every vertex. All edge costs are nonnegative.

O V()

O E()

When a vertex has
its distance low-
ered (which can
happen only once),
it is placed on the
queue so that the
eyeball can visit it in
the future. The
starting vertex is
placed on the
queue when its dis-
tance is initialized to
zero.

546 chapter 14 graphs and paths

14.3.1 theory: dijkstra’s algorithm
Dijkstra’s algorithm
is used to solve the
positive-weighted
shortest-path
problem.

The positive-weighted, shortest-path problem is solved in much the same way
as the unweighted problem. However, because of the edge costs, a few things
change. The following issues must be examined:

1. How do we adjust Dw?

2. How do we find the vertex v for the eyeball to visit?

figure 14.22

The unweighted shortest-path algorithm, using breadth-first search

1 /**
2 * Single-source unweighted shortest-path algorithm.
3 */
4 public void unweighted(String startName)
5 {
6 clearAll();
7
8 Vertex start = vertexMap.get(startName);
9 if(start == null)

10 throw new NoSuchElementException("Start vertex not found");
11
12 Queue<Vertex> q = new LinkedList<Vertex>();
13 q.add(start); start.dist = 0;
14
15 while(!q.isEmpty())
16 {
17 Vertex v = q.remove();
18
19 for(Edge e : v.adj)
20 {
21 Vertex w = e.dest;
22
23 if(w.dist == INFINITY)
24 {
25 w.dist = v.dist + 1;
26 w.prev = v;
27 q.add(w);
28 }
29 }
30 }
31 }

14.3 positive-weighted, shortest-path problem 547

We use Dv + cv, w
as the new dis-
tance and to decide
whether the dis-
tance should be
updated.

We begin by examining how to alter Dw . In solving the unweighted
shortest-path problem, if Dw = ∞, we set Dw = Dv + 1 because we lower the
value of Dw if vertex v offers a shorter path to w. The dynamics of the algo-
rithm ensure that we need alter Dw only once. We add 1 to Dv because the
length of the path to w is 1 more than the length of the path to v. If we apply
this logic to the weighted case, we should set Dw = Dv + cv, w if this new value
of Dw is better than the original value. However, we are no longer guaranteed
that Dw is altered only once. Consequently, Dw should be altered if its current
value is larger than Dv + cv, w (rather than merely testing against ∞). Put sim-
ply, the algorithm decides whether v should be used on the path to w. The
original cost Dw is the cost without using v; the cost Dv + cv, w is the cheapest
path using v (so far).

A queue is no
longer appropriate
for storing vertices
awaiting an eyeball
visit.

Figure 14.23 shows a typical situation. Earlier in the algorithm, w had its
distance lowered to 8 when the eyeball visited vertex u. However, when the eye-
ball visits vertex v, vertex w needs to have its distance lowered to 6 because we
have a new shortest path. This result never occurs in the unweighted algorithm
because all edges add 1 to the path length, so implies
and thus . Here, even though , we can still improve the
path to w by considering v.

The distance for
unvisited vertices
represents a path
with only visited
vertices
as intermediate
nodes.

Figure 14.23 illustrates another important point. When w has its distance
lowered, it does so only because it is adjacent to some vertex that has been
visited by the eyeball. For instance, after the eyeball visits v and processing
has been completed, the value of Dw is 6 and the last vertex on the path is a
vertex that has been visited by the eyeball. Similarly, the vertex prior to v
must also have been visited by the eyeball, and so on. Thus at any point the
value of Dw represents a path from S to w using only vertices that have been
visited by the eyeball as intermediate nodes. This crucial fact gives us Theo-
rem 14.1.

v w
3

3
8

0

2

6S

u

figure 14.23

The eyeball is at v and
w is adjacent, so Dw
should be lowered
to 6.

Du Dv≤ Du 1+ Dv 1+≤
Dw Dv 1+≤ Du Dv≤

548 chapter 14 graphs and paths

Figure 14.25 shows the stages of Dijkstra’s algorithm. The remaining
issue is the selection of an appropriate data structure. For dense graphs, we
can scan down the graph table looking for the appropriate vertex. As with the
unweighted shortest-path algorithm, this scan will take time, which
is optimal for a dense graph. For a sparse graph, we want to do better.

Certainly, a queue does not work. The fact that we need to find the vertex
v with minimum suggests that a priority queue is the method of choice.
There are two ways to use the priority queue. One is to store each vertex in the

Theorem 14.1 If we move the eyeball to the unseen vertex with minimum , the algorithm correctly
produces the shortest paths if there are no negative edge costs.

Proof Call each eyeball visit a “stage.” We prove by induction that, after any stage, the val-
ues of for vertices visited by the eyeball form the shortest path and that the val-
ues of for the other vertices form the shortest path using only vertices visited by
the eyeball as intermediates. Because the first vertex visited is the starting vertex,
this statement is correct through the first stage. Assume that it is correct for the first
k stages. Let v be the vertex chosen by the eyeball in stage . Suppose, for the
purpose of showing a contradiction, that there is a path from S to v of length less
than .

This path must go through an intermediate vertex that has not yet been visited by
the eyeball. Call the first intermediate vertex on the path not visited by the eyeball u.
This situation is shown in Figure 14.24. The path to u uses only vertices visited by the
eyeball as intermediates, so by induction, represents the optimal distance to u.
Moreover, , because u is on the supposed shorter path to v. This inequality is
a contradiction because then we would have moved the eyeball to u instead of v. The
proof is completed by showing that all the values remain correct for nonvisited
nodes, which is clear by the update rule.

Di

Di

Di

k 1+

Dv

Du

Du Dv<

Di

figure 14.24

If Dv is minimal
among all unseen
vertices and if all edge
costs are nonnegative,
Dv represents the
shortest path.

v

0

Dv

Du

d >– 0

u

S

O V 2()

Dv

14.3 positive-weighted, shortest-path problem 549

priority queue and use the distance (obtained by consulting the graph table) as
the ordering function. When we alter any , we must update the priority
queue by reestablishing the ordering property. This action amounts to a
decreaseKey operation. To take it we need to be able to find the location of w in
the priority queue. Many implementations of the priority queue do not support
decreaseKey. One that does is the pairing heap; we discuss use of the pairing
heap for this application in Chapter 23.

figure 14.25

Stages of Dijkstra’s
algorithm. The
conventions are the
same as those in
Figure 14.21.V2

V0

V3 V4

V1

V5 V6

0

11

2

34

5 68

10

2

2

1

4

V2 V3 V4

V1

V5 V6

3

9

0

3

1

2

5

3

1

2

34

5 68

10
2

2

1

4

V2 V4

V5 V6

3

9

0

5

1

2

5

3

1

2

34

5 68

10
2

2

1

4

V5 V6

3

6

0

7

1

2

5

3

1

2

34

5 68

10

2

2

1

4

V2

V0

V3 V4

V1

V5 V6

0

2

2

1

2

34

5 68

10
2

2

1

4

V2 V4

V1

V5 V6

3

9

0

4

1

1

2

5

3

1

2

34

5 68

10
2

2

1

4

V2

V5 V6

3

8

0

6

1

2

5

3

1

2

34

5 68

10
2

2

1

4

V5

3

6

0

8

1

2

5

3

1

2

34

5 68

10

2

2

1

4

V2

V0

V3 V4

V1

V6

V0

V3 V4

V1

V2

V0

V3 V4

V1

V0

V3

V1

V0 V0

V3

Dw

The priority queue is
an appropriate data
structure. The easi-
est method is to
add a new entry,
consisting of a ver-
tex and a distance,
to the priority queue
every time a vertex
has its distance
lowered. We can
find the new vertex
to move to by
repeatedly remov-
ing the minimum
distance vertex
from the priority
queue until an
unvisited vertex
emerges.

550 chapter 14 graphs and paths

Rather than use a fancy priority queue, we use a method that works with a
simple priority queue, such as the binary heap, to be discussed in Chapter 21. Our
method involves inserting an object consisting of w and Dw in the priority queue
whenever we lower Dw. To select a new vertex v for visitation, we repeatedly
remove the minimum item (based on distance) from the priority queue until an
unvisited vertex emerges. Because the size of the priority queue could be as large
as and there are at most priority queue insertions and deletions, the run-
ning time is . Because implies , we
have the same algorithm that we would have if we used the first
method (in which the priority queue size is at most).

14.3.2 java implementation
Again, the implemen-
tation follows the
description fairly
closely.

The object placed on the priority queue is shown in Figure 14.26. It consists
of w and Dw and a comparison function defined on the basis of Dw.
Figure 14.27 shows the routine dijkstra that calculates the shortest paths.

Line 6 declares the priority queue pq. We declare vrec at line 18 to store
the result of each deleteMin. As with the unweighted shortest-path algorithm,
we begin by setting all distances to infinity, setting DS = 0, and placing the
starting vertex in our data structure.

E E
O E Elog() E V 2≤ Elog 2 Vlog≤

O E Vlog()
V

figure 14.26

Basic item stored in the priority queue

1 // Represents an entry in the priority queue for Dijkstra's algorithm.
2 class Path implements Comparable<Path>
3 {
4 public Vertex dest; // w
5 public double cost; // d(w)
6
7 public Path(Vertex d, double c)
8 {
9 dest = d;

10 cost = c;
11 }
12
13 public int compareTo(Path rhs)
14 {
15 double otherCost = rhs.cost;
16
17 return cost < otherCost ? -1 : cost > otherCost ? 1 : 0;
18 }
19 }

14.3 positive-weighted, shortest-path problem 551

Each iteration of the while loop that begins at line 16 puts the eyeball at a
vertex v and processes it by examining adjacent vertices w. v is chosen by
repeatedly removing entries from the priority queue (at line 18) until we

figure 14.27

A positive-weighted, shortest-path algorithm: Dijkstra’s algorithm

1 /**
2 * Single-source weighted shortest-path algorithm.
3 */
4 public void dijkstra(String startName)
5 {
6 PriorityQueue<Path> pq = new PriorityQueue<Path>();
7
8 Vertex start = vertexMap.get(startName);
9 if(start == null)

10 throw new NoSuchElementException("Start vertex not found");
11
12 clearAll();
13 pq.add(new Path(start, 0)); start.dist = 0;
14
15 int nodesSeen = 0;
16 while(!pq.isEmpty() && nodesSeen < vertexMap.size())
17 {
18 Path vrec = pq.remove();
19 Vertex v = vrec.dest;
20 if(v.scratch != 0) // already processed v
21 continue;
22
23 v.scratch = 1;
24 nodesSeen++;
25
26 for(Edge e : v.adj)
27 {
28 Vertex w = e.dest;
29 double cvw = e.cost;
30
31 if(cvw < 0)
32 throw new GraphException("Graph has negative edges");
33
34 if(w.dist > v.dist + cvw)
35 {
36 w.dist = v.dist + cvw;
37 w.prev = v;
38 pq.add(new Path(w, w.dist));
39 }
40 }
41 }
42 }

552 chapter 14 graphs and paths

encounter a vertex that has not been processed. We use the scratch variable to
record it. Initially, scratch is 0. Thus, if the vertex is unprocessed, the test fails
at line 20, and we reach line 23. Then, when the vertex is processed, scratch is
set to 1 (at line 23). The priority queue might be empty if, for instance, some
of the vertices are unreachable. In that case, we can return immediately. The
loop at lines 26–40 is much like the loop in the unweighted algorithm. The
difference is that at line 29, we must extract cvw from the adjacency list entry,
ensure that the edge is nonnegative (otherwise, our algorithm could produce
incorrect answers), add cvw instead of 1 at lines 34 and 36, and add to the prior-
ity queue at line 38.

14.4 negative-weighted,
shortest-path problem

Negative edges
cause Dijkstra’s
algorithm not to
work. An alterna-
tive algorithm is
needed.

Dijkstra’s algorithm requires that edge costs be nonnegative. This require-
ment is reasonable for most graph applications, but sometimes it is too
restrictive. In this section we briefly discuss the most general case: the negative-
weighted, shortest-path algorithm.

negative-weighted, single-source, shortest-path problem
Find the shortest path (measured by total cost) from a designated vertex S to
every vertex. Edge costs may be negative.

14.4.1 theory

The proof of Dijkstra’s algorithm required the condition that edge costs,
and thus paths, be nonnegative. Indeed, if the graph has negative edge costs,
Dijkstra’s algorithm does not work. The problem is that, once a vertex v has
been processed, there may be, from some other unprocessed vertex u, a nega-
tive path back to v. In such a case, taking a path from S to u to v is better than
going from S to v without using u. If the latter were to happen, we would be in
trouble. Not only would the path to v be wrong, but we also would have to
revisit v because the distances of vertices reachable from v may be affected.
(In Exercise 14.10 you are asked to construct an explicit example; four verti-
ces suffice.)

We have an additional problem to worry about. Consider the graph shown
in Figure 14.28. The path from V3 to V4 has a cost of 2. However, a shorter
path exists by following the loop V3, V4, V1, V3, V4, which has a cost of –3.
This path is still not the shortest because we could stay in the loop arbitrarily
long. Thus the shortest path between these two points is undefined.

A negative-cost
cycle makes most,
if not all, paths
undefined because
we can stay in the
cycle arbitrarily long
and obtain an arbi-
trarily small
weighted path
length.

14.4 negative-weighted, shortest-path problem 553

This problem is not restricted to nodes in the cycle. The shortest path
from V2 to V5 is also undefined because there is a way to get into and out of
the loop. This loop is called a negative-cost cycle, which when present in a
graph makes most, if not all, the shortest paths undefined. Negative-cost edges
by themselves are not necessarily bad; it is the cycles that are. Our algorithm
either finds the shortest paths or reports the existence of a negative-cost cycle.

Whenever a vertex
has its distance
lowered, it must be
placed on a queue.
This may happen
repeatedly for each
vertex.

A combination of the weighted and unweighted algorithms will solve the
problem, but at the cost of a potentially drastic increase in running time. As
suggested previously, when Dw is altered, we must revisit it at some point in
the future. Consequently, we use the queue as in the unweighted algorithm,
but we use as the distance measure (as in Dijkstra’s algorithm). The
algorithm that is used to solve the negative-weighted, shortest-path problem is
known as the Bellman–Ford algorithm.

When the eyeball visits vertex v for the ith time, the value of Dv is the
length of the shortest weighted path consisting of i or fewer edges. We leave
the proof for you to do as Exercise 14.13. Consequently, if there are no
negative-cost cycles, a vertex can dequeue at most times and the algorithm
takes at most time. Further, if a vertex dequeues more than
times, we have detected a negative-cost cycle.

14.4.2 java implementation
The tricky part of
the implementation
is the manipulation
of the scratch vari-
able. We attempt to
avoid having any
vertex appear on
the queue twice at
any instant.

Implementation of the negative-weighted, shortest-path algorithm is given in
Figure 14.29. We make one small change to the algorithm description—namely,
we do not enqueue a vertex if it is already on the queue. This change involves use
of the scratch data member. When a vertex is enqueued, we increment scratch (at
line 31). When it is dequeued, we increment it again (at line 18). Thus scratch is
odd if the vertex is on the queue, and scratch/2 tells us how many times it has left
the queue (which explains the test at line 18). When some w has its distance
changed, but it is already on the queue (because scratch is odd), we do not

1

2

34

5 6 8

–10

2

2

1

4

V0

V2

V5

V3

V6

V4

V1

figure 14.28

A graph with a
negative-cost cycle

Dv cv w,+

V
O E V() V

The running time
can be large, espe-
cially if there is a
negative-cost
cycle.

554 chapter 14 graphs and paths

enqueue it. However, we do not add 2 to it to indicate that it has gone on (and off)
the queue; this is done by offsetting of lines 31 and 34. The rest of the algorithm
uses code that has already been introduced in both the unweighted shortest-path
algorithm (Figure 14.22) and Dijkstra’s algorithm (Figure 14.27).

figure 14.29

A negative-weighted, shortest-path algorithm: Negative edges are allowed.

1 /**
2 * Single-source negative-weighted shortest-path algorithm.
3 */
4 public void negative(String startName)
5 {
6 clearAll();
7
8 Vertex start = vertexMap.get(startName);
9 if(start == null)

10 throw new NoSuchElementException("Start vertex not found");
11
12 Queue<Vertex> q = new LinkedList<Vertex>();
13 q.add(start); start.dist = 0; start.scratch++;
14
15 while(!q.isEmpty())
16 {
17 Vertex v = q.removeFirst();
18 if(v.scratch++ > 2 * vertexMap.size())
19 throw new GraphException("Negative cycle detected");
20
21 for(Edge e : v.adj)
22 {
23 Vertex w = e.dest;
24 double cvw = e.cost;
25
26 if(w.dist > v.dist + cvw)
27 {
28 w.dist = v.dist + cvw;
29 w.prev = v;
30 // Enqueue only if not already on the queue
31 if(w.scratch++ % 2 == 0)
32 q.add(w);
33 else
34 w.scratch--; // undo the enqueue increment
35 }
36 }
37 }
38 }

14.5 path problems in acyclic graphs 555

14.5 path problems in acyclic graphs
Recall that a directed acyclic graph has no cycles. This important class of
graphs simplifies the solution to the shortest-path problem. For instance, we
do not have to worry about negative-cost cycles because there are no cycles.
Thus we consider the following problem.

weighted single-source, shortest-path problem for acyclic graphs
Find the shortest path (measured by total cost) from a designated vertex S to
every vertex in an acyclic graph. Edge costs are unrestricted.

14.5.1 topological sorting
A topological sort
orders vertices in a
directed acyclic
graph such that if
there is a path from u
to v , then v appears
after u in the order-
ing. A graph that has
a cycle cannot have
a topological order.

Before considering the shortest-path problem, let us examine a related
problem: a topological sort. A topological sort orders vertices in a directed
acyclic graph such that if there is a path from u to v, then v appears after u
in the ordering. For instance, a graph is typically used to represent the pre-
requisite requirement for courses at universities. An edge (v, w) indicates
that course v must be completed before course w may be attempted. A
topological order of the courses is any sequence that does not violate the
prerequisite requirements.

Clearly, a topological sort is not possible if a graph has a cycle because,
for two vertices v and w on the cycle, there is a path from v to w and w to v.
Thus any ordering of v and w would contradict one of the two paths. A graph
may have several topological orders, and in most cases, any legal ordering
will do.

In a simple algorithm for performing a topological sort we first find any
vertex v that has no incoming edges. Then we print the vertex and logically
remove it, along with its edges, from the graph. Finally, we apply the same
strategy to the rest of the graph. More formally, we say that the indegree of a
vertex v is the number of incoming edges (u, v).

The indegree of a
vertex is the num-
ber of incoming
edges. A topologi-
cal sort can be per-
formed in linear
time by repeatedly
and logically
removing vertices
that have no incom-
ing edges.

We compute the indegrees of all vertices in the graph. In practice, logically
remove means that we lower the count of incoming edges for each vertex adjacent
to v. Figure 14.30 shows the algorithm applied to an acyclic graph. The indegree
is computed for each vertex. Vertex V2 has indegree 0, so it is first in the topologi-
cal order. If there were several vertices of indegree 0, we could choose any one of
them. When V2 and its edges are removed from the graph, the indegrees of V0, V3,
and V5 are all decremented by 1. Now V0 has indegree 0, so it is next in the topo-
logical order, and V1 and V3 have their indegrees lowered. The algorithm contin-
ues, and the remaining vertices are examined in the order V1, V3, V4, V6, and V5.
To reiterate, we do not physically delete edges from the graph; removing edges
just makes it easier to see how the indegree count is lowered.

556 chapter 14 graphs and paths

The algorithm pro-
duces the correct
answer and detects
cycles if the graph
is not acyclic.

Two important issues to consider are correctness and efficiency. Clearly, any
ordering produced by the algorithm is a topological order. The question is whether
every acyclic graph has a topological order, and if so, whether our algorithm is
guaranteed to find one. The answer is yes to both questions.

If at any point there are unseen vertices but none of them have an indegree
of 0, we are guaranteed that a cycle exists. To illustrate we can pick any vertex
A0. Because A0 has an incoming edge, let A1 be the vertex connected to it.
And as A1 has an incoming edge, let A2 be the vertex connected to it. We

V2

V0

V3 V4

V1

V5 V6

0

2

0

2

2

1

2

2

V2

V0

V3 V4

V1

V5 V6

0

3

1

1

3

1

2

2

V0

V3 V4

V1

V5 V6

0

2

0

3

1

0

2

2

V3 V4

V5 V6

0

1

0

5

0

0

1

0

V5 V6

0

0

0

7

0

0

0

0

V5

0

0

0

8

0

0

0

0

V4

V5 V6

0

1

0

6

0

0

0

0

V3 V4

V1

V5 V6

0

2

0

4

0

0

2

1

V2

V0

V3 V4

V1

V6

V2

V0

V3 V4

V1

V2

V0

V3

V1

V2

V0V1

V2

V0

V2

figure 14.30

A topological sort. The
conventions are the
same as those in
Figure 14.21.

14.5 path problems in acyclic graphs 557

repeat this process N times, where N is the number of unprocessed vertices
left in the graph. Among , there must be two identical vertices
(because there are N vertices but N + 1 Ai’s). Tracing backward between those
identical Ai and Aj exhibits a cycle.

The running time is
linear if a queue is
used.

We can implement the algorithm in linear time by placing all unprocessed
indegree 0 vertices on a queue. Initially, all vertices of indegree 0 are placed
on the queue. To find the next vertex in the topological order, we merely get
and remove the front item from the queue. When a vertex has its indegree
lowered to 0, it is placed on the queue. If the queue empties before all the ver-
tices have been topologically sorted, the graph has a cycle. The running time
is clearly linear, by the same reasoning used in the unweighted shortest-path
algorithm.

14.5.2 theory of the acyclic
shortest-path algorithm

In an acyclic graph,
the eyeball merely
visits vertices in
topological order.

An important application of topological sorting is its use in solving the shortest-
path problem for acyclic graphs. The idea is to have the eyeball visit vertices in
topological order.

This idea works because, when the eyeball visits vertex v, we are guaran-
teed that Dv can no longer be lowered; by the topological ordering rule, it has
no incoming edges emanating from unvisited nodes. Figure 14.31 shows the
stages of the shortest-path algorithm, using topological ordering to guide the
vertex visitations. Note that the sequence of vertices visited is not the same as
in Dijkstra’s algorithm. Also note that vertices visited by the eyeball prior to
its reaching the starting vertex are unreachable from the starting vertex and
have no influence on the distances of any vertex.

The result is a linear-
time algorithm even
with negative edge
weights.

We do not need a priority queue. Instead, we need only to incorporate the
topological sort into the shortest-path computation. Thus we find that the
algorithm runs in linear time and works even with negative edge weights.

14.5.3 java implementation

The implementation of the shortest-path algorithm for acyclic graphs is
shown in Figure 14.32. We use a queue to perform the topological sort and
maintain the indegree information in the scratch data member. Lines 15–18
compute the indegrees, and at lines 21–23 we place any indegree 0 vertices on
the queue.

We then repeatedly remove a vertex from the queue at line 28. Note that,
if the queue is empty, the for loop is terminated by the test at line 26. If the
loop terminates because of a cycle, this fact is reported at line 50. Otherwise,
the loop at line 30 steps through the adjacency list and a value of w is obtained

A0 A1 … AN, , ,

The implementa-
tion combines a
topological sort cal-
culation and a
shortest-path cal-
culation. The inde-
gree information
is stored in the
scratch data
member.

558 chapter 14 graphs and paths

at line 32. Immediately we lower w’s indegree at line 35 and, if it has fallen to
0, we place it on the queue at line 36.

Vertices that
appear before S in
the topological
order are unreach-
able.

Recall that if the current vertex v appears prior to S in topological order, v
must be unreachable from S. Consequently, it still has Dv ≡ ∞ and thus cannot
hope to provide a path to any adjacent vertex w. We perform a test at line 38,
and if a path cannot be provided, we do not attempt any distance calculations.
Otherwise, at lines 41 to 45, we use the same calculations as in Dijkstra’s
algorithm to update Dw if necessary.

V2

V0

V3 V4

V1

V5 V6

0

11

2

34

5 68

10

2

2

1

4

V0

V3 V4

V1

V5 V6

0

3

2

1

2

34

5 68

10

2

2

1

4

V3 V4

V5 V6

9

0

5

1

2

5

3

1

2

34

5 68

10

2

2

1

4

V5 V6

6

0

7

1

2

5

3

1

2

34

5 68

10

2

2

1

4

V2

V0

V3 V4

V1

V5 V6

0

21

2

34

5 68

10

2

2

1

4

V3 V4

V1

V5 V6

0

4

2

12

1

2

34

5 68

10

2

2

1

4

V4

V5 V6

9

0

6

1

1

2

5

3

1

2

34

5 68

10

2

2

1

4

V5

6

0

8

1

2

5

3

1

2

34

5 68

10

2

2

1

4

1

V2

V0 V1

V2 V3

V0 V1

V2

V4V3

V0 V1

V2

V6

V4V3

V0 V1

V2

V0

V2

figure 14.31

The stages of acyclic
graph algorithm. The
conventions are the
same as those in
Figure 14.21.

14.5 path problems in acyclic graphs 559

figure 14.32

A shortest-path algorithm for acyclic graphs

1 /**
2 * Single-source negative-weighted acyclic-graph shortest-path algorithm.
3 */
4 public void acyclic(String startName)
5 {
6 Vertex start = vertexMap.get(startName);
7 if(start == null)
8 throw new NoSuchElementException("Start vertex not found");
9

10 clearAll();
11 Queue<Vertex> q = new LinkedList<Vertex>();
12 start.dist = 0;
13
14 // Compute the indegrees
15 Collection<Vertex> vertexSet = vertexMap.values();
16 for(Vertex v : vertexSet)
17 for(Edge e : v.adj)
18 e.dest.scratch++;
19
20 // Enqueue vertices of indegree zero
21 for(Vertex v : vertexSet)
22 if(v.scratch == 0)
23 q.add(v);
24
25 int iterations;
26 for(iterations = 0; !q.isEmpty(); iterations++)
27 {
28 Vertex v = q.remove();
29
30 for(Edge e : v.adj)
31 {
32 Vertex w = e.dest;
33 double cvw = e.cost;
34
35 if(--w.scratch == 0)
36 q.add(w);
37
38 if(v.dist == INFINITY)
39 continue;
40
41 if(w.dist > v.dist + cvw)
42 {
43 w.dist = v.dist + cvw;
44 w.prev = v;
45 }
46 }
47 }
48
49 if(iterations != vertexMap.size())
50 throw new GraphException("Graph has a cycle!");
51 }

560 chapter 14 graphs and paths

14.5.4 an application: critical-path analysis
Critical-path analy-
sis is used to
schedule tasks
associated with a
project.

An important use of acyclic graphs is critical-path analysis, a form of analy-
sis used to schedule tasks associated with a project. The graph shown in
Figure 14.33 provides an example. Each vertex represents an activity that
must be completed, along with the time needed to complete it. The graph is
thus called an activity-node graph, in which vertices represent activities and
edges represent precedence relationships. An edge (v, w) indicates that activity
v must be completed before activity w may begin, which implies that the
graph must be acyclic. We assume that any activities that do not depend
(either directly or indirectly) on each other can be performed in parallel by
different servers.

An activity-node
graph represents
activities as vertices
and precedence
relationships as
edges.

This type of graph could be (and frequently is) used to model construction
projects. Two important questions must be answered. First, what is the earliest
completion time for the project? The answer, as the graph shows, is 10 time
units—required along path A, C, F, H. Second, which activities can be
delayed, and by how long, without affecting the minimum completion time?
For instance, delaying any of A, C, F, or H would push the completion time
past 10 time units. However, activity B is less critical and can be delayed up to
2 time units without affecting the final completion time.

The event-node
graph consists of
event vertices that
correspond to the
completion of an
activity and all its
dependent
activities.

To perform these calculations, we convert the activity-node graph to an
event-node graph, in which each event corresponds to the completion of an
activity and all its dependent activities. Events reachable from a node v in the
event-node graph may not commence until after the event v is completed. This
graph can be constructed automatically or by hand (from the activity-node
graph). Dummy edges and vertices may need to be inserted to avoid introduc-
ing false dependencies (or false lack of dependencies). The event-node graph
corresponding to the activity-node graph in Figure 14.33 is shown in
Figure 14.34.

To find the earliest completion time of the project, we merely need to find
the length of the longest path from the first event to the last event. For general
graphs, the longest-path problem generally does not make sense because of

B 2

A 3

D 2

C 3

H 1Start Finish

E 1

G 2

F 3

K 4

figure 14.33

An activity-node
graph

14.5 path problems in acyclic graphs 561

the possibility of a positive-cost cycle, which is equivalent to a negative-cost
cycle in shortest-path problems. If any positive-cost cycles are present, we
could ask for the longest simple path. However, no satisfactory solution is
known for this problem. Fortunately, the event-node graph is acyclic; thus we
need not worry about cycles. We can easily adapt the shortest-path algorithm
to compute the earliest completion time for all nodes in the graph. If ECi is
the earliest completion time for node i, the applicable rules are

EC1 = 0 and ECw = Max(v, w) ∈ E(ECv + cv, w)

The latest time an
event can finish
without delaying
the project is also
easily computable.

Figure 14.35 shows the earliest completion time for each event in our exam-
ple event-node graph. We can also compute the latest time, LCi , that each event
can finish without affecting final completion time. The formulas to do this are

LCN = ECN and LCv = Min(v, w) ∈ E(LCw – cv, w)

These values can be computed in linear time by maintaining for each vertex a
list of all adjacent and preceding vertices. The earliest completion times are
computed for vertices by their topological order, and the latest completion
times are computed by reverse topological order. The latest completion times
are shown in Figure 14.36.

1

3

2

6d 6

4

5

8d

7d

8

7

9

10d 10D 2

C 3

B 2

A 3 H 1G 2

F 3

E 1 K 4

0

0

0

0

0

0

0

0

0

figure 14.34

An event-node graph

1

3

2

6d 6

4

5

8d

7d

8

7

9

10d 10D 2

C 3

B 2

A 3 H 1G 2

F 3

E 1 K 4

0

0

0

0

0

0

0

0

0

0

3 6 6 9

1097553

2 3 7

figure 14.35

Earliest completion
times

Edges show which
activity must be
completed to
advance from one
vertex to the next.
The earliest com-
pletion time is the
longest path.

562 chapter 14 graphs and paths

Slack time is the
amount of time that
an activity can be
delayed without
delaying overall
completion.

The slack time for each edge in the event-node graph is the amount of
time that the completion of the corresponding activity can be delayed without
delaying the overall completion, or

Slack(v, w) = LCw – ECv – cv, w

Figure 14.37 shows the slack (as the third entry) for each activity in the event-
node graph. For each node, the top number is the earliest completion time and
the bottom number is the latest completion time.

Zero-slack activi-
ties are critical and
cannot be delayed.
A path of zero-
slack edges is a
critical path.

Some activities have zero slack. These are critical activities that must be fin-
ished on schedule. A path consisting entirely of zero-slack edges is a critical path.

summary

In this chapter we showed how graphs can be used to model many real-life
problems and in particular how to calculate the shortest path under a wide
variety of circumstances. Many of the graphs that occur are typically very

1

3

2

6d 6

4

5

8d

7d

8

7

9

10d 10D 2

C 3

B 2

A 3 H 1G 2

F 3

E 1 K 4

0

0

0

0

0

0

0

0

0

0

3 6 6 9

1099764

4 5 9

figure 14.36

Latest completion
times

1

3

2

6d 6

4

5

8d

7d

8

7

9

10d 10
D 2 1

C 3 0

B 2 2

A 3 0 H 1 0G 2 2

F 3 0

E 1 2 K 4 2

0

0

0

0

0

0

0

0

0

0

3 6 6 9

109976

4 5 9

0

3 6 6 9

1097553

2 3 7
4

figure 14.37

Earliest completion
time, latest
completion time, and
slack (additional edge
item)

key concepts 563

sparse, so choosing appropriate data structures to implement them is
important.

For unweighted graphs, the shortest path can be computed in linear
time, using breadth-first search. For positive-weighted graphs, slightly more
time is needed, using Dijkstra’s algorithm and an efficient priority queue.
For negative-weighted graphs, the problem becomes more difficult. Finally,
for acyclic graphs, the running time reverts to linear time with the aid of a
topological sort.

Figure 14.38 summarizes those characteristics for these algorithms.

key concepts

activity-node graph A graph of vertices as activities and edges as precedence
relationships. (560)

adjacency lists An array of lists used to represent a graph, using linear space.
(530)

adjacency matrix A matrix representation of a graph that uses quadratic space.
(530)

adjacent vertices Vertex w is adjacent to vertex v if there is an edge from v to
w. (528)

Bellman–Ford algorithm An algorithm that is used to solve the negative-
weighted, shortest-path problem. (553)

breadth-first search A search procedure that processes vertices in layers:
Those closest to the start are evaluated first, and those most distant are
evaluated last. (542)

critical-path analysis A form of analysis used to schedule tasks associated with
a project. (560)

cycle In a directed graph, a path that begins and ends at the same vertex and
contains at least one edge. (529)

figure 14.38

Worst-case running
times of various graph
algorithms

Type of Graph Problem Running Time Comments

Unweighted Breadth-first search

Weighted, no negative edges Dijkstra’s algorithm

Weighted, negative edges Bellman–Ford algorithm

Weighted, acyclic Uses topological sort

O E()

O E Vlog()

O E V⋅()

O E()

564 chapter 14 graphs and paths

dense and sparse graphs A dense graph has a large number of edges (gener-
ally quadratic). Typical graphs are not dense but are sparse. (529)

Dijkstra’s algorithm An algorithm that is used to solve the positive-weighted,
shortest-path problem. (546)

directed acyclic graph (DAG) A type of directed graph having no cycles. (529)
directed graph A graph in which edges are ordered pairs of vertices. (528)
edge cost (weight) The third component of an edge that measures the cost of

traversing the edge. (528)
event-node graph A graph that consists of event vertices that correspond to the

completion of an activity and all its dependent activities. Edges show
what activity must be completed to advance from one vertex to the next.
The earliest completion time is the longest path. (560)

graph A set of vertices and a set of edges that connect the vertices. (528)
indegree The number of incoming edges of a vertex. (555)
negative-cost cycle A cycle whose cost is less than zero and makes most, if not

all, paths undefined because we can loop around the cycle arbitrarily
many times and obtain an arbitrarily small weighted path length. (552)

path A sequence of vertices connected by edges. (528)
path length The number of edges on a path. (528)
positive-cost cycle In a longest-path problem, the equivalent of a negative-cost

cycle in a shortest-path problem. (561)
simple path A path in which all vertices are distinct, except that the first and

last vertices can be the same. (529)
single-source algorithms Algorithms that compute the shortest paths from

some starting point to all vertices in a graph. (534)
slack time The amount of time that an activity can be delayed without delay-

ing overall completion. (562)
topological sort A process that orders vertices in a directed acyclic graph such

that if there is a path from u to v, then v appears after u in the ordering. A
graph that has a cycle cannot have a topological order. (555)

unweighted path length The number of edges on a path. (538)
weighted path length The sum of the edge costs on a path. (528)

common errors

1. A common error is failing to ensure that the input graph satisfies the req-
uisite conditions for the algorithm being used (i.e., acyclic or positive
weighted).

exercises 565

2. For Path, the comparison function compares the cost data member only. If
the dest data member is used to drive the comparison function, the algo-
rithm may appear to work for small graphs, but for larger graphs, it is
incorrect and gives slightly suboptimal answers. It never produces a path
that does not exist, however. Thus this error is difficult to track down.

3. The shortest-path algorithm for negative-weighted graphs must have a
test for negative cycles; otherwise, it potentially runs forever.

on the internet

All the algorithms in this chapter are online in one file. The Vertex class has
an additional data member that is used in the alternative implementation of
Dijkstra’s algorithm shown in Section 23.2.3.

Graph.java Contains everything in one file with the simple main shown
in Figure 14.14.

exercises

IN SHORT

14.1 Find the shortest unweighted path from V3 to all others in the graph
shown in Figure 14.1.

14.2 Find the shortest weighted path from V2 to all others in the graph
shown in Figure 14.1.

14.3 Which algorithms in this chapter can be used to solve Figure 14.2?

14.4 In Figure 14.5, reverse the direction of edges (D, C) and (E, D). Show
the changes that result in the figure and the result of running the topo-
logical sorting algorithm.

14.5 Suppose that edges (C, B) with a cost of 11 and (B, F) with a cost of 10
are added to the end of the input in Figure 14.5. Show the changes
that result in the figure and recompute the shortest path emanating
from vertex A.

IN THEORY

14.6 Show how to avoid quadratic initialization inherent in adjacency
matrices while maintaining constant-time access of any edge.

14.7 Explain how to modify the unweighted shortest-path algorithm so
that, if there is more than one minimum path (in terms of number of
edges), the tie is broken in favor of the smallest total weight.

566 chapter 14 graphs and paths

14.8 Explain how to modify Dijkstra’s algorithm to produce a count of the
number of different minimum paths from v to w.

14.9 Explain how to modify Dijkstra’s algorithm so that, if there is more than
one minimum path from v to w, a path with the fewest edges is chosen.

14.10 Give an example of when Dijkstra’s algorithm gives the wrong
answer in the presence of a negative edge but no negative-cost cycle.

14.11 Consider the following algorithm to solve the negative-weighted,
shortest-path problem: Add a constant c to each edge cost, thus remov-
ing negative edges; calculate the shortest path on the new graph; and
then use that result on the original. What is wrong with this algorithm?

14.12 Suppose that in a directed graph, the cost of the path is the sum of the
edge costs on the path PLUS the number of edges on the path. Show
how to solve this version of the shortest path problem.

14.13 Prove the correctness of the negative-weighted, shortest-path algo-
rithm. To do so, show that when the eyeball visits vertex v for the ith
time, the value of Dv is the length of the shortest weighted path con-
sisting of i or fewer edges.

14.14 Give a linear-time algorithm to find the longest weighted path in an
acyclic graph. Does your algorithm extend to graphs that have cycles?

14.15 Show that if edge weights are 0 or 1, exclusively, Dijkstra’s algorithm
can be implemented in linear time by using a deque (Section 16.5).

14.16 Suppose all edge costs in a graph are either 1 or 2. Show that Dijkstra’s
algorithm can then be implemented to run in linear time.

14.17 For any path in a graph, the bottleneck cost is given by the weight of the
shortest edge on the path. For example, in Figure 14.4, the bottleneck
cost of the path E, D, B is 23 and the bottleneck cost of the path E, D, C,

A, B is 10. The maximum bottleneck problem is to find the path between
two specified vertices with the maximum bottleneck cost. Thus the max-
imum bottleneck path between E and B is the path E, D, B. Give an effi-
cient algorithm to solve the maximum bottleneck problem.

14.18 Let G be a (directed) graph and u and v be any two distinct vertices in
G. Prove or disprove each of the following.
a. If G is acyclic, at least one of (u, v) or (v, u) can be added to the

graph without creating a cycle.
b. If adding one of either (u, v) or (v, u) to G without creating a cycle

is impossible, then G already has a cycle.

exercises 567

IN PRACTICE

14.19 In this chapter we claim that, for the implementation of graph algo-
rithms that run on large input, data structures are crucial to ensure
reasonable performance. For each of the following instances in which
a poor data structure or algorithm is used, provide a Big-Oh analysis
of the result and compare the actual performance with the algorithms
and data structures presented in the text. Implement only one change
at a time. You should run your tests on a reasonably large and some-
what sparse random graph. Then do the following.
a. When an edge is read, determine whether it is already in the

graph.
b. Implement the “dictionary” by using a sequential scan of the ver-

tex table.
c. Implement the queue by using the algorithm in Exercise 6.24

(which should affect the unweighted shortest-path algorithm).
d. In the unweighted shortest-path algorithm, implement the search for

the minimum-cost vertex as a sequential scan of the vertex table.
e. Implement the priority queue by using the algorithm in Exercise 6.26

(which should affect the weighted shortest-path algorithm).
f. Implement the priority queue by using the algorithm in Exercise 6.27

(which should affect the weighted shortest-path algorithm).
g. In the weighted shortest-path algorithm, implement the search for

the minimum-cost vertex as a sequential scan of the vertex table.
h. In the acyclic shortest-path algorithm, implement the search for a

vertex with indegree 0 as a sequential scan of the vertex table.
i. Implement any of the graph algorithms by using an adjacency

matrix instead of adjacency lists.

PROGRAMMING PROJECTS

14.20 A directed graph is strongly connected if there is a path from every
vertex to every other vertex. Do the following.
a. Pick any vertex S. Show that, if the graph is strongly connected, a

shortest-path algorithm will declare that all nodes are reachable
from S.

b. Show that, if the graph is strongly connected and then the direc-
tions of all edges are reversed and a shortest-path algorithm is run
from S, all nodes will be reachable from S.

c. Show that the tests in parts (a) and (b) are sufficient to decide
whether a graph is strongly connected (i.e., a graph that passes
both tests must be strongly connected).

568 chapter 14 graphs and paths

d. Write a program that checks whether a graph is strongly con-
nected. What is the running time of your algorithm?

Explain how each of the following problems can be solved by applying a
shortest-path algorithm. Then design a mechanism for representing an input
and write a program that solves the problem.

14.21 The input is a list of league game scores (and there are no ties). If all
teams have at least one win and a loss, we can generally “prove,” by a
silly transitivity argument, that any team is better than any other. For
instance, in the six-team league where everyone plays three games,
suppose that we have the following results: A beat B and C; B beat C
and F; C beat D; D beat E; E beat A; and F beat D and E. Then we can
prove that A is better than F because A beat B who in turn beat F. Sim-
ilarly, we can prove that F is better than A because F beat E and E
beat A. Given a list of game scores and two teams X and Y, either find
a proof (if one exists) that X is better than Y or indicate that no proof
of this form can be found.

14.22 A word can be changed to another word by a one-character substitu-
tion. Assume that a dictionary of five-letter words exists. Give an
algorithm to determine whether a word A can be transformed to a
word B by a series of one-character substitutions, and if so, outputs
the corresponding sequence of words. For example, bleed converts to
blood by the sequence bleed, blend, blond, blood.

14.23 Modify Exercise 14.22 to allow words of arbitrary length and to allow
transformations in which we add or delete one character. The cost of
adding or deleting a character equals the length of the longer string in
the transformation while a single-character substitution only costs 1.
Thus ark, ask, as, was is a valid transformation from ark to was and the
cost is 7 (1+3+3).

14.24 The input is a collection of currencies and their exchange rates. Is
there a sequence of exchanges that makes money instantly? For
instance, if the currencies are X, Y, and Z and the exchange rate is 1 X
equals 2 Ys, 1 Y equals 2 Zs, and 1 X equals 3 Zs, then 300 Zs will buy
100 Xs, which in turn will buy 200 Ys, which in turn will buy 400 Zs.
We have thus made a profit of 33 percent.

14.25 A student needs to take a certain number of courses to graduate, and these
courses have prerequisites that must be followed. Assume that all courses
are offered every semester and that the student can take an unlimited

references 569

number of courses. Given a list of courses and their prerequisites, com-
pute a schedule that requires the minimum number of semesters.

14.26 The object of the Kevin Bacon Game is to link a movie actor to Kevin
Bacon via shared movie roles. The minimum number of links is an
actor’s Bacon number. For instance, Tom Hanks has a Bacon number
of 1. He was in Apollo 13 with Kevin Bacon. Sally Field has a Bacon
number of 2 because she was in Forest Gump with Tom Hanks, who
was in Apollo 13 with Kevin Bacon. Almost all well-known actors
have a Bacon number of 1 or 2. Assume that you have a comprehen-
sive list of actors, with roles, and do the following.
a. Explain how to find an actor’s Bacon number.
b. Explain how to find the actor with the highest Bacon number.
c. Explain how to find the minimum number of links between two

arbitrary actors.

14.27 The input is a two-dimensional maze with walls, and the problem is
to traverse the maze, using the shortest route, from the upper left-
hand corner to the lower right-hand corner. You may knock down
walls, but each wall you knock down incurs a penalty p (that is speci-
fied as part of the input).

14.28 Suppose you have a graph in which each vertex represents a computer
and each edge represents a direct connection between two computers.
Each edge (v,w) has a weight pv,w representing the probability that a
network transfer between v and w succeeds (0 <). Write a
program that finds the most reliable way to transfer data from a desig-
nated starting computer s to all other computers in the network.

references

The use of adjacency lists to represent graphs was first advocated in [3]. Dijk-
stra’s shortest-path algorithm was originally described in [2]. The algorithm
for negative edge costs is taken from [1]. A more efficient test for termination
is described in [6], which also shows how data structures play an important
role in a wide range of graph theory algorithms. The topological sorting algo-
rithm is from [4]. Many real-life applications of graph algorithms are pre-
sented in [5], along with references for further reading.

1. R. E. Bellman, “On a Routing Problem,” Quarterly of Applied Mathemat-
ics 16 (1958), 87–90.

2. E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,”
Numerische Mathematik 1 (1959), 269–271.

pv w, 1≤

570 chapter 14 graphs and paths

3. J. E. Hopcroft and R. E. Tarjan, “Algorithm 447: Efficient Algorithms for
Graph Manipulation,” Communications of the ACM 16 (1973), 372–378.

4. A. B. Kahn, “Topological Sorting of Large Networks,” Communications
of the ACM 5 (1962), 558–562.

5. D. E. Knuth, The Stanford GraphBase, Addison-Wesley, Reading, MA,
1993.

6. R. E. Tarjan, Data Structures and Network Algorithms, Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, 1985.

par t
four Implementations

chapter 15 inner classes and
implementation of ArrayList

chapter 16 stacks and queues

chapter 17 linked lists

chapter 18 trees

chapter 19 binary search trees

chapter 20 hash tables

chapter 21 a priority queue:
the binary heap

This page intentionally left blank

chap te r 15

inner classes
and implementation
of ArrayList

This chapter begins our discussion of the implementation of standard data
structures. One of the simplest data structures is the ArrayList that is part of
the Collections API. In Part One (specifically Figure 3.17 and Figure 4.24) we
have already seen skeletons of the implementation, so in this chapter we con-
centrate on the details of implementing the complete class, with the associated
iterators. In doing so, we make use of an interesting Java syntactic creation,
the inner class. We discuss the inner class in this chapter, rather than in Part
One (where other syntactic elements are introduced) because we view the
inner class as a Java implementation technique, rather than a core language
feature.

In this chapter, we will see

n The uses and syntax of the inner class

n An implementation of a new class called the
AbstractCollection

n An implementation of the ArrayList class

574 chapter 15 inner classes and implementation of ArrayList

15.1 iterators and nested classes
We begin by reviewing the simple iterator implementation first described in
Section 6.2. Recall that we defined a simple iterator interface, which mimics
the standard (nongeneric) Collections API Iterator, and this interface is
shown in Figure 15.1.

We then defined two classes: the container and its iterator. Each container
class is responsible for providing an implementation of the iterator inter-
face. In our case, the implementation of the iterator interface is provided by
the MyContainerIterator class, shown in Figure 15.2. The MyContainer class
shown in Figure 15.3 provides a factory method that creates an instance of
MyContainerIterator and returns this instance using the interface type Itera-
tor. Figure 15.4 provides a main that illustrates the use of the container/iterator
combination. Figures 15.1 to 15.4 simply replicate Figures 6.5 to 6.8 in the
original iterator discussion from Section 6.2.

figure 15.1

The Iterator
interface from
Section 6.2

1 package weiss.ds;
2
3 public interface Iterator
4 {
5 boolean hasNext();
6 Object next();
7 }

figure 15.2

Implementation of the
MyContainerIterator
from Section 6.2

1 // An iterator class that steps through a MyContainer.
2
3 package weiss.ds;
4
5 class MyContainerIterator implements Iterator
6 {
7 private int current = 0;
8 private MyContainer container;
9

10 MyContainerIterator(MyContainer c)
11 { container = c; }
12
13 public boolean hasNext()
14 { return current < container.size; }
15
16 public Object next()
17 { return container.items[current++]; }
18 }

15.1 iterators and nested classes 575

This design hides the iterator class implementation because MyContainerIterator
is not a public class. Thus the user is forced to program to the Iterator interface
and does not have access to the details of how the iterator was implemented—
the user cannot even declare objects of type weiss.ds.MyContainerIterator.
However, it still exposes more details than we usually like. In the MyContainer
class, the data are not private, and the corresponding iterator class, while not
public, is still package visible. We can solve both problems by using nested
classes: We simply move the iterator class inside of the container class. At that
point the iterator class is a member of the container class, and thus it can be
declared as a private class and its methods can access private data from
MyContainer. The revised code is illustrated in Figure 15.5, with only a stylis-
tic change of renaming MyContainerIterator as LocalIterator. No other
changes are required; however the LocalIterator constructor can be made
private and still be callable from MyContainer, since LocalIterator is part of
MyContainer.

figure 15.3

The MyContainer class
from Section 6.2

1 package weiss.ds;
2
3 public class MyContainer
4 {
5 Object [] items;
6 int size;
7
8 public Iterator iterator()
9 { return new MyContainerIterator(this); }

10
11 // Other methods not shown.
12 }

figure 15.4

main method to
illustrate iterator
design from
Section 6.2

1 public static void main(String [] args)
2 {
3 MyContainer v = new MyContainer();
4
5 v.add("3");
6 v.add("2");
7
8 System.out.println("Container contents: ");
9 Iterator itr = v.iterator();

10 while(itr.hasNext())
11 System.out.println(itr.next());
12 }

576 chapter 15 inner classes and implementation of ArrayList

15.2 iterators and inner classes
In Section 15.1, we used a nested class to further hide details. In addition to
nested classes, Java provides inner classes. An inner class is similar to a
nested class in that it is a class inside another class and is treated as a member
of the outer class for visibility purposes. An inner class is declared using the
same syntax as a nested class, except that it is not a static class. In other
words, the static qualifier is missing in the inner class declaration.

Before getting into the inner class specifics, let us look at the problem that
they are designed to solve. Figure 15.6 illustrates the relationship between the
iterator and container classes that were written in the previous section. Each
instance of the LocalIterator maintains a reference to the container over
which it is iterating and a notion of the iterator’s current position. The rela-
tionship that we have is that each LocalIterator must be associated with
exactly one instance of MyContainer. It is impossible for the container refer-
ence in any iterator to be null, and the iterator’s existence makes no sense
without knowing which MyContainer object caused its creation.

figure 15.5

Iterator design using
nested class

1 package weiss.ds;
2
3 public class MyContainer
4 {
5 private Object [] items;
6 private int size = 0;
7 // Other methods for MyContainer not shown
8
9 public Iterator iterator()

10 { return new LocalIterator(this); }
11
12 // The iterator class as a nested class
13 private static class LocalIterator implements Iterator
14 {
15 private int current = 0;
16 private MyContainer container;
17
18 private LocalIterator(MyContainer c)
19 { container = c; }
20
21 public boolean hasNext()
22 { return current < container.size; }
23
24 public Object next()
25 { return container.items[current++]; }
26 }
27 }

An inner class is
similar to a nested
class in that it is
a class inside
another class and is
declared using the
same syntax as a
nested class,
except that it is not
a static class. An
inner class always
contains an implicit
reference to the
outer object that
created it.

15.2 iterators and inner classes 577

Since we know that itr1 must be tied to one and only one iterator, it
seems that the expression container.items is redundant: If the iterator could
only remember the container that constructed it, we wouldn’t have to keep
track of it ourselves. And if it remembered it, we might expect that if inside
of the LocalIterator we referred to items, then since the LocalIterator does
not have an items field, the compiler (and run-time system) would be smart
enough to deduce that we are talking about the items field of the MyContainer
object that caused the construction of this particular LocalIterator. This is
exactly what an inner class does, and what distinguishes it from a nested
class.

The big difference between an inner class and a nested class is that when
an instance of an inner class object is constructed, there is an implicit refer-
ence to the outer class object that caused its construction. This implies that an
inner class object cannot exist without an outer class object for it to be
attached to, with an exception being if it is declared in a static method
(because local and anonymous classes are technically inner classes), a detail
we will discuss later.

If the name of the outer class is Outer, then the implicit reference is
Outer.this. Thus, if LocalIterator was declared as an instance inner class (i.e.,
the static keyword was removed), then the MyContainer.this reference could
be used to replace the container reference that the iterator is storing. The pic-
ture in Figure 15.7 illustrates that the structure would be identical. A revised
class is shown in Figure 15.8.

In the revised implementation, observe that LocalIterator no longer has
an explicit reference to a MyContainer, and also observe that its constructor is
no longer necessary, since it only initialized the MyContainer reference.
Finally, Figure 15.9 illustrates that just as using this is optional in an instance
method, the Outer.this reference is also optional if there is no name clash.
Thus, MyContainer.this.size can be shortened to size, as long as there is no
other variable named size that is in a closer scope.

v

itr1 itr2

container
current=3

container
current=0

items: 3,5,2

figure 15.6

Iterator/container
relationship

The big difference
between an inner
class and a nested
class is that when
an instance of an
inner class object
is constructed,
there is an implicit
reference to the
outer class object
that caused its
construction.

If the name of the
outer class is Outer,
then the implicit
reference is
Outer.this.

578 chapter 15 inner classes and implementation of ArrayList

Local classes and anonymous classes do not specify whether they are
static, and they are always technically considered inner classes. However, if
such a class is declared in a static method, it has no implicit outer reference
(and thus behaves like a nested class), whereas if it is declared inside an
instance method, its implicit outer reference is the invoker of the method.

The addition of inner classes requires a significant set of rules, many of
which attempt to deal with language corner cases and dubious coding practices.

v

itr1 itr2

current=3 current=0

items: 3,5,2

MyContainer.this MyContainer.this

figure 15.7

Iterator/container with
inner classes

figure 15.8

Iterator design using
inner class

1 package weiss.ds;
2
3 public class MyContainer
4 {
5 private Object [] items;
6 private int size = 0;
7
8 // Other methods for MyContainer not shown
9

10 public Iterator iterator()
11 { return new LocalIterator(); }
12
13 // The iterator class as an inner class
14 private class LocalIterator implements Iterator
15 {
16 private int current = 0;
17
18 public boolean hasNext()
19 { return current < MyContainer.this.size; }
20
21 public Object next()
22 { return MyContainer.this.items[current++]; }
23 }
24 }

15.2 iterators and inner classes 579

For instance, suppose we suspend belief for a minute and imagine that
LocalIterator is public. We do so only to illustrate the complications that the
language designers face when adding a new language feature. Under this
assumption the iterator’s type is MyContainer.LocalIterator, and since it is visi-
ble, one might expect that

MyContainer.LocalIterator itr = new MyContainer.LocalIterator();

is legal, since like all classes, it has a public default zero-parameter construc-
tor. However, this cannot possibly work, since there is no way to initialize the
implicit reference. Which MyContainer is itr referring to? We need some syn-
tax that won’t conflict with any other language rules. Here’s the rule: If there
is a container c, then itr could be constructed using a bizarre syntax invented
for just this case, in which the outer object in effect invokes new:

MyContainer.LocalIterator itr = c.new LocalIterator();

Notice that this implies that in an instance factory method, this.new is
legal, and shorthands to the more conventional new seen in a factory method. If
you find yourself using the bizarre syntax, you probably have a bad design. In
our example, once LocalIterator is private, this entire issue goes away, and if
LocalIterator is not private, there is little reason to use an inner class in the
first place.

There are also other rules, some of which are arbitrary. Private members
of the inner or nested class are public to the outer class. To access any mem-
ber of an inner class, the outer class only needs to provide a reference to an
inner class instance and use the dot operator, as is normal for other classes.
Thus inner and nested classes are considered part of the outer class.

Both inner and nested classes can be final, or they can be abstract, or they
can be interfaces (but interfaces are always static, because they cannot have
any data, including an implicit reference), or they can be none of these. Inner

figure 15.9

Inner class;
Outer.this may be
optional.

1 // The iterator class as an inner class
2 private class LocalIterator implements Iterator
3 {
4 private int current = 0;
5
6 public boolean hasNext()
7 { return current < size; }
8
9 public Object next()

10 { return items[current++]; }
11 }

580 chapter 15 inner classes and implementation of ArrayList

classes may not have static fields or methods, except for static final fields.
Inner classes may have nested classes or interfaces. Finally, when you com-
pile the above example, you will see that the compiler generates a class file
named MyContainer$LocalIterator.class, which would have to be included in
any distribution to clients. In other words, each inner and nested class is a
class and has a corresponding class file. Anonymous classes use numbers
instead of names.

15.3 the AbstractCollection class
The Abstract-
Collection imple-
ments some of the
methods in the
Collection
interface.

Before we implement the ArrayList class, observe that some of the methods in the
Collection interface can be easily implemented in terms of others. For instance,
isEmpty is easily implemented by checking if the size is 0. Rather than doing so in
ArrayList, LinkedList, and all the other concrete implementations, it would be
preferable to do this once and use inheritance to obtain isEmpty. We could even
override isEmpty if it turns out that for some collections there is a faster way of
performing isEmpty than computing the current size. However, we cannot imple-
ment isEmpty in the Collection interface; this can only be done in an abstract
class. This will be the AbstractCollection class. To simplify implementations,
programmers designing new Collections classes can extend the AbstractCollec-
tion class rather than implementing the Collection interface. A sample imple-
mentation of AbstractCollection is shown in Figures 15.10 to 15.12.

The Collections API also defines additional classes such as AbstractList,
AbstractSequentialList, and AbstractSet. We have chosen not to implement
those, in keeping with our intention of providing a simplified subset of the
Collections API. If, for some reason, you are implementing your own collec-
tions and extending the Java Collections API, you should extend the most spe-
cific abstract class.

In Figure 15.10, we see implementations of isEmpty, clear, and add. The
first two methods have straightforward implementations. Certainly the imple-
mentation of clear is usable, since it removes all items in the collection, but
there might be more efficient ways of performing the clear, depending on the
type of collection being manipulated. Thus this implementation of clear
serves as a default, but it is likely to be overridden. There is no sensible way
of providing a usable implementation for add. So the two alternatives are to
make add abstract (which is clearly doable, since AbstractCollection is
abstract) or to provide an implementation that throws a runtime exception.
We have done the latter, which matches the behavior in java.util. (Further
down the road, this decision also makes it easier to create the class needed to
express the values of a map). Figure 15.11 provides default implementations

15.3 the AbstractCollection class 581

of contains and remove. Both implementations use a sequential search, so they
are not efficient, and need to be overridden by respectable implementations of
the Set interface.

figure 15.10

Sample implementation of AbstractCollection (part 1)

1 package weiss.util;
2
3 /**
4 * AbstractCollection provides default implementations for
5 * some of the easy methods in the Collection interface.
6 */
7 public abstract class AbstractCollection<AnyType> implements Collection<AnyType>
8 {
9 /**

10 * Tests if this collection is empty.
11 * @return true if the size of this collection is zero.
12 */
13 public boolean isEmpty()
14 {
15 return size() == 0;
16 }
17
18 /**
19 * Change the size of this collection to zero.
20 */
21 public void clear()
22 {
23 Iterator<AnyType> itr = iterator();
24 while(itr.hasNext())
25 {
26 itr.next();
27 itr.remove();
28 }
29 }
30
31 /**
32 * Adds x to this collections.
33 * This default implementation always throws an exception.
34 * @param x the item to add.
35 * @throws UnsupportedOperationException always.
36 */
37 public boolean add(AnyType x)
38 {
39 throw new UnsupportedOperationException();
40 }

582 chapter 15 inner classes and implementation of ArrayList

Figure 15.12 contains the implementations of the two toArray methods.
The zero-parameter toArray is fairly simple to implement. The one-parameter
toArray makes use of a feature of Java known as reflection to create an array
object that matches the parameter type in the case that the parameter is not
large enough to store the underlying collection.

figure 15.11

Sample
implementation of
AbstractCollection
(part 2)

41 /**
42 * Returns true if this collection contains x.
43 * If x is null, returns false.
44 * (This behavior may not always be appropriate.)
45 * @param x the item to search for.
46 * @return true if x is not null and is found in
47 * this collection.
48 */
49 public boolean contains(Object x)
50 {
51 if(x == null)
52 return false;
53
54 for(AnyType val : this)
55 if(x.equals(val))
56 return true;
57
58 return false;
59 }
60
61 /**
62 * Removes non-null x from this collection.
63 * (This behavior may not always be appropriate.)
64 * @param x the item to remove.
65 * @return true if remove succeeds.
66 */
67 public boolean remove(Object x)
68 {
69 if(x == null)
70 return false;
71
72 Iterator<AnyType> itr = iterator();
73 while(itr.hasNext())
74 if(x.equals(itr.next()))
75 {
76 itr.remove();
77 return true;
78 }
79
80 return false;
81 }

15.3 the AbstractCollection class 583

figure 15.12

Sample implementation of AbstractCollection (part 3)

82 /**
83 * Obtains a primitive array view of the collection.
84 * @return the primitive array view.
85 */
86 public Object [] toArray()
87 {
88 Object [] copy = new Object[size()];
89 int i = 0;
90
91 for(AnyType val : this)
92 copy[i++] = val;
93
94 return copy;
95 }
96
97 public <OtherType> OtherType [] toArray(OtherType [] arr)
98 {
99 int theSize = size();

100
101 if(arr.length < theSize)
102 arr = (OtherType []) java.lang.reflect.Array.newInstance(
103 arr.getClass().getComponentType(), theSize);
104 else if(theSize < arr.length)
105 arr[theSize] = null;
106
107 Object [] copy = arr;
108 int i = 0;
109
110 for(AnyType val : this)
111 copy[i++] = val;
112
113 return copy;
114 }
115
116 /**
117 * Return a string representation of this collection.
118 */
119 public String toString()
120 {
121 StringBuilder result = new StringBuilder("[");
122
123 for(AnyType obj : this)
124 result.append(obj + " ");
125
126 result.append("]");
127
128 return result.toString();
129 }
130 }

584 chapter 15 inner classes and implementation of ArrayList

15.4 StringBuilder

Figure 15.12 also shows a respectable linear-time implementation of toString,
using a StringBuilder to avoid quadratic running time. (StringBuilder was added
in Java 5 and is slightly faster than StringBuffer; it is preferable for single-
threaded applications). To see why StringBuilder is needed, consider the
following code fragment that builds a String with N A’s:

String result = "";
for(int i = 0; i < N; i++)
 result += 'A';

While there is no doubt that this fragment works correctly because String
objects are immutable, each call to result += 'A' is rewritten as result =
result + 'A', and once we see that, it is apparent that each String concatena-
tion creates a new String object. As we get further into the loop, these String
objects become more expensive to create. We can estimate the cost of the ith
String concatenation to be i, so the total cost is 1 + 2 + 3 + ... + N, or O(N2). If
N is 100,000, it is simple to write the code and see that the running time is
significant. Yet a simple rewrite

char [] theChars = new char[N];
for(int i = 0; i < N; i++)
 theChars[i] = 'A';
String result = new String(theChars);

results in a linear-time algorithm that executes in the blink of the eye.
The use of an array of characters works only if we know the final size of

the String. Otherwise, we have to use something like ArrayList<char>. A
StringBuilder is similar in concept to an ArrayList<char>, with array dou-
bling but with method names that are specific for String operations. Using a
StringBuilder, the code looks like

StringBuilder sb = new StringBuilder();
for(int i = 0; i < N; i++)
 sb.append('A');
String result = new String(sb);

This code is linear-time and runs quickly. Some String concatenations,
such as those in a single expression, are optimized by the compiler to
avoid repeated creations of Strings. But if your concatenations are inter-
mingled with other statements, as is the case here, then you often can use
a StringBuilder for more efficient code.

15.5 implementation of ArrayList with an iterator 585

15.5 implementation of
ArrayList with an iterator

The various ArrayList classes shown in Part One were not iterator-aware. This
section provides an implementation of ArrayList that we will place in
weiss.util and includes support for bidirectional iterators. In order to keep the
amount of code somewhat manageable, we have stripped out the bulk of the
javadoc comments. They can be found in the online code.

The implementation is found in Figures 15.13 to 15.16. At line 3 we see
that ArrayList extends the AbstractCollection abstract class, and at line 4
ArrayList declares that it implements the List interface.

The internal array, theItems, and collection size, theSize, are declared at
lines 9 and 10, respectively. More interesting is modCount, which is declared
at line 11. modCount represents the number of structural modifications (adds,
removes) made to the ArrayList. The idea is that when an iterator is con-
structed, the iterator saves this value in its data member expectedModCount.
When any iterator operation is performed, the iterator’s expectedModCount
member is compared with the ArrayList’s modCount, and if they disagree, a
ConcurrentModificationException can be thrown.

Line 16 illustrates the typical constructor that performs a shallow copy of
the members in another collection, simply by stepping through the collection
and calling add. The clear method, started at line 26, initializes the ArrayList
and can be called from the constructor. It also resets theItems, which allows
the garbage collector to reclaim all the otherwise unreferenced objects that
were in the ArrayList. The remaining routines in Figure 15.13 are relatively
straightforward.

Figure 15.14 implements the remaining methods that do not depend on
iterators. findPos is a private helper that returns the position of an object that
is either being removed or subjected to a contains call. Extra code is present
because it is legal to add null to the ArrayList, and if we were not careful, the
call to equals at line 60 could have generated a NullPointerException. Observe
that both add and remove will result in a change to modCount.

In Figure 15.15 we see the two factory methods that return iterators, and
we see the beginning of the implementation of the ListIterator interface.
Observe that ArrayListIterator IS-A ListIterator and ListIterator IS-A Iter-
ator. So ArrayListIterator can be returned at lines 103 and 106.

In the implementation of ArrayListIterator, done as a private inner class,
we maintain the current position at line 111. The current position represents
the index of the element that would be returned by calling next. At line 112 we
declare the expectedModCount member. Like all class members, it is initialized

586 chapter 15 inner classes and implementation of ArrayList

figure 15.13

ArrayList
implementation
(part 1)

1 package weiss.util;
2
3 public class ArrayList<AnyType> extends AbstractCollection<AnyType>
4 implements List<AnyType>
5 {
6 private static final int DEFAULT_CAPACITY = 10;
7 private static final int NOT_FOUND = -1;
8
9 private AnyType [] theItems;

10 private int theSize;
11 private int modCount = 0;
12
13 public ArrayList()
14 { clear(); }
15
16 public ArrayList(Collection<? extends AnyType> other)
17 {
18 clear();
19 for(AnyType obj : other)
20 add(obj);
21 }
22
23 public int size()
24 { return theSize; }
25
26 public void clear()
27 {
28 theSize = 0;
29 theItems = (AnyType []) new Object[DEFAULT_CAPACITY];
30 modCount++;
31 }
32
33 public AnyType get(int idx)
34 {
35 if(idx < 0 || idx >= size())
36 throw new ArrayIndexOutOfBoundsException();
37 return theItems[idx];
38 }
39
40 public AnyType set(int idx, AnyType newVal)
41 {
42 if(idx < 0 || idx >= size())
43 throw new ArrayIndexOutOfBoundsException();
44 AnyType old = theItems[idx];
45 theItems[idx] = newVal;
46
47 return old;
48 }
49
50 public boolean contains(Object x)
51 { return findPos(x) != NOT_FOUND; }

15.5 implementation of ArrayList with an iterator 587

figure 15.14

ArrayList
implementation
(part 2)

52 private int findPos(Object x)
53 {
54 for(int i = 0; i < size(); i++)
55 if(x == null)
56 {
57 if(theItems[i] == null)
58 return i;
59 }
60 else if(x.equals(theItems[i]))
61 return i;
62
63 return NOT_FOUND;
64 }
65
66 public boolean add(AnyType x)
67 {
68 if(theItems.length == size())
69 {
70 AnyType [] old = theItems;
71 theItems = (AnyType []) new Object[theItems.length * 2 + 1];
72 for(int i = 0; i < size(); i++)
73 theItems[i] = old[i];
74 }
75 theItems[theSize++] = x;
76 modCount++;
77 return true;
78 }
79
80 public boolean remove(Object x)
81 {
82 int pos = findPos(x);
83
84 if(pos == NOT_FOUND)
85 return false;
86 else
87 {
88 remove(pos);
89 return true;
90 }
91 }
92
93 public AnyType remove(int idx)
94 {
95 AnyType removedItem = theItems[idx];
96 for(int i = idx; i < size() - 1; i++)
97 theItems[i] = theItems[i + 1];
98 theSize--;
99 modCount++;

100 return removedItem;
101 }

588 chapter 15 inner classes and implementation of ArrayList

when an instance of the iterator is created (immediately prior to calling the
constructor); modCount is a shorthand for ArrayList.this.modCount. The two
Boolean instance members that follow are flags used to verify that a call to
remove is legal.

The ArrayListIterator constructor is declared package visible; thus it is
usable by the ArrayList. Of course it could be declared public, but there is no
reason to do so and even if it were private, it would still be usable by ArrayList.
Package visible, however, seems most natural in this situation. Both hasNext and
hasPrevious verify that there have been no external structural modifications
since the iterator was created, throwing an exception if the ArrayList modCount
does not match the ArrayListIterator expectedModCount.

figure 15.15

ArrayList
implementation
(part 3)

102 public Iterator<AnyType> iterator()
103 { return new ArrayListIterator(0); }
104
105 public ListIterator<AnyType> listIterator(int idx)
106 { return new ArrayListIterator(idx); }
107
108 // This is the implementation of the ArrayListIterator
109 private class ArrayListIterator implements ListIterator<AnyType>
110 {
111 private int current;
112 private int expectedModCount = modCount;
113 private boolean nextCompleted = false;
114 private boolean prevCompleted = false;
115
116 ArrayListIterator(int pos)
117 {
118 if(pos < 0 || pos > size())
119 throw new IndexOutOfBoundsException();
120 current = pos;
121 }
122
123 public boolean hasNext()
124 {
125 if(expectedModCount != modCount)
126 throw new ConcurrentModificationException();
127 return current < size();
128 }
129
130 public boolean hasPrevious()
131 {
132 if(expectedModCount != modCount)
133 throw new ConcurrentModificationException();
134 return current > 0;
135 }

15.5 implementation of ArrayList with an iterator 589

The ArrayListIterator class is completed in Figure 15.16. next and previous
are mirror image symmetries. Examining next, we see first a test at line 138 to
make sure we have not exhausted the iteration (implicitly this tests for structural
modifications also). We then set nextCompleted to true to allow remove to succeed,
and then we return the array item that current is examining, advancing current
after its value has been used.

The previous method is similar, except that we must lower current’s value
first. This is because when traversing in reverse, if current equals the con-
tainer size, we have not yet started the iteration, and when current equals
zero, we have completed the iteration (but can remove the item in this position

figure 15.16

ArrayList
implementation
(part 4)

136 public AnyType next()
137 {
138 if(!hasNext())
139 throw new NoSuchElementException();
140 nextCompleted = true;
141 prevCompleted = false;
142 return theItems[current++];
143 }
144
145 public AnyType previous()
146 {
147 if(!hasPrevious())
148 throw new NoSuchElementException();
149 prevCompleted = true;
150 nextCompleted = false;
151 return theItems[--current];
152 }
153
154 public void remove()
155 {
156 if(expectedModCount != modCount)
157 throw new ConcurrentModificationException();
158
159 if(nextCompleted)
160 ArrayList.this.remove(--current);
161 else if(prevCompleted)
162 ArrayList.this.remove(current);
163 else
164 throw new IllegalStateException();
165
166 prevCompleted = nextCompleted = false;
167 expectedModCount++;
168 }
169 }
170 }

590 chapter 15 inner classes and implementation of ArrayList

if the prior operation was previous). Observe that next followed by previous
yields identical items.

Finally, we come to remove, which is extremely tricky because the seman-
tics of remove depend on which direction the traversal is proceeding. In fact,
this probably suggests a bad design in the Collections API: Method semantics
should not depend so strongly on which methods have been called prior to it.
But remove is what it is, so we have to implement it.

The implementation of remove begins with the test for structural modification
at line 156. If the prior iterator state change operation was a next, as evidenced by
the test at line 159 showing that nextCompleted is true, then we call the ArrayList
remove method (started at line 93 in Figure 15.14) that takes an index as a parame-
ter. The use of ArrayList.this.remove is required because the local version of
remove hides the outer class version. Because we have already advanced past the
item to be removed, we must remove the item in position current-1. This slides
the next item from current to current-1 (since the old current-1 position has now
been removed), so we use the expression --current in line 160.

When traversing the other direction, we are sitting on the last item that
was returned, so we simply pass current as a parameter to the outer remove.
After it returns, the elements in higher indices are slid one index lower, so
current is sitting on the correct element and can be used in the expression at
line 162.

In either case, we cannot do another remove until we do a next or previous,
so at line 166 we clear both flags. Finally, at line 167, we increase the value of
expectedModCount to match the container’s. Observe that this is increased only
for this iterator, so any other iterators are now invalidated.

This class, which is perhaps the simplest of the Collections API classes
that contains iterators, illustrates why in Part Four we elect to begin with a
simple protocol and then provide more complete implementations at the end
of the chapter.

summary

This chapter introduced the inner class, which is a Java technique that is
commonly used to implement iterator classes. Each instance of an inner
class corresponds to exactly one instance of an outer class and automatically
maintains a reference to the outer class object that caused its construction. A
nested class relates two types to each other, while an inner class relates two
objects to each other. The inner class is used in this chapter to implement
the ArrayList.

The next chapter illustrates implementations of stacks and queues.

exercises 591

key concepts

AbstractCollection Implements some of the methods in the Collection inter-
face. (580)

inner class A class inside a class, which is useful for implementing the iterator
pattern. The inner class always contains an implicit reference to the outer
object that created it. (576)

StringBuilder Used to construct Strings without repeatedly creating a large
number of intermediate Strings. (584)

common errors

1. An instance inner class cannot be constructed without an outer object.
This is most easily done with a factory method in the outer class. It is
common to forget the word static when declaring a nested class, and this
will often generate a difficult-to-understand error related to this rule.

2. Excessive String concatenations can turn a linear-time program into a
quadratic-time program.

on the internet

The following files are available:

MyContainerTest.java The test program for the final iterator example
that uses inner classes, as shown in Section
15.2. Iterator.java and MyContainer.java are
both found in the weiss.ds package online.

AbstractCollection.java Contains the code in Figures 15.10 to 15.12.
ArrayList.java Contains the code in Figures 15.13 to 15.16.

exercises

IN SHORT

15.1 What is the difference between a nested class and an inner class?

15.2 Are private members of an inner (or nested) class visible to methods in
the outer class?

15.3 In Figure 15.17, are the declarations of a and b legal? Why or why not?

592 chapter 15 inner classes and implementation of ArrayList

15.4 In Figure 15.17 (assuming illegal code is fixed), how are objects of
type Inner1 and Inner2 created (you may suggest additional members)?

15.5 What is a StringBuilder?

IN THEORY

15.6 Suppose an inner class I is declared public in its outer class O. Why
might unusual syntax be required to declare a class E that extends I but
is declared as a top-level class? (The required syntax is even more
bizarre than what was seen for new, but often requires bad design to be
needed.)

15.7 What is the running time of clear, as implemented for ArrayList?
What would be the running time if the inherited version from
AbstractCollection was used instead?

IN PRACTICE

15.8 Add both the previous and hasPrevious methods to the final version of
the MyContainer class.

15.9 Assume that we would like an iterator that implements the isValid,
advance, and retrieve set of methods, but all we have is the standard
java.util.Iterator interface.
a. What pattern describes the problem we are trying to solve?
b. Design a BetterIterator class, and then implement it in terms of

java.util.Iterator.

figure 15.17

Code for Exercises
15.3 and 15.4

1 class Outer
2 {
3 private int x = 0;
4 private static int y = 37;
5
6 private class Inner1 implements SomeInterface
7 {
8 private int a = x + y;
9 }

10
11 private static class Inner2 implements SomeInterface
12 {
13 private int b = x + y;
14 }
15 }

exercises 593

15.10 Figure 15.18 contains two proposed implementations of clear for
AbstractCollection. Does either work?

PROGRAMMING PROJECTS

15.11 The Collection interface in the Java Collections API defines methods
removeAll, addAll, and containsAll. Add these methods to the Collection
interface and provide implementations in AbstractCollection.

15.12 Collections.unmodifiableCollection takes a Collection and returns an
immutable Collection. Implement this method. To do so, you will need
to use a local class (a class inside a method). The class implements the
Collection interface and throws an UnsupportedOperationException for
all mutating methods. For other methods, it forwards the request to the
Collection being wrapped. You will also have to hide an unmodifiable
iterator.

15.13 Two Collection objects are equal if either both implement the List inter-
face and contain the same items in the same order or both implement the
Set interface and contain the same items in any order. Otherwise, the
Collection objects are not equal. Provide, in AbstractCollection, an
implementation of equals that follows this general contract. Addition-
ally, provide a hashCode method in AbstractCollection that follows the
general contract of hashCode. (Do this by using an iterator and adding the
hashCodes of all the entries. Watch out for null entries.)

figure 15.18

Proposed
implementations of
clear for
AbstractCollection

1 public void clear() // Version #1
2 {
3 Iterator<AnyType> itr = iterator();
4 while(!isEmpty())
5 remove(itr.next());
6 }
7
8 public void clear() // Version #2
9 {

10 while(!isEmpty())
11 remove(iterator().next());
12 }

This page intentionally left blank

chap te r 16

stacks and queues

In this chapter we discuss implementation of the stack and queue data struc-
tures. Recall from Chapter 6 that the basic operations are expected to take con-
stant time. For both the stack and queue, there are two basic ways to arrange for
constant-time operations. The first is to store the items contiguously in an array,
and the second is to store items noncontiguously in a linked list. We present
implementations for both data structures, using both methods, in this chapter.

In this chapter, we show

n An array-based implementation of the stack and queue

n A linked list–based implementation of the stack and queue

n A brief comparison of the two methods

n An illustration of Collections API stack implementation

16.1 dynamic array implementations
In this section we use a simple array to implement the stack and queue. The
resulting algorithms are extremely efficient and also are simple to code. Recall
that we have been using ArrayList instead of arrays. The add method of ArrayList

596 chapter 16 stacks and queues

Recall that array
doubling does not
affect performance
in the long run.

is, in effect, the same as push. However, because we are interested in a general dis-
cussion of the algorithms, we implement the array-based stack using basic arrays,
duplicating some of the code seen earlier in the ArrayList implementations.

16.1.1 stacks
A stack can be
implemented with
an array and an
integer that indi-
cates the index of
the top element.

As Figure 16.1 shows, a stack can be implemented with an array and an inte-
ger. The integer tos (top of stack) provides the array index of the top element
of the stack. Thus when tos is –1, the stack is empty. To push, we increment
tos and place the new element in the array position tos. Accessing the top
element is thus trivial, and we can perform the pop by decrementing tos. In
Figure 16.1, we begin with an empty stack. Then we show the stack after
three operations: push(a), push(b), and pop.

Figure 16.2 shows the skeleton for the array-based Stack class. It specifies
two data members: theArray, which is expanded as needed, stores the items in
the stack; and topOfStack gives the index of the current top of the stack. For an
empty stack, this index is –1. The constructor is shown in Figure 16.3.

Most of the stack
routines are appli-
cations of previ-
ously discussed
ideas.

The public methods are listed in lines 22–33 of the skeleton. Most of
these routines have simple implementations. The isEmpty and makeEmpty rou-
tines are one-liners, as shown in Figure 16.4. The push method is shown in
Figure 16.5. If it were not for the array doubling, the push routine would be
only the single line of code shown at line 9. Recall that the use of the prefix
++ operator means that topOfStack is incremented and that its new value is
used to index theArray. The remaining routines are equally short, as shown in
Figures 16.6 and 16.7. The postfix -- operator used in Figure 16.7 indicates
that, although topOfStack is decremented, its prior value is used to index
theArray.

If there is no array doubling, every operation takes constant time. A push
that involves array doubling will take O(N) time. If this were a frequent
occurrence, we would need to worry. However, it is infrequent because an

(a) tos (–1) (b)

tos (0)

(c)

tos (1)

(d)

tos (0)a

b

a a

figure 16.1

How the stack
routines work:
(a) empty stack;
(b) push(a);
(c) push(b);
(d) pop()

16.1 dynamic array implementations 597

array doubling that involves N elements must be preceded by at least N /2
pushes that do not involve an array doubling. Consequently, we can charge
the O(N) cost of the doubling over these N /2 easy pushes, thereby effectively
raising the cost of each push by only a small constant. This technique is
known as amortization.

figure 16.2

Skeleton for the
array-based stack
class

1 package weiss.nonstandard;
2
3 // ArrayStack class
4 //
5 // CONSTRUCTION: with no initializer
6 //
7 // ******************PUBLIC OPERATIONS*********************
8 // void push(x) --> Insert x
9 // void pop() --> Remove most recently inserted item

10 // AnyType top() --> Return most recently inserted item
11 // AnyType topAndPop() --> Return and remove most recent item
12 // boolean isEmpty() --> Return true if empty; else false
13 // void makeEmpty() --> Remove all items
14 // ******************ERRORS********************************
15 // top, pop, or topAndPop on empty stack
16
17 public class ArrayStack<AnyType> implements Stack<AnyType>
18 {
19 public ArrayStack()
20 { /* Figure 16.3 */ }
21
22 public boolean isEmpty()
23 { /* Figure 16.4 */ }
24 public void makeEmpty()
25 { /* Figure 16.4 */ }
26 public AnyType top()
27 { /* Figure 16.6 */ }
28 public void pop()
29 { /* Figure 16.6 */ }
30 public AnyType topAndPop()
31 { /* Figure 16.7 */ }
32 public void push(AnyType x)
33 { /* Figure 16.5 */ }
34
35 private void doubleArray()
36 { /* Implementation in online code */ }
37
38 private AnyType [] theArray;
39 private int topOfStack;
40
41 private static final int DEFAULT_CAPACITY = 10;
42 }

598 chapter 16 stacks and queues

A real-life example of amortization is payment of income taxes. Rather
than pay your entire bill on April 15, the government requires that you pay
most of your taxes through withholding. The total tax bill is always the same;

figure 16.3

The zero-parameter
constructor for the
ArrayStack class

1 /**
2 * Construct the stack.
3 */
4 public ArrayStack()
5 {
6 theArray = (AnyType []) new Object[DEFAULT_CAPACITY];
7 topOfStack = -1;
8 }

figure 16.4

The isEmpty and
makeEmpty routines for
the ArrayStack class

1 /**
2 * Test if the stack is logically empty.
3 * @return true if empty, false otherwise.
4 */
5 public boolean isEmpty()
6 {
7 return topOfStack == -1;
8 }
9

10 /**
11 * Make the stack logically empty.
12 */
13 public void makeEmpty()
14 {
15 topOfStack = -1;
16 }

figure 16.5

The push method for
the ArrayStack class

1 /**
2 * Insert a new item into the stack.
3 * @param x the item to insert.
4 */
5 public void push(AnyType x)
6 {
7 if(topOfStack + 1 == theArray.length)
8 doubleArray();
9 theArray[++topOfStack] = x;

10 }

16.1 dynamic array implementations 599

it is when the tax is paid that varies. The same is true for the time spent in the
push operations. We can charge for the array doubling at the time it occurs, or
we can bill each push operation equally. An amortized bound requires that we
bill each operation in a sequence for its fair share of the total cost. In our
example, the cost of array doubling therefore is not excessive.

figure 16.6

The top and pop
methods for the
ArrayStack class

1 /**
2 * Get the most recently inserted item in the stack.
3 * Does not alter the stack.
4 * @return the most recently inserted item in the stack.
5 * @throws UnderflowException if the stack is empty.
6 */
7 public AnyType top()
8 {
9 if(isEmpty())

10 throw new UnderflowException("ArrayStack top");
11 return theArray[topOfStack];
12 }
13
14 /**
15 * Remove the most recently inserted item from the stack.
16 * @throws UnderflowException if the stack is empty.
17 */
18 public void pop()
19 {
20 if(isEmpty())
21 throw new UnderflowException("ArrayStack pop");
22 topOfStack--;
23 }

figure 16.7

The topAndPop method
for the ArrayStack
class

1 /**
2 * Return and remove the most recently inserted item
3 * from the stack.
4 * @return the most recently inserted item in the stack.
5 * @throws Underflow if the stack is empty.
6 */
7 public AnyType topAndPop()
8 {
9 if(isEmpty())

10 throw new UnderflowException("ArrayStack topAndPop");
11 return theArray[topOfStack--];
12 }

600 chapter 16 stacks and queues

16.1.2 queues
Storing the queue
items beginning at
the start of any
array makes
dequeueing
expensive.

The easiest way to implement the queue is to store the items in an array with the
front item in the front position (i.e., array index 0). If back represents the position
of the last item in the queue, then to enqueue we merely increment back and place
the item there. The problem is that the dequeue operation is very expensive. The
reason is that, by requiring that the items be placed at the start of the array, we
force the dequeue to shift all the items one position after we remove the front item.

A dequeue is
implemented by
incrementing the
front position.

Figure 16.8 shows that we can overcome this problem when performing a
dequeue by incrementing front rather than shifting all the elements. When the
queue has one element, both front and back represent the array index of that
element. Thus, for an empty queue, back must be initialized to front-1.

This implementation ensures that both enqueue and dequeue can be per-
formed in constant time. The fundamental problem with this approach is
shown in the first line of Figure 16.9. After three more enqueue operations, we
cannot add any more items, even though the queue is not really full. Array

a

a b

b

front

back

makeEmpty()

size = 0

 front

back

enqueue(a)

size = 1

front

back

enqueue(b)

size = 2

 front

back

dequeue()

size = 1

front

back

dequeue()

size = 0

figure 16.8

Basic array
implementation of
the queue

16.1 dynamic array implementations 601

doubling does not solve the problem because, even if the size of the array is
1,000, after 1,000 enqueue operations there is no room in the queue, regardless
of its actual size. Even if 1,000 dequeue operations have been performed, thus
abstractly making the queue empty, we cannot add to it.

Wraparound
returns front or
back to the begin-
ning of the array
when either
reaches the end.
Using wraparound
to implement the
queue is called a
circular array
implementation.

As Figure 16.9 shows, however, there is plenty of extra space: All the
positions before front are unused and can thus be recycled. Hence we use
wraparound; that is, when either back or front reaches the end of the array, we
reset it to the beginning. This operation implementing a queue is called a cir-
cular array implementation. We need to double the array only when the num-
ber of elements in the queue equals the number of array positions. To
enqueue(f), we therefore reset back to the start of the array and place f there.
After three dequeue operations, front is also reset to the start of the array.

The skeleton for the ArrayQueue class is shown in Figure 16.10. The
ArrayQueue class has four data members: a dynamically expanding array, the
number of items currently in the queue, the array index of the front item, and
the array index of the back item.

f

f

front

back

After 3 enqueues

size = 3

front

 back

enqueue(f)

size = 4

front

back

dequeue()

size = 3

front

back

dequeue()

size = 2

front

back

dequeue()

size = 1

f

f

c d e

c d e

d e

e

figure 16.9

Array implementation
of the queue with
wraparound

602 chapter 16 stacks and queues

If the queue is full,
we must imple-
ment array doubling
carefully.

We declare two methods in the private section. These methods are used
internally by the ArrayQueue methods but are not made available to the user of
the class. One of these methods is the increment routine, which adds 1 to its
parameter and returns the new value. Because this method implements wrap-
around, if the result would equal the array size it is wrapped around to zero.
This routine is shown in Figure 16.11. The other routine is doubleQueue, which

figure 16.10

Skeleton for the
array-based queue
class

1 package weiss.nonstandard;
2
3 // ArrayQueue class
4 //
5 // CONSTRUCTION: with no initializer
6 //
7 // ******************PUBLIC OPERATIONS*********************
8 // void enqueue(x) --> Insert x
9 // AnyType getFront() --> Return least recently inserted item

10 // AnyType dequeue() --> Return and remove least recent item
11 // boolean isEmpty() --> Return true if empty; else false
12 // void makeEmpty() --> Remove all items
13 // ******************ERRORS********************************
14 // getFront or dequeue on empty queue
15
16 public class ArrayQueue<AnyType>
17 {
18 public ArrayQueue()
19 { /* Figure 16.12 */ }
20
21 public boolean isEmpty()
22 { /* Figure 16.13 */ }
23 public void makeEmpty()
24 { /* Figure 16.17 */ }
25 public AnyType dequeue()
26 { /* Figure 16.16 */ }
27 public AnyType getFront()
28 { /* Figure 16.16 */ }
29 public void enqueue(AnyType x)
30 { /* Figure 16.14 */ }
31
32 private int increment(int x)
33 { /* Figure 16.11 */ }
34 private void doubleQueue()
35 { /* Figure 16.15 */ }
36
37 private AnyType [] theArray;
38 private int currentSize;
39 private int front;
40 private int back;
41
42 private static final int DEFAULT_CAPACITY = 10;
43 }

16.1 dynamic array implementations 603

is called if an enqueue requires a doubling of the array. It is slightly more com-
plex than the usual expansion because the queue items are not necessarily
stored in an array starting at location 0. Thus items must be copied carefully.
We discuss doubleQueue along with enqueue.

Many of the public methods resemble their stack counterparts, including
the constructor shown in Figure 16.12 and isEmpty, shown in Figure 16.13.
This constructor is not particularly special, except that we must be sure that
we have the correct initial values for both front and back. This is done by call-
ing makeEmpty.

When we double
the queue array, we
cannot simply copy
the entire array
directly.

The enqueue routine is shown in Figure 16.14. The basic strategy is simple
enough, as illustrated by lines 9–11 in the enqueue routine. The doubleQueue
routine, shown in Figure 16.15, begins by resizing the array. We must move
items starting at position front, rather than 0.

figure 16.11

The wraparound
routine

1 /**
2 * Internal method to increment with wraparound.
3 * @param x any index in theArray's range.
4 * @return x+1, or 0 if x is at the end of theArray.
5 */
6 private int increment(int x)
7 {
8 if(++x == theArray.length)
9 x = 0;

10 return x;
11 }

figure 16.12

The constructor for
the ArrayQueue class

1 /**
2 * Construct the queue.
3 */
4 public ArrayQueue()
5 {
6 theArray = (AnyType []) new Object[DEFAULT_CAPACITY];
7 makeEmpty();
8 }

figure 16.13

The isEmpty routine
for the ArrayQueue
class

1 /**
2 * Test if the queue is logically empty.
3 * @return true if empty, false otherwise.
4 */
5 public boolean isEmpty()
6 {
7 return currentSize == 0;
8 }

604 chapter 16 stacks and queues

Thus doubleQueue steps through the old array and copies each item to the
new part of the array at lines 11–12. Then we reset back at line 16. The dequeue
and getFront routines are shown in Figure 16.16; both are short. Finally, the
makeEmpty routine is shown in Figure 16.17. The queue routines clearly are
constant-time operations, so the cost of array doubling can be amortized over
the sequence of enqueue operations, as for the stack.

The circular array implementation of the queue can easily be done incor-
rectly when attempts to shorten the code are made. For instance, if you
attempt to avoid using the size member by using front and back to infer the
size, the array must be resized when the number of items in the queue is 1 less
than the array’s size.

figure 16.14

The enqueue routine
for the ArrayQueue
class

1 /**
2 * Insert a new item into the queue.
3 * @param x the item to insert.
4 */
5 public void enqueue(AnyType x)
6 {
7 if(currentSize == theArray.length)
8 doubleQueue();
9 back = increment(back);

10 theArray[back] = x;
11 currentSize++;
12 }

figure 16.15

Dynamic expansion for the ArrayQueue class

1 /**
2 * Internal method to expand theArray.
3 */
4 private void doubleQueue()
5 {
6 AnyType [] newArray;
7
8 newArray = (AnyType []) new Object[theArray.length * 2];
9

10 // Copy elements that are logically in the queue
11 for(int i = 0; i < currentSize; i++, front = increment(front))
12 newArray[i] = theArray[front];
13
14 theArray = newArray;
15 front = 0;
16 back = currentSize - 1;
17 }

16.2 linked list implementations 605

16.2 linked list implementations
An alternative to the contiguous array implementation is a linked list. Recall
from Section 6.5 that in a linked list, we store each item in a separate object
that also contains a reference to the next object in the list.

figure 16.16

The dequeue and
getFront routines for
the ArrayQueue class

1 /**
2 * Return and remove the least recently inserted item
3 * from the queue.
4 * @return the least recently inserted item in the queue.
5 * @throws UnderflowException if the queue is empty.
6 */
7 public AnyType dequeue()
8 {
9 if(isEmpty())

10 throw new UnderflowException("ArrayQueue dequeue");
11 currentSize--;
12
13 AnyType returnValue = theArray[front];
14 front = increment(front);
15 return returnValue;
16 }
17
18 /**
19 * Get the least recently inserted item in the queue.
20 * Does not alter the queue.
21 * @return the least recently inserted item in the queue.
22 * @throws UnderflowException if the queue is empty.
23 */
24 public AnyType getFront()
25 {
26 if(isEmpty())
27 throw new UnderflowException("ArrayQueue getFront");
28 return theArray[front];
29 }

figure 16.17

The makeEmpty routine
for the ArrayQueue
class

1 /**
2 * Make the queue logically empty.
3 */
4 public void makeEmpty()
5 {
6 currentSize = 0;
7 front = 0;
8 back = -1;
9 }

606 chapter 16 stacks and queues

The advantage of a
linked list imple-
mentation is that
the excess memory
is only one refer-
ence per item. The
disadvantage is that
the memory man-
agement could be
time consuming.

The advantage of the linked list is that the excess memory is only one ref-
erence per item. In contrast, a contiguous array implementation uses excess
space equal to the number of vacant array items (plus some additional mem-
ory during the doubling phase). The linked list advantage can be significant in
other languages if the vacant array items store uninitialized instances of
objects that consume significant space. In Java this advantage is minimal.
Even so, we discuss the linked list implementations for three reasons.

1. An understanding of implementations that might be useful in other
languages is important.

2. Implementations that use linked lists can be shorter for the queue than
the comparable array versions.

3. These implementations illustrate the principles behind the more gen-
eral linked list operations given in Chapter 17.

For the implementation to be competitive with contiguous array imple-
mentations, we must be able to perform the basic linked list operations in con-
stant time. Doing so is easy because the changes in the linked list are
restricted to the elements at the two ends (front and back) of the list.

16.2.1 stacks
In implementing the
stack class, the top
of the stack is rep-
resented by the
first item in a linked
list.

The stack class can be implemented as a linked list in which the top of the stack
is represented by the first item in the list, as shown in Figure 16.18. To imple-
ment a push, we create a new node in the list and attach it as the new first ele-
ment. To implement a pop, we merely advance the top of the stack to the second
item in the list (if there is one). An empty stack is represented by an empty
linked list. Clearly, each operation is performed in constant time because, by
restricting operations to the first node, we have made all calculations indepen-
dent of the size of the list. All that remains is the Java implementation.

Figure 16.19 provides the class skeleton. Lines 39 to 49 give the type
declaration for the nodes in the list. A ListNode consists of two data members:

figure 16.18

Linked list
implementation of the
Stack class

D C B A

topOfStack

16.2 linked list implementations 607

figure 16.19

Skeleton for
linked list-based
stack class

1 package weiss.nonstandard;
2
3 // ListStack class
4 //
5 // CONSTRUCTION: with no initializer
6 //
7 // ******************PUBLIC OPERATIONS*********************
8 // void push(x) --> Insert x
9 // void pop() --> Remove most recently inserted item

10 // AnyType top() --> Return most recently inserted item
11 // AnyType topAndPop() --> Return and remove most recent item
12 // boolean isEmpty() --> Return true if empty; else false
13 // void makeEmpty() --> Remove all items
14 // ******************ERRORS********************************
15 // top, pop, or topAndPop on empty stack
16
17 public class ListStack<AnyType> implements Stack<AnyType>
18 {
19 public boolean isEmpty()
20 { return topOfStack == null; }
21 public void makeEmpty()
22 { topOfStack = null; }
23
24 public void push(AnyType x)
25 { /* Figure 16.20 */ }
26 public void pop()
27 { /* Figure 16.20 */ }
28 public AnyType top()
29 { /* Figure 16.21 */ }
30 public AnyType topAndPop()
31 { /* Figure 16.21 */ }
32
33 private ListNode<AnyType> topOfStack = null;
34 }
35
36 // Basic node stored in a linked list.
37 // Note that this class is not accessible outside
38 // of package weiss.nonstandard
39 class ListNode<AnyType>
40 {
41 public ListNode(AnyType theElement)
42 { this(theElement, null); }
43
44 public ListNode(AnyType theElement, ListNode<AnyType> n)
45 { element = theElement; next = n; }
46
47 public AnyType element;
48 public ListNode next;
49 }

608 chapter 16 stacks and queues

element stores the item and next stores a reference to the next ListNode in the
linked list. We provide constructors for ListNode that can be used to execute
both

ListNode<AnyType> p1 = new ListNode<AnyType>(x);

and

ListNode<AnyType> p2 = new ListNode<AnyType>(x, ptr2);

The ListNode dec-
laration is package-
visible but can be
used by the queue
implementation in
the same package.

One option is to nest ListNode in the Stack class. We use the slightly inferior
alternative of making it a top-level class that is only package-visible, thus
enabling reuse of the class for the queue implementation. The stack itself is
represented by a single data member, topOfStack, which is a reference to the
first ListNode in the linked list.

The constructor is not explicitly written, since by default we obtain an
empty stack by setting topOfStack to NULL. makeEmpty and isEmpty are thus triv-
ial and are shown at lines 19–22.

The stack routines
are essentially one-
liners.

Two routines are shown in Figure 16.20. The push operation is essentially
one line of code, in which we allocate a new ListNode whose data member con-
tains the item x to be pushed. The next reference for this new node is the original
topOfStack. This node then becomes the new topOfStack. We do all this at line 7.

The pop operation also is simple. After the obligatory test for emptiness,
we reset topOfStack to the second node in the list.

figure 16.20

The push and pop
routines for the
ListStack class

1 /**
2 * Insert a new item into the stack.
3 * @param x the item to insert.
4 */
5 public void push(AnyType x)
6 {
7 topOfStack = new ListNode<AnyType>(x, topOfStack);
8 }
9

10 /**
11 * Remove the most recently inserted item from the stack.
12 * @throws UnderflowException if the stack is empty.
13 */
14 public void pop()
15 {
16 if(isEmpty())
17 throw new UnderflowException("ListStack pop");
18 topOfStack = topOfStack.next;
19 }

16.2 linked list implementations 609

Finally, top and topAndPop are straightforward routines and are imple-
mented as shown in Figure 16.21.

16.2.2 queues

The queue can be implemented by a linked list, provided we keep references
to both the front and back of the list. Figure 16.22 shows the general idea.

figure 16.21

The top and topAndPop
routines for the
ListStack class

1 /**
2 * Get the most recently inserted item in the stack.
3 * Does not alter the stack.
4 * @return the most recently inserted item in the stack.
5 * @throws UnderflowException if the stack is empty.
6 */
7 public AnyType top()
8 {
9 if(isEmpty())

10 throw new UnderflowException("ListStack top");
11 return topOfStack.element;
12 }
13
14 /**
15 * Return and remove the most recently inserted item
16 * from the stack.
17 * @return the most recently inserted item in the stack.
18 * @throws UnderflowException if the stack is empty.
19 */
20 public AnyType topAndPop()
21 {
22 if(isEmpty())
23 throw new UnderflowException("ListStack topAndPop");
24
25 AnyType topItem = topOfStack.element;
26 topOfStack = topOfStack.next;
27 return topItem;
28 }

A B C D

front back
figure 16.22

Linked list
implementation of the
queue class

A linked list in which
we maintain a refer-
ence to the first and
last item can be
used to implement
the queue in con-
stant time per
operation.

610 chapter 16 stacks and queues

The ListQueue class is similar to the ListStack class. The ListQueue class skel-
eton is given in Figure 16.23. The only new thing here is that we maintain two ref-
erences instead of one. Figure 16.24 shows the constructors for the ListQueue class.

figure 16.23

Skeleton for the
linked list-based
queue class

1 package weiss.nonstandard;
2
3 // ListQueue class
4 //
5 // CONSTRUCTION: with no initializer
6 //
7 // ******************PUBLIC OPERATIONS*********************
8 // void enqueue(x) --> Insert x
9 // AnyType getFront() --> Return least recently inserted item

10 // AnyType dequeue() --> Return and remove least recent item
11 // boolean isEmpty() --> Return true if empty; else false
12 // void makeEmpty() --> Remove all items
13 // ******************ERRORS********************************
14 // getFront or dequeue on empty queue
15
16 public class ListQueue<AnyType>
17 {
18 public ListQueue()
19 { /* Figure 16.24 */ }
20 public boolean isEmpty()
21 { /* Figure 16.27 */ }
22 public void enqueue(AnyType x)
23 { /* Figure 16.25 */ }
24 public AnyType dequeue()
25 { /* Figure 16.25 */ }
26 public AnyType getFront()
27 { /* Figure 16.27 */ }
28 public void makeEmpty()
29 { /* Figure 16.27 */ }
30
31 private ListNode<AnyType> front;
32 private ListNode<AnyType> back;
33 }

figure 16.24

Constructor for the
linked list-based
ListQueue class

1 /**
2 * Construct the queue.
3 */
4 public ListQueue()
5 {
6 front = back = null;
7 }

16.2 linked list implementations 611

Enqueueing the
first element is a
special case
because there is no
next reference to
which a new node
can be attached.

Figure 16.25 implements both enqueue and dequeue. The dequeue routine is
logically identical to a stack pop (actually popAndTop). The enqueue routine has
two cases. If the queue is empty, we create a one-element queue by calling new
and having both front and back reference the single node. Otherwise, we create a
new node with data value x, attach it at the end of the list, and then reset the end of
the list to this new node, as illustrated in Figure 16.26. Note that enqueueing the
first element is a special case because there is no next reference to which a new
node can be attached. We do all this at line 10 in Figure 16.25.

The remaining methods for the ListQueue class are identical to the corre-
sponding ListStack routines. They are shown in Figure 16.27.

figure 16.25

The enqueue and
dequeue routines for
the ListQueue class

1 /**
2 * Insert a new item into the queue.
3 * @param x the item to insert.
4 */
5 public void enqueue(AnyType x)
6 {
7 if(isEmpty()) // Make a queue of one element
8 back = front = new ListNode<AnyType>(x);
9 else // Regular case

10 back = back.next = new ListNode<AnyType>(x);
11 }
12
13 /**
14 * Return and remove the least recently inserted item
15 * from the queue.
16 * @return the least recently inserted item in the queue.
17 * @throws UnderflowException if the queue is empty.
18 */
19 public AnyType dequeue()
20 {
21 if(isEmpty())
22 throw new UnderflowException("ListQueue dequeue");
23
24 AnyType returnValue = front.element;
25 front = front.next;
26 return returnValue;
27 }

612 chapter 16 stacks and queues

back

x

back

...

...

(a) Before

(b) After

figure 16.26

The enqueue operation
for the linked list-
based implementation

figure 16.27

Supporting routines
for the ListQueue
class

1 /**
2 * Get the least recently inserted item in the queue.
3 * Does not alter the queue.
4 * @return the least recently inserted item in the queue.
5 * @throws UnderflowException if the queue is empty.
6 */
7 public AnyType getFront()
8 {
9 if(isEmpty())

10 throw new UnderflowException("ListQueue getFront");
11 return front.element;
12 }
13
14 /**
15 * Make the queue logically empty.
16 */
17 public void makeEmpty()
18 {
19 front = null;
20 back = null;
21 }
22
23 /**
24 * Test if the queue is logically empty.
25 */
26 public boolean isEmpty()
27 {
28 return front == null;
29 }

16.4 the java.util.Stack class 613

16.3 comparison of the two methods
The array versus
linked list imple-
mentations
represent a classic
time–space
trade-off.

Both the array and linked list versions run in constant time per operation.
Thus they are so fast that they are unlikely to be the bottleneck of any algo-
rithm and, in that regard, which version is used rarely matters.

The array versions of these data structures are likely to be faster than their
linked list counterparts, especially if an accurate estimation of capacity is
available. If an additional constructor is provided to specify the initial capac-
ity (see Exercise 16.2) and the estimate is correct, no doubling is performed.
Also, the sequential access provided by an array is typically faster than the
potential nonsequential access offered by dynamic memory allocation.

The array implementation does have two drawbacks, however. First, for
queues, the array implementation is arguably more complex than the linked
list implementation, owing to the combined code for wraparound and array
doubling. Our implementation of array doubling was not as efficient as possi-
ble (see Exercise 16.8), thus a faster implementation of the queue would
require a few additional lines of code. Even the array implementation of the
stack uses a few more lines of code than its linked list counterpart.

The second drawback affects other languages, but not Java. When doubling,
we temporarily require three times as much space as the number of data items
suggests. The reason is that, when the array is doubled, we need to have memory
to store both the old and the new (double-sized) array. Further, at the queue’s peak
size, the array is between 50 percent and 100 percent full; on average it is 75 per-
cent full, so for every three items in the array, one spot is empty. The wasted space
is thus 33 percent on average and 100 percent when the table is only half full. As
discussed earlier, in Java, each element in the array is simply a reference. In other
languages, such as C++, objects are stored directly, rather than referenced. In
these languages, the wasted space could be significant when compared to the
linked list–based version that uses only an extra reference per item.

16.4 the java.util.Stack class
The Collections API provides a Stack class. The Stack class in java.util is
considered a legacy class and is not widely used. Figure 16.28 provides an
implementation.

614 chapter 16 stacks and queues

figure 16.28

A simplified
Collections-style
Stack class, based on
the ArrayList class

1 package weiss.util;
2
3 /**
4 * Stack class. Unlike java.util.Stack, this is not extended from
5 * Vector. This is the minimum respectable set of operations.
6 */
7 public class Stack<AnyType> implements java.io.Serializable
8 {
9 public Stack()

10 {
11 items = new ArrayList<AnyType>();
12 }
13
14 public AnyType push(AnyType x)
15 {
16 items.add(x);
17 return x;
18 }
19
20 public AnyType pop()
21 {
22 if(isEmpty())
23 throw new EmptyStackException();
24 return items.remove(items.size() - 1);
25 }
26
27 public AnyType peek()
28 {
29 if(isEmpty())
30 throw new EmptyStackException();
31 return items.get(items.size() - 1);
32 }
33
34 public boolean isEmpty()
35 {
36 return size() == 0;
37 }
38
39 public int size()
40 {
41 return items.size();
42 }
43
44 public void clear()
45 {
46 items.clear();
47 }
48
49 private ArrayList<AnyType> items;
50 }

summary 615

16.5 double-ended queues
A double-ended
queue (deque)
allows access at
both ends.

A double-ended queue (deque) is like a queue, except that access is allowed
at both ends. Exercise 14.15 describes an application of the deque. Rather
than the terms enqueue and dequeue, the terms used in the literature are
addFront, addRear, removeFront, and removeRear.

A deque can be implemented using an array in much the same way as a
queue. The implementation is left as Exercise 16.5. However, using a singly
linked list does not work cleanly because it is difficult to remove the last item
in a singly linked list.

Java 6 adds the Deque interface to package java.util. This interface
extends Queue, thus automatically providing methods such as add, remove,
element, size, and isEmpty. It also adds the familiar methods getFirst, getLast,
addFirst, addLast, removeFirst, and removeLast that we know are part of
java.util.LinkedList. Indeed, in Java 6, LinkedList extends Deque. Addition-
ally, Java 6 provides a new class, ArrayDeque, that implements Deque. The
ArrayDeque uses an efficient array implementation of the type described in this
chapter and may be somewhat faster for queue operations than LinkedList.

summary

In this chapter we described implementation of the stack and queue classes.
Both classes can be implemented by using a contiguous array or a linked list.
In each case, all operations use constant time; thus all operations are fast.

key concepts

circular array implementation The use of wraparound to implement a queue.
(601)

double-ended queue (deque) A queue that allows access at both ends. (615)
wraparound Occurs when front or back returns to the beginning of the array

when it reaches the end. (601)

common errors

1. Using an implementation that does not provide constant-time access is a
bad error. There is no justification for this inefficiency.

616 chapter 16 stacks and queues

on the internet

The files listed are available.

ArrayStack.java Contains the implementation of an array-based
stack.

ArrayQueue.java Contains the implementation of an array-based
queue.

ListStack.java Contains the implementation of a linked list-based
stack.

ListQueue.java Contains the implementation of a linked list-based
queue.

Stack.java Contains the implementation of a Collections API
stack.

exercises

IN SHORT

16.1 Draw the stack and queue data structures (for both the array and
linked list implementations) for each step in the following sequence:
add(1), add(2), remove, add(3), add(4), remove, remove, add(5).
Assume an initial size of 3 for the array implementation.

IN PRACTICE

16.2 Add constructors to the ArrayStack and ArrayQueue classes that allow
the user to specify an initial capacity.

16.3 Compare the running times for the array and linked list versions of
the stack class. Use Integer objects.

16.4 Write a main that declares and uses a stack of Integer and a stack of
Double simultaneously.

16.5 In package weiss.util, provide a Deque interface, an ArrayDeque class,
and modify LinkedList to implement Deque.

16.6 Implement the array-based stack class with an ArrayList. What are
the advantages and disadvantages of this approach?

16.7 Implement the array-based queue class with an ArrayList. What are
the advantages and disadvantages of this approach?

exercises 617

16.8 For the queue implementation presented in Section 16.1.2, show how
to copy the queue elements in the doubleQueue operation without mak-
ing calls to increment.

PROGRAMMING PROJECTS

16.9 An output-restricted double-ended queue supports insertions from
both ends but accesses and deletions only from the front. Implement
this data structure with a singly linked list.

16.10 Suppose that you want to add the findMin (but not deleteMin) opera-
tion to the stack repertoire. Implement this class as two stacks, as
described in Exercise 6.5.

16.11 Suppose that you want to add the findMin (but not deleteMin) opera-
tion to the Deque repertoire. Implement this class using four stacks. If
a deletion empties a stack, you will need to reorganize the remaining
items evenly.

This page intentionally left blank

chap te r 17

linked lists

In Chapter 16 we demonstrated that linked lists can be used to store items
noncontiguously. The linked lists used in that chapter were simplified, with all
the accesses performed at one of the list’s two ends.

In this chapter, we show

n How to allow access to any item by using a general linked list

n The general algorithms for the linked list operations

n How the iterator class provides a safe mechanism for traversing and
accessing linked lists

n List variations, such as doubly linked lists and circularly linked lists

n How to use inheritance to derive a sorted linked list class

n How to implement the Collections API LinkedList class

17.1 basic ideas
In this chapter we implement the linked list and allow general access (arbi-
trary insertion, deletion, and find operations) through the list. The basic linked
list consists of a collection of connected, dynamically allocated nodes. In a

620 chapter 17 linked lists

singly linked list, each node consists of the data element and a link to the next
node in the list. The last node in the list has a null next link. In this section we
assume that the node is given by the following ListNode declaration, which
does not use generics:

class ListNode
{
 Object element;
 ListNode next;
}

The first node in the linked list is accessible by a reference, as shown in
Figure 17.1. We can print or search in the linked list by starting at the first
item and following the chain of next links. The two basic operations that must
be performed are insertion and deletion of an arbitrary item x.

Insertion consists
of splicing a node
into the list and can
be accomplished
with one statement.

For insertion we must define where the insertion is to take place. If we
have a reference to some node in the list, the easiest place to insert is immedi-
ately after that item. As an example, Figure 17.2 shows how we insert x after
item a in a linked list. We must perform the following steps:

tmp = new ListNode(); // Create a new node
tmp.element = x; // Place x in the element member
tmp.next = current.next; // x's next node is b
current.next = tmp; // a's next node is x

As a result of these statements, the old list . . . a, b, . . . now appears as . . . a,
x, b, We can simplify the code if the ListNode has a constructor that
initializes the data members directly. In that case, we obtain

b c d

frontOfList

a

figure 17.1

Basic linked list

a b

x
current

tmp

......

figure 17.2

Insertion in a linked
list: Create new node
(tmp), copy in x, set
tmp’s next link, and set
current’s next link.

17.1 basic ideas 621

tmp = new ListNode(x, current.next); // Create new node
current.next = tmp; // a's next node is x

We now see that tmp is no longer necessary. Thus we have the one-liner

current.next = new ListNode(x, current.next);

Removal can be
accomplished by
bypassing the
node. We need a
reference to the
node prior to the
one we want to
remove.

The remove command can be executed in one link change. Figure 17.3
shows that to remove item x from the linked list, we set current to be the node
prior to x and then have current’s next link bypass x. This operation is
expressed by the statement

current.next = current.next.next;

The list . . . a, x, b, . . . now appears as . . . a, b,

Linked list opera-
tions use only a
constant number of
data movements.

The preceding discussion summarizes the basics of inserting and remov-
ing items at arbitrary places in a linked list. The fundamental property of a
linked list is that changes to it can be made by using only a constant number
of data movements, which is a great improvement over an array implementa-
tion. Maintaining contiguousness in an array means that whenever an item is
added or deleted, all items that follow it in the list must move.

17.1.1 header nodes

There is one problem with the basic description: It assumes that whenever an
item x is removed, some previous item is always present to allow a bypass.
Consequently, removal of the first item in the linked list becomes a special
case. Similarly, the insert routine does not allow us to insert an item to be the
new first element in the list. The reason is that insertions must follow some
existing item. So, although the basic algorithm works fine, some annoying
special cases must be dealt with.

Special cases are always problematic in algorithm design and frequently
lead to bugs in the code. Consequently, writing code that avoids special cases
is generally preferable. One way to do that is to introduce a header node.

A header node is an extra node in a linked list that holds no data but
serves to satisfy the requirement that every node containing an item have a

a bx

current

......

figure 17.3

Deletion from a
linked list

622 chapter 17 linked lists

previous node in the list. The header node for the list a, b, c is shown in
Figure 17.4. Note that a is no longer a special case. It can be deleted just
like any other node by having current reference the node before it. We can
also add a new first element to the list by setting current equal to the header
node and calling the insertion routine. By using the header node, we greatly
simplify the code—with a negligible space penalty. In more complex appli-
cations, header nodes not only simplify the code but also improve speed
because, after all, fewer tests mean less time.

The use of a header node is somewhat controversial. Some argue that
avoiding special cases is not sufficient justification for adding fictitious
cells; they view the use of header nodes as little more than old-style hack-
ing. Even so, we use them here precisely because they allow us to demon-
strate the basic link manipulations without obscuring the code with special
cases. Whether a header should be used is a matter of personal preference.
Furthermore, in a class implementation, its use would be completely trans-
parent to the user. However, we must be careful: The printing routine must
skip over the header node, as must all searching routines. Moving to the
front now means setting the current position to header.next, and so on. Fur-
thermore, as Figure 17.5 shows, with a dummy header node, a list is empty
if header.next is null.

17.1.2 iterator classes

The typical primitive strategy identifies a linked list by a reference to the
header node. Each individual item in the list can then be accessed by provid-
ing a reference to the node that stores it. The problem with that strategy is that

a b c

header

figure 17.4

Using a header node
for the linked list

header
figure 17.5

Empty list when a
header node is used

A header node
holds no data but
serves to satisfy the
requirement that
every node have a
previous node. A
header node allows
us to avoid special
cases such as
insertion of a new
first element and
removal of the first
element.

17.1 basic ideas 623

checking for errors is difficult. For example, a user could pass a reference to
something that is a node in a different list. One way to guarantee that this can-
not happen is to store a current position as part of a list class. To do so, we add
a second data member, current. Then, as all access to the list goes through the
class methods, we can be certain that current always represents a node in the
list, the header node, or null.

An iterator class
maintains a current
position and typi-
cally is package-
visible or an inner
class of a list (or
other container)
class.

This scheme has a problem: With only one position, the case of two itera-
tors needing to access the list independently is left unsupported. One way to
avoid this problem is to define a separate iterator class, which maintains a
notion of its current position. A list class would then not maintain any notion
of a current position and would only have methods that treat the list as a unit,
such as isEmpty and makeEmpty, or that accept an iterator as a parameter, such as
insert. Routines that depend only on an iterator itself, such as the advance rou-
tine that advances the iterator to the next position, would reside in the iterator
class. Access to the list is granted by making the iterator class either package-
visible or an inner class. We can view each instance of an iterator class as one
in which only legal list operations, such as advancing in the list, are allowed.

In Section 17.2 we define a generic list class LinkedList and an iterator
class LinkedListIterator. The LinkedList class does not have the same seman-
tics as java.util.LinkedList. However, later in the chapter we define a version
that does. To show how the nonstandard version works, let us look at a static
method that returns the size of a linked list, as shown in Figure 17.6. We
declare itr as an iterator that can access the linked list theList.

We initialize itr to the first element in theList (skipping over the header,
of course) by referencing the iterator given by theList.first().

The test itr.isValid() attempts to mimic the test p!=null that would be
conducted if p were a visible reference to a node. Finally, the expression
itr.advance() mimics the conventional idiom p=p.next.

figure 17.6

A static method that returns the size of a list

1 // In this routine, LinkedList and LinkedListIterator are the
2 // classes written in Section 17.2.
3 public static <AnyType> int listSize(LinkedList<AnyType> theList)
4 {
5 LinkedListIterator<AnyType> itr;
6 int size = 0;
7
8 for(itr = theList.first(); itr.isValid(); itr.advance())
9 size++;

10
11 return size;
12 }

By storing a cur-
rent position in a list
class, we ensure
that access is con-
trolled.

624 chapter 17 linked lists

Thus, as long as the iterator class defines a few simple operations, we can
iterate over the list naturally. In Section 17.2 we provide its implementation in
Java. The routines are surprisingly simple.

There is a natural parallel between the methods defined in the LinkedList
and LinkedListIterator classes and those in the Collections API LinkedList
class. For instance, the LinkedListIterator advance method is roughly equiva-
lent to hasNext in the Collections API iterators. The list class in Section 17.2 is
simpler than the Collections API LinkedList class; as such it illustrates many
basic points and is worth examining. In Section 17.5 we implement most of
the Collections API LinkedList class.

17.2 java implementation
As suggested in the preceding description, a list is implemented as three sepa-
rate generic classes: one class is the list itself (LinkedList), another represents
the node (ListNode), and the third represents the position (LinkedListIterator).

ListNode was shown in Chapter 16. Next, Figure 17.7 presents the class
that implements the concept of position—namely, LinkedListIterator. The
class stores a reference to a ListNode, representing the current position of the
iterator. The isValid method returns true if the position is not past the end of
the list, retrieve returns the element stored in the current position, and advance
advances the current position to the next position. The constructor for
LinkedListIterator requires a reference to a node that is to be the current
node. Note that this constructor is package-visible and thus cannot be used by
client methods. Instead, the general idea is that the LinkedList class returns
preconstructed LinkedListIterator objects, as appropriate; LinkedList is in the
same package as LinkedListIterator, so it can invoke the LinkedListIterator
constructor.

The LinkedList class skeleton is shown in Figure 17.8. The single data
member is a reference to the header node allocated by the constructor. isEmpty
is an easily implemented short one-liner. The methods zeroth and first return
iterators corresponding to the header and first element, respectively, as shown
in Figure 17.9. Other routines either search the list for some item or change
the list via insertion or deletion, and are shown later.

Figure 17.10 illustrates how the LinkedList and LinkedListIterator
classes interact. The printList method outputs the contents of a list. printList
uses only public methods and a typical iteration sequence of obtaining a start-
ing point (via first), testing that it has not gone past the ending point (via
isValid), and advancing in each iteration (via advance).

17.2 java implementation 625

figure 17.7

The
LinkedListIterator
class

1 package weiss.nonstandard;
2
3 // LinkedListIterator class; maintains "current position"
4 //
5 // CONSTRUCTION: Package visible only, with a ListNode
6 //
7 // ******************PUBLIC OPERATIONS*********************
8 // void advance() --> Advance
9 // boolean isValid() --> True if at valid position in list

10 // AnyType retrieve --> Return item in current position
11
12 public class LinkedListIterator<AnyType>
13 {
14 /**
15 * Construct the list iterator
16 * @param theNode any node in the linked list.
17 */
18 LinkedListIterator(ListNode<AnyType> theNode)
19 { current = theNode; }
20
21 /**
22 * Test if the current position is a valid position in the list.
23 * @return true if the current position is valid.
24 */
25 public boolean isValid()
26 { return current != null; }
27
28 /**
29 * Return the item stored in the current position.
30 * @return the stored item or null if the current position
31 * is not in the list.
32 */
33 public AnyType retrieve()
34 { return isValid() ? current.element : null; }
35
36 /**
37 * Advance the current position to the next node in the list.
38 * If the current position is null, then do nothing.
39 */
40 public void advance()
41 {
42 if(isValid())
43 current = current.next;
44 }
45
46 ListNode<AnyType> current; // Current position
47 }

626 chapter 17 linked lists

figure 17.8

The LinkedList class skeleton

1 package weiss.nonstandard;
2
3 // LinkedList class
4 //
5 // CONSTRUCTION: with no initializer
6 // Access is via LinkedListIterator class
7 //
8 // ******************PUBLIC OPERATIONS*********************
9 // boolean isEmpty() --> Return true if empty; else false

10 // void makeEmpty() --> Remove all items
11 // LinkedListIterator zeroth()
12 // --> Return position to prior to first
13 // LinkedListIterator first()
14 // --> Return first position
15 // void insert(x, p) --> Insert x after current iterator position p
16 // void remove(x) --> Remove x
17 // LinkedListIterator find(x)
18 // --> Return position that views x
19 // LinkedListIterator findPrevious(x)
20 // --> Return position prior to x
21 // ******************ERRORS********************************
22 // No special errors
23
24 public class LinkedList<AnyType>
25 {
26 public LinkedList()
27 { /* Figure 17.9 */ }
28
29 public boolean isEmpty()
30 { /* Figure 17.9 */ }
31 public void makeEmpty()
32 { /* Figure 17.9 */ }
33 public LinkedListIterator<AnyType> zeroth()
34 { /* Figure 17.9 */ }
35 public LinkedListIterator<AnyType> first()
36 { /* Figure 17.9 */ }
37 public void insert(AnyType x, LinkedListIterator<AnyType> p)
38 { /* Figure 17.14 */ }
39 public LinkedListIterator<AnyType> find(AnyType x)
40 { /* Figure 17.11 */ }
41 public LinkedListIterator<AnyType> findPrevious(AnyType x)
42 { /* Figure 17.13 */ }
43 public void remove(Object x)
44 { /* Figure 17.12 */ }
45
46 private ListNode<AnyType> header;
47 }

17.2 java implementation 627

Let us revisit the issue of whether all three classes are necessary. For
instance, couldn’t we just have the LinkedList class maintain a notion of a
current position? Although this option is feasible and works for many
applications, using a separate iterator class expresses the abstraction that the

figure 17.9

Some LinkedList
class one-liners

1 /**
2 * Construct the list
3 */
4 public LinkedList()
5 {
6 header = new ListNode<AnyType>(null);
7 }
8
9 /**

10 * Test if the list is logically empty.
11 * @return true if empty, false otherwise.
12 */
13 public boolean isEmpty()
14 {
15 return header.next == null;
16 }
17
18 /**
19 * Make the list logically empty.
20 */
21 public void makeEmpty()
22 {
23 header.next = null;
24 }
25
26 /**
27 * Return an iterator representing the header node.
28 */
29 public LinkedListIterator<AnyType> zeroth()
30 {
31 return new LinkedListIterator<AnyType>(header);
32 }
33
34 /**
35 * Return an iterator representing the first node in the list.
36 * This operation is valid for empty lists.
37 */
38 public LinkedListIterator<AnyType> first()
39 {
40 return new LinkedListIterator<AnyType>(header.next);
41 }

628 chapter 17 linked lists

position and list actually are separate objects. Moreover, it allows for a list
to be accessed in several places simultaneously. For instance, to remove a
sublist from a list, we can easily add a remove operation to the list class that
uses two iterators to specify the starting and ending points of the sublist to
be removed. Without the iterator class, this action would be more difficult to
express.

We can now implement the remaining LinkedList methods. First is find,
shown in Figure 17.11, which returns the position in the list of some element.
Line 10 takes advantage of the fact that the and (&&) operation is short-circuited:

figure 17.10

A method for printing the contents of a LinkedList

1 // Simple print method
2 public static <AnyType> void printList(LinkedList<AnyType> theList)
3 {
4 if(theList.isEmpty())
5 System.out.print("Empty list");
6 else
7 {
8 LinkedListIterator<AnyType> itr = theList.first();
9 for(; itr.isValid(); itr.advance())

10 System.out.print(itr.retrieve() + " ");
11 }
12
13 System.out.println();
14 }

figure 17.11

The find routine for the LinkedList class

1 /**
2 * Return iterator corresponding to the first node containing x.
3 * @param x the item to search for.
4 * @return an iterator; iterator isPastEnd if item is not found.
5 */
6 public LinkedListIterator<AnyType> find(AnyType x)
7 {
8 ListNode<AnyType> itr = header.next;
9

10 while(itr != null && !itr.element.equals(x))
11 itr = itr.next;
12
13 return new LinkedListIterator<AnyType>(itr);
14 }

Short-circuiting is
used in the find
routine at line 10
and in the similar
part of the remove
routine.

17.2 java implementation 629

If the first half of the and is false, the result is automatically false and the sec-
ond half is not evaluated.

This code is not
foolproof: There
may be two itera-
tors, and one can
be left dangling if
the other removes
a node.

Our next routine removes some element x from the list. We need to decide
what to do if x occurs more than once or not at all. Our routine removes the
first occurrence of x and does nothing if x is not in the list. To make that hap-
pen, we find p, which is the cell prior to the one containing x, via a call to
findPrevious. The code for implementing the remove routine is shown in
Figure 17.12. This code is not foolproof: There may be two iterators, and one
can be left logically in limbo if the other removes a node. The findPrevious
routine is similar to the find routine and is shown in Figure 17.13.

1 /**
2 * Remove the first occurrence of an item.
3 * @param x the item to remove.
4 */
5 public void remove(AnyType x)
6 {
7 LinkedListIterator<AnyType> p = findPrevious(x);
8
9 if(p.current.next != null)

10 p.current.next = p.current.next.next; // Bypass deleted node
11 }

figure 17.12

The remove routine for the LinkedList class

figure 17.13

The findPrevious routine—similar to the find routine—for use with remove

1 /**
2 * Return iterator prior to the first node containing an item.
3 * @param x the item to search for.
4 * @return appropriate iterator if the item is found. Otherwise, the
5 * iterator corresponding to the last element in the list is returned.
6 */
7 public LinkedListIterator<AnyType> findPrevious(AnyType x)
8 {
9 ListNode<AnyType> itr = header;

10
11 while(itr.next != null && !itr.next.element.equals(x))
12 itr = itr.next;
13
14 return new LinkedListIterator<AnyType>(itr);
15 }

630 chapter 17 linked lists

The insert routine
takes constant
time.

The last routine we write here is an insertion routine. We pass an element
to be inserted and a position p. This particular insertion routine inserts an ele-
ment after position p, as shown in Figure 17.14. Note that the insert routine
makes no use of the list it is in; it depends only on p.

The find and
findPrevious
routines take O(N)
time.

With the exception of the find and findPrevious routines (and remove,
which calls findPrevious), all the operations that we have coded so far take
O(1) time. The find and findPrevious routines take O(N) time in the worst
case because the entire list might need to be traversed if the element either is
not found or is last in the list. On average, the running time is O(N), because
on average half the list must be traversed.

The retreat
method is not effi-
ciently supported. A
doubly linked list is
used if that is a lia-
bility.

We certainly could have added more operations, but this basic set is quite
powerful. Some operations, such as retreat, are not efficiently supported by
this version of the linked list; variations on the linked list that allow constant-
time implementation of that and other operators are discussed later in this
chapter.

17.3 doubly linked lists
and circularly linked lists

A doubly linked list
allows bidirectional
traversal by storing
two links per node.

As we mentioned in Section 17.2, the singly linked list does not efficiently
support some important operations. For instance, although it is easy to go to
the front of the list, it is time consuming to go to the end. Although we can
easily advance via advance, implementing retreat cannot be done efficiently
with only a next link. In some applications that might be crucial. For instance,

figure 17.14

The insertion routine for the LinkedList class

1 /**
2 * Insert after p.
3 * @param x the item to insert.
4 * @param p the position prior to the newly inserted item.
5 */
6 public void insert(AnyType x, LinkedListIterator<AnyType> p)
7 {
8 if(p != null && p.current != null)
9 p.current.next = new ListNode<AnyType>(x, p.current.next);

10 }

17.3 doubly linked lists and circularly linked lists 631

when designing a text editor, we can maintain the internal image of the file as
a linked list of lines. We want to be able to move up just as easily as down in
the list, to insert both before and after a line rather than just after, and to be
able to get to the last line quickly. A moment’s thought suggests that to imple-
ment this procedure efficiently we should have each node maintain two links:
one to the next node in the list and one to the previous node. Then, to make
everything symmetric, we should have not only a header but also a tail. A
linked list that allows bidirectional traversal by storing two links per node is
called a doubly linked list. Figure 17.15 shows the doubly linked list repre-
senting a and b. Each node now has two links (next and prev), and searching
and moving can easily be performed in both directions. Obviously, there are
some important changes from the singly linked list.

Symmetry demands
that we use both a
head and a tail and
that we support
roughly twice as
many operations.

First, an empty list now consists of a head and tail, connected as shown in
Figure 17.16. Note that head.prev and tail.next are not needed in the algo-
rithms and are not even initialized. The test for emptiness is now

head.next == tail

or

tail.prev == head

When we advance
past the end of the
list, we now hit the
tail node instead
of null.

We no longer use null to decide whether an advance has taken us past the
end of the list. Instead, we have gone past the end if current is either head or
tail (recall that we can go in either direction). The retreat operation can be
implemented by

current = current.prev;

a b

head tail

figure 17.15

A doubly linked list

head tail

figure 17.16

An empty doubly
linked list

632 chapter 17 linked lists

Insertion and
removal involve
twice as many link
changes as for a
singly linked list.

Before describing some of the additional operations that are available, let
us consider how the insertion and removal operations change. Naturally, we
can now do both insertBefore and insertAfter. Twice as many link moves are
involved for insertAfter with doubly linked lists as with singly linked lists. If
we write each statement explicitly, we obtain

newNode = new DoublyLinkedListNode(x);
newNode.prev = current; // Set x's prev link
newNode.next = current.next; // Set x's next link
newNode.prev.next = newNode; // Set a's next link
newNode.next.prev = newNode; // Set b's prev link
current = newNode;

As we showed earlier, the first two link moves can be collapsed into the
DoublyLinkedListNode construction that is done by new. The changes (in
order 1, 2, 3, 4) are illustrated in Figure 17.17.

The remove opera-
tion can proceed
from the current
node because
we can obtain the
previous node
instantly.

Figure 17.17 can also be used as a guide in the removal algorithm. Unlike
the singly linked list, we can remove the current node because the previous
node is available to us automatically. Thus to remove x we have to change a’s
next link and b’s prev link. The basic moves are

current.prev.next = current.next; // Set a's next link
current.next.prev = current.prev; // Set b's prev link
current = head; // So current is not stale

To do a complete doubly linked list implementation, we need to decide
which operations to support. We can reasonably expect twice as many opera-
tions as in the singly linked list. Each individual procedure is similar to the
linked list routines; only the dynamic operations involve additional link
moves. Moreover, for many of the routines, the code is dominated by error
checks. Although some of the checks will change (e.g., we do not test against
null), they certainly do not become any more complex. In Section 17.5, we
use a doubly linked list to implement the Collections API linked list class,

figure 17.17

Insertion in a doubly
linked list by getting
new node and then
changing pointers in
the order indicated

a b

x

3

1
2

4

... ...

17.4 sorted linked lists 633

along with its associated iterators. There are lots of routines, but most are
short.

In a circularly linked
list, the last cell’s
next link references
first. This action is
useful when wrap-
around matters.

A popular convention is to create a circularly linked list, in which the
last cell’s next link references first, which can be done with or without a
header. Typically, it is done without a header because the header’s main pur-
pose is to ensure that every node has a previous node, which is already true
for a nonempty circularly linked list. Without a header, we have only the
empty list as a special case. We maintain a reference to the first node, but
that is not the same as a header node. We can use circularly linked lists and
doubly linked lists simultaneously, as shown in Figure 17.18. The circular list
is useful when we want searching to allow wraparound, as is the case for
some text editors. In Exercise 17.16 you are asked to implement a circularly
and doubly linked list.

17.4 sorted linked lists
We can maintain
items in sorted
order by deriving a
SortedLinkedList
class from
LinkedList.

Sometimes we want to keep the items in a linked list in sorted order, which we
can do with a sorted linked list. The fundamental difference between a sorted
linked list and an unsorted linked list is the insertion routine. Indeed, we can
obtain a sorted list class by simply altering the insertion routine from our
already written list class. Because the insert routine is part of the LinkedList
class, we should be able to base a new derived class, SortedLinkedList, from
LinkedList. We can, and it is shown in Figure 17.19.

The new class has two versions of insert. One version takes a position
and then ignores it; the insertion point is determined solely by the sorted
order. The other version of insert requires more code.

The one-parameter insert uses two LinkedListIterator objects to traverse
down the corresponding list until the correct insertion point is found. At that
point we can apply the base class insert routine.

figure 17.18

A circularly and doubly
linked list

b c d

first

a

634 chapter 17 linked lists

figure 17.19

The SortedLinkedList class, in which insertions are restricted to sorted order

1 package weiss.nonstandard;
2
3 // SortedLinkedList class
4 //
5 // CONSTRUCTION: with no initializer
6 // Access is via LinkedListIterator class
7 //
8 // ******************PUBLIC OPERATIONS*********************
9 // void insert(x) --> Insert x

10 // void insert(x, p) --> Insert x (ignore p)
11 // All other LinkedList operations
12 // ******************ERRORS********************************
13 // No special errors
14
15 public class SortedLinkedList<AnyType extends Comparable<? super AnyType>>
16 extends LinkedList<AnyType>
17 {
18 /**
19 * Insert after p.
20 * @param x the item to insert.
21 * @param p this parameter is ignored.
22 */
23 public void insert(AnyType x, LinkedListIterator<AnyType> p)
24 {
25 insert(x);
26 }
27
28 /**
29 * Insert in sorted order.
30 * @param x the item to insert.
31 */
32 public void insert(AnyType x)
33 {
34 LinkedListIterator<AnyType> prev = zeroth();
35 LinkedListIterator<AnyType> curr = first();
36
37 while(curr.isValid() && x.compareTo(curr.retrieve()) > 0)
38 {
39 prev.advance();
40 curr.advance();
41 }
42
43 super.insert(x, prev);
44 }
45 }

17.5 implementing the collections api LinkedList class 635

17.5 implementing the collections
api LinkedList class

In this section we implement the Collections API LinkedList class discussed
in Section 6.5. Although we present lots of code, we described most of the
techniques earlier in this chapter.

As we indicated previously, we need a class to store the basic list node, a
class for the iterator, and a class for the list itself. The skeleton for the
LinkedList class is shown in Figure 17.20. LinkedList implements the List
and Queue interfaces and, as usual, it extends AbstractCollection. Line 5
begins the declaration for the Node class, which is nested and private. Line 7
begins the declaration for the LinkedListIterator, which is a private inner

figure 17.20a

Class skeleton for standard LinkedList class (continues)

1 package weiss.util;
2 public class LinkedList<AnyType> extends AbstractCollection<AnyType>
3 implements List<AnyType>, Queue<AnyType>
4 {
5 private static class Node<AnyType>
6 { /* Figure 17.21 */ }
7 private class LinkedListIterator<AnyType> implements ListIterator<AnyType>
8 { /* Figure 17.30 */ }
9

10 public LinkedList()
11 { /* Figure 17.22 */ }
12 public LinkedList(Collection<? extends AnyType> other)
13 { /* Figure 17.22 */ }
14
15 public int size()
16 { /* Figure 17.23 */ }
17 public boolean contains(Object x)
18 { /* Figure 17.23 */ }
19 public boolean add(AnyType x)
20 { /* Figure 17.24 */ }
21 public void add(int idx, AnyType x)
22 { /* Figure 17.24 */ }
23 public void addFirst(AnyType x)
24 { /* Figure 17.24 */ }
25 public void addLast(AnyType x)
26 { /* Figure 17.24 */ }
27 public AnyType element()
28 { /* Added in Java 5; same as getFirst */ }
29 public AnyType getFirst()
30 { /* Figure 17.25 */ }
31 public AnyType getLast()
32 { /* Figure 17.25 */ }

636 chapter 17 linked lists

class. The iterator pattern was described in Chapter 6. The same pattern was
used in the ArrayList implementation with inner classes in Chapter 15.

The list class keeps track of its size in a data member declared at line 54.
We use this approach so that the size method can be performed in constant
time. modCount is used by the iterators to determine if the list has changed while
an iteration is in progress; the same idea was used in ArrayList. beginMarker
and endMarker correspond to head and tail in Section 17.3. All the methods use
signatures that we have shown before.

Figure 17.21 shows the Node class, which is similar to the ListNode
class. The main difference is that, because we use a doubly linked list, we
have both prev and next links.

Note that inner and nested classes are considered part of the outer class.
Thus, regardless of whether the Node’s data fields are public or private, they will
be visible to the LinkedList class. Because the Node class itself is private, only
the LinkedList class will be able to see that Node is a valid type. Consequently,
in this instance, it does not matter whether the node’s data fields are public or

figure 17.20b

Class skeleton for
standard LinkedList
class (continued)

33 public AnyType remove()
34 { /* Added in Java 5; same as removeFirst */ }
35 public AnyType removeFirst()
36 { /* Figure 17.27 */ }
37 public AnyType removeLast()
38 { /* Figure 17.27 */ }
39 public boolean remove(Object x)
40 { /* Figure 17.28 */ }
41 public AnyType get(int idx)
42 { /* Figure 17.25 */ }
43 public AnyType set(int idx, AnyType newVal)
44 { /* Figure 17.25 */ }
45 public AnyType remove(int idx)
46 { /* Figure 17.27 */ }
47 public void clear()
48 { /* Figure 17.22 */ }
49 public Iterator<AnyType> iterator()
50 { /* Figure 17.29 */ }
51 public ListIterator<AnyType> listIterator(int idx)
52 { /* Figure 17.29 */ }
53
54 private int theSize;
55 private Node<AnyType> beginMarker;
56 private Node<AnyType> endMarker;
57 private int modCount = 0;
58
59 private static final Node<AnyType> NOT_FOUND = null;
60 private Node<AnyType> findPos(Object x)
61 { /* Figure 17.23 */ }
62 private AnyType remove(Node<AnyType> p)
63 { /* Figure 17.27 */ }
64 private Node<AnyType> getNode(int idx)
65 { /* Figure 17.26 */}
66 }

17.5 implementing the collections api LinkedList class 637

private. It could matter if Node was to be extended inside of LinkedList, and this
would argue toward making the data private. On the other hand, since in our
implementation, LinkedList is accessing the Node’s data fields directly, rather
than invoking methods, it seems more appropriate to mark the data as public.

The implementation of LinkedList begins in Figure 17.22, where we
have the constructors and clear. All in all, little is new here; we combined

figure 17.21

Node nested class for
standard LinkedList
class

1 /**
2 * This is the doubly linked list node.
3 */
4 private static class Node<AnyType>
5 {
6 public Node(AnyType d, Node<AnyType> p, Node<AnyType> n)
7 {
8 data = d; prev = p; next = n;
9 }

10
11 public AnyType data;
12 public Node<AnyType> prev;
13 public Node<AnyType> next;
14 }

figure 17.22

Constructors and
clear method for
standard LinkedList
class

1 /**
2 * Construct an empty LinkedList.
3 */
4 public LinkedList()
5 {
6 clear();
7 }
8
9 /**

10 * Construct a LinkedList with same items as another Collection.
11 */
12 public LinkedList(Collection<? extends AnyType> other)
13 {
14 clear();
15 for(AnyType val : other)
16 add(val);
17 }
18
19 /**
20 * Change the size of this collection to zero.
21 */
22 public void clear()
23 {
24 beginMarker = new Node<AnyType>(null, null, null);
25 endMarker = new Node<AnyType>(null, beginMarker, null);
26 beginMarker.next = endMarker;
27
28 theSize = 0;
29 modCount++;
30 }

638 chapter 17 linked lists

a lot of the nonstandard LinkedList code with the concepts presented in
Section 17.3.

Figure 17.23 shows size, which is trivial, and contains, which is also trivial
because it calls the private findPos routine that does all the work. findPos deals
with null values at lines 30–34; otherwise, it would be four lines of code.

Figure 17.24 shows the various add methods. All of these eventually fun-
nel into the last add method at lines 39–47, which splices into the doubly
linked list as was done in Section 17.3. It requires a private routine, getNode,
whose implementation we will discuss shortly. getNode returns a reference to

1 /**
2 * Returns the number of items in this collection.
3 * @return the number of items in this collection.
4 */
5 public int size()
6 {
7 return theSize;
8 }
9

10 /**
11 * Tests if some item is in this collection.
12 * @param x any object.
13 * @return true if this collection contains an item equal to x.
14 */
15 public boolean contains(Object x)
16 {
17 return findPos(x) != NOT_FOUND;
18 }
19
20 /**
21 * Returns the position of first item matching x
22 * in this collection, or NOT_FOUND if not found.
23 * @param x any object.
24 * @return the position of first item matching x
25 * in this collection, or NOT_FOUND if not found.
26 */
27 private Node<AnyType> findPos(Object x)
28 {
29 for(Node<AnyType> p = beginMarker.next; p != endMarker; p = p.next)
30 if(x == null)
31 {
32 if(p.data == null)
33 return p;
34 }
35 else if(x.equals(p.data))
36 return p;
37
38 return NOT_FOUND;
39 }

figure 17.23

size and contains for standard LinkedList class

17.5 implementing the collections api LinkedList class 639

the node at index idx. In order for this to be suitable for addLast, getNode will
start its search from the end closest to the target node.

figure 17.24

add methods for
standard LinkedList
class

1 /**
2 * Adds an item to this collection, at the end.
3 * @param x any object.
4 * @return true.
5 */
6 public boolean add(AnyType x)
7 {
8 addLast(x);
9 return true;

10 }
11
12 /**
13 * Adds an item to this collection, at the front.
14 * Other items are slid one position higher.
15 * @param x any object.
16 */
17 public void addFirst(AnyType x)
18 {
19 add(0, x);
20 }
21
22 /**
23 * Adds an item to this collection, at the end.
24 * @param x any object.
25 */
26 public void addLast(AnyType x)
27 {
28 add(size(), x);
29 }
30
31 /**
32 * Adds an item to this collection, at a specified position.
33 * Items at or after that position are slid one position higher.
34 * @param x any object.
35 * @param idx position to add at.
36 * @throws IndexOutOfBoundsException if idx is not
37 * between 0 and size(), inclusive.
38 */
39 public void add(int idx, AnyType x)
40 {
41 Node<AnyType> p = getNode(idx, 0, size);
42 Node<AnyType> newNode = new Node<AnyType>(x, p.prev, p);
43 newNode.prev.next = newNode;
44 p.prev = newNode;
45 theSize++;
46 modCount++;
47 }

640 chapter 17 linked lists

Figure 17.25 details the various get methods, plus a set method. There is
little special in any of those routines. The element method from the Queue
interface is not shown. Figure 17.26 has the previously mentioned private

figure 17.25

get and set methods
for standard
LinkedList class

1 /**
2 * Returns the first item in the list.
3 * @throws NoSuchElementException if the list is empty.
4 */
5 public AnyType getFirst()
6 {
7 if(isEmpty())
8 throw new NoSuchElementException();
9 return getNode(0).data;

10 }
11
12 /**
13 * Returns the last item in the list.
14 * @throws NoSuchElementException if the list is empty.
15 */
16 public AnyType getLast()
17 {
18 if(isEmpty())
19 throw new NoSuchElementException();
20 return getNode(size() - 1).data;
21 }
22
23 /**
24 * Returns the item at position idx.
25 * @param idx the index to search in.
26 * @throws IndexOutOfBoundsException if index is out of range.
27 */
28 public AnyType get(int idx)
29 {
30 return getNode(idx).data;
31 }
32
33 /**
34 * Changes the item at position idx.
35 * @param idx the index to change.
36 * @param newVal the new value.
37 * @return the old value.
38 * @throws IndexOutOfBoundsException if index is out of range.
39 */
40 public AnyType set(int idx, AnyType newVal)
41 {
42 Node<AnyType> p = getNode(idx);
43 AnyType oldVal = p.data;
44
45 p.data = newVal;
46 return oldVal;
47 }

17.5 implementing the collections api LinkedList class 641

getNode method. The three-parameter version is needed specificallly for add
and the LinkedListIterator constructor; the more common one-parameter ver-
sion is used for all other calls to getNode. If the index represents a node in the
first half of the list, then at lines 19–21 we step through the linked list, in the
forward direction. Otherwise, we go backwards, starting at the end, as shown
on lines 25–27.

figure 17.26

Private getNode for standard LinkedList class

1 /**
2 * Gets the Node at position idx, which must range from lower to upper.
3 * @param idx index to search at.
4 * @param lower lowest valid index.
5 * @param upper highest valid index.
6 * @return internal node corrsponding to idx.
7 * @throws IndexOutOfBoundsException if idx is not
8 * between lower and upper, inclusive.
9 */

10 private Node<AnyType> getNode(int idx, int lower, int upper)
11 {
12 Node<AnyType> p;
13
14 if(idx < lower || idx > upper)
15 throw new IndexOutOfBoundsException();
16
17 if(idx < size() / 2)
18 {
19 p = beginMarker.next;
20 for(int i = 0; i < idx; i++)
21 p = p.next;
22 }
23 else
24 {
25 p = endMarker;
26 for(int i = size(); i > idx; i--)
27 p = p.prev;
28 }
29
30 return p;
31 }
32
33 /**
34 * Gets the Node at position idx, which must range from 0 to size() - 1.
35 * @param idx index to search at.
36 * @return internal node corrsponding to idx.
37 * @throws IndexOutOfBoundsException if idx is not
38 * between 0 and size()-1, inclusive.
39 */
40 private Node<AnyType> getNode(int idx)
41 {
42 return getNode(idx, 0, size() - 1);
43 }

642 chapter 17 linked lists

The remove methods are shown in Figures 17.27 and 17.28, and those fun-
nel through a private remove method, shown at lines 40–48 (in Figure 17.27),
that mimics the algorithm in Section 17.3.

figure 17.27

remove methods for
standard LinkedList
class

1 /**
2 * Removes the first item in the list.
3 * @return the item was removed from the collection.
4 * @throws NoSuchElementException if the list is empty.
5 */
6 public AnyType removeFirst()
7 {
8 if(isEmpty())
9 throw new NoSuchElementException();

10 return remove(getNode(0));
11 }
12
13 /**
14 * Removes the last item in the list.
15 * @return the item was removed from the collection.
16 * @throws NoSuchElementException if the list is empty.
17 */
18 public AnyType removeLast()
19 {
20 if(isEmpty())
21 throw new NoSuchElementException();
22 return remove(getNode(size() - 1));
23 }
24
25 /**
26 * Removes an item from this collection.
27 * @param idx the index of the object.
28 * @return the item that was removed from the collection.
29 */
30 public AnyType remove(int idx)
31 {
32 return remove(getNode(idx));
33 }
34
35 /**
36 * Removes the object contained in Node p.
37 * @param p the Node containing the object.
38 * @return the item that was removed from the collection.
39 */
40 private AnyType remove(Node<AnyType> p)
41 {
42 p.next.prev = p.prev;
43 p.prev.next = p.next;
44 theSize--;
45 modCount++;
46
47 return p.data;
48 }

17.5 implementing the collections api LinkedList class 643

The iterator factories are shown in Figure 17.29. Both return a freshly
constructed LinkedListIterator object. Finally, the LinkedListIterator, which
is perhaps the trickiest part of the whole implementation, is shown in
Figure 17.30.

figure 17.28

Additional remove
method for standard
LinkedList class

1 /**
2 * Removes an item from this collection.
3 * @param x any object.
4 * @return true if this item was removed from the collection.
5 */
6 public boolean remove(Object x)
7 {
8 Node<AnyType> pos = findPos(x);
9

10 if(pos == NOT_FOUND)
11 return false;
12 else
13 {
14 remove(pos);
15 return true;
16 }
17 }

figure 17.29

Iterator factory methods for standard LinkedList class

1 /**
2 * Obtains an Iterator object used to traverse the collection.
3 * @return an iterator positioned prior to the first element.
4 */
5 public Iterator<AnyType> iterator()
6 {
7 return new LinkedListIterator(0);
8 }
9

10 /**
11 * Obtains a ListIterator object used to traverse the
12 * collection bidirectionally.
13 * @return an iterator positioned prior to the requested element.
14 * @param idx the index to start the iterator. Use size() to do
15 * complete reverse traversal. Use 0 to do complete forward traversal.
16 * @throws IndexOutOfBoundsException if idx is not
17 * between 0 and size(), inclusive.
18 */
19 public ListIterator<AnyType> listIterator(int idx)
20 {
21 return new LinkedListIterator(idx);
22 }

644 chapter 17 linked lists

The iterator maintains a current position, shown at line 8. current repre-
sents the node containing the item that is to be returned by a call to next.
Observe that when current is positioned at the endmarker, a call to next is
illegal, but the call to previous should give the first item, going backwards.
As in the ArrayList, the iterator also maintains the modCount of the list it is
iterating over, initialized at the time the iterator was constructed. This vari-
able, expectedModCount, can change only if the iterator performs a remove.
lastVisited is used to represent the last node that was visited; this is used by

figure 17.30a

Iterator inner class implementation for standard LinkedList class (continues)

1 /**
2 * This is the implementation of the LinkedListIterator.
3 * It maintains a notion of a current position and of
4 * course the implicit reference to the LinkedList.
5 */
6 private class LinkedListIterator implements ListIterator<AnyType>
7 {
8 private Node<AnyType> current;
9 private Node<AnyType> lastVisited = null;

10 private boolean lastMoveWasPrev = false;
11 private int expectedModCount = modCount;
12
13 public LinkedListIterator(int idx)
14 {
15 current = getNode(idx, 0, size());
16 }
17
18 public boolean hasNext()
19 {
20 if(expectedModCount != modCount)
21 throw new ConcurrentModificationException();
22 return current != endMarker;
23 }
24
25 public AnyType next()
26 {
27 if(!hasNext())
28 throw new NoSuchElementException();
29
30 AnyType nextItem = current.data;
31 lastVisited = current;
32 current = current.next;
33 lastMoveWasPrev = false;
34 return nextItem;
35 }

17.5 implementing the collections api LinkedList class 645

remove. If lastVisited is null, the remove is illegal. Finally, lastMoveWasPrev is
true if the last movement of the iterator prior to remove was via previous; it is
false if the last movement was via next.

The hasNext and hasPrevious methods are fairly routine. Both throw an
exception if an external modification to the list has been detected.

The next method advances current (line 32) after getting the value in the
node (line 30) that is to be returned (line 34). Data fields lastVisited and
lastMoveWasPrev are updated at lines 31 and 33, respectively. The implemen-
tation of previous is not exactly symmetric, because for previous, we
advance current prior to obtaining the value. This is evident when one con-
siders that the initial state for backwards iteration is that current is at the
endmarker.

figure 17.30b

Iterator inner class
implementation for
standard LinkedList
class (continued)

36 public void remove()
37 {
38 if(expectedModCount != modCount)
39 throw new ConcurrentModificationException();
40 if(lastVisited == null)
41 throw new IllegalStateException();
42
43 LinkedList.this.remove(lastVisited);
44 lastVisited = null;
45 if(lastMoveWasPrev)
46 current = current.next;
47 expectedModCount++;
48 }
49
50 public boolean hasPrevious()
51 {
52 if(expectedModCount != modCount)
53 throw new ConcurrentModificationException();
54 return current != beginMarker.next;
55 }
56
57 public AnyType previous()
58 {
59 if(!hasPrevious())
60 throw new NoSuchElementException();
61
62 current = current.prev;
63 lastVisited = current;
64 lastMoveWasPrev = true;
65 return current.data;
66 }
67 }

646 chapter 17 linked lists

Finally, remove is shown at lines 36–48. After the obligatory error checks,
we use the LinkedList remove method to remove the lastVisited node. The
explicit reference to the outer class is required because the iterator remove
hides the list remove. After making lastVisited null, to disallow a second
remove, we check whether the last operation was a next or previous. In the latter
case, we adjust current, as shown on line 46, to its state prior to the previous/
remove combination.

All in all, there is a large amount of code, but it simply embellishes the
basics presented in the original implementation of the nonstandard LinkedList
class in Section 17.2.

summary

In this chapter we described why and how linked lists are implemented, illus-
trating the interactions among the list, iterator, and node classes. We exam-
ined variations of the linked list including doubly linked lists. The doubly
linked list allows bidirectional traversal of the list. We also showed how a
sorted linked list class can easily be derived from the basic linked list class.
Finally, we provided an implementation of most of the Collections API
LinkedList class.

key concepts

circularly linked list A linked list in which the last cell’s next link references
first. This action is useful when wraparound matters. (633)

doubly linked list A linked list that allows bidirectional traversal by storing
two links per node. (630)

header node An extra node in a linked list that holds no data but serves to sat-
isfy the requirement that every node have a previous node. A header node
allows us to avoid special cases such as the insertion of a new first ele-
ment and the removal of the first element. (621)

iterator class A class that maintains a current position in a container, such as a
list. An iterator class is usually in the same package as, or an inner class
of, a list class. (623)

sorted linked list A list in which items are in sorted order. A sorted linked list
class can be derived from a list class. (633)

exercises 647

common errors

1. The most common linked list error is splicing in nodes incorrectly when
performing an insertion. This procedure is especially tricky with doubly
linked lists.

2. Methods should not be allowed to access fields via a null reference. We
perform error checks to catch this mistake and throw exceptions as war-
ranted.

3. When several iterators access a list simultaneously, problems can result.
For instance, what if one iterator deletes the node that the other iterator is
about to access? Solving these types of problems requires additional
work, such as the use of a concurrent modification counter.

on the internet

The singly linked list class, including the sorted linked list, is available, as is
our Collections API list implementation.

LinkedList.java Contains the implementation for
weiss.nonstandard.LinkedList.

LinkedListIterator.java Contains the implementation for
LinkedListIterator.

SortLinkedList.java Contains the implementation for
SortedLinkedList.

LinkedList.java Contains the implementation of the Collec-
tions API LinkedList class and iterator.

exercises

IN SHORT

17.1 Draw an empty linked list with header implementation.

17.2 Draw an empty doubly linked list that uses both a header and a tail.

IN THEORY

17.3 Write an algorithm for printing a singly linked list in reverse, using
only constant extra space. This instruction implies that you cannot use
recursion but you may assume that your algorithm is a list method.

648 chapter 17 linked lists

17.4 A linked list contains a cycle if, starting from some node p, following a
sufficient number of next links brings us back to node p. Node p does
not have to be the first node in the list. Assume that you have a linked
list that contains N nodes. However, the value of N is unknown.
a. Design an O(N) algorithm to determine whether the list contains

a cycle. You may use O(N) extra space.
b. Repeat part (a), but use only O(1) extra space. (Hint: Use two

iterators that are initially at the start of the list, but advance at dif-
ferent speeds.)

17.5 One way to implement a queue is to use a circularly linked list. Assume
that the list does not contain a header and that you can maintain one
iterator for the list. For which of the following representations can all
basic queue operations be performed in constant worst-case time? Jus-
tify your answers.
a. Maintain an iterator that corresponds to the first item in the list.
b. Maintain an iterator that corresponds to the last item in the list.

17.6 Suppose that you have a reference to a node in a singly linked list that is
guaranteed not to be the last node in the list. You do not have references
to any other nodes (except by following links). Describe an O(1) algo-
rithm that logically removes the value stored in such a node from the
linked list, maintaining the integrity of the linked list. (Hint: Involve the
next node.)

17.7 Suppose that a singly linked list is implemented with both a header and
a tail node. Using the ideas discussed in Exercise 17.6, describe con-
stant-time algorithms to
a. Insert item x before position p.
b. Remove the item stored at position p.

IN PRACTICE

17.8 Modify the find routine in the nonstandard LinkedList class to return
the last occurrence of item x.

17.9 Modify remove in the nonstandard LinkedList class to remove all occur-
rences of x.

17.10 Suppose that you want to splice part of one linked list into another (a so-
called cut and paste operation). Assume that three LinkedListIterator
parameters represent the starting point of the cut, the ending point of
the cut, and the point at which the paste is to be attached. Assume that
all iterators are valid and that the number of items cut is not zero.

exercises 649

a. Write a method to cut and paste that is not a part of weiss
.nonstandard. What is the running time of the algorithm?

b. Write a method in the LinkedList class to do the cut and paste.
What is the running time of the algorithm?

17.11 The SortedLinkedList insert method uses only public iterator methods.
Can it access private members of the iterator?

17.12 Implement an efficient Stack class by using a LinkedList (either stan-
dard or nonstandard) as a data member. You need to use an iterator, but
it can be either a data member or a local variable for any routine that
needs it.

17.13 Implement an efficient Queue class by using (as in Exercise 17.12) a
singly linked list and appropriate iterators. How many of these itera-
tors must be data members in order to achieve an efficient imple-
mentation?

17.14 Implement retreat for singly linked lists. Note that it will take linear
time.

17.15 Implement the nonstandard LinkedList class without the header node.

PROGRAMMING PROJECTS

17.16 Implement a circularly and doubly linked list.

17.17 If the order that items in a list are stored is not important, you can fre-
quently speed searching with the heuristic known as move to front:
Whenever an item is accessed, move it to the front of the list. This
action usually results in an improvement because frequently accessed
items tend to migrate toward the front of the list, whereas less fre-
quently accessed items tend to migrate toward the end of the list. Con-
sequently, the most frequently accessed items tend to require the least
searching. Implement the move-to-front heuristic for linked lists.

17.18 Write routines makeUnion and intersect that return the union and inter-
section of two sorted linked lists.

17.19 Write a line-based text editor. The command syntax is similar to the
Unix line editor ed. The internal copy of the file is maintained as a
linked list of lines. To be able to go up and down in the file, you have to
maintain a doubly linked list. Most commands are represented by a
one-character string. Some are two characters and require an argument
(or two). Support the commands shown in Figure 17.31.

650 chapter 17 linked lists

17.20 Provide an add method for the ListIterator consistent with the Collec-
tions API specification.

17.21 Provide a set method for the ListIterator consistent with the Collec-
tions API specification.

17.22 Reimplement the standard LinkedList class
a. with a header but no tail.
b. with a tail but no header.
c. with no header and no tail.

figure 17.31

Commands for editor
in Exercise 17.19

Command Function

1 Go to the top.

a Add text after current line until . on its own line

d Delete current line.

dr num num Delete several lines.

f name Change name of the current file (for next write).

g num Go to a numbered line.

h Get help.

i Like append, but add lines before current line.

m num Move current line after some other line.

mr num num num Move several lines as a unit after some other line.

n Toggle whether line numbers are displayed.

p Print current line.

pr num num Print several lines.

q! Abort without write.

r name Read and paste another file into the current file.

s text text Substitute text with other text.

t num Copy current line to after some other line.

tr num num num Copy several lines to after some other line.

w Write file to disk.

x! Exit with write.

$ Go to the last line.

- Go up one line.

+ Go down one line.

= Print current line number.

/ text Search forward for a pattern.

? text Search backward for a pattern.

Print number of lines and characters in file.

chap te r 18

trees

The tree is a fundamental structure in computer science. Almost all operat-
ing systems store files in trees or treelike structures. Trees are also used in
compiler design, text processing, and searching algorithms. We discuss the
latter application in Chapter 19.

In this chapter, we show

n A definition of a general tree and discuss how it is used in a file system

n An examination of the binary tree

n Implementation of tree operations, using recursion

n Nonrecursive traversal of a tree

18.1 general trees
Trees can be defined in two ways: nonrecursively and recursively. The nonre-
cursive definition is the more direct technique, so we begin with it. The recur-
sive formulation allows us to write simple algorithms to manipulate trees.

652 chapter 18 trees

A tree can be
defined nonrecur-
sively as a set of
nodes and a set of
directed edges that
connect them.

Parents and chil-
dren are naturally
defined. A directed
edge connects the
parent to the child.

18.1.1 definitions

Nonrecursively, a tree consists of a set of nodes and a set of directed edges
that connect pairs of nodes. Throughout this text we consider only rooted
trees. A rooted tree has the following properties.

n One node is distinguished as the root.

n Every node c, except the root, is connected by an edge from exactly
one other node p. Node p is c’s parent, and c is one of p’s children.

n A unique path traverses from the root to each node. The number of
edges that must be followed is the path length.

Parents and children are naturally defined. A directed edge connects the par-
ent to the child.

A leaf has no
children.

Figure 18.1 illustrates a tree. The root node is A; A’s children are B, C, D,
and E. Because A is the root, it has no parent; all other nodes have parents. For
instance, B’s parent is A. A node that has no children is called a leaf. The
leaves in this tree are C, F, G, H, I, and K. The length of the path from A to K
is 3 (edges); the length of the path from A to A is 0 (edges).

The depth of a node
is the length of the
path from the root
to the node. The
height of a node is
the length of the
path from the node
to the deepest leaf.

A tree with N nodes must have N – 1 edges because every node except
the parent has an incoming edge. The depth of a node in a tree is the length
of the path from the root to the node. Thus the depth of the root is always 0,
and the depth of any node is 1 more than the depth of its parent. The height of
a node in a tree is the length of the path from the node to the deepest leaf.
Thus the height of E is 2. The height of any node is 1 more than the height of
its maximum-height child. Thus the height of a tree is the height of the root.

C D E

H I J

K

A

B

F G

Node

A

B

C

D

E

F

G

H

I

J

K

Height

3

1

0

1

2

0

0

0

0

1

0

Depth

0

1

1

1

1

2

2

2

2

2

3

figure 18.1

A tree, with height and
depth information

18.1 general trees 653

The size of a node is
the number of
descendants the
node has (including
the node itself).

Nodes with the same parent are called siblings; thus B, C, D, and E are all
siblings. If there is a path from node u to node v, then u is an ancestor of v and
v is a descendant of u. If u ≠ v, then u is a proper ancestor of v and v is a
proper descendant of u. The size of a node is the number of descendants the
node has (including the node itself). Thus the size of B is 3, and the size of C
is 1. The size of a tree is the size of the root. Thus the size of the tree shown in
Figure 18.1 is the size of its root A, or 11.

An alternative definition of the tree is recursive: Either a tree is empty or
it consists of a root and zero or more nonempty subtrees T1, T2, . . . , Tk, each
of whose roots are connected by an edge from the root, as illustrated in
Figure 18.2. In certain instances (most notably, the binary trees discussed
later in the chapter), we may allow some of the subtrees to be empty.

18.1.2 implementation
General trees can
be implemented by
using the first child/
next sibling method,
which requires two
links per item.

One way to implement a tree would be to have in each node a link to each
child of the node in addition to its data. However, as the number of children
per node can vary greatly and is not known in advance, making the children
direct links in the data structure might not be feasible—there would be too
much wasted space. The solution—called the first child/next sibling method—
is simple: Keep the children of each node in a linked list of tree nodes, with
each node keeping two links, one to its leftmost child (if it is not a leaf) and
one to its right sibling (if it is not the rightmost sibling). This type of imple-
mentation is illustrated in Figure 18.3. Arrows that point downward are
firstChild links, and arrows that point left to right are nextSibling links. We
did not draw null links because there are too many of them. In this tree, node
B has both a link to a sibling (C) and a link to a leftmost child (F); some nodes
have only one of these links and some have neither. Given this representation,
implementing a tree class is straightforward.

figure 18.2

A tree viewed
recursivelyRoot

T1 T2 T3 Tk

 • • •

654 chapter 18 trees

18.1.3 an application: file systems
File systems use
treelike structures.

Trees have many applications. One of their popular uses is the directory struc-
ture in many operating systems, including Unix, VAX/VMS, and Windows/
DOS. Figure 18.4 shows a typical directory in the Unix file system. The root
of this directory is mark. (The asterisk next to the name indicates that mark is
itself a directory.) Note that mark has three children: books, courses, and .login,
two of which are themselves directories. Thus mark contains two directories
and one regular file. The filename mark/books/dsaa/ch1 is obtained by
following the leftmost child three times. Each / after the first name indi-
cates an edge; the result is a pathname. If the path begins at the root of the
entire file system, rather than at an arbitrary directory inside the file sys-
tem, it is a full pathname; otherwise, it is a relative pathname (to the cur-
rent directory).

This hierarchical file system is popular because it allows users to organize
their data logically. Furthermore, two files in different directories can share
the same name because they have different paths from the root and thus have

figure 18.3

First child/next sibling
representation of the
tree in Figure 18.1

C D E

H I J

K

A

B

F G

figure 18.4

A Unix directory

ch1 ch2

dsaa*

ch1 ch2

ipps*

ch1 ch2

ecp*

books*

syl

cop3223*

courses* .login

syl

cop3530*

mark*

18.1 general trees 655

different full pathnames. A directory in the Unix file system is just a file with
a list of all its children,1 so the directories can be traversed with an iteration
scheme; that is, we can sequentially iterate over each child. Indeed, on some
systems, if the normal command to print a file is applied to a directory, the
filenames in the directory appear in the output (along with other non-ASCII
information).

The directory struc-
ture is most easily
traversed by using
recursion.

Suppose that we want to list the names of all the files in a directory (including
its subdirectories), and in our output format files of depth d have their names
indented by d tab characters. A short algorithm to do this task is given in
Figure 18.5. Output for the directory presented in Figure 18.4 is shown in
Figure 18.6.

1. Each directory in the Unix file system also has one entry (.) that points to itself and another
entry (..) that points to the parent of the directory, which introduces a cycle. Thus, techni-
cally, the Unix file system is not a tree but is treelike. The same is true for Windows/DOS.

figure 18.5

A routine for listing a
directory and its
subdirectories in a
hierarchical file
system

1 void listAll(int depth = 0) // depth is initially 0
2 {
3 printName(depth); // Print the name of the object
4 if(isDirectory())
5 for each file c in this directory (for each child)
6 c.listAll(depth + 1);
7 }

figure 18.6

The directory listing
for the tree shown in
Figure 18.4

mark
 books
 dsaa
 ch1
 ch2
 ecp
 ch1
 ch2
 ipps
 ch1
 ch2
 courses
 cop3223
 syl
 cop3530
 syl
 .login

656 chapter 18 trees

We assume the existence of the class FileSystem and two methods, print-
Name and isDirectory. printName outputs the current FileSystem object indented
by depth tab stops; isDirectory tests whether the current FileSystem object is a
directory, returning true if it is. Then we can write the recursive routine
listAll. We need to pass it the parameter depth, indicating the current level in
the directory relative to the root. The listAll routine is started with depth 0 to
signify no indenting for the root. This depth is an internal bookkeeping vari-
able and is hardly a parameter about which a calling routine should be
expected to know. Thus the pseudocode specifies a default value of 0 for depth
(specification of a default value is not legal Java).

The logic of the algorithm is simple to follow. The current object is
printed out, with appropriate indentation. If the entry is a directory, we pro-
cess all the children recursively, one by one. These children are one level
deeper in the tree and thus must be indented an extra tab stop. We make the
recursive call with depth+1. It is hard to imagine a shorter piece of code that
performs what appears to be a very difficult task.

In this algorithmic technique, known as a preorder tree traversal, work at
a node is performed before (pre) its children are processed. In addition to
being a compact algorithm, the preorder traversal is efficient because it takes
constant time per node. We discuss why later in this chapter.

Another common method of traversing a tree is the postorder tree tra-
versal, in which the work at a node is performed after (post) its children are
evaluated. It also takes constant time per node. As an example, Figure 18.7
represents the same directory structure as that shown in Figure 18.4. The
numbers in parentheses represent the number of disk blocks taken up by each
file. The directories themselves are files, so they also use disk blocks (to store
the names and information about their children).

Suppose that we want to compute the total number of blocks used by all
files in our example tree. The most natural way to do so is to find the total

figure 18.7

The Unix directory
with file sizes

mark*(1)

ch1(9) ch2(7)

dsaa*(1)

ch1(3) ch2(8)

ipps*(1)

ch1(4) ch2(6)

ecp*(1)

books*(1)

syl(2)

cop3223*(1)

courses*(1) .login(2)

syl(3)

cop3530*(1)

In a preorder tree
traversal, work at a
node is performed
before its children
are processed. The
traversal takes con-
stant time per node.

In a postorder tree
traversal, work at a
node is performed
after its children are
evaluated. The tra-
versal takes con-
stant time per node.

18.1 general trees 657

number of blocks contained in all the children (which may be directories that
must be evaluated recursively): books (41), courses (8), and .login (2). The
total number of blocks is then the total in all the children plus the blocks used
at the root (1), or 52. The size routine shown in Figure 18.8 implements this
strategy. If the current FileSystem object is not a directory, size merely returns
the number of blocks it uses. Otherwise, the number of blocks in the current
directory is added to the number of blocks (recursively) found in all the chil-
dren. To illustrate the difference between postorder traversal and preorder tra-
versal, in Figure 18.9 we show how the size of each directory (or file) is
produced by the algorithm. We get a classic postorder signature because the
total size of an entry is not computable until the information for its children
has been computed. As indicated previously, the running time is linear. We
have much more to say about tree traversals in Section 18.4.

figure 18.8

A routine for
calculating the total
size of all files in a
directory

1 int size()
2 {
3 int totalSize = sizeOfThisFile();
4
5 if(isDirectory())
6 for each file c in this directory (for each child)
7 totalSize += c.size();
8
9 return totalSize;

10 }

figure 18.9

A trace of the size
method

 ch1 9
 ch2 7
 dsaa 17
 ch1 4
 ch2 6
 ecp 11
 ch1 3
 ch2 8
 ipps 12
 books 41
 syl 2
 cop3223 3
 syl 3
 cop3530 4
 courses 8
 .login 2
mark 52

658 chapter 18 trees

java implementation
Java provides a class named File in package java.io that can be used to
traverse directory hierarchies. We can use it to implement the pseudocode in
Figure 18.8. The size method can also be implemented; this is done in the
online code. The class File provides several useful methods.

A File can be constructed by providing a filename. getName provides the
name of a File object. It does not include the directory part of the path; this
can be obtained by getPath. isDirectory returns true if the File is a directory,
and its size in bytes can be obtained by a call to length. If the file is a direc-
tory, the listFiles method returns an array of File that represents the files in
the directory (not including . and ..).

To implement the logic described in the pseudocode, we simply provide
printName, listAll, (both a public driver and a private recursive routine), and
size as shown in Figure 18.10. We also provide a simple main that tests the
logic on the current directory.

18.2 binary trees
A binary tree has no
node with more
than two children.

A binary tree is a tree in which no node can have more than two children.
Because there are only two children, we can name them left and right.
Recursively, a binary tree is either empty or consists of a root, a left tree, and
a right tree. The left and right trees may themselves be empty; thus a node
with one child could have either a left or right child. We use the recursive def-
inition several times in the design of binary tree algorithms. Binary trees have
many important uses, two of which are illustrated in Figure 18.11.

An expression tree
is one example of
the use of binary
trees. Such trees
are central data
structures in com-
piler design.

One use of the binary tree is in the expression tree, which is a central data
structure in compiler design. The leaves of an expression tree are operands,
such as constants or variable names; the other nodes contain operators. This
particular tree is binary because all the operations are binary. Although this
case is the simplest, nodes can have more than two children (and in the case of
unary operators, only one child). We can evaluate an expression tree T by
applying the operator at the root to the values obtained by recursively evaluat-
ing the left and right subtrees. Doing so yields the expression (a+((b-c)*d)).
(See Section 11.2 for a discussion of the construction of expression trees and
their evaluation.)

A second use of the binary tree is the Huffman coding tree, which is used
to implement a simple but relatively effective data compression algorithm.
Each symbol in the alphabet is stored at a leaf. Its code is obtained by follow-
ing the path to it from the root. A left link corresponds to a 0 and a right link

18.2 binary trees 659

figure 18.10

Java implementation
for a directory listing

1 import java.io.File;
2
3 public class FileSystem
4 {
5 // Output file name with indentation
6 public static void printName(String name, int depth)
7 {
8 for(int i = 0; i < depth; i++)
9 System.out.print(" ");

10 System.out.println(name);
11 }
12
13 // Public driver to list all files in directory
14 public static void listAll(File dir)
15 {
16 listAll(dir, 0);
17 }
18
19 // Recursive method to list all files in directory
20 private static void listAll(File dir, int depth)
21 {
22 printName(dir.getName(), depth);
23
24 if(dir.isDirectory())
25 for(File child : dir.listFiles())
26 listAll(child, depth + 1);
27 }
28
29 public static long size(File dir)
30 {
31 long totalSize = dir.length();
32
33 if(dir.isDirectory())
34 for(File child : dir.listFiles())
35 totalSize += size(child);
36
37 return totalSize;
38 }
39
40 // Simple main to list all files in current directory
41 public static void main(String [] args)
42 {
43 File dir = new File(".");
44 listAll(dir);
45 System.out.println("Total bytes: " + size(dir));
46 }
47 }

660 chapter 18 trees

The BinaryNode
class is imple-
mented separately
from the BinaryTree
class. The only data
member in the
BinaryTree class is
a reference to the
root node.

to a 1. Thus b is coded as 100. (See Section 12.1 for a discussion of the con-
struction of the optimal tree, that is, the best code.)

An important use of
binary trees is in
other data struc-
tures, notably the
binary search tree
and the priority
queue.

Other uses of the binary tree are in binary search trees (discussed in Chap-
ter 19), which allow logarithmic time insertions and accessing of items, and
priority queues, which support the access and deletion of the minimum in a
collection of items. Several efficient implementations of priority queues use
trees (discussed in Chapters 21–23).

Figure 18.12 gives the skeleton for the BinaryNode class. Lines 49–51 indi-
cate that each node consists of a data item plus two links. The constructor,
shown at lines 18 to 20, initializes all the data members of the BinaryNode class.
Lines 22–33 provide accessors and mutators for each of the data members.

Many of the
BinaryNode rou-
tines are recursive.
The BinaryTree
methods use the
BinaryNode rou-
tines on the root.

The duplicate method, declared at line 39, is used to replicate a copy of
the tree rooted at the current node. The routines’ size and height, declared
at lines 35 and 37, compute the named properties for the node referenced
by parameter t. We implement these routines in Section 18.3. (Recall that
static methods do not require a controlling object.) We also provide, at
lines 42–47, routines that print out the contents of a tree rooted at the cur-
rent node, using various recursive traversal strategies. We discuss tree tra-
versals in Section 18.4. Why do we pass a parameter for size and height
and make them static but use the current object for the traversals and
duplicate? There is no particular reason; it is a matter of style, and we
show both styles here. The implementations show that the difference
between them occurs when the required test for an empty tree (given by a
null reference) is performed.

In this section we describe implementation of the BinaryTree class. The
BinaryNode class is implemented separately, instead of as a nested class. The
BinaryTree class skeleton is shown in Figure 18.13. For the most part, the rou-
tines are short because they call BinaryNode methods. Line 44 declares the
only data member—a reference to the root node.

figure 18.11

Uses of binary trees:
(a) an expression tree
and (b) a Huffman
coding tree

a

+

*

d–

b c

(a)

a

d

b c

(b)

18.2 binary trees 661

figure 18.12

The BinaryNode class
skeleton

1 // BinaryNode class; stores a node in a tree.
2 //
3 // CONSTRUCTION: with no parameters, or an Object,
4 // left child, and right child.
5 //
6 // *******************PUBLIC OPERATIONS**********************
7 // int size() --> Return size of subtree at node
8 // int height() --> Return height of subtree at node
9 // void printPostOrder() --> Print a postorder tree traversal

10 // void printInOrder() --> Print an inorder tree traversal
11 // void printPreOrder() --> Print a preorder tree traversal
12 // BinaryNode duplicate()--> Return a duplicate tree
13
14 class BinaryNode<AnyType>
15 {
16 public BinaryNode()
17 { this(null, null, null); }
18 public BinaryNode(AnyType theElement,
19 BinaryNode<AnyType> lt, BinaryNode<AnyType> rt)
20 { element = theElement; left = lt; right = rt; }
21
22 public AnyType getElement()
23 { return element; }
24 public BinaryNode<AnyType> getLeft()
25 { return left; }
26 public BinaryNode<AnyType> getRight()
27 { return right; }
28 public void setElement(AnyType x)
29 { element = x; }
30 public void setLeft(BinaryNode<AnyType> t)
31 { left = t; }
32 public void setRight(BinaryNode<AnyType> t)
33 { right = t; }
34
35 public static <AnyType> int size(BinaryNode<AnyType> t)
36 { /* Figure 18.19 */ }
37 public static <AnyType> int height(BinaryNode<AnyType> t)
38 { /* Figure 18.21 */ }
39 public BinaryNode<AnyType> duplicate()
40 { /* Figure 18.17 */ }
41
42 public void printPreOrder()
43 { /* Figure 18.22 */ }
44 public void printPostOrder()
45 { /* Figure 18.22 */ }
46 public void printInOrder()
47 { /* Figure 18.22 */ }
48
49 private AnyType element;
50 private BinaryNode<AnyType> left;
51 private BinaryNode<AnyType> right;
52 }

662 chapter 18 trees

Two basic constructors are provided. The one at lines 16 and 17 creates an
empty tree, and the one at lines 18 and 19 creates a one-node tree. Routines to
traverse the tree are written at lines 28–33. They apply a BinaryNode method to

figure 18.13

The BinaryTree class,
except for merge

1 // BinaryTree class; stores a binary tree.
2 //
3 // CONSTRUCTION: with (a) no parameters or (b) an object to
4 // be placed in the root of a one-element tree.
5 //
6 // *******************PUBLIC OPERATIONS**********************
7 // Various tree traversals, size, height, isEmpty, makeEmpty.
8 // Also, the following tricky method:
9 // void merge(Object root, BinaryTree t1, BinaryTree t2)

10 // --> Construct a new tree
11 // *******************ERRORS*********************************
12 // Error message printed for illegal merges.
13
14 public class BinaryTree<AnyType>
15 {
16 public BinaryTree()
17 { root = null; }
18 public BinaryTree(AnyType rootItem)
19 { root = new BinaryNode<AnyType>(rootItem, null, null); }
20
21 public BinaryNode<AnyType> getRoot()
22 { return root; }
23 public int size()
24 { return BinaryNode.size(root); }
25 public int height()
26 { return BinaryNode.height(root); }
27
28 public void printPreOrder()
29 { if(root != null) root.printPreOrder(); }
30 public void printInOrder()
31 { if(root != null) root.printInOrder(); }
32 public void printPostOrder()
33 { if(root != null) root.printPostOrder(); }
34
35 public void makeEmpty()
36 { root = null; }
37 public boolean isEmpty()
38 { return root == null; }
39
40 public void merge(AnyType rootItem,
41 BinaryTree<AnyType> t1, BinaryTree<AnyType> t2)
42 { /* Figure 18.16 */ }
43
44 private BinaryNode<AnyType> root;
45 }

18.2 binary trees 663

the root, after verifying that the tree is not empty. An alternative traversal
strategy that can be implemented is level-order traversal. We discuss these tra-
versal routines in Section 18.4. Routines to make an empty tree and test for
emptiness are given, with their inline implementations, at lines 35 to 38, as
are routines to compute the tree’s size and height. Note that, as size and
height are static methods in BinaryNode, we can call them by simply using
BinaryNode.size and BinaryNode.height.

The last method in the class is the merge routine, which uses two trees—t1
and t2—and an element to create a new tree, with the element at the root and
the two existing trees as left and right subtrees. In principle, it is a one-liner:

root = new BinaryNode<AnyType>(rootItem, t1.root, t2.root);

If things were always this simple, programmers would be unemployed. Fortu-
nately for our careers, there are a host of complications. Figure 18.14 shows
the result of the simple one-line merge. A problem becomes apparent: Nodes in
t1 and t2’s trees are now in two trees (their original trees and the merged
result). This sharing is a problem if we want to remove or otherwise alter sub-
trees (because multiple subtrees may be removed or altered unintentionally).

If the two input
trees are aliases,
we should disallow
the operation
unless the trees
are empty.

The solution is simple in principle. We can ensure that nodes do not
appear in two trees by setting t1.root and t2.root to null after the merge.

Complications ensue when we consider some possible calls that contain
aliasing:

t1.merge(x, t1, t2);
t2.merge(x, t1, t2);
t1.merge(x, t3, t3);

The first two cases are similar, so we consider only the first one. A diagram of
the situation is shown in Figure 18.15. Because t1 is an alias for the current
object, t1.root and root are aliases. Thus, after the call to new, if we execute
t1.root=null, we change root to the null reference, too. Consequently, we
need to be very careful with the aliases for these cases.

figure 18.14

Result of a naive
merge operation:
Subtrees are shared.

root

t1.root t2.root

x

We set the original
trees’ root to null
so that each node
is in one tree.

The merge routine is
a one-liner in prin-
ciple. However, we
must also handle
aliasing, ensure
that a node is not in
two trees, and
check for errors.

664 chapter 18 trees

If an input tree is
aliased to the out-
put tree, we must
avoid having the
resultant root ref-
erence being set to
null.

The third case must be disallowed because it would place all the nodes
that are in tree t3 in two places in t1. However, if t3 represents an empty tree,
the third case should be allowed. All in all, we got a lot more than we bar-
gained for. The resulting code is shown in Figure 18.16. What used to be a
one-line routine has gotten quite large.

figure 18.15

Aliasing problems in
the merge operation;
t1 is also the current
object.

root
t1.root

t2.root

xroot
t1.root

old
old

figure 18.16

The merge routine for the BinaryTree class

1 /**
2 * Merge routine for BinaryTree class.
3 * Forms a new tree from rootItem, t1 and t2.
4 * Does not allow t1 and t2 to be the same.
5 * Correctly handles other aliasing conditions.
6 */
7 public void merge(AnyType rootItem,
8 BinaryTree<AnyType> t1, BinaryTree<AnyType> t2)
9 {

10 if(t1.root == t2.root && t1.root != null)
11 throw new IllegalArgumentException();
12
13 // Allocate new node
14 root = new BinaryNode<AnyType>(rootItem, t1.root, t2.root);
15
16 // Ensure that every node is in one tree
17 if(this != t1)
18 t1.root = null;
19 if(this != t2)
20 t2.root = null;
21 }

18.3 recursion and trees 665

18.3 recursion and trees
Recursive routines
are used for size
and duplicate.

Because trees can be defined recursively, many tree routines, not surprisingly,
are most easily implemented by using recursion. Recursive implementations
for almost all the remaining BinaryNode and BinaryTree methods are provided
here. The resulting routines are amazingly compact.

Because duplicate
is a BinaryNode
method, we make
recursive calls only
after verifying that
the subtrees are
not null.

We begin with the duplicate method of the BinaryNode class. Because it is
a BinaryNode method, we are assured that the tree we are duplicating is not
empty. The recursive algorithm is then simple. First, we create a new node
with the same data field as the current root. Then we attach a left tree by call-
ing duplicate recursively and attach a right tree by calling duplicate recur-
sively. In both cases, we make the recursive call after verifying that there is a
tree to copy. This description is coded verbatim in Figure 18.17.

The size routine is
easily implemented
recursively after a
drawing is made.

The next method we write is the size routine in the BinaryNode class. It
returns the size of the tree rooted at a node referenced by t, which is passed as
a parameter. If we draw the tree recursively, as shown in Figure 18.18, we see
that the size of a tree is the size of the left subtree plus the size of the right

figure 18.17

A routine for returning
a copy of the tree
rooted at the current
node

1 /**
2 * Return a reference to a node that is the root of a
3 * duplicate of the binary tree rooted at the current node.
4 */
5 public BinaryNode<AnyType> duplicate()
6 {
7 BinaryNode<AnyType> root =
8 new BinaryNode<AnyType>(element, null, null);
9

10 if(left != null) // If there's a left subtree
11 root.left = left.duplicate(); // Duplicate; attach
12 if(right != null) // If there's a right subtree
13 root.right = right.duplicate(); // Duplicate; attach
14 return root; // Return resulting tree
15 }

figure 18.18

Recursive view used
to calculate the size of
a tree:
ST = SL + SR + 1.

SL SR

666 chapter 18 trees

subtree plus 1 (because the root counts as a node). A recursive routine
requires a base case that can be solved without recursion. The smallest tree
that size might have to handle is the empty tree (if t is null), and the size of an
empty tree is clearly 0. We should verify that the recursion produces the cor-
rect answer for a tree of size 1. Doing so is easy, and the recursive routine is
implemented as shown in Figure 18.19.

The final recursive routine presented in this section calculates the height
of a node. Implementing this routine is difficult to do nonrecursively but is
trivial recursively, once we have made a drawing. Figure 18.20 shows a tree
viewed recursively. Suppose that the left subtree has height HL and the right
subtree has height HR. Any node that is d levels deep with respect to the root
of the left subtree is levels deep with respect to the root of the entire tree.
The same holds for the right subtree. Thus the path length of the deepest node
in the original tree is 1 more than its path length with respect to the root of its
subtree. If we compute this value for both subtrees, the maximum of these two
values plus 1 is the answer we want. The code for doing so is shown in
Figure 18.21.

figure 18.19

A routine for
computing the size of
a node

1 /**
2 * Return the size of the binary tree rooted at t.
3 */
4 public static <AnyType> int size(BinaryNode<AnyType> t)
5 {
6 if(t == null)
7 return 0;
8 else
9 return 1 + size(t.left) + size(t.right);

10 }

figure 18.20

Recursive view of the node height calculation:
HT = Max (HL + 1, HR + 1)

HL +1

HL
HR

HR +1

d 1+

The height routine
is also easily imple-
mented recursively.
The height of an
empty tree is –1.

18.4 tree traversal: iterator classes 667

18.4 tree traversal: iterator classes
In this chapter we have shown how recursion can be used to implement the
binary tree methods. When recursion is applied, we compute information
about not only a node but also about all its descendants. We say then that we
are traversing the tree. Two popular traversals that we have already mentioned
are the preorder and postorder traversals.

In a preorder traversal, the node is processed and then its children are pro-
cessed recursively. The duplicate routine is an example of a preorder traversal
because the root is created first. Then a left subtree is copied recursively, fol-
lowed by copying the right subtree.

In a postorder traversal, the node is processed after both children are pro-
cessed recursively. Two examples are the methods size and height. In both
cases, information about a node (e.g., its size or height) can be obtained only
after the corresponding information is known for its children.

In an inorder tra-
versal, the current
node is processed
between recursive
calls.

A third common recursive traversal is the inorder traversal, in which the
left child is recursively processed, the current node is processed, and the right
child is recursively processed. This mechanism is used to generate an alge-
braic expression corresponding to an expression tree. For example, in
Figure 18.11 the inorder traversal yields (a+((b-c)*d)).

Simple traversal
using any of these
strategies takes lin-
ear time.

Figure 18.22 illustrates routines that print the nodes in a binary tree using
each of the three recursive tree traversal algorithms. Figure 18.23 shows the
order in which nodes are visited for each of the three strategies. The running
time of each algorithm is linear. In every case, each node is output only once.
Consequently, the total cost of an output statement over any traversal is O(N) .
As a result, each if statement is also executed at most once per node, for a
total cost of O(N) . The total number of method calls made (which involves
the constant work of the internal run-time stack pushes and pops) is likewise
once per node, or O(N) . Thus the total running time is O(N) .

figure 18.21

A routine for
computing the height
of a node

1 /**
2 * Return the height of the binary tree rooted at t.
3 */
4 public static <AnyType> int height(BinaryNode<AnyType> t)
5 {
6 if(t == null)
7 return -1;
8 else
9 return 1 + Math.max(height(t.left), height(t.right));

10 }

668 chapter 18 trees

figure 18.22

Routines for printing
nodes in preorder,
postorder, and inorder

1 // Print tree rooted at current node using preorder traversal.
2 public void printPreOrder()
3 {
4 System.out.println(element); // Node
5 if(left != null)
6 left.printPreOrder(); // Left
7 if(right != null)
8 right.printPreOrder(); // Right
9 }

10
11 // Print tree rooted at current node using postorder traversal.
12 public void printPostOrder()
13 {
14 if(left != null) // Left
15 left.printPostOrder();
16 if(right != null) // Right
17 right.printPostOrder();
18 System.out.println(element); // Node
19 }
20
21 // Print tree rooted at current node using inorder traversal.
22 public void printInOrder()
23 {
24 if(left != null) // Left
25 left.printInOrder();
26 System.out.println(element); // Node
27 if(right != null)
28 right.printInOrder(); // Right
29 }

figure 18.23

(a) Preorder,
(b) postorder, and
(c) inorder visitation
routes

7

1 6

3 5

2 4

(b)

1

2 3

4 6

5 7

(a)

2

1 5

3 7

4 6

(c)

18.4 tree traversal: iterator classes 669

We can traverse
nonrecursively by
maintaining the
stack ourselves.

Must we use recursion to implement the traversals? The answer is clearly
no because, as discussed in Section 7.3, recursion is implemented by using a
stack. Thus we could keep our own stack.2 We might expect that a somewhat
faster program could result because we can place only the essentials on the
stack rather than have the compiler place an entire activation record on the
stack. The difference in speed between a recursive and nonrecursive algorithm
is very dependent on the platform, and on modern computers may well be
negligible. It is possible for instance, that if an array-based stack is used, the
bounds checks that must be performed for all array access could be signifi-
cant; the run-time stack might not be subjected to such tests if an aggressive
optimizing compiler proves that a stack underflow is impossible. Thus in
many cases, the speed improvement does not justify the effort involved in
removing recursion. Even so, knowing how to do so is worthwhile, in case
your platform is one that would benefit from recursion removal and also
because seeing how a program is implemented nonrecursively can sometimes
make the recursion clearer.

An iterator class
allows step-by-step
traversal.

We write three iterator classes, each in the spirit of the linked list. Each
allows us to go to the first node, advance to the next node, test whether we
have gone past the last node, and access the current node. The order in which
nodes are accessed is determined by the type of traversal. We also implement
a level-order traversal, which is inherently nonrecursive and in fact uses a
queue instead of a stack and is similar to the preorder traversal.

The abstract tree
iterator class has
methods similar to
those of the linked
list iterator. Each
type of traversal is
represented by a
derived class.

Figure 18.24 provides an abstract class for tree iteration. Each iterator
stores a reference to the tree root and an indication of the current node.3

These are declared at lines 47 and 48, respectively, and initialized in the
constructor. They are protected to allow the derived classes to access them.
Four methods are declared at lines 22–42. The isValid and retrieve methods
are invariant over the hierarchy, so an implementation is provided and they
are declared final. The abstract methods first and advance must be provided
by each type of iterator. This iterator is similar to the linked list iterator
(LinkedListIterator, in Section 17.2), except that here the first method is
part of the tree iterator, whereas in the linked list the first method was part
of the list class itself.

2. We can also add parent links to each tree node to avoid both recursion and stacks. In this chap-
ter we demonstrate the relation between recursion and stacks, so we do not use parent links.

3. In these implementations, once the iterators have been constructed, structurally modifying
the tree during an iteration is unsafe because references may become stale.

670 chapter 18 trees

figure 18.24

The tree iterator abstract base class

1 import java.util.NoSuchElementException;
2
3 // TreeIterator class; maintains "current position"
4 //
5 // CONSTRUCTION: with tree to which iterator is bound
6 //
7 // ******************PUBLIC OPERATIONS**********************
8 // first and advance are abstract; others are final
9 // boolean isValid() --> True if at valid position in tree

10 // AnyType retrieve() --> Return item in current position
11 // void first() --> Set current position to first
12 // void advance() --> Advance (prefix)
13 // ******************ERRORS*********************************
14 // Exceptions thrown for illegal access or advance
15
16 abstract class TreeIterator<AnyType>
17 {
18 /**
19 * Construct the iterator. The current position is set to null.
20 * @param theTree the tree to which the iterator is bound.
21 */
22 public TreeIterator(BinaryTree<AnyType> theTree)
23 { t = theTree; current = null; }
24
25 /**
26 * Test if current position references a valid tree item.
27 * @return true if the current position is not null; false otherwise.
28 */
29 final public boolean isValid()
30 { return current != null; }
31
32 /**
33 * Return the item stored in the current position.
34 * @return the stored item.
35 * @exception NoSuchElementException if the current position is invalid.
36 */
37 final public AnyType retrieve()
38 {
39 if(current == null)
40 throw new NoSuchElementException();
41 return current.getElement();
42 }
43
44 abstract public void first();
45 abstract public void advance();
46
47 protected BinaryTree<AnyType> t; // The tree root
48 protected BinaryNode<AnyType> current; // The current position
49 }

18.4 tree traversal: iterator classes 671

18.4.1 postorder traversal
Postorder traversal
maintains a stack
that stores nodes
that have been vis-
ited but whose
recursive calls are
not yet complete.

The postorder traversal is implemented by using a stack to store the current
state. The top of the stack will represent the node that we are visiting at some
instant in the postorder traversal. However, we may be at one of three places
in the algorithm:

1. About to make a recursive call to the left subtree

2. About to make a recursive call to the right subtree

3. About to process the current node

Consequently, each node is placed on the stack three times during the
course of the traversal. If a node is popped from the stack a third time, we can
mark it as the current node to be visited.

Each node is
placed on the stack
three times. The
third time off, the
node is declared
visited. The other
times, we simulate
a recursive call.

Otherwise, the node is being popped for either the first time or the second
time. In this case, it is not yet ready to be visited, so we push it back onto the
stack and simulate a recursive call. If the node was popped for a first time, we
need to push the left child (if it exists) onto the stack. Otherwise, the node was
popped for a second time, and we push the right child (if it exists) onto the
stack. In any event, we then pop the stack, applying the same test. Note that,
when we pop the stack, we are simulating the recursive call to the appropriate
child. If the child does not exist and thus was never pushed onto the stack,
when we pop the stack we pop the original node again.

When the stack is
empty, every node
has been visited.

Eventually, either the process pops a node for the third time or the stack
empties. In the latter case, we have iterated over the entire tree. We initialize
the algorithm by pushing a reference to the root onto the stack. An example of
how the stack is manipulated is shown in Figure 18.25.

A quick summary: The stack contains nodes that we have traversed but
not yet completed. When a node is pushed onto the stack, the counter is 1, 2,
or 3 as follows:

1. If we are about to process the node’s left subtree

2. If we are about to process the node’s right subtree

3. If we are about to process the node itself

Let us trace through the postorder traversal. We initialize the traversal by
pushing root a onto the stack. The first pop visits a. This is a’s first pop, so it is
placed back on the stack, and we push its left child, b, onto the stack. Next b is
popped. It is b’s first pop, so it is placed back on the stack. Normally, b’s left
child would then be pushed, but b has no left child, so nothing is pushed. Thus
the next pop reveals b for the second time, b is placed back on the stack, and
its right child, d, is pushed onto the stack. The next pop produces d for the first

672 chapter 18 trees

time, and d is pushed back onto the stack. No other push is performed because
d has no left child. Thus d is popped for the second time and is pushed back,
but as it has no right child, nothing else is pushed. Therefore the next pop
yields d for the third time, and d is marked as a visited node. The next node
popped is b, and as this pop is b’s third, it is marked visited.

Then a is popped for the second time, and it is pushed back onto the stack
along with its right child, c. Next, c is popped for the first time, so it is pushed
back, along with its left child, e. Now e is popped, pushed, popped, pushed,
and finally popped for the third time (typical for leaf nodes). Thus e is marked
as a visited node. Next, c is popped for the second time and is pushed back
onto the stack. However, it has no right child, so it is immediately popped for
the third time and marked as visited. Finally, a is popped for the third time and
marked as visited. At this point, the stack is empty and the postorder traversal
terminates.

An StNode stores a
reference to a node
and a count that
tells how many
times it has already
been popped.

The PostOrder class is implemented directly from the algorithm described
previously and is shown, minus the advance method, in Figure 18.26. The
StNode nested class represents the objects placed on the stack. It contains a ref-
erence to a node and an integer that stores the number of times the item has
been popped from the stack. An StNode object is always initialized to reflect
the fact that it has not yet been popped from the stack. (We use a nonstandard
Stack class from Chapter 16.)

The PostOrder class is derived from TreeIterator and adds an internal
stack to the inherited data members. The PostOrder class is initialized by ini-
tializing the TreeIterator data members and then pushing the root onto the

a 0
b 0
a 1

b 1
a 1

d 0
b 2
a 1

d 1
b 2
a 1

d 2
b 2
a 1

b 2
a 1 a 1
d b

c a

c 0
a 2

e 0
c 1
a 2

e 1
c 1
a 2

e 2
c 1
a 2

c 1
a 2
e

c 2
a 2 a 2

a

b c

ed

figure 18.25

Stack states during
postorder traversal

18.4 tree traversal: iterator classes 673

figure 18.26

The PostOrder class
(complete class
except for advance)

1 import weiss.nonstandard.Stack;
2 import weiss.nonstandard.ArrayStack;
3
4 // PostOrder class; maintains "current position"
5 // according to a postorder traversal
6 //
7 // CONSTRUCTION: with tree to which iterator is bound
8 //
9 // ******************PUBLIC OPERATIONS**********************

10 // boolean isValid() --> True if at valid position in tree
11 // AnyType retrieve() --> Return item in current position
12 // void first() --> Set current position to first
13 // void advance() --> Advance (prefix)
14 // ******************ERRORS*********************************
15 // Exceptions thrown for illegal access or advance
16
17 class PostOrder<AnyType> extends TreeIterator<AnyType>
18 {
19 protected static class StNode<AnyType>
20 {
21 StNode(BinaryNode<AnyType> n)
22 { node = n; timesPopped = 0; }
23 BinaryNode<AnyType> node;
24 int timesPopped;
25 }
26
27 /**
28 * Construct the iterator. The current position is set to null.
29 */
30 public PostOrder(BinaryTree<AnyType> theTree)
31 {
32 super(theTree);
33 s = new ArrayStack<StNode<AnyType>>();
34 s.push(new StNode<AnyType>(t.getRoot()));
35 }
36
37 /**
38 * Set the current position to the first item.
39 */
40 public void first()
41 {
42 s.makeEmpty();
43 if(t.getRoot() != null)
44 {
45 s.push(new StNode<AnyType>(t.getRoot()));
46 advance();
47 }
48 }
49
50 protected Stack<StNode<AnyType>> s; // The stack of StNode objects
51 }

674 chapter 18 trees

stack. This process is illustrated in the constructor at lines 30 to 35. Then
first is implemented by clearing the stack, pushing the root, and calling
advance.

Figure 18.27 implements advance. It follows the outline almost verbatim.
Line 8 tests for an empty stack. If the stack is empty, we have completed the

figure 18.27

The advance routine for the PostOrder iterator class

1 /**
2 * Advance the current position to the next node in the tree,
3 * according to the postorder traversal scheme.
4 * @throws NoSuchElementException if the current position is null.
5 */
6 public void advance()
7 {
8 if(s.isEmpty())
9 {

10 if(current == null)
11 throw new NoSuchElementException();
12 current = null;
13 return;
14 }
15
16 StNode<AnyType> cnode;
17
18 for(; ;)
19 {
20 cnode = s.topAndPop();
21
22 if(++cnode.timesPopped == 3)
23 {
24 current = cnode.node;
25 return;
26 }
27
28 s.push(cnode);
29 if(cnode.timesPopped == 1)
30 {
31 if(cnode.node.getLeft() != null)
32 s.push(new StNode<AnyType>(cnode.node.getLeft()));
33 }
34 else // cnode.timesPopped == 2
35 {
36 if(cnode.node.getRight() != null)
37 s.push(new StNode<AnyType>(cnode.node.getRight()));
38 }
39 }
40 }

The advance rou-
tine is complicated.
Its code follows the
earlier description
almost verbatim.

18.4 tree traversal: iterator classes 675

iteration and can set current to null and return. (If current is already null, we
have advanced past the end, and an exception is thrown.) Otherwise, we
repeatedly perform stack pushes and pops until an item emerges from the
stack for a third time. When this happens, the test at line 22 is successful and
we can return. Otherwise, at line 24 we push the node back onto the stack
(note that the timesPopped component has already been incremented at line
22). We then implement the recursive call. If the node was popped for the first
time and it has a left child, its left child is pushed onto the stack. Likewise, if
the node was popped for a second time and it has a right child, its right child
is pushed onto the stack. Note that, in either case, the construction of the
StNode object implies that the pushed node goes on the stack with zero pops.

Eventually, the for loop terminates because some node will be popped for
the third time. Over the entire iteration sequence, there can be at most 3N
stack pushes and pops, which is another way of establishing the linearity of a
postorder traversal.

18.4.2 inorder traversal
Inorder traversal
is similar to
postorder, except
that a node is
declared visited
when it is popped
for the second time.

The inorder traversal is the same as the postorder traversal, except that a node
is declared visited after it is popped a second time. Prior to returning, the iter-
ator pushes the right child (if it exists) onto the stack so that the next call to
advance can continue by traversing the right child. Because this action is so
similar to a postorder traversal, we derive the InOrder class from the PostOrder
class (even though an IS-A relationship does not exist). The only change is the
minor alteration to advance. The new class is shown in Figure 18.28.

18.4.3 preorder traversal
Preorder is the
same as postorder,
except that a node
is declared visited
the first time it is
popped. The right
and then left chil-
dren are pushed
prior to the return.

The preorder traversal is the same as the inorder traversal, except that a node
is declared visited after it has been popped the first time. Prior to returning,
the iterator pushes the right child onto the stack and then pushes the left child.
Note the order: We want the left child to be processed before the right child,
so we must push the right child first and the left child second.

We could derive the PreOrder class from the InOrder or PostOrder class, but
doing so would be wasteful because the stack no longer needs to maintain a
count of the number of times an object has been popped. Consequently, the
PreOrder class is derived directly from TreeIterator. The resulting class with
implementations of the constructor and first method is shown in
Figure 18.29.

676 chapter 18 trees

figure 18.28

The complete InOrder iterator class

1 // InOrder class; maintains "current position"
2 // according to an inorder traversal
3 //
4 // CONSTRUCTION: with tree to which iterator is bound
5 //
6 // ******************PUBLIC OPERATIONS**********************
7 // Same as TreeIterator
8 // ******************ERRORS*********************************
9 // Exceptions thrown for illegal access or advance

10
11 class InOrder<AnyType> extends PostOrder<AnyType>
12 {
13 public InOrder(BinaryTree<AnyType> theTree)
14 { super(theTree); }
15
16 /**
17 * Advance the current position to the next node in the tree,
18 * according to the inorder traversal scheme.
19 * @throws NoSuchElementException if iteration has
20 * been exhausted prior to the call.
21 */
22 public void advance()
23 {
24 if(s.isEmpty())
25 {
26 if(current == null)
27 throw new NoSuchElementException();
28 current = null;
29 return;
30 }
31
32 StNode<AnyType> cnode;
33 for(; ;)
34 {
35 cnode = s.topAndPop();
36
37 if(++cnode.timesPopped == 2)
38 {
39 current = cnode.node;
40 if(cnode.node.getRight() != null)
41 s.push(new StNode<AnyType>(cnode.node.getRight()));
42 return;
43 }
44 // First time through
45 s.push(cnode);
46 if(cnode.node.getLeft() != null)
47 s.push(new StNode<AnyType>(cnode.node.getLeft()));
48 }
49 }
50 }

18.4 tree traversal: iterator classes 677

Popping only once
allows some
simplification.

At line 42, we added a stack of tree nodes to the TreeIterator data fields.
The constructor and first methods are similar to those already presented. As
illustrated by Figure 18.30, advance is simpler: We no longer need a for loop.
As soon as a node is popped at line 17, it becomes the current node. We then
push the right child and the left child, if they exist.

figure 18.29

The PreOrder class
skeleton and all
members except
advance

1 // PreOrder class; maintains "current position"
2 //
3 // CONSTRUCTION: with tree to which iterator is bound
4 //
5 // ******************PUBLIC OPERATIONS**********************
6 // boolean isValid() --> True if at valid position in tree
7 // AnyType retrieve() --> Return item in current position
8 // void first() --> Set current position to first
9 // void advance() --> Advance (prefix)

10 // ******************ERRORS*********************************
11 // Exceptions thrown for illegal access or advance
12
13 class PreOrder<AnyType> extends TreeIterator<AnyType>
14 {
15 /**
16 * Construct the iterator. The current position is set to null.
17 */
18 public PreOrder(BinaryTree<AnyType> theTree)
19 {
20 super(theTree);
21 s = new ArrayStack<BinaryNode<AnyType>>();
22 s.push(t.getRoot());
23 }
24
25 /**
26 * Set the current position to the first item, according
27 * to the preorder traversal scheme.
28 */
29 public void first()
30 {
31 s.makeEmpty();
32 if(t.getRoot() != null)
33 {
34 s.push(t.getRoot());
35 advance();
36 }
37 }
38
39 public void advance()
40 { /* Figure 18.30 */ }
41
42 private Stack<BinaryNode<AnyType>> s; // Stack of BinaryNode objects
43 }

678 chapter 18 trees

18.4.4 level-order traversals
In a level-order
traversal, nodes are
visited top to bot-
tom, left to right.
Level-order tra-
versal is imple-
mented via a
queue. The tra-
versal is a breadth-
first search.

We close by implementing a level-order traversal, which processes nodes
starting at the root and going from top to bottom, left to right. The name is
derived from the fact that we output level 0 nodes (the root), level 1 nodes
(root’s children), level 2 nodes (grandchildren of the root), and so on. A level-
order traversal is implemented by using a queue instead of a stack. The queue
stores nodes that are yet to be visited. When a node is visited, its children are
placed at the end of the queue where they are visited after the nodes that are
already in the queue have been visited. This procedure guarantees that nodes
are visited in level order. The LevelOrder class shown in Figures 18.31 and
18.32 looks very much like the PreOrder class. The only differences are that
we use a queue instead of a stack and that we enqueue the left child and then
the right child, rather than vice versa. Note that the queue can get very large.
In the worst case, all the nodes on the last level (possibly N/2) could be in the
queue simultaneously.

The level-order traversal implements a more general technique known as
breadth-first search. We illustrated an example of this in a more general set-
ting in Section 14.2.

figure 18.30

The PreOrder iterator
class advance routine

1 /**
2 * Advance the current position to the next node in the tree,
3 * according to the preorder traversal scheme.
4 * @throws NoSuchElementException if iteration has
5 * been exhausted prior to the call.
6 */
7 public void advance()
8 {
9 if(s.isEmpty())

10 {
11 if(current == null)
12 throw new NoSuchElementException();
13 current = null;
14 return;
15 }
16
17 current = s.topAndPop();
18
19 if(current.getRight() != null)
20 s.push(current.getRight());
21 if(current.getLeft() != null)
22 s.push(current.getLeft());
23 }

summary 679

summary

In this chapter we discussed the tree and, in particular, the binary tree. We
demonstrated the use of trees to implement file systems on many computers
and also some other applications, such as expression trees and coding, that we
more fully explored in Part Three. Algorithms that work on trees make heavy
use of recursion. We examined three recursive traversal algorithms—preorder,
postorder, and inorder—and showed how they can be implemented nonrecur-
sively. We also examined the level-order traversal, which forms the basis for
an important searching technique known as breadth-first search. In Chapter 19
we examine another fundamental type of tree—the binary search tree.

figure 18.31

The LevelOrder
iterator class skeleton

1 // LevelOrder class; maintains "current position"
2 // according to a level-order traversal
3 //
4 // CONSTRUCTION: with tree to which iterator is bound
5 //
6 // ******************PUBLIC OPERATIONS**********************
7 // boolean isValid() --> True if at valid position in tree
8 // AnyType retrieve() --> Return item in current position
9 // void first() --> Set current position to first

10 // void advance() --> Advance (prefix)
11 // ******************ERRORS*********************************
12 // Exceptions thrown for illegal access or advance
13
14 class LevelOrder<AnyType> extends TreeIterator<AnyType>
15 {
16 /**
17 * Construct the iterator.
18 */
19 public LevelOrder(BinaryTree<AnyType> theTree)
20 {
21 super(theTree);
22 q = new ArrayQueue<BinaryNode<AnyType>>();
23 q.enqueue(t.getRoot());
24 }
25
26 public void first()
27 { /* Figure 18.32 */ }
28
29 public void advance()
30 { /* Figure 18.32 */ }
31
32 private Queue<BinaryNode<AnyType>> q; // Queue of BinaryNode objects
33 }

680 chapter 18 trees

key concepts

ancestor and descendant If there is a path from node u to node v, then u is an
ancestor of v and v is a descendant of u. (653)

binary tree A tree in which no node can have more than two children. A conve-
nient definition is recursive. (658)

figure 18.32

The first and advance
routines for the
LevelOrder iterator
class

1 /**
2 * Set the current position to the first item, according
3 * to the level-order traversal scheme.
4 */
5 public void first()
6 {
7 q.makeEmpty();
8 if(t.getRoot() != null)
9 {

10 q.enqueue(t.getRoot());
11 advance();
12 }
13 }
14
15 /**
16 * Advance the current position to the next node in the tree,
17 * according to the level-order traversal scheme.
18 * @throws NoSuchElementException if iteration has
19 * been exhausted prior to the call.
20 */
21 public void advance()
22 {
23 if(q.isEmpty())
24 {
25 if(current == null)
26 throw new NoSuchElementException();
27 current = null;
28 return;
29 }
30
31 current = q.dequeue();
32
33 if(current.getLeft() != null)
34 q.enqueue(current.getLeft());
35 if(current.getRight() != null)
36 q.enqueue(current.getRight());
37 }

common errors 681

depth of a node The length of the path from the root to a node in a tree. (652)
first child/next sibling method A general tree implementation in which each

node keeps two links per item: one to the leftmost child (if it is not a leaf)
and one to its right sibling (if it is not the rightmost sibling). (653)

height of a node The length of the path from a node to the deepest leaf in a
tree. (652)

inorder traversal The current node is processed between recursive calls. (667)
leaf A tree node that has no children. (652)
level-order traversal Nodes are visited top to bottom, left to right. Level-order

traversal is implemented by using a queue. The traversal is breadth first.
(678)

parent and child Parents and children are naturally defined. A directed edge
connects the parent to the child. (652)

postorder tree traversal Work at a node is performed after its children are
evaluated. The traversal takes constant time per node. (656)

preorder tree traversal Work at a node is performed before its children are
processed. The traversal takes constant time per node. (656)

proper ancestor and proper descendant On a path from node u to node v, if
, then u is a proper ancestor of v and v is a proper descendant of u. (653)

siblings Nodes with the same parents. (653)
size of a node The number of descendants a node has (including the node

itself). (653)
tree Defined nonrecursively, a set of nodes and the directed edges that connect

them. Defined recursively, a tree is either empty or consists of a root and
zero or more subtrees. (652)

common errors

1. Allowing a node to be in two trees simultaneously is generally a bad idea
because changes to a subtree may inadvertently cause changes in multiple
subtrees.

2. Failing to check for empty trees is a common error. If this failure is part of
a recursive algorithm, the program will likely crash.

3. A common error when working with trees is thinking iteratively instead
of recursively. Design algorithms recursively first. Then convert them to
iterative algorithms, if appropriate.

u v≠

682 chapter 18 trees

on the internet

Many of the examples discussed in this chapter are explored in Chapter 19,
where we discuss binary search trees. Consequently, the only code available is
for the iterator classes.

BinaryNode.java Contains the BinaryNode class.
BinaryTree.java Contains the implementation of BinaryTree.
TestTreeIterators.java Contains the implementation of the

TreeIterator hierarchy.

exercises

IN SHORT

18.1 For the tree shown in Figure 18.33, determine
a. Which node is the root
b. Which nodes are leaves
c. The tree’s depth
d. The result of preorder, postorder, inorder, and level-order traversals

18.2 For each node in the tree shown in Figure 18.33
a. Name the parent node
b. List the children
c. List the siblings
d. Compute the height
e. Compute the depth
f. Compute the size

figure 18.33

Tree for Exercises
18.1 and 18.2

A

B

D E

G H I J

C

F

K

L M

exercises 683

18.3 What is the output of the method presented in Figure 18.34 for the
tree shown in Figure 18.25?

18.4 Show the stack operations when an inorder and preorder traversal is
applied to the tree shown in Figure 18.25.

IN THEORY

18.5 Show that the maximum number of nodes in a binary tree of height H
is 2H + 1 – 1.

18.6 A full node is a node with two children. Prove that in a binary tree the
number of full nodes plus 1 equals the number of leaves.

18.7 How many null links are there in a binary tree of N nodes? How
many are in an M-ary tree of N nodes?

18.8 Suppose that a binary tree has leaves at depths
, respectively. Prove that and determine

when equality is true (known as Kraft’s inequality).

IN PRACTICE

18.9 Write efficient methods (and give their Big-Oh running times) that
take a reference to a binary tree root T and compute
a. The number of leaves in T
b. The number of nodes in T that contain one non-null child
c. The number of nodes in T that contain two non-null children

18.10 Suppose a binary tree stores integers. Write efficient methods (and
give their Big-Oh running times) that take a reference to a binary tree
root T and compute
a. The number of even data items
b. The sum of all the items in the tree

figure 18.34

Mystery program for
Exercise 18.3

1 public static <AnyType> void mysteryPrint(BinaryNode<AnyType> t)
2 {
3 if(t != null)
4 {
5 System.out.println(t.getElement());
6 mysteryPrint(t.getLeft());
7 System.out.println(t.getElement());
8 mysteryPrint(t.getRight());
9 System.out.println(t.getElement());

10 }
11 }

l1 l2 … lM, , ,
d1 d2 … dM, , , 2 di–

i 1=
M∑ 1≤

684 chapter 18 trees

c. The number of nodes with two children that contain the same value
d. The length of the longest strictly increasing sequence of numbers

that follow a path down the tree. The path does not have to
include the root.

e. The length of the longest strictly increasing sequence of numbers
that follow a path down the tree. The path must include the root.

18.11 Implement some of the recursive routines with tests that ensure that a
recursive call is not made on a null subtree. Compare the running
time with identical routines that defer the test until the first line of the
recursive routine.

18.12 Rewrite the iterator class to throw an exception when first is applied
to an empty tree. Why might this be a bad idea?

PROGRAMMING PROJECTS

18.13 A binary tree can be generated automatically for desktop publishing by a
program. You can write this program by assigning an x-y coordinate to
each tree node, drawing a circle around each coordinate, and connecting
each nonroot node to its parent. Assume that you have a binary tree stored
in memory and that each node has two extra data members for storing the
coordinates. Assume that (0, 0) is the top-left corner. Do the following.
a. The x-coordinate can be computed by assigning the inorder tra-

versal number. Write a routine to do so for each node in the tree.
b. The y-coordinate can be computed by using the negative of the

depth of the node. Write a routine to do so for each node in the tree.
c. In terms of some imaginary unit, what will be the dimensions of

the picture? Also determine how you can adjust the units so that
the tree is always roughly two-thirds as high as it is wide.

d. Prove that when this system is used, no lines cross and that for
any node X, all elements in X’s left subtree appear to the left of X,
and all elements in X’s right subtree appear to the right of X.

e. Determine whether both coordinates can be computed in one
recursive method.

f. Write a general-purpose tree-drawing program to convert a tree
into the following graph-assembler instructions (circles are num-
bered in the order in which they are drawn):

circle(x, y); // Draw circle with center (x, y)
drawLine(i, j); // Connect circle i to circle j

g. Write a program that reads graph-assembler instructions and out-
puts the tree to your favorite device.

exercises 685

18.14 Write a method that lists all files in a directory (including its subdi-
rectories) that are larger than a specified size.

18.15 Write a method that lists all files in a directory (including its subdi-
rectories) that were modified today.

18.16 Write a method that lists all empty directories contained in a specified
directory (including its subdirectories).

18.17 Write a method that returns the complete name of the largest file con-
tained in a specified directory (including its subdirectories).

18.18 Implement the du command.

18.19 Write a program that lists all files in a directory (and its subdirecto-
ries), much like the Unix ls command or the Windows dir command.
Note that when a directory is encountered, we do not immediately
print its contents recursively. Rather, as we scan each directory, place
any subdirectories in a List. After the directory entries are printed,
then process each subdirectory recursively. For each file that is listed,
include the modification time, the file size, and if it is a directory,
have your output say so. For each directory, print the complete direc-
tory name prior to printing its contents.

This page intentionally left blank

chap te r 19

binary search trees

For large amounts of input, the linear access time of linked lists is prohib-
itive. In this chapter we look at an alternative to the linked list: the binary
search tree, a simple data structure that can be viewed as extending the binary
search algorithm to allow insertions and deletions. The running time for most
operations is O(log N) on average. Unfortunately, the worst-case time is O(N)
per operation.

In this chapter, we show

n The basic binary search tree

n A method for adding order statistics (i.e., the findKth operation)

n Three different ways to eliminate the O(N) worst case (namely, the
AVL tree, red-black tree, and AA-tree)

n Implementation of the Collections API TreeSet and TreeMap

n Use of the B-tree to search a large database quickly

19.1 basic ideas
In the general case, we search for an item (or element) by using its key. For
instance, a student transcript could be searched on the basis of a student ID
number. In this case, the ID number is referred to as the item’s key.

688 chapter 19 binary search trees

For any node in the
binary search tree,
all smaller keyed
nodes are in the
left subtree and all
larger keyed nodes
are in the right sub-
tree. Duplicates are
not allowed.

The binary search tree satisfies the search order property; that is, for
every node X in the tree, the values of all the keys in the left subtree are
smaller than the key in X and the values of all the keys in the right subtree are
larger than the key in X. The tree shown in Figure 19.1(a) is a binary search
tree, but the tree shown in Figure 19.1(b) is not because key 8 does not belong
in the left subtree of key 7. The binary search tree property implies that all the
items in the tree can be ordered consistently (indeed, an inorder traversal
yields the items in sorted order). This property also does not allow duplicate
items. We could easily allow duplicate keys; storing different items having
identical keys in a secondary structure is generally better. If these items are
exact duplicates, having one item and keeping a count of the number of dupli-
cates is best.

binary search tree order property
In a binary search tree, for every node X, all keys in X’s left subtree have smaller
values than the key in X, and all keys in X’s right subtree have larger values than
the key in X.

19.1.1 the operations
A find operation is
performed by
repeatedly branch-
ing either left or
right, depending on
the result of a
comparison.

For the most part, the operations on a binary search tree are simple to visu-
alize. We can perform a find operation by starting at the root and then
repeatedly branching either left or right, depending on the result of a com-
parison. For instance, to find 5 in the binary search tree shown in
Figure 19.1(a), we start at 7 and go left. This takes us to 2, so we go right,
which takes us to 5. To look for 6, we follow the same path. At 5, we would
go right and encounter a null link and thus not find 6, as shown in
Figure 19.2(a). Figure 19.2(b) shows that 6 can be inserted at the point at
which the unsuccessful search terminated.

The binary search tree efficiently supports the findMin and findMax opera-
tions. To perform a findMin, we start at the root and repeatedly branch left as
long as there is a left child. The stopping point is the smallest element. The

8

7

2 9

1 5

3

(a)

7

2 9

1 5

3

(b)

figure 19.1

Two binary trees: (a) a
search tree; (b) not a
search tree

19.1 basic ideas 689

findMax operation is similar, except that branching is to the right. Note that the
cost of all the operations is proportional to the number of nodes on the search
path. The cost tends to be logarithmic, but it can be linear in the worst case.
We establish this result later in the chapter.

The hardest operation is remove. Once we have found the node to be
removed, we need to consider several possibilities. The problem is that the
removal of a node may disconnect parts of the tree. If that happens, we must
carefully reattach the tree and maintain the binary search tree property. We
also want to avoid making the tree unnecessarily deep because the depth of
the tree affects the running time of the tree algorithms.

When we are designing a complex algorithm, solving the simplest case
first is often easiest, leaving the most complicated case until last. Thus, in
examining the various cases, we start with the easiest. If the node is a leaf,
its removal does not disconnect the tree, so we can delete it immediately. If
the node has only one child, we can remove the node after adjusting its par-
ent’s child link to bypass the node. This is illustrated in Figure 19.3, with
the removal of node 5. Note that removeMin and removeMax are not complex
because the affected nodes are either leaves or have only one child. Note also
that the root is a special case because it does not have a parent. However,

6

7

2 9

1 5

3

(a)

7

2 9

1 5

3

(b)

figure 19.2

Binary search trees
(a) before and
(b) after the insertion
of 6

7

2 9

1 5

3

(a)

7

2 9

1

3

(b)

figure 19.3

Deletion of node 5
with one child:
(a) before and
(b) after

The findMin opera-
tion is performed by
following left nodes
as long as there is a
left child. The
findMax operation is
similar.

The remove opera-
tion is difficult
because nonleaf
nodes hold the tree
together and we do
not want to discon-
nect the tree.

If a node has one
child, it can be
removed by having
its parent bypass it.
The root is a special
case because it
does not have a
parent.

690 chapter 19 binary search trees

when the remove method is implemented, the special case is handled auto-
matically.

A node with two
children is replaced
by using the small-
est item in the right
subtree. Then
another node is
removed.

The complicated case deals with a node having two children. The general
strategy is to replace the item in this node with the smallest item in the right
subtree (which is easily found, as mentioned earlier) and then remove that
node (which is now logically empty). The second remove is easy to do
because, as just indicated, the minimum node in a tree does not have a left
child. Figure 19.4 shows an initial tree and the result of removing node 2. We
replace the node with the smallest node (3) in its right subtree and then
remove 3 from the right subtree. Note that in all cases removing a node does
not make the tree deeper.1 Many alternatives do make the tree deeper; thus
these alternatives are poor options.

19.1.2 java implementation

In principle, the binary search tree is easy to implement. To keep the Java fea-
tures from clogging up the code, we introduce a few simplifications. First,
Figure 19.5 shows the BinaryNode class. In the new BinaryNode class, we make
everything package-visible. More typically, BinaryNode would be a nested
class. The BinaryNode class contains the usual list of data members (the item
and two links).

The BinarySearchTree class skeleton is shown in Figure 19.6. The only
data member is the reference to the root of the tree, root. If the tree is empty,
root is null.

The public BinarySearchTree class methods have implementations that call
the hidden methods. The constructor, declared at line 21, merely sets root to
null. The publicly visible methods are listed at lines 24–39.

1. The deletion can, however, increase the average node depth if a shallow node is removed.

(a)

4

7

3 9

1 5

(b)

4

7

2 9

1 5

3

figure 19.4

Deletion of node 2
with two children:
(a) before and
(b) after

The root
references at the
root of the tree,
which is null if the
tree is empty.

The public class
functions call
hidden private
routines.

19.1 basic ideas 691

figure 19.5

The BinaryNode class
for the binary search
tree

1 package weiss.nonstandard;
2
3 // Basic node stored in unbalanced binary search trees
4 // Note that this class is not accessible outside
5 // this package.
6
7 class BinaryNode<AnyType>
8 {
9 // Constructor

10 BinaryNode(AnyType theElement)
11 {
12 element = theElement;
13 left = right = null;
14 }
15
16 // Data; accessible by other package routines
17 AnyType element; // The data in the node
18 BinaryNode<AnyType> left; // Left child
19 BinaryNode<AnyType> right; // Right child
20 }

figure 19.6a
The BinarySearchTree class skeleton (continues)

1 package weiss.nonstandard;
2
3 // BinarySearchTree class
4 //
5 // CONSTRUCTION: with no initializer
6 //
7 // ******************PUBLIC OPERATIONS*********************
8 // void insert(x) --> Insert x
9 // void remove(x) --> Remove x

10 // void removeMin() --> Remove minimum item
11 // Comparable find(x) --> Return item that matches x
12 // Comparable findMin() --> Return smallest item
13 // Comparable findMax() --> Return largest item
14 // boolean isEmpty() --> Return true if empty; else false
15 // void makeEmpty() --> Remove all items
16 // ******************ERRORS********************************
17 // Exceptions are thrown by insert, remove, and removeMin if warranted
18
19 public class BinarySearchTree<AnyType extends Comparable<? super AnyType>>
20 {
21 public BinarySearchTree()
22 { root = null; }
23
24 public void insert(AnyType x)
25 { root = insert(x, root); }

692 chapter 19 binary search trees

Next, we have several methods that operate on a node passed as a
parameter, a general technique that we used in Chapter 18. The idea is that
the publicly visible class routines call these hidden routines and pass root
as a parameter. These hidden routines do all the work. In a few places, we
use protected rather than private because we derive another class from
BinarySearchTree in Section 19.2.

The insert method adds x to the current tree by calling the hidden insert
with root as an additional parameter. This action fails if x is already in the
tree; in that case, a DuplicateItemException would be thrown. The findMin,
findMax, and find operations return the minimum, maximum, or named item
(respectively) from the tree. If the item is not found because the tree is empty

figure 19.6b
The BinarySearchTree class skeleton (continued)

26 public void remove(AnyType x)
27 { root = remove(x, root); }
28 public void removeMin()
29 { root = removeMin(root); }
30 public AnyType findMin()
31 { return elementAt(findMin(root)); }
32 public AnyType findMax()
33 { return elementAt(findMax(root)); }
34 public AnyType find(AnyType x)
35 { return elementAt(find(x, root)); }
36 public void makeEmpty()
37 { root = null; }
38 public boolean isEmpty()
39 { return root == null; }
40
41 private AnyType elementAt(BinaryNode<AnyType> t)
42 { /* Figure 19.7 */ }
43 private BinaryNode<AnyType> find(AnyType x, BinaryNode<AnyType> t)
44 { /* Figure 19.8 */ }
45 protected BinaryNode<AnyType> findMin(BinaryNode<AnyType> t)
46 { /* Figure 19.9 */ }
47 private BinaryNode<AnyType> findMax(BinaryNode<AnyType> t)
48 { /* Figure 19.9 */ }
49 protected BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> t)
50 { /* Figure 19.10 */ }
51 protected BinaryNode<AnyType> removeMin(BinaryNode<AnyType> t)
52 { /* Figure 19.11 */ }
53 protected BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> t)
54 { /* Figure 19.12 */ }
55
56 protected BinaryNode<AnyType> root;
57 }

19.1 basic ideas 693

or the named item is not present, then null is returned. Figure 19.7 shows the
private elementAt method that implements the elementAt logic.

The removeMin operation removes the minimum item from the tree; it
throws an exception if the tree is empty. The remove operation removes a
named item x from the tree; it throws an exception if warranted. The makeEmpty
and isEmpty methods are the usual fare.

As is typical of most data structures, the find operation is easier than
insert, and insert is easier than remove. Figure 19.8 illustrates the find routine.
So long as a null link has not been reached, we either have a match or need to
branch left or right. The code implements this algorithm quite succinctly.

figure 19.7

The elementAt method

1 /**
2 * Internal method to get element field.
3 * @param t the node.
4 * @return the element field or null if t is null.
5 */
6 private AnyType elementAt(BinaryNode<AnyType> t)
7 {
8 return t == null ? null : t.element;
9 }

1 /**
2 * Internal method to find an item in a subtree.
3 * @param x is item to search for.
4 * @param t the node that roots the tree.
5 * @return node containing the matched item.
6 */
7 private BinaryNode<AnyType> find(AnyType x, BinaryNode<AnyType> t)
8 {
9 while(t != null)

10 {
11 if(x.compareTo(t.element) < 0)
12 t = t.left;
13 else if(x.compareTo(t.element) > 0)
14 t = t.right;
15 else
16 return t; // Match
17 }
18
19 return null; // Not found
20 }

figure 19.8
The find operation for binary search trees

694 chapter 19 binary search trees

Note the order of the tests. The test against null must be performed first; oth-
erwise, the access t.element would be illegal. The remaining tests are
arranged with the least likely case last. A recursive implementaion is possible,
but we use a loop instead; we use recursion in the insert and remove methods.
In Exercise 19.15 you are asked to write the searching algorithms recursively.

Because of call by
value, the actual
argument (root) is
not changed.

At first glance, statements such as t=t.left may seem to change the root
of the tree. That is not the case, however, because t is passed by value. In the
initial call, t is simply a copy of root. Although t changes, root does not. The
calls to findMin and findMax are even simpler because branching is uncondi-
tionally in one direction. These routines are shown in Figure 19.9. Note how
the case of an empty tree is handled.

For insert, we must
return the new tree
root and reconnect
the tree.

The insert routine is shown in Figure 19.10. Here we use recursion to sim-
plify the code. A nonrecursive implementation is also possible; we apply this tech-
nique when we discuss red–black trees later in this chapter. The basic algorithm is
simple. If the tree is empty, we can create a one-node tree. The test is performed at
line 10, and the new node is created at line 11. Notice carefully that, as before,
local changes to t are lost. Thus we return the new root, t, at line 18.

figure 19.9
The findMin and
findMax methods for
binary search trees

1 /**
2 * Internal method to find the smallest item in a subtree.
3 * @param t the node that roots the tree.
4 * @return node containing the smallest item.
5 */
6 protected BinaryNode<AnyType> findMin(BinaryNode<AnyType> t)
7 {
8 if(t != null)
9 while(t.left != null)

10 t = t.left;
11
12 return t;
13 }
14
15 /**
16 * Internal method to find the largest item in a subtree.
17 * @param t the node that roots the tree.
18 * @return node containing the largest item.
19 */
20 private BinaryNode<AnyType> findMax(BinaryNode<AnyType> t)
21 {
22 if(t != null)
23 while(t.right != null)
24 t = t.right;
25
26 return t;
27 }

19.1 basic ideas 695

If the tree is not already empty, we have three possibilities. First, if the
item to be inserted is smaller than the item in node t, we call insert recur-
sively on the left subtree. Second, if the item is larger than the item in node t,
we call insert recursively on the right subtree (these two cases are coded at
lines 12 to 15). Third, if the item to insert matches the item in t, we throw an
exception.

The remaining routines concern deletion. As described earlier, the
removeMin operation is simple because the minimum node has no left child.
Thus the removed node merely needs to be bypassed, which appears to
require us to keep track of the parent of the current node as we descend the
tree. But, again, we can avoid the explicit use of a parent link by using recur-
sion. The code is shown in Figure 19.11.

The root of the new
subtree must be
returned in the
remove routines. In
effect we maintain
the parent in the
recursion stack.

If the tree t is empty, removeMin fails. Otherwise, if t has a left child, we
recursively remove the minimum item in the left subtree via the recursive call
at line 13. If we reach line 17, we know that we are currently at the minimum
node, and thus t is the root of a subtree that has no left child. If we set t to
t.right, t is now the root of a subtree that is missing its former minimum ele-
ment. As before, we return the root of the resulting subtree. That is what we
do at line 17. But doesn’t that disconnect the tree? The answer again is no. If t
was root, the new t is returned and assigned to root in the public method. If t
was not root, it is p.left, where p is t’s parent at the time of the recursive call.

1 /**
2 * Internal method to insert into a subtree.
3 * @param x the item to insert.
4 * @param t the node that roots the tree.
5 * @return the new root.
6 * @throws DuplicateItemException if x is already present.
7 */
8 protected BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> t)
9 {

10 if(t == null)
11 t = new BinaryNode<AnyType>(x);
12 else if(x.compareTo(t.element) < 0)
13 t.left = insert(x, t.left);
14 else if(x.compareTo(t.element) > 0)
15 t.right = insert(x, t.right);
16 else
17 throw new DuplicateItemException(x.toString()); // Duplicate
18 return t;
19 }

figure 19.10

The recursive insert for the BinarySearchTree class

696 chapter 19 binary search trees

The method that has p as a parameter (in other words, the method that called
the current method) changes p.left to the new t. Thus the parent’s left link
references t, and the tree is connected. All in all, it is a nifty maneuver—we
have maintained the parent in the recursion stack rather than explicitly kept
track of it in an iterative loop.

Having used this trick for the simple case, we can then adapt it for the
general remove routine shown in Figure 19.12. If the tree is empty, the remove
is unsuccessful and we can throw an exception at line 11. If we do not have a
match, we can recursively call remove for either the left or right subtree, as
appropriate. Otherwise, we reach line 16, indicating that we have found the
node that needs to be removed.

The remove routine
involves tricky cod-
ing but is not too
bad if recursion is
used. The case for
one child, root with
one child, and zero
children are all han-
dled together at
line 22.

Recall (as illustrated in Figure 19.4) that, if there are two children, we
replace the node with the minimum element in the right subtree and then
remove the right subtree’s minimum (coded at lines 18–19). Otherwise, we
have either one or zero children. If there is a left child, we set t equal to its left
child, as we would do in removeMax. Otherwise, we know that there is no left
child and that we can set t equal to its right child. This procedure is succinctly
coded in line 22, which also covers the leaf case.

Two points need to be made about this implementation. First, during the
basic insert, find, or remove operation, we use two three-way comparisons per
node accessed to distinguish among the cases <, =, and >. Obviously we can
compute x.compareTo(t.element) once per loop iteration, and reduce the cost
to one three-way comparison per node. Actually, however, we can get by with

figure 19.11
The removeMin
method for the
BinarySearchTree
class

1 /**
2 * Internal method to remove minimum item from a subtree.
3 * @param t the node that roots the tree.
4 * @return the new root.
5 * @throws ItemNotFoundException if t is empty.
6 */
7 protected BinaryNode<AnyType> removeMin(BinaryNode<AnyType> t)
8 {
9 if(t == null)

10 throw new ItemNotFoundException();
11 else if(t.left != null)
12 {
13 t.left = removeMin(t.left);
14 return t;
15 }
16 else
17 return t.right;
18 }

19.2 order statistics 697

only one two-way comparison per node. The strategy is similar to what we
did in the binary search algorithm in Section 5.6. We discuss the technique for
binary search trees in Section 19.6.2 when we illustrate the deletion algorithm
for AA-trees.

Second, we do not have to use recursion to perform the insertion. In
fact, a recursive implementation is probably slower than a nonrecursive
implementation. We discuss an iterative implementation of insert in Section
19.5.3 in the context of red–black trees.

19.2 order statistics
The binary search tree allows us to find either the minimum or maximum item
in time that is equivalent to an arbitrarily named find. Sometimes, we also have
to be able to access the Kth smallest element, for an arbitrary K provided as a
parameter. We can do so if we keep track of the size of each node in the tree.

figure 19.12
The remove method for the BinarySearchTree class

1 /**
2 * Internal method to remove from a subtree.
3 * @param x the item to remove.
4 * @param t the node that roots the tree.
5 * @return the new root.
6 * @throws ItemNotFoundException if x is not found.
7 */
8 protected BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> t)
9 {

10 if(t == null)
11 throw new ItemNotFoundException(x.toString());
12 if(x.compareTo(t.element) < 0)
13 t.left = remove(x, t.left);
14 else if(x.compareTo(t.element) > 0)
15 t.right = remove(x, t.right);
16 else if(t.left != null && t.right != null) // Two children
17 {
18 t.element = findMin(t.right).element;
19 t.right = removeMin(t.right);
20 }
21 else
22 t = (t.left != null) ? t.left : t.right;
23 return t;
24 }

698 chapter 19 binary search trees

We can implement
findKth by main-
taining the size of
each node as we
update the tree.

Recall from Section 18.1 that the size of a node is the number of its descen-
dants (including itself). Suppose that we want to find the Kth smallest element
and that K is at least 1 and at most the number of nodes in the tree. Figure 19.13
shows three possible cases, depending on the relation of K and the size of the
left subtree, denoted SL. If K equals SL + 1, the root is the Kth smallest element
and we can stop. If K is smaller than SL + 1 (i.e., smaller than or equal to SL), the
Kth smallest element must be in the left subtree and we can find it recursively.
(The recursion can be avoided; we use it to simplify the algorithm descrip-
tion.) Otherwise, the Kth smallest element is the (K – SL – 1)th smallest ele-
ment in the right subtree and can be found recursively.

The main effort is maintaining the node sizes during tree changes.
These changes occur in the insert, remove, and removeMin operations. In prin-
ciple, this maintenance is simple enough. During an insert, each node on the
path to the insertion point gains one node in its subtree. Thus the size of each
node increases by 1, and the inserted node has size 1. In removeMin, each node
on the path to the minimum loses one node in its subtree; thus the size of each
node decreases by 1. During a remove, all nodes on the path to the node that is
physically removed also lose one node in their subtrees. Consequently, we can
maintain the sizes at the cost of only a slight amount of overhead.

19.2.1 java implementation
We derive a new
class that supports
the order statistic.

Logically, the only changes required are the adding of findKth and the main-
tenance of a size data member in insert, remove, and removeMin. We derive a
new class from BinarySearchTree, the skeleton for which is shown in
Figure 19.14. We provide a nested class that extends BinaryNode and adds a
size data member.

BinarySearchTreeWithRank adds only one public method, namely findKth,
shown at lines 31 and 32. All other public methods are inherited unchanged.
We must override some of the protected recursive routines (lines 36–41).

X

SRSL

K < SL + 1

(a)

X

SRSL

K = SL + 1

(b)

X

SRSL

K > SL + 1

(c)

figure 19.13

Using the size data
member to implement
findKth

19.2 order statistics 699

The findKth operation shown in Figure 19.15 is written recursively,
although clearly it need not be. It follows the algorithmic description line for
line. The test against null at line 10 is necessary because k could be invalid.

1 package weiss.nonstandard;
2
3 // BinarySearchTreeWithRank class
4 //
5 // CONSTRUCTION: with no initializer
6 //
7 // ******************PUBLIC OPERATIONS*********************
8 // Comparable findKth(k)--> Return kth smallest item
9 // All other operations are inherited

10 // ******************ERRORS********************************
11 // IllegalArgumentException thrown if k is out of bounds
12
13 public class BinarySearchTreeWithRank<AnyType extends Comparable<? super AnyType>>
14 extends BinarySearchTree<AnyType>
15 {
16 private static class BinaryNodeWithSize<AnyType> extends BinaryNode<AnyType>
17 {
18 BinaryNodeWithSize(AnyType x)
19 { super(x); size = 0; }
20
21 int size;
22 }
23
24 /**
25 * Find the kth smallest item in the tree.
26 * @param k the desired rank (1 is the smallest item).
27 * @return the kth smallest item in the tree.
28 * @throws IllegalArgumentException if k is less
29 * than 1 or more than the size of the subtree.
30 */
31 public AnyType findKth(int k)
32 { return findKth(k, root).element; }
33
34 protected BinaryNode<AnyType> findKth(int k, BinaryNode<AnyType> t)
35 { /* Figure 19.15 */ }
36 protected BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> tt)
37 { /* Figure 19.16 */ }
38 protected BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> tt)
39 { /* Figure 19.18 */ }
40 protected BinaryNode<AnyType> removeMin(BinaryNode<AnyType> tt)
41 { /* Figure 19.17 */ }
42 }

figure 19.14
The BinarySearchTreeWithRank class skeleton

700 chapter 19 binary search trees

Lines 12 and 13 compute the size of the left subtree. If the left subtree exists,
accessing its size member gives the required answer. If the left subtree does
not exist, its size can be taken to be 0. Note that this test is performed after we
are sure that t is not null.

The insert operation is shown in Figure 19.16. The potentially tricky
part is that, if the insertion call succeeds, we want to increment t’s size
member. If the recursive call fails, t’s size member is unchanged and an
exception should be thrown. In an unsuccessful insertion, can some sizes
change? The answer is no; size is updated only if the recursive call succeeds
without an exception. Note that when a new node is allocated by a call to
new, the size member is set to 0 by the BinaryNodeWithSize constructor, and
then incremented at line 20.

Figure 19.17 shows that the same trick can be used for removeMin. If the
recursive call succeeds, the size member is decremented; if the recursive call
fails, size is unchanged. The remove operation is similar and is shown in
Figure 19.18.

figure 19.15
The findKth operation for a search tree with order statistics

1 /**
2 * Internal method to find kth smallest item in a subtree.
3 * @param k the desired rank (1 is the smallest item).
4 * @return the node containing the kth smallest item in the subtree.
5 * @throws IllegalArgumentException if k is less
6 * than 1 or more than the size of the subtree.
7 */
8 protected BinaryNode<AnyType> findKth(int k, BinaryNode<AnyType> t)
9 {

10 if(t == null)
11 throw new IllegalArgumentException();
12 int leftSize = (t.left != null) ?
13 ((BinaryNodeWithSize<AnyType>) t.left).size : 0;
14
15 if(k <= leftSize)
16 return findKth(k, t.left);
17 if(k == leftSize + 1)
18 return t;
19 return findKth(k - leftSize - 1, t.right);
20 }

The findKth opera-
tion is easily imple-
mented once the
size members are
known.

The insert and
remove operations
are potentially tricky
because we do not
update the size
information if the
operation is unsuc-
cessful.

19.2 order statistics 701

1 /**
2 * Internal method to insert into a subtree.
3 * @param x the item to insert.
4 * @param tt the node that roots the tree.
5 * @return the new root.
6 * @throws DuplicateItemException if x is already present.
7 */
8 protected BinaryNode<AnyType> insert(AnyType x, BinaryNode<AnyType> tt)
9 {

10 BinaryNodeWithSize<AnyType> t = (BinaryNodeWithSize<AnyType>) tt;
11
12 if(t == null)
13 t = new BinaryNodeWithSize<AnyType>(x);
14 else if(x.compareTo(t.element) < 0)
15 t.left = insert(x, t.left);
16 else if(x.compareTo(t.element) > 0)
17 t.right = insert(x, t.right);
18 else
19 throw new DuplicateItemException(x.toString());
20 t.size++;
21 return t;
22 }

figure 19.16
The insert operation for a search tree with order statistics

figure 19.17
The removeMin operation for a search tree with order statistics

1 /**
2 * Internal method to remove the smallest item from a subtree,
3 * adjusting size fields as appropriate.
4 * @param t the node that roots the tree.
5 * @return the new root.
6 * @throws ItemNotFoundException if the subtree is empty.
7 */
8 protected BinaryNode<AnyType> removeMin(BinaryNode<AnyType> tt)
9 {

10 BinaryNodeWithSize<AnyType> t = (BinaryNodeWithSize<AnyType>) tt;
11
12 if(t == null)
13 throw new ItemNotFoundException();
14 if(t.left == null)
15 return t.right;
16
17 t.left = removeMin(t.left);
18 t.size--;
19 return t;
20 }

702 chapter 19 binary search trees

19.3 analysis of binary
search tree operations

The cost of an
operation is
proportional to the
depth of the last
accessed node.
The cost is logarith-
mic for a well-
balanced tree, but it
could be as bad as
linear for a
degenerate tree.

The cost of each binary search tree operation (insert, find, and remove) is pro-
portional to the number of nodes accessed during the operation. We can thus
charge the access of any node in the tree a cost of 1 plus its depth (recall that
the depth measures the number of edges on a path rather than the number of
nodes), which gives the cost of a successful search.

Figure 19.19 shows two trees. Figure 19.19(a) shows a balanced tree of
15 nodes. The cost to access any node is at most 4 units, and some nodes
require fewer accesses. This situation is analogous to the one that occurs in
the binary search algorithm. If the tree is perfectly balanced, the access cost
is logarithmic.

figure 19.18
The remove operation for a search tree with order statistics

1 /**
2 * Internal method to remove from a subtree.
3 * @param x the item to remove.
4 * @param t the node that roots the tree.
5 * @return the new root.
6 * @throws ItemNotFoundException if x is not found.
7 */
8 protected BinaryNode<AnyType> remove(AnyType x, BinaryNode<AnyType> tt)
9 {

10 BinaryNodeWithSize<AnyType> t = (BinaryNodeWithSize<AnyType>) tt;
11
12 if(t == null)
13 throw new ItemNotFoundException(x.toString());
14 if(x.compareTo(t.element) < 0)
15 t.left = remove(x, t.left);
16 else if(x.compareTo(t.element) > 0)
17 t.right = remove(x, t.right);
18 else if(t.left != null && t.right != null) // Two children
19 {
20 t.element = findMin(t.right).element;
21 t.right = removeMin(t.right);
22 }
23 else
24 return (t.left != null) ? t.left : t.right;
25
26 t.size--;
27 return t;
28 }

19.3 analysis of binary search tree operations 703

Unfortunately, we have no guarantee that the tree is perfectly balanced. The
tree shown in Figure 19.19(b) is the classic example of an unbalanced tree. Here,
all N nodes are on the path to the deepest node, so the worst-case search time is
O(N). Because the search tree has degenerated to a linked list, the average time
required to search in this particular instance is half the cost of the worst case and
is also O(N). So we have two extremes: In the best case, we have logarithmic
access cost, and in the worst case we have linear access cost. What, then, is the
average? Do most binary search trees tend toward the balanced or unbalanced
case, or is there some middle ground, such as ? The answer is identical to that
for quicksort: The average is 38 percent worse than the best case.

On average, the
depth is 38 percent
worse than the best
case. This result is
identical to that
obtained using
quicksort.

We prove in this section that the average depth over all nodes in a binary
search tree is logarithmic, under the assumption that each tree is created as a
result of random insertion sequences (with no remove operations). To see
what that means, consider the result of inserting three items in an empty
binary search tree. Only their relative ordering is important, so we can
assume without loss of generality that the three items are 1, 2, and 3. Then
there are six possible insertion orders: (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1),
(3, 1, 2), and (3, 2, 1). We assume in our proof that each insertion order is
equally likely. The binary search trees that can result from these insertions are
shown in Figure 19.20. Note that the tree with root 2, shown in
Figure 19.20(c), is formed from either the insertion sequence (2, 3, 1) or the
sequence (2, 1, 3). Thus some trees are more likely to result than others, and
as we show, balanced trees are more likely to occur than unbalanced trees
(although this result is not evident from the three-element case).

We begin with the following definition.

definition: The internal path length of a binary tree is the sum of the depths of its
nodes.

(a) (b)

figure 19.19

(a) The balanced tree
has a depth of
⎣log N⎦; (b) the
unbalanced tree has a
depth of N – 1.

N

704 chapter 19 binary search trees

The internal path
length is used to
measure the cost
of a successful
search.

When we divide the internal path length of a tree by the number of nodes in
the tree, we obtain the average node depth. Adding 1 to this average gives the
average cost of a successful search in the tree. Thus we want to compute the
average internal path length for a binary search tree, where the average is
taken over all (equally probable) input permutations. We can easily do so by
viewing the tree recursively and by using techniques from the analysis of
quicksort given in Section 8.6. The average internal path length is established
in Theorem 19.1.

The insertion algorithm implies that the cost of an insert equals the cost of
an unsuccessful search, which is measured by using the external path length.
In an insertion or unsuccessful search, we eventually reach the test t==null.

1

2

3

(a)

1

3

2

(b)

2

1 3

(c)

3

1

2

(d)

3

2

1

(e)

figure 19.20

Binary search trees that can result from inserting a permutation 1, 2, and 3; the balanced tree shown in
part (c) is twice as likely to result as any of the others.

Theorem 19.1 The internal path length of a binary search tree is approximately 1.38 N log N on
average, under the assumption that all permutations are equally likely.

Proof Let D(N) be the average internal path length for trees of N nodes, so D(1) = 0. An N-
node tree T consists of an i-node left subtree and an (N – i – 1)-node right subtree,
plus a root at depth 0 for 0 ≤ i < N. By assumption, each value of i is equally likely. For
a given i, D(i) is the average internal path length of the left subtree with respect to its
root. In T, all these nodes are one level deeper. Thus the average contribution of the
nodes in the left subtree to the internal path length of T is , plus 1
for each node in the left subtree. The same holds for the right subtree. We thus
obtain the recurrence formula D(N) = (2 / N)() + N – 1, which is identical
to the quicksort recurrence solved in Section 8.6. The result is an average internal
path length of O(N log N).

1 N⁄() D i()
i 0=
N 1–∑

D i()
i 0=
N 1–∑

The external path
length is used to
measure the cost of
an unsuccessful
search.

19.3 analysis of binary search tree operations 705

Recall that in a tree of N nodes there are N + 1 null links. The external path
length measures the total number of nodes that are accessed, including the
null node for each of these N + 1 null links. The null node is sometimes
called an external tree node, which explains the term external path length. As
we show later in the chapter, replacing the null node with a sentinel may be
convenient.

definition: The external path length of a binary search tree is the sum of the
depths of the N + 1 null links. The terminating null node is considered a node
for these purposes.

One plus the result of dividing the average external path length by N + 1
yields the average cost of an unsuccessful search or insertion. As with the binary
search algorithm, the average cost of an unsuccessful search is only slightly
more than the cost of a successful search, which follows from Theorem 19.2.

It is tempting to say immediately that these results imply that the average
running time of all operations is O(log N). This implication is true in practice,
but it has not been established analytically because the assumption used to
prove the previous results do not take into account the deletion algorithm. In
fact, close examination suggests that we might be in trouble with our deletion
algorithm because the remove operation always replaces a two-child deleted
node with a node from the right subtree. This result would seem to have the
effect of eventually unbalancing the tree and tending to make it left-heavy. It
has been shown that if we build a random binary search tree and then perform
roughly N2 pairs of random insert/remove combinations, the binary search
trees will have an expected depth of . However, a reasonable number
of random insert and remove operations (in which the order of insert and
remove is also random) does not unbalance the tree in any observable way. In
fact, for small search trees, the remove algorithm seems to balance the tree.
Consequently, we can reasonably assume that for random input all operations
behave in logarithmic average time, although this result has not been proved
mathematically. In Exercise 19.25 we describe some alternative deletion
strategies.

For any tree T, let IPL(T) be the internal path length of T and let EPL(T) be its exter-
nal path length. Then, if T has N nodes, EPL(T) = IPL(T) + 2N.

Theorem 19.2

This theorem is proved by induction and is left as Exercise 19.7. Proof

O N()

Random remove
operations do not
preserve the ran-
domness of a tree.
The effects are not
completely under-
stood theoretically,
but they apparently
are negligible in
practice.

706 chapter 19 binary search trees

The most important problem is not the potential imbalance caused by
the remove algorithm. Rather, it is that, if the input sequence is sorted, the
worst-case tree occurs. When that happens, we are in deep trouble: We have
linear time per operation (for a series of N operations) rather than logarith-
mic cost per operation. This case is analogous to passing items to quicksort
but having an insertion sort executed instead. The resulting running time is
completely unacceptable. Moreover, it is not just sorted input that is prob-
lematic, but also any input that contains long sequences of nonrandomness.
One solution to this problem is to insist on an extra structural condition
called balance: No node is allowed to get too deep.

A balanced binary
search tree has an
added structure
property to guaran-
tee logarithmic
depth in the worst
case. Updates are
slower, but
accesses are faster.

Any of several algorithms can be used to implement a balanced binary
search tree, which has an added structure property that guarantees logarithmic
depth in the worst case. Most of these algorithms are much more complicated
than those for the standard binary search trees, and all take longer on average
for insertion and deletion. They do, however, provide protection against the
embarrassingly simple cases that lead to poor performance for (unbalanced)
binary search trees. Also, because they are balanced, they tend to give faster
access time than those for the standard trees. Typically, their internal path
lengths are very close to the optimal N log N rather than 1.38N log N, so
searching time is roughly 25 percent faster.

19.4 avl trees
The AVL tree was
the first balanced
binary search tree.
It has historical sig-
nificance and also
illustrates most of
the ideas that are
used in other
schemes.

The first balanced binary search tree was the AVL tree (named after its dis-
coverers, Adelson-Velskii and Landis), which illustrates the ideas that are
thematic for a wide class of balanced binary search trees. It is a binary
search tree that has an additional balance condition. Any balance condi-
tion must be easy to maintain and ensures that the depth of the tree is
O(log N). The simplest idea is to require that the left and right subtrees
have the same height. Recursion dictates that this idea apply to all nodes
in the tree because each node is itself a root of some subtree. This balance
condition ensures that the depth of the tree is logarithmic. However, it is
too restrictive because inserting new items while maintaining balance is
too difficult. Thus the definition of an AVL tree uses a notion of balance
that is somewhat weaker but still strong enough to guarantee logarithmic
depth.

definition: An AVL tree is a binary search tree with the additional balance prop-
erty that, for any node in the tree, the height of the left and right subtrees can
differ by at most 1. As usual, the height of an empty subtree is –1.

19.4 avl trees 707

19.4.1 properties
Every node in an
AVL tree has sub-
trees whose
heights differ by at
most 1. An empty
subtree has height
–1.

Figure 19.21 shows two binary search trees. The tree shown in Figure 19.21(a)
satisfies the AVL balance condition and is thus an AVL tree. The tree shown in
Figure 19.21(b), which results from inserting 1, using the usual algorithm, is
not an AVL tree because the darkened nodes have left subtrees whose heights
are 2 larger than their right subtrees. If 13 were inserted, using the usual
binary search tree insertion algorithm, node 16 would also be in violation.
The reason is that the left subtree would have height 1, while the right subtree
would have height –1.

The AVL tree has
height at most
roughly 44 percent
greater than the
minimum.

The AVL balance condition implies that the tree has only logarithmic
depth. To prove this assertion we need to show that a tree of height H must
have at least CH nodes for some constant C > 1. In other words, the minimum
number of nodes in a tree is exponential in its height. Then the maximum
depth of an N-item tree is given by logCN. Theorem 19.3 shows that every
AVL tree of height H has many nodes.

12

8 16

4 10 14

2 6

(a)

12

8 16

4 10 14

2

1

6

(b)

figure 19.21

Two binary search
trees: (a) an AVL tree;
(b) not an AVL tree
(unbalanced nodes
are darkened)

figure 19.22

Minimum tree of
height H

H

H – 1 H – 2

SH – 1
SH – 2

708 chapter 19 binary search trees

From Exercise 7.8, , where . Conse-
quently, an AVL tree of height H has at least (roughly) nodes.
Hence its depth is at most logarithmic. The height of an AVL tree satisfies

(19.1)

so the worst-case height is at most roughly 44 percent more than the mini-
mum possible for binary trees.

The depth of a typi-
cal node in an AVL
tree is very close to
the optimal log N.

The depth of an average node in a randomly constructed AVL tree tends
to be very close to log N. The exact answer has not yet been established ana-
lytically. We do not even know whether the form is log N + C or

, for some that would be approximately 0.01. Simula-
tions have been unable to demonstrate convincingly that one form is more
plausible than the other.

An update in an
AVL tree could
destroy the bal-
ance. It must then
be rebalanced
before the opera-
tion can be consid-
ered complete.

A consequence of these arguments is that all searching operations in an
AVL tree have logarithmic worst-case bounds. The difficulty is that opera-
tions that change the tree, such as insert and remove, are not quite as simple
as before. The reason is that an insertion (or deletion) can destroy the bal-
ance of several nodes in the tree, as shown in Figure 19.21. The balance
must then be restored before the operation can be considered complete. The
insertion algorithm is described here, and the deletion algorithm is left for
Exercise 19.9.

Only nodes on the
path from the root
to the insertion
point can have their
balances altered.

A key observation is that after an insertion, only nodes that are on the
path from the insertion point to the root might have their balances altered
because only those nodes have their subtrees altered. This result applies to
almost all the balanced search tree algorithms. As we follow the path up to
the root and update the balancing information, we may find a node whose
new balance violates the AVL condition. In this section we show how to
rebalance the tree at the first (i.e., the deepest) such node and prove that this
rebalancing guarantees that the entire tree satisfies the AVL property.

Theorem 19.3 An AVL tree of height H has at least FH + 3 – 1 nodes, where Fi is the ith Fibonacci
number (see Section 7.3.4).

Proof Let SH be the size of the smallest AVL tree of height H. Clearly, S0 = 1 and S1 = 2.
Figure 19.22 shows that the smallest AVL tree of height H must have subtrees of
height H – 1 and H – 2. The reason is that at least one subtree has height H – 1 and
the balance condition implies that subtree heights can differ by at most 1. These
subtrees must themselves have the fewest number of nodes for their heights, so
SH = SH – 1 + SH – 2 + 1. The proof can be completed by using an induction
argument.

Fi φi 5⁄≈ φ 1 5+() 2⁄ 1.618≈=
φH 3+ 5⁄

H 1.44 N 2+()log 1.328–<

1 ε+() Nlog C+ ε

19.4 avl trees 709

The node to be rebalanced is X. Because any node has at most two chil-
dren and a height imbalance requires that the heights of X’s two subtrees dif-
fer by 2, a violation might occur in any of four cases:

1. An insertion in the left subtree of the left child of X

2. An insertion in the right subtree of the left child of X

3. An insertion in the left subtree of the right child of X

4. An insertion in the right subtree of the right child of X

Cases 1 and 4 are mirror-image symmetries with respect to X, as are cases 2 and
3. Consequently, there theoretically are two basic cases. From a programming
perspective, of course, there are still four cases and numerous special cases.

Balance is restored
by tree rotations. A
single rotation
switches the roles
of the parent and
child while main-
taining the search
order.

The first case, in which the insertion occurs on the outside (i.e., left–left
or right–right), is fixed by a single rotation of the tree. A single rotation
switches the roles of the parent and child while maintaining search order. The
second case, in which the insertion occurs on the inside (i.e., left–right or
right–left), is handled by the slightly more complex double rotation. These
fundamental operations on the tree are used several times in balanced tree
algorithms. In the remainder of this section we describe these rotations and
prove that they suffice to maintain the balance condition.

19.4.2 single rotation
A single rotation
handles the out-
side cases (1 and
4). We rotate
between a node
and its child. The
result is a binary
search tree that
satisfies the AVL
property.

Figure 19.23 shows the single rotation that fixes case 1. In Figure 19.23(a),
node k2 violates the AVL balance property because its left subtree is two lev-
els deeper than its right subtree (the dashed lines mark the levels in this sec-
tion). The situation depicted is the only possible case 1 scenario that allows k2
to satisfy the AVL property before the insertion but violate it afterward. Sub-
tree A has grown to an extra level, causing it to be two levels deeper than C.
Subtree B cannot be at the same level as the new A because then k2 would
have been out of balance before the insertion. Subtree B cannot be at the same
level as C because then k1 would have been the first node on the path that was
in violation of the AVL balancing condition (and we are claiming that k2 is).

Ideally, to rebalance the tree, we want to move A up one level and C down
one level. Note that these actions are more than the AVL property requires. To
do so we rearrange nodes into an equivalent search tree, as shown in
Figure 19.23(b). Here is an abstract scenario: Visualize the tree as being flexi-
ble, grab the child node k1, close your eyes, and shake the tree, letting gravity
take hold. The result is that k1 will be the new root. The binary search tree
property tells us that in the original tree, k2 > k1, so k2 becomes the right child
of k1 in the new tree. Subtrees A and C remain as the left child of k1 and the
right child of k2, respectively. Subtree B, which holds items between k1 and k2

If we fix the balance
at the deepest
unbalanced node,
we rebalance the
entire tree. There
are four cases that
we might have to
fix; two are mirror
images of the
other two.

710 chapter 19 binary search trees

in the original tree, can be placed as k2’s left child in the new tree and satisfy
all the ordering requirements.

One rotation
suffices to fix cases
1 and 4 in an AVL
tree.

This work requires only the few child link changes shown as pseudocode
in Figure 19.24 and results in another binary tree that is an AVL tree. This out-
come occurs because A moves up one level, B stays at the same level, and C
moves down one level. Thus k1 and k2 not only satisfy the AVL requirements,
but they also have subtrees that are the same height. Furthermore, the new
height of the entire subtree is exactly the same as the height of the original
subtree before the insertion that caused A to grow. Thus no further updating of
the heights on the path to the root is needed, and consequently, no further
rotations are needed. We use this single rotation often in other balanced tree
algorithms in this chapter.

Figure 19.25(a) shows that after the insertion of 1 into an AVL tree, node 8
becomes unbalanced. This is clearly a case 1 problem because 1 is in 8’s left–
left subtree. Thus we do a single rotation between 8 and 4, thereby obtaining
the tree shown in Figure 19.25(b). As mentioned earlier in this section, case 4
represents a symmetric case. The required rotation is shown in Figure 19.26,

(a) Before rotation

k1

k2

B

C

A

(b) After rotation

k2

k1

BA C

figure 19.23

Single rotation to fix
case 1

figure 19.24

Pseudocode for a
single rotation
(case 1)

1 /**
2 * Rotate binary tree node with left child.
3 * For AVL trees, this is a single rotation for case 1.
4 */
5 static BinaryNode rotateWithLeftChild(BinaryNode k2)
6 {
7 BinaryNode k1 = k2.left;
8 k2.left = k1.right;
9 k1.right = k2;

10 return k1;
11 }

19.4 avl trees 711

and the pseudocode that implements it is shown in Figure 19.27. This rou-
tine, along with other rotations in this section, is replicated in various bal-
anced search trees later in this text. These rotation routines appear in the
online code for several balanced search tree implementations.

(b) After rotation

6 10

12

4 16

2 8 14

1
B C

A k2

k1

(a) Before rotation

1

12

8 16

4 10 14

2 6
A B

Ck1

k2

figure 19.25

Single rotation fixes
an AVL tree after
insertion of 1.

figure 19.26

Symmetric single
rotation to fix case 4

(a) After rotation

k1

k2

B CA

(b) Before rotation

k2

k1

B

A

C

figure 19.27

Pseudocode for a
single rotation
(case 4)

1 /**
2 * Rotate binary tree node with right child.
3 * For AVL trees, this is a single rotation for case 4.
4 */
5 static BinaryNode rotateWithRightChild(BinaryNode k1)
6 {
7 BinaryNode k2 = k1.right;
8 k1.right = k2.left;
9 k2.left = k1;

10 return k2;
11 }

712 chapter 19 binary search trees

19.4.3 double rotation
The single rotation
does not fix the
inside cases (2 and
3). These cases
require a double
rotation, involving
three nodes and
four subtrees.

The single rotation has a problem: As Figure 19.28 shows, it does not work
for case 2 (or, by symmetry, for case 3). The problem is that subtree Q is too
deep, and a single rotation does not make it any less deep. The double rotation
that solves the problem is shown in Figure 19.29.

The fact that subtree Q in Figure 19.28 has had an item inserted into it
guarantees that it is not empty. We may assume that it has a root and two
(possibly empty) subtrees, so we may view the tree as four subtrees con-
nected by three nodes. We therefore rename the four trees A, B, C, and D. As
Figure 19.29 suggests, either subtree B or subtree C is two levels deeper
than subtree D (unless both are empty, in which case both are), but we can-
not be sure which one. Actually it does not matter; here, both B and C are
drawn at 1.5 levels below D.

To rebalance, we cannot leave k3 as the root. In Figure 19.28 we showed
that a rotation between k3 and k1 does not work, so the only alternative is to

k1

k2

Q

R

P

(a) Before rotation (b) After rotation

k2

k1

Q

P

R

figure 19.28

Single rotation does
not fix case 2.

k1

k2

k3

B C

D

A

(a) Before rotation (b) After rotation

k3k1

k2

B C
DA

figure 19.29

Left–right double
rotation to fix case 2

19.4 avl trees 713

place k2 as the new root. Doing so forces k1 to be k2’s left child and k3 to be
k2’s right child. It also determines the resulting locations of the four subtrees,
and the resulting tree satisfies the AVL property. Also, as was the case with the
single rotation, it restores the height to the height before the insertion, thus
guaranteeing that all rebalancing and height updating are complete.

As an example, Figure 19.30(a) shows the result of inserting 5 into an
AVL tree. A height imbalance is caused at node 8, resulting in a case 2 prob-
lem. We perform a double rotation at that node, thereby producing the tree
shown in Figure 19.30(b).

A double rotation is
equivalent to two
single rotations.

Figure 19.31 shows that the symmetric case 3 can also be fixed by a dou-
ble rotation. Finally, note that, although a double rotation appears complex, it
turns out to be equivalent to the following sequence:

n A rotation between X’s child and grandchild

n A rotation between X and its new child

5
B

(b) After rotation

10

12

6 16

4 8 14

2
DCA

k3k1

k2

(a) Before rotation

5

12

8 16

4 10 14

2 6
A

B C

Dk1

k2

k3

figure 19.30

Double rotation fixes
AVL tree after the
insertion of 5.

figure 19.31

Right–Left double
rotation to fix case 3.

k3

k2

k1

CB

A

D

(a) Before rotation (b) After rotation

k3k1

k2

B C
DA

714 chapter 19 binary search trees

The pseudocode to implement the case 2 double rotation is compact and
is shown in Figure 19.32. The mirror-image pseudocode for case 3 is shown
in Figure 19.33.

19.4.4 summary of avl insertion
A casual AVL
implementation is
not excessively
complex, but it is
not efficient. Better
balanced search
trees have since
been discovered, so
implementing an
AVL tree is not
worthwhile.

Here is a brief summary how an AVL insertion is implemented. A recursive
algorithm turns out to be the simplest method of implementing an AVL inser-
tion. To insert a new node with key X in an AVL tree T, we recursively insert it
in the appropriate subtree of T (denoted TLR). If the height of TLR does not
change, we are done. Otherwise, if a height imbalance appears in T, we do the
appropriate single or double rotation (rooted at T), depending on X and the
keys in T and TLR, and then we are done (because the old height is the same as
the postrotation height). This recursive description is best described as a
casual implementation. For instance, at each node we compare the subtree’s
heights. In general, storing the result of the comparison in the node is more
efficient than maintaining the height information. This approach avoids the
repetitive calculation of balance factors. Furthermore, recursion incurs sub-
stantially more overhead than does an iterative version. The reason is that, in
effect, we go down the tree and completely back up instead of stopping as
soon as a rotation has been performed. Consequently, in practice, other bal-
anced search tree schemes are used.

figure 19.32

Pseudocode for a
double rotation
(case 2)

1 /**
2 * Double rotate binary tree node: first left child
3 * with its right child; then node k3 with new left child.
4 * For AVL trees, this is a double rotation for case 2.
5 */
6 static BinaryNode doubleRotateWithLeftChild(BinaryNode k3)
7 {
8 k3.left = rotateWithRightChild(k3.left);
9 return rotateWithLeftChild(k3);

10 }

figure 19.33

Pseudocode for a
double rotation
(case 3)

1 /**
2 * Double rotate binary tree node: first right child
3 * with its left child; then node k1 with new right child.
4 * For AVL trees, this is a double rotation for case 3.
5 */
6 static BinaryNode doubleRotateWithRightChild(BinaryNode k1)
7 {
8 k1.right = rotateWithLeftChild(k1.right);
9 return rotateWithRightChild(k1);

10 }

19.5 red–black trees 715

A red–black tree is
a good alternative
to the AVL tree. The
coding details tend
to give a faster
implementation
because a single
top-down pass can
be used during the
insertion and dele-
tion routines.

19.5 red–black trees
A historically popular alternative to the AVL tree is the red–black tree, in
which a single top-down pass can be used during the insertion and deletion
routines. This approach contrasts with an AVL tree, in which a pass down the
tree is used to establish the insertion point and a second pass up the tree is
used to update heights and possibly rebalance. As a result, a careful nonrecur-
sive implementation of the red–black tree is simpler and faster than an AVL
tree implementation. As on AVL trees, operations on red–black trees take log-
arithmic worst-case time.

Consecutive red
nodes are disal-
lowed, and all paths
have the same
number of black
nodes.

A red–black tree is a binary search tree having the following ordering
properties:

1. Every node is colored either red or black.

2. The root is black.

3. If a node is red, its children must be black.

4. Every path from a node to a null link must contain the same number
of black nodes.

In this discussion of red–black trees, shaded nodes represent red nodes.
Figure 19.34 shows a red–black tree. Every path from the root to a null node
contains three black nodes.

The depth of a
red–black tree is
guaranteed to be
logarithmic. Typi-
cally, the depth is
the same as for an
AVL tree.

We can show by induction that, if every path from the root to a null node
contains B black nodes, the tree must contain at least 2B – 1 black nodes. Fur-
thermore, as the root is black and there cannot be two consecutive red nodes
on a path, the height of a red–black tree is at most 2 log (N + 1). Conse-
quently, searching is guaranteed to be a logarithmic operation.

The difficulty, as usual, is that operations can change the tree and possibly
destroy the coloring properties. This possibility makes insertion difficult and
removal especially so. First, we implement the insertion, and then we exam-
ine the deletion algorithm.

30

15

10 20

5

60

70

85

80 906550

40 55

figure 19.34

A red–black tree: The
insertion sequence is
10, 85, 15, 70, 20, 60,
30, 50, 65, 80, 90, 40,
5, and 55 (shaded
nodes are red).

Shaded nodes are
red throughout this
discussion.

716 chapter 19 binary search trees

19.5.1 bottom-up insertion

Recall that a new item is always inserted as a leaf in the tree. If we color a new
item black, we violate property 4 because we create a longer path of black
nodes. Thus a new item must be colored red. If the parent is black, we are
done; thus the insertion of 25 into the tree shown in Figure 19.34 is trivial. If
the parent is already red, we violate property 3 by having consecutive red
nodes. In this case, we have to adjust the tree to ensure that property 3 is
enforced and do so without introducing a violation of property 4. The basic
operations used are color changes and tree rotations.

New items must be
colored red. If the
parent is already
red, we must
recolor and/or
rotate to remove
consecutive red
nodes.

We have to consider several cases (each with mirror-image symmetry)
if the parent is red. First, suppose that the sibling of the parent is black
(we adopt the convention that null nodes are black), which would apply
for the insertions of 3 or 8 but not for the insertion of 99. Let X be the
newly added leaf, P be its parent, S be the sibling of the parent (if it
exists), and G be the grandparent. Only X and P are red in this case; G is
black because otherwise there would be two consecutive red nodes prior to
the insertion—a violation of property 3. Adopting the AVL tree terminology,
we say that relative to G, X can be either an outside or inside node.2 If X is
an outside grandchild, a single rotation of its parent and grandparent along
with some color changes will restore property 3. If X is an inside grand-
child, a double rotation along with some color changes are needed. The
single rotation is shown in Figure 19.35, and the double rotation is shown
in Figure 19.36. Even though X is a leaf, we have drawn a more general
case that allows X to be in the middle of the tree. We use this more general
rotation later in the algorithm.

Before continuing, consider why these rotations are correct. We need to
be sure that there are never two consecutive red nodes. As shown in
Figure 19.36, for instance, the only possible instances of consecutive red

2. See Section 19.4.1, page 707.

X

P

G

C SBA

D E

P S

D ECX

A B

G

(a) Before rotation (b) After rotation

figure 19.35

If S is black, a single
rotation between
parent and
grandparent, with
appropriate color
changes, restores
property 3 if X is an
outside grandchild.

If the parent’s sib-
ling is black, a
single or double
rotation fixes things,
as in an AVL tree.

19.5 red–black trees 717

nodes would be between P and one of its children or between G and C. But
the roots of A, B, and C must be black; otherwise, there would have been addi-
tional property 3 violations in the original tree. In the original tree, there is
one black node on the path from the subtree root to A, B, and C and two black
nodes on the paths to D and E. We can verify that this pattern holds after rota-
tion and recoloring.

If the parent’s sib-
ling is red, then
after we fix things,
we induce consec-
utive red nodes at a
higher level. We
need to iterate up
the tree to fix
things.

So far so good. But what happens if S is red, as when we attempt to insert
79 in the tree shown in Figure 19.34? Then neither the single nor the double
rotation works because both result in consecutive red nodes. In fact, in this
case three nodes must be on the path to D and E and only one can be black.
Hence both S and the subtree’s new root must be colored red. For instance, the
single rotation case that occurs when X is an outside grandchild is shown in
Figure 19.37. Although this rotation seems to work, there is a problem: What
happens if the parent of the subtree root (i.e., X’s original great grandparent)
is also red? We could percolate this procedure up toward the root until we no
longer have two consecutive red nodes or we reach the root (which would be
recolored black). But then we would be back to making a pass up the tree, as
in the AVL tree.

P

X

G

C SBA

D E

P S

D EXA

B C

G

(a) Before rotation (b) After rotation

figure 19.36

If S is black, a double
rotation involving X,
the parent, and the
grandparent, with
appropriate color
changes, restores
property 3 if X is an
inside grandchild.

X

P

G

C SBA

D E

P S

D ECX

A B

G

(a) Before rotation (b) After rotation

figure 19.37

If S is red, a single
rotation between
parent and
grandparent, with
appropriate color
changes, restores
property 3 between X
and P.

718 chapter 19 binary search trees

19.5.2 top-down red–black trees
To avoid iterating
back up the tree,
we ensure as we
descend the tree
that the sibling’s
parent is not red.
We can do so with
color flips and/or
rotations.

To avoid the possibility of having to rotate up the tree, we apply a top-down
procedure as we are searching for the insertion point. Specifically, we guaran-
tee that, when we arrive at a leaf and insert a node, S is not red. Then we can
just add a red leaf and if necessary use one rotation (either single or double).
The procedure is conceptually easy.

On the way down, when we see a node X that has two red children, we
make X red and its two children black. Figure 19.38 shows this color flip. (If X
is the root, it will be made red by this process. We could then recolor it back to
black, without violating any red–black tree properties.) The number of black
nodes on paths below X remains unchanged. However, if X’s parent is red, we
would introduce two consecutive red nodes. But in this case, we can apply
either the single rotation in Figure 19.35 or the double rotation in
Figure 19.36. But what if X’s parent’s sibling is also red? This situation can-
not happen. If on the way down the tree, we see a node Y that has two red chil-
dren, we know that Y’s grandchildren must be black. And as Y’s children are
also made black via the color flip—even after the rotation that may occur—
we would not see another red node for two levels. Thus when we see X, if X’s
parent is red, X’s parent’s sibling cannot also be red.

For example, suppose that we want to insert 45 in the tree shown in
Figure 19.34. On the way down the tree we see node 50, which has two red
children. Thus we perform a color flip, making 50 red and 40 and 55 black.
The result is shown in Figure 19.39. However, now 50 and 60 are both red.

figure 19.38

Color flip: Only if X ’s
parent is red do we
continue with a
rotation.

C1

X

C2C1 C2

X

(a) Before color flip (b) After color flip

30

15

10 20 60

70

85

80 9065505

40 55

figure 19.39

A color flip at 50
induces a violation;
because the violation
is outside, a single
rotation fixes it.

19.5 red–black trees 719

We perform a single rotation (because 50 is an outside node) between 60 and
70, thus making 60 the black root of 30’s right subtree and making 70 red, as
shown in Figure 19.40. We then continue, performing an identical action if we
see other nodes on the path that contain two red children. It happens that there
are none.

When we get to the leaf, we insert 45 as a red node, and as the parent is
black, we are done. The resulting tree is shown in Figure 19.41. Had the par-
ent been red, we would have needed to perform one rotation.

As Figure 19.41 shows, the red–black tree that results is frequently well
balanced. Experiments suggest that the number of nodes traversed during an
average red–black tree search is almost identical to the average for AVL trees,
even though the red–black tree’s balancing properties are slightly weaker. The
advantage of a red–black tree is the relatively low overhead required to perform
insertion and the fact that, in practice, rotations occur relatively infrequently.

19.5.3 java implementation

An actual implementation is complicated, not only by many possible rota-
tions, but also by the possibility that some subtrees (such as the right subtree
of the node containing 10 in Figure 19.41) might be empty and by the special

figure 19.40

Result of single
rotation that fixes the
violation at node 50

5

30

15

10 20 50

60

70

65 855540

80 90

figure 19.41

Insertion of 45 as a
red node

45

5

30

15

10 20 50

60

70

65 855540

80 90

720 chapter 19 binary search trees

case of dealing with the root (which, among other things, has no parent). To
remove special cases, we use two sentinels.

n We use nullNode in place of a null link; nullNode will always be col-
ored black.

n We use header as a pseudoroot; it has a key value of –∞ and a right
link to the real root.

On the way down,
we maintain refer-
ences to the
current, parent,
grandparent, and
great-grandparent
nodes.

Therefore even basic routines such as isEmpty need to be altered. Conse-
quently, inheriting from BinarySearchTree does not make sense, and we write
the class from scratch. The RedBlackNode class, which is nested in RedBlack-
Tree, is shown in Figure 19.42 and is straightforward. The RedBlackTree class
skeleton is shown in Figure 19.43. Lines 55 and 56 declare the sentinels that
we discussed previously. Four references—current, parent, grand, and great—
are used in the insert routine. Their placement at lines 62–65 allows them to
be shared by insert and the handleReorient routine. The remove method is
unimplemented.

The remaining routines are similar to their BinarySearchTree counterparts,
except that they have different implementations because of the sentinel nodes.
The constructor could be provided with the value of –∞, to initialize the
header node. We do not do that. The alternative is to use the compare method,

figure 19.42

The RedBlackNode
class

1 private static class RedBlackNode<AnyType>
2 {
3 // Constructors
4 RedBlackNode(AnyType theElement)
5 {
6 this(theElement, null, null);
7 }
8
9 RedBlackNode(AnyType theElement, RedBlackNode<AnyType> lt,

10 RedBlackNode<AnyType> rt)
11 {
12 element = theElement;
13 left = lt;
14 right = rt;
15 color = RedBlackTree.BLACK;
16 }
17
18 AnyType element; // The data in the node
19 RedBlackNode<AnyType> left; // Left child
20 RedBlackNode<AnyType> right; // Right child
21 int color; // Color
22 }

We remove special
cases by using a
sentinel for the
null node and a
pseudoroot. Doing
so requires minor
modifications of
almost every
routine.

19.5 red–black trees 721

figure 19.43a
The RedBlackTree class skeleton (continues)

1 package weiss.nonstandard;
2
3 // RedBlackTree class
4 //
5 // CONSTRUCTION: with no parameters
6 //
7 // ******************PUBLIC OPERATIONS*********************
8 // Same as BinarySearchTree; omitted for brevity
9 // ******************ERRORS********************************

10 // Exceptions are thrown by insert if warranted and remove.
11
12 public class RedBlackTree<AnyType extends Comparable<? super AnyType>>
13 {
14 public RedBlackTree()
15 { /* Figure 19.44 */ }
16
17 public void insert(AnyType item)
18 { /* Figure 19.47 */ }
19 public void remove(AnyType x)
20 { /* Not implemented */ }
21
22 public AnyType findMin()
23 { /* See online code */ }
24 public AnyType findMax()
25 { /* Similar to findMin */ }
26 public AnyType find(AnyType x)
27 { /* Figure 19.46 */ }
28
29 public void makeEmpty()
30 { header.right = nullNode; }
31 public boolean isEmpty()
32 { return header.right == nullNode; }
33 public void printTree()
34 { printTree(header.right); }
35
36 private void printTree(RedBlackNode<AnyType> t)
37 { /* Figure 19.45 */ }
38 private final int compare(AnyType item, RedBlackNode<AnyType> t)
39 { /* Figure 19.47 */ }
40 private void handleReorient(AnyType item)
41 { /* Figure 19.48 */ }
42 private RedBlackNode<AnyType>
43 rotate(AnyType item, RedBlackNode<AnyType> parent)
44 { /* Figure 19.49 */ }
45
46 private static <AnyType>
47 RedBlackNode<AnyType> rotateWithLeftChild(RedBlackNode<AnyType> k2)
48 { /* Implementation is as usual; see online code */ }
49 private static <AnyType>
50 RedBlackNode<AnyType> rotateWithRightChild(RedBlackNode<AnyType> k1)
51 { /* Implementation is as usual; see online code */ }

722 chapter 19 binary search trees

defined at lines 38 and 39, where appropriate. A constructor is shown in
Figure 19.44. The constructor allocates nullNode and then the header and sets
the header’s left and right links to nullNode.

Tests against null
are replaced by
tests against
nullNode.

Figure 19.45 shows the simplest change that results from the use of the sen-
tinels. The test against null needs to be replaced with a test against nullNode.

For the find routine shown in Figure 19.46 we use a common trick.
Before we begin the search, we place x in the nullNode sentinel. Thus we are
guaranteed to match x eventually, even if x is not found. If the match occurs at
nullNode, we can tell that the item was not found. We use this trick in the
insert procedure.

The insert method follows directly from our description and is shown in
Figure 19.47. The while loop encompassing lines 11 to 20 descends the tree
and fixes nodes that have two red children by calling handleReorient, as shown
in Figure 19.48. To do so, it keeps track of not only the current node but also
the parent, grandparent, and great-grandparent. Note that after a rotation the

figure 19.43b
The RedBlackTree
class skeleton
(continued)

52 private static class RedBlackNode<AnyType>
53 { /* Figure 19.42 */ }
54
55 private RedBlackNode<AnyType> header;
56 private RedBlackNode<AnyType> nullNode;
57
58 private static final int BLACK = 1; // BLACK must be 1
59 private static final int RED = 0;
60
61 // Used in insert routine and its helpers
62 private RedBlackNode<AnyType> current;
63 private RedBlackNode<AnyType> parent;
64 private RedBlackNode<AnyType> grand;
65 private RedBlackNode<AnyType> great;
66 }

figure 19.44
The RedBlackTree
constructor

1 /**
2 * Construct the tree.
3 */
4 public RedBlackTree()
5 {
6 nullNode = new RedBlackNode<AnyType>(null);
7 nullNode.left = nullNode.right = nullNode;
8 header = new RedBlackNode<AnyType>(null);
9 header.left = header.right = nullNode;

10 }

When performing a
find operation, we
copy x into the
nullNode sentinel to
avoid extra tests.

19.5 red–black trees 723

values stored in the grandparent and great-grandparent are no longer correct.
However, they will be restored by the time they are next needed. When the
loop ends, either x is found (as indicated by current!=nullNode) or x is not
found (as indicated by current==nullNode). If x is found, we throw an excep-
tion at line 24. Otherwise, x is not already in the tree, and it needs to be made
a child of parent. We allocate a new node (as the new current node), attach it
to the parent, and call handleReorient at lines 25–32.

figure 19.45
The printTree method
for the RedBlackTree
class

1 /**
2 * Internal method to print a subtree in sorted order.
3 * @param t the node that roots the tree.
4 */
5 private void printTree(RedBlackNode<AnyType> t)
6 {
7 if(t != nullNode)
8 {
9 printTree(t.left);

10 System.out.println(t.element);
11 printTree(t.right);
12 }
13 }

figure 19.46

The RedBlackTree find
routine. Note the use
of header and
nullNode.

1 /**
2 * Find an item in the tree.
3 * @param x the item to search for.
4 * @return the matching item or null if not found.
5 */
6 public AnyType find(AnyType x)
7 {
8 nullNode.element = x;
9 current = header.right;

10
11 for(; ;)
12 {
13 if(x.compareTo(current.element) < 0)
14 current = current.left;
15 else if(x.compareTo(current.element) > 0)
16 current = current.right;
17 else if(current != nullNode)
18 return current.element;
19 else
20 return null;
21 }
22 }

The code is rela-
tively compact for
the number of
cases involved and
the fact that the
implementation is
nonrecursive. For
these reasons the
red–black tree
performs well.

724 chapter 19 binary search trees

figure 19.47
The insert and compare routines for the RedBlackTree class

1 /**
2 * Insert into the tree.
3 * @param item the item to insert.
4 * @throws DuplicateItemException if item is already present.
5 */
6 public void insert(AnyType item)
7 {
8 current = parent = grand = header;
9 nullNode.element = item;

10
11 while(compare(item, current) != 0)
12 {
13 great = grand; grand = parent; parent = current;
14 current = compare(item, current) < 0 ?
15 current.left : current.right;
16
17 // Check if two red children; fix if so
18 if(current.left.color == RED && current.right.color == RED)
19 handleReorient(item);
20 }
21
22 // Insertion fails if already present
23 if(current != nullNode)
24 throw new DuplicateItemException(item.toString());
25 current = new RedBlackNode<AnyType>(item, nullNode, nullNode);
26
27 // Attach to parent
28 if(compare(item, parent) < 0)
29 parent.left = current;
30 else
31 parent.right = current;
32 handleReorient(item);
33 }
34
35 /**
36 * Compare item and t.element, using compareTo, with
37 * caveat that if t is header, then item is always larger.
38 * This routine is called if it is possible that t is a header.
39 * If it is not possible for t to be a header, use compareTo directly.
40 */
41 private final int compare(AnyType item, RedBlackNode<AnyType> t)
42 {
43 if(t == header)
44 return 1;
45 else
46 return item.compareTo(t.element);
47 }

19.5 red–black trees 725

At lines 11 and 14 we see the call to compare, which is used since the
header might be one of the nodes involved in the comparison. The value in the
header is logically – ∞, but is actually null. The implementation of compare
ensures that the value in the header compares as less than any other value.
compare is also shown in Figure 19.47.

The rotate method
has four possibili-
ties. The ?: opera-
tor collapses the
code but is logi-
cally equivalent to
an if/else test.

The code used to perform a single rotation is shown in the rotate method
in Figure 19.49. Because the resultant tree must be attached to a parent, rotate
takes the parent node as a parameter. Rather than keep track of the type of
rotation (left or right) as we descend the tree, we pass item as a parameter. We
expect very few rotations during the insertion, so doing it this way is not only
simple but is actually faster.

The handleReorient routine calls rotate as necessary to perform either a
single or double rotation. As a double rotation is just two single rotations, we
can test whether we have an inside case, and if so, do an extra rotation
between the current node and its parent (bypassing the grandparent to rotate).
In either case we rotate between the parent and grandparent (by passing the
great-grandparent to rotate). This action is succinctly coded in lines 16–17 of
Figure 19.48.

figure 19.48
The handleReorient routine, which is called if a node has two red children or when a new node is inserted

1 /**
2 * Internal routine that is called during an insertion
3 * if a node has two red children. Performs flip and rotations.
4 * @param item the item being inserted.
5 */
6 private void handleReorient(AnyType item)
7 {
8 // Do the color flip
9 current.color = RED;

10 current.left.color = BLACK;
11 current.right.color = BLACK;
12
13 if(parent.color == RED) // Have to rotate
14 {
15 grand.color = RED;
16 if((compare(item, grand) < 0) != (compare(item, parent) < 0))
17 parent = rotate(item, grand); // Start dbl rotate
18 current = rotate(item, great);
19
20 current.color = BLACK;
21 }
22 header.right.color = BLACK; // Make root black
23 }

726 chapter 19 binary search trees

19.5.4 top-down deletion

Deletion in red–black trees can also be performed top-down. Needless to say,
an actual implementation is fairly complicated because the remove algorithm
for unbalanced search trees is nontrivial in the first place. The normal binary
search tree deletion algorithm removes nodes that are leaves or have one
child. Recall that nodes with two children are never removed; their contents
are simply replaced.

Deletion is fairly
complex. The basic
idea is to ensure
that the deleted
node is red.

If the node to be deleted is red, there is no problem. However, if the node
to be deleted is black, its removal will violate property 4. The solution to the
problem is to ensure that any node we are about to delete is red.

Throughout this discussion, we let X be the current node, T be its sibling,
and P be their parent. We begin by coloring the sentinel root red. As we
traverse down the tree, we attempt to ensure that X is red. When we arrive at a
new node, we are certain that P is red (inductively, by the invariant that we are
trying to maintain) and that X and T are black (because we cannot have two
consecutive red nodes). There are two main cases, along with the usual sym-
metric variants (which are omitted).

First, suppose that X has two black children. There are three subcases,
which depend on T’s children.

figure 19.49

A routine for performing an appropriate rotation

1 /**
2 * Internal routine that performs a single or double rotation.
3 * Because the result is attached to the parent, there are 4 cases.
4 * Called by handleReorient.
5 * @param item the item in handleReorient.
6 * @param parent the parent of the root of the rotated subtree.
7 * @return the root of the rotated subtree.
8 */
9 private RedBlackNode<AnyType>

10 rotate(AnyType item, RedBlackNode<AnyType> parent)
11 {
12 if(compare(item, parent) < 0)
13 return parent.left = compare(item, parent.left) < 0 ?
14 rotateWithLeftChild(parent.left) : // LL
15 rotateWithRightChild(parent.left) ; // LR
16 else
17 return parent.right = compare(item, parent.right) < 0 ?
18 rotateWithLeftChild(parent.right) : // RL
19 rotateWithRightChild(parent.right); // RR
20 }

19.5 red–black trees 727

1. T has two black children: Flip colors (Figure 19.50).

2. T has an outer red child: Perform a single rotation (Figure 19.51).

3. T has an inner red child: Perform a double rotation (Figure 19.52).

Examination of the rotations shows that if T has two red children, either a
single rotation or double rotation will work (so it makes sense to do the single
rotation). Note that, if X is a leaf, its two children are black, so we can always
apply one of these three mechanisms to make X red.

Second, suppose that one of X’s children is red. Because the rotations in
the first main case always color X red, if X has a red child, consecutive red
nodes would be introduced. Thus we need an alternative solution. In this case,
we fall through to the next level, obtaining a new X, T, and P. If we are lucky,
we will fall onto a red node (we have at least a 50 percent chance that this will

X

P

TX T

P
figure 19.50

X has two black
children, and both of
its sibling’s children
are black; do a color
flip.

P

T

RX T

R X

P
figure 19.51

X has two black
children, and the outer
child of its sibling is
red; do a single
rotation.

P

R

TX T

R X

P
figure 19.52

X has two black
children, and the inner
child of its sibling is
red; do a double
rotation.

728 chapter 19 binary search trees

happen), thereby making the new current node red. Otherwise, we have the
situation shown in Figure 19.53. That is, the current X is black, the current T
is red, and the current P is black. We can then rotate T and P, thereby making
X’s new parent red; X and its new grandparent are black. Now X is not yet red,
but we are back to the starting point (although one level deeper). This out-
come is good enough because it shows that we can iteratively descend the
tree. Thus, so long as we eventually either reach a node that has two black
children or land on a red node, we are okay. This result is guaranteed for the
deletion algorithm because the two eventual states are

n X is a leaf, which is always handled by the main case since X has two
black children.

n X has only one child, for which the main case applies if the child is
black, and if it is red, we can delete X, if necessary, and make the
child black.

Lazy deletion is the
marking of items as
deleted.

Lazy deletion, in which items are marked as deleted but not actually
deleted, is sometimes used. However, lazy deletion wastes space and compli-
cates other routines (see Exercise 19.23).

19.6 aa-trees
The AA-tree is the
method of choice
when a balanced
tree is needed, a
casual implementa-
tion is acceptable,
and deletions are
needed.

Because of many possible rotations, the red–black tree is fairly tricky to code.
In particular, the remove operation is quite challenging. In this section we
describe a simple but competitive balanced search tree known as an AA-tree.
The AA-tree is the method of choice when a balanced tree is needed, a casual
implementation is acceptable, and deletions are needed. The AA-tree adds
one extra condition to the red–black tree: Left children may not be red.

This simple restriction greatly simplifies the red–black tree algorithms for
two reasons: First, it eliminates about half of the restructuring cases; second,

figure 19.53

X is black, and at least one child is red; if we fall through to the next level and land on a red child, fine;
if not, we rotate a sibling and parent.

B C

T

P

X

B C

X

P

T

C

X′ B

19.6 aa-trees 729

it simplifies the remove algorithm by removing an annoying case. That is, if an
internal node has only one child, the child must be a red right child because
red left children are now illegal, whereas a single black child would violate
property 4 for red–black trees. Thus we can always replace an internal node
with the smallest node in its right subtree. That smallest node is either a leaf
or has a red child and can be easily bypassed and removed.

The level of a node
in an AA-tree rep-
resents the num-
ber of left links on
the path to the
nullNode sentinel.

To simplify the implementation further, we represent balance information
in a more direct way. Instead of storing a color with each node, we store the
node’s level. The level of a node represents the number of left links on the
path to the nullNode sentinel and is

n Level 1, if the node is a leaf

n The level of its parent, if the node is red

n One less than the level of its parent, if the node is black

A horizontal link in
an AA-tree is a
connection
between a node
and a child of equal
levels. A horizontal
link should go only
to the right, and
there should not be
two consecutive
horizontal links.

The result is an AA-tree. If we translate the structure requirement from
colors to levels, we know that the left child must be one level lower than its
parent and that the right child may be zero or one level lower than its parent
(but not more). A horizontal link is a connection between a node and a child
of equal levels. The coloring properties imply

1. Horizontal links are right links (because only right children may be
red)

2. There may not be two consecutive horizontal links (because there
cannot be consecutive red nodes)

3. Nodes at level 2 or higher must have two children

4. If a node does not have a right horizontal link, its two children are at
the same level

Figure 19.54 shows a sample AA-tree. The root of this tree is the node
with key 30. Searching is done with the usual algorithm. And as usual, insert
and remove are more difficult because the natural binary search tree algorithms
may induce a violation of the horizontal link properties. Not surprisingly, tree
rotations can fix all the problems encountered.

figure 19.54

AA-tree resulting from
the insertion of 10,
85, 15, 70, 20, 60, 30,
50, 65, 80, 90, 40, 5,
55, and 35

30 70

15

5 10 20

60

6555

50

4035

85

9080

730 chapter 19 binary search trees

19.6.1 insertion
Insertion is done by
using the usual
recursive algorithm
and two method
calls.

Insertion of a new item is always done at the bottom level. As usual, that may
create problems. In the tree shown in Figure 19.54, insertion of 2 would create
a horizontal left link, whereas insertion of 45 would generate consecutive
right links. Consequently, after a node has been added at the bottom level, we
may need to perform some rotations to restore the horizontal link properties.

Left horizontal links
are removed by a
skew (rotation
between a node
and its left child).
Consecutive right
horizontal links are
fixed by a split
(rotation between a
node and its right
child). A skew pre-
cedes a split.

In both cases, a single rotation fixes the problem. We remove left horizon-
tal links by rotating between the node and its left child, a procedure called
skew. We fix consecutive right horizontal links by rotating between the first
and second (of the three) nodes joined by the two links, a procedure called
split.

The skew procedure is illustrated in Figure 19.55, and the split procedure
is illustrated in Figure 19.56. Although a skew removes a left horizontal link, it
might create consecutive right horizontal links because X’s right child might
also be horizontal. Thus we would process a skew first and then a split. After a
split, the middle node increases in level. That may cause problems for the
original parent of X by creating either a left horizontal link or consecutive right
horizontal links: Both problems can be fixed by applying the skew/split strat-
egy on the path up toward the root. It can be done automatically if we use
recursion, and a recursive implementation of insert is only two method calls
longer than the corresponding unbalanced search tree routine.

figure 19.55
The skew procedure is
a simple rotation
between X and P.

P X

A B C

P X

A B C

RX G

A B

X G

R

A B

figure 19.56
The split procedure
is a simple rotation
between X and R;
note that R ’s level
increases.

19.6 aa-trees 731

This is a rare algo-
rithm in that it is
harder to simulate
on paper than
implement on a
computer.

To show the algorithm in action, we insert 45 in the AA-tree shown in
Figure 19.54. In Figure 19.57, when 45 is added at the bottom level, consec-
utive horizontal links form. Then skew/split pairs are applied as necessary
from the bottom up toward the root. Thus, at node 35 a split is needed
because of the consecutive horizontal right links. The result of the split is
shown in Figure 19.58. When the recursion backs up to node 50, we encounter
a horizontal left link. Thus we perform a skew at 50 to remove the horizontal
left link (the result is shown in Figure 19.59) and then a split at 40 to remove
the consecutive horizontal right links. The result after the split is shown in
Figure 19.60. The result of the split is that 50 is on level 3 and is a left
horizontal child of 70. Therefore we need to perform another skew/split

figure 19.57

After insertion of 45
in the sample tree;
consecutive horizontal
links are introduced,
starting at 35.

30 70

15

5 10 20

60

6555

50

40 4535

85

9080

figure 19.58

After split at 35; a
left horizontal link at
50 is introduced.

30 70

15

5 10 20

60

65554535

50 85

9080

40

figure 19.59

After skew at 50;
consecutive horizontal
nodes are introduced
starting at 40.

30 70

15

5 10 20

60

65554535

50 85

9080

40

figure 19.60

After split at 40; 50
is now on the same
level as 70, inducing
an illegal left
horizontal link.

30 70

15

5 10 20

60

65554535

50

85

9080

40

732 chapter 19 binary search trees

pair. The skew at 70 removes the left horizontal link at the top level but cre-
ates consecutive right horizontal nodes, as shown in Figure 19.61. When the
final split is applied, the consecutive horizontal nodes are removed and 50
becomes the new root of the tree. The result is shown in Figure 19.62.

19.6.2 deletion
Deletion is made
easier because the
one-child case
can occur only at
level 1 and we are
willing to use
recursion.

For general binary search trees, the remove algorithm is broken into three
cases: The item to be removed is a leaf, has one child, or has two children.
For AA-trees, we treat the one-child case the same way as the two-child
case because the one-child case can occur only at level 1. Moreover, the
two-child case is also easy because the node used as the replacement value
is guaranteed to be at level 1 and at worst has only a right horizontal link.
Thus everything boils down to being able to remove a level-1 node. Clearly,
this action might affect the balance (consider, for instance, the removal of
20 in Figure 19.62).

We let T be the current node and use recursion. If the deletion has altered
one of T’s children to two less than T’s level, T’s level needs to be lowered
also (only the child entered by the recursive call could actually be affected,
but for simplicity we do not keep track of it). Furthermore, if T has a horizontal
right link, its right child’s level must also be lowered. At this point, we could
have six nodes on the same level: T, T ’s horizontal right child R, R’s two

30 70

15

5 10 20

60

65554535

50

85

9080

40

figure 19.61

After skew at 70;
consecutive horizontal
links are introduced,
starting at 30.

30 70

15

5 10 20

60

65554535

50

85

9080

40

figure 19.62

After split at 30; the
insertion is complete.

19.6 aa-trees 733

children, and those children’s horizontal right children. Figure 19.63 shows
the simplest possible scenario.

After a recursive
removal, three
skews and two
splits guarantee
rebalancing.

After node 1 has been removed, node 2 and thus node 5 become level-1
nodes. First, we must fix the left horizontal link that is now introduced
between nodes 5 and 3. Doing so essentially requires two rotations: one
between nodes 5 and 3 and then one between nodes 5 and 4. In this case, the
current node T is not involved. However, if a deletion came from the right
side, T’s left node could suddenly become horizontal; that would require a
similar double rotation (starting at T). To avoid testing all these cases, we
merely call skew three times. Once we have done that, two calls to split suf-
fice to rearrange the horizontal edges.

19.6.3 java implementation

The class skeleton for the AA-tree is shown in Figure 19.64 and includes a
nested node class. Much of it duplicates previous tree code. Again, we use a

figure 19.63

When 1 is deleted, all
nodes become level 1,
thereby introducing
horizontal left links.

52

3 4 6 71

1 package weiss.nonstandard;
2
3 // AATree class
4 //
5 // CONSTRUCTION: with no initializer
6 //
7 // ******************PUBLIC OPERATIONS*********************
8 // Same as BinarySearchTree; omitted for brevity
9 // ******************ERRORS********************************

10 // Exceptions are thrown by insert and remove if warranted
11
12 public class AATree<AnyType extends Comparable<? super AnyType>>
13 {
14 public AATree()
15 {
16 nullNode = new AANode<AnyType>(null, null, null);
17 nullNode.left = nullNode.right = nullNode;
18 nullNode.level = 0;
19 root = nullNode;
20 }
21
22 public void insert(AnyType x)
23 { root = insert(x, root); }

Figure 19.64a

The class skeleton for
AA-trees (continues)

The implementa-
tion is relatively
simple (compared
to those of the
red–black tree).

734 chapter 19 binary search trees

24
25 public void remove(AnyType x)
26 { deletedNode = nullNode; root = remove(x, root); }
27 public AnyType findMin()
28 { /* Implementation is as usual; see online code */ }
29 public AnyType findMax()
30 { /* Implementation is as usual; see online code */ }
31 public AnyType find(AnyType x)
32 { /* Implementation is as usual; see online code */ }
33 public void makeEmpty()
34 { root = nullNode; }
35 public boolean isEmpty()
36 { return root == nullNode; }
37
38 private AANode<AnyType> insert(AnyType x, AANode<AnyType> t)
39 { /* Figure 19.65 */ }
40 private AANode<AnyType> remove(AnyType x, AANode<AnyType> t)
41 { /* Figure 19.67 */ }
42 private AANode<AnyType> skew(AANode<AnyType> t)
43 { /* Figure 19.66 */ }
44 private AANode<AnyType> split(AANode<AnyType> t)
45 { /* Figure 19.66 */ }
46
47 private static <AnyType>
48 AANode<AnyType> rotateWithLeftChild(AANode<AnyType> k2)
49 { /* Implementation is as usual; see online code */ }
50 private static <AnyType>
51 AANode<AnyType> rotateWithRightChild(AANode<AnyType> k1)
52 { /* Implementation is as usual; see online code */ }
53
54 private static class AANode<AnyType>
55 {
56 // Constructors
57 AANode(AnyType theElement)
58 {
59 element = theElement;
60 left = right = nullNode;
61 level = 1;
62 }
63
64 AnyType element; // The data in the node
65 AANode<AnyType> left; // Left child
66 AANode<AnyType> right; // Right child
67 int level; // Level
68 }
69
70 private AANode<AnyType> root;
71 private AANode<AnyType> nullNode;
72
73 private AANode<AnyType> deletedNode;
74 private AANode<AnyType> lastNode;
75 }

figure 19.64b

The class skeleton for
AA-trees (continues)

19.6 aa-trees 735

nullNode sentinel; however, we do not need a pseudoroot. The constructor
allocates nullNode, as for red–black trees, and has root reference at it. The nullNode
is at level 0. The routines use private helpers.

The insert method is shown in Figure 19.65. As mentioned earlier in this
section, it is nearly identical to the recursive binary search tree insert. The
only difference is that it adds a call to skew followed by a call to split. In
Figure 19.66 skew and split are easily implemented, using the already exist-
ing tree rotations. Finally, remove is shown in Figure 19.67.

To help us out, we keep two instance variables, deletedNode and last-
Node. When we traverse a right child, we adjust deletedNode. Because we
call remove recursively until we reach the bottom (we do not test for equal-
ity on the way down), we are guaranteed that, if the item to be removed is
in the tree, deletedNode will reference the node that contains it. Note that
this technique can be used in the find procedure to replace the three-way
comparisons done at each node with two-way comparisons at each node

figure 19.65
The insert routine for
the AATree class

1 /**
2 * Internal method to insert into a subtree.
3 * @param x the item to insert.
4 * @param t the node that roots the tree.
5 * @return the new root.
6 * @throws DuplicateItemException if x is already present.
7 */
8 private AANode<AnyType> insert(AnyType x, AANode<AnyType> t)
9 {

10 if(t == nullNode)
11 t = new AANode<AnyType>(x, nullNode, nullNode);
12 else if(x.compareTo(t.element) < 0)
13 t.left = insert(x, t.left);
14 else if(x.compareTo(t.element) > 0)
15 t.right = insert(x, t.right);
16 else
17 throw new DuplicateItemException(x.toString());
18
19 t = skew(t);
20 t = split(t);
21 return t;
22 }

736 chapter 19 binary search trees

plus one extra equality test at the bottom. lastNode points at the level-1
node at which this search terminates. Because we do not stop until we
reach the bottom, if the item is in the tree, lastNode will reference the
level-1 node that contains the replacement value and must be removed
from the tree.

After a given recursive call terminates, we are either at level 1 or we are
not. If we are at level 1, we can copy the node’s value into the internal node
that is to be replaced; we can then bypass the level-1 node. Otherwise, we are
at a higher level, and we need to determine whether the balance condition has
been violated. If so, we restore the balance and then make three calls to skew
and two calls to split. As discussed previously, these actions guarantee that
the AA-tree properties will be restored.

figure 19.66
The skew and split procedures for the AATree class

1 /**
2 * Skew primitive for AA-trees.
3 * @param t the node that roots the tree.
4 * @return the new root after the rotation.
5 */
6 private static <AnyType> AANode<AnyType> skew(AANode<AnyType> t)
7 {
8 if(t.left.level == t.level)
9 t = rotateWithLeftChild(t);

10 return t;
11 }
12
13 /**
14 * Split primitive for AA-trees.
15 * @param t the node that roots the tree.
16 * @return the new root after the rotation.
17 */
18 private static <AnyType> AANode<AnyType> split(AANode<AnyType> t)
19 {
20 if(t.right.right.level == t.level)
21 {
22 t = rotateWithRightChild(t);
23 t.level++;
24 }
25 return t;
26 }

The deletedNode
variable references
the node contain-
ing x (if x is found)
or nullNode if x is
not found. The
lastNode variable
references the
replacement node.
We use two-way
comparisons
instead of three-
way comparisons.

19.6 aa-trees 737

figure 19.67

The remove method for AA-trees

1 /**
2 * Internal method to remove from a subtree.
3 * @param x the item to remove.
4 * @param t the node that roots the tree.
5 * @return the new root.
6 * @throws ItemNotFoundException if x is not found.
7 */
8 private AANode<AnyType> remove(AnyType x, AANode<AnyType> t)
9 {

10 if(t != nullNode)
11 {
12 // Step 1: Search down the tree and
13 // set lastNode and deletedNode
14 lastNode = t;
15 if(x.compareTo(t.element) < 0)
16 t.left = remove(x, t.left);
17 else
18 {
19 deletedNode = t;
20 t.right = remove(x, t.right);
21 }
22
23 // Step 2: If at the bottom of the tree and
24 // x is present, remove it
25 if(t == lastNode)
26 {
27 if(deletedNode == nullNode ||
28 x.compareTo(deletedNode.element) != 0)
29 throw new ItemNotFoundException(x.toString());
30 deletedNode.element = t.element;
31 t = t.right;
32 }
33
34 // Step 3: Otherwise, we are not at the bottom; rebalance
35 else
36 if(t.left.level < t.level - 1 || t.right.level < t.level - 1)
37 {
38 if(t.right.level > --t.level)
39 t.right.level = t.level;
40 t = skew(t);
41 t.right = skew(t.right);
42 t.right.right = skew(t.right.right);
43 t = split(t);
44 t.right = split(t.right);
45 }
46 }
47 return t;
48 }

738 chapter 19 binary search trees

19.7 implementing the collections
api TreeSet and TreeMap classes

In this section we provide a reasonably efficient implementation of the
Collections API TreeSet and TreeMap classes. The code is a blend of the
Collections API linked list implementation presented in Section 17.5 and
the AA-tree implementation in Section 19.6. Some AA-tree details are not
reproduced here because the core private routines, such as the tree rota-
tions, are essentially unchanged. Those routines are contained in the
online code. Other routines, such as the private insert and remove, are only
slightly different than those in Section 19.6, but we rewrite them to show
the similarity and for completeness.

The basic implementation resembles that of the standard LinkedList class
with its node, set, and iterator classes. However, there are two main differ-
ences between the classes.

1. The TreeSet class can be constructed with a Comparator, and the
Comparator is saved as a data member.

2. The TreeSet iteration routines are more complex than those of the
LinkedList class.

Iteration is the trickiest part. We must decide how to perform the traversal.
Several alternatives are available:

1. Use parent links

2. Have the iterator maintain a stack that represents the nodes on the
path to the current position

3. Have each node maintain a link to its inorder successor, a technique
known as a threaded tree

To make the code look as much as possible like the AA-tree code in
Section 19.6, we use the option of having the iterator maintain a stack. We
leave using parent links for you to do as Exercise 19.32.

Figure 19.68 shows the TreeSet class skeleton. The node declaration is
shown at lines 12 and 13; the body of the declaration is identical to the AANode
in Section 19.6. At line 18 is the data member that stores the comparison
function object. The routines and fields in lines 54–55, 57–58, 62–63, and
70–77 are essentially identical to their AA-tree counterparts. For instance,
the differences between the insert method at lines 54–55 and the one in the
AATree class is that the AAtree version throws an exception if a duplicate is

19.7 implementing the collections api TreeSet and TreeMap classes 739

figure 19.68a

TreeSet class skeleton
(continues)

1 package weiss.util;
2
3 import java.io.Serializable;
4 import java.io.IOException;
5
6 public class TreeSet<AnyType> extends AbstractCollection<AnyType>
7 implements SortedSet<AnyType>
8 {
9 private class TreeSetIterator implements Iterator<AnyType>

10 { /* Figure 19.74 */ }
11
12 private static class AANode<AnyType> implements Serializable
13 { /* Same as in Figure 19.64 */ }
14
15 private int modCount = 0;
16 private int theSize = 0;
17 private AANode<AnyType> root = null;
18 private Comparator<? super AnyType> cmp;
19 private AANode<AnyType> nullNode;
20
21 public TreeSet()
22 { /* Figure 19.69 */ }
23 public TreeSet(Comparator<? super AnyType> c)
24 { /* Figure 19.69 */ }
25 public TreeSet(SortedSet<AnyType> other)
26 { /* Figure 19.69 */ }
27 public TreeSet(Collection<? extends AnyType> other)
28 { /* Figure 19.69 */ }
29
30 public Comparator<? super AnyType> comparator()
31 { /* Figure 19.69 */ }
32 private void copyFrom(Collection<? extends AnyType> other)
33 { /* Figure 19.69 */ }
34
35 public int size()
36 { return theSize; }
37
38 public AnyType first()
39 { /* Similar to findMin; see online code. */ }
40 public AnyType last()
41 { /* Similar to findMax; see online code. */ }
42
43 public AnyType getMatch(AnyType x)
44 { /* Figure 19.70 */ }
45
46 private AANode<AnyType> find(AnyType x)
47 { /* Figure 19.69 */ }
48 private int compare(AnyType lhs, AnyType rhs)
49 { /* Figure 19.69 */ }
50 public boolean contains(Object x)
51 { /* Figure 19.69 */ }

740 chapter 19 binary search trees

inserted, whereas this insert returns immediately, this version of insert
maintains the size and modCount data members, and this new version uses a
comparator.

The constructors and comparator accessor for the TreeSet class are
shown in Figure 19.69. The private helper, copyFrom, is also shown.
Figure 19.70 implements the public getMatch, which is a nonstandard method
(that is used to help out with TreeMap later on). The private find method is
identical to the one in Section 19.6. The compare method uses the comparator
if one was provided; otherwise it assumes that the parameters are Comparable
and uses their compareTo method. If no comparator was provided, and the
parameters are not themselves Comparable, then a ClassCastException will be
thrown, which is a very reasonable action for this situation.

The public add method is shown in Figure 19.71. It simply calls the pri-
vate insert method, which is similar to the previously seen code in Section
19.6. Observe that add succeeds if and only if the size of the set changes.

Figure 19.68b

TreeSet class skeleton (continued)

52 public boolean add(AnyType x)
53 { /* Figure 19.71 */ }
54 private AANode<AnyType> insert(AnyType x, AANode<AnyType> t)
55 { /* Figure 19.71 */ }
56
57 private AANode<AnyType> deletedNode;
58 private AANode<AnyType> lastNode;
59
60 public boolean remove(Object x)
61 { /* Figure 19.72 */ }
62 private AANode<AnyType> remove(AnyType x, AANode<AnyType> t)
63 { /* Figure 19.73 */ }
64 public void clear()
65 { /* Figure 19.72 */ }
66
67 public Iterator<AnyType> iterator()
68 { return new TreeSetIterator(); }
69
70 private static <AnyType> AANode<AnyType> skew(AANode<AnyType> t)
71 { /* Same as in Figure 19.66 */ }
72 private static <AnyType> AANode<AnyType> split(AANode<AnyType> t)
73 { /* Same as in Figure 19.66 */ }
74 private static <AnyType> AANode<AnyType> rotateWithLeftChild(AANode<AnyType> k2)
75 { /* Same as usual */ }
76 private static <AnyType> AANode<AnyType> rotateWithRightChild(AANode<AnyType> k1)
77 { /* Same as usual */ }
78 }

19.7 implementing the collections api TreeSet and TreeMap classes 741

figure 19.69

Constructors and comparator method for TreeSet

1 /**
2 * Construct an empty TreeSet.
3 */
4 public TreeSet()
5 {
6 nullNode = new AANode<AnyType>(null, null, null);
7 nullNode.left = nullNode.right = nullNode;
8 nullNode.level = 0;
9 root = nullNode;

10 cmp = null;
11 }
12
13 /**
14 * Construct an empty TreeSet with a specified comparator.
15 */
16 public TreeSet(Comparator<? super AnyType> c)
17 { this(); cmp = c; }
18
19 /**
20 * Construct a TreeSet from another SortedSet.
21 */
22 public TreeSet(SortedSet<AnyType> other)
23 { this(other.comparator()); copyFrom(other); }
24
25 /**
26 * Construct a TreeSet from any collection.
27 * Uses an O(N log N) algorithm, but could be improved.
28 */
29 public TreeSet(Collection<? extends AnyType> other)
30 { this(); copyFrom(other); }
31
32 /**
33 * Return the comparator used by this TreeSet.
34 * @return the comparator or null if the default comparator is used.
35 */
36 public Comparator<? super AnyType> comparator()
37 { return cmp; }
38
39 /**
40 * Copy any collection into a new TreeSet.
41 */
42 private void copyFrom(Collection<? extends AnyType> other)
43 {
44 clear();
45 for(AnyType x : other)
46 add(x);
47 }

742 chapter 19 binary search trees

figure 19.70

Search methods for
TreeSet

1 /**
2 * This method is not part of standard Java.
3 * Like contains, it checks if x is in the set.
4 * If it is, it returns the reference to the matching
5 * object; otherwise it returns null.
6 * @param x the object to search for.
7 * @return if contains(x) is false, the return value is null;
8 * otherwise, the return value is the object that causes
9 * contains(x) to return true.

10 */
11 public AnyType getMatch(AnyType x)
12 {
13 AANode<AnyType> p = find(x);
14 if(p == null)
15 return null;
16 else
17 return p.element;
18 }
19
20 /**
21 * Find an item in the tree.
22 * @param x the item to search for.
23 * @return the matching item or null if not found.
24 */
25 private AANode<AnyType> find(AnyType x)
26 {
27 AANode<AnyType> current = root;
28 nullNode.element = x;
29
30 for(; ;)
31 {
32 int result = compare(x, current.element);
33
34 if(result < 0)
35 current = current.left;
36 else if(result > 0)
37 current = current.right;
38 else if(current != nullNode)
39 return current;
40 else
41 return null;
42 }
43 }
44
45 private int compare(AnyType lhs, AnyType rhs)
46 {
47 if(cmp == null)
48 return ((Comparable) lhs).compareTo(rhs);
49 else
50 return cmp.compare(lhs, rhs);
51 }

19.7 implementing the collections api TreeSet and TreeMap classes 743

Figure 19.72 shows the public remove and clear methods. The public
remove calls a private remove, shown in Figure 19.73, which is very similar to
the code in Section 19.6. The main changes are the use of a comparator (via
method compare), and the additional code at lines 31 and 32.

figure 19.71

Insertion methods for
TreeSet

1 /**
2 * Adds an item to this collection.
3 * @param x any object.
4 * @return true if this item was added to the collection.
5 */
6 public boolean add(AnyType x)
7 {
8 int oldSize = size();
9

10 root = insert(x, root);
11 return size() != oldSize;
12 }
13
14 /**
15 * Internal method to insert into a subtree.
16 * @param x the item to insert.
17 * @param t the node that roots the tree.
18 * @return the new root.
19 */
20 private AANode<AnyType> insert(AnyType x, AANode<AnyType> t)
21 {
22 if(t == nullNode)
23 {
24 t = new AANode<AnyType>(x, nullNode, nullNode);
25 modCount++;
26 theSize++;
27 }
28 else
29 {
30 int result = compare(x, t.element);
31
32 if(result < 0)
33 t.left = insert(x, t.left);
34 else if(result > 0)
35 t.right = insert(x, t.right);
36 else
37 return t;
38 }
39
40 t = skew(t);
41 t = split(t);
42 return t;
43 }

744 chapter 19 binary search trees

The iterator class is shown in Figure 19.74; current is positioned at the
node containing the next unseen item. The tricky part is maintaining the
stack, path, which includes all nodes on the path to the current node, but not
the current node itself. The constructor simply follows all the left links,
pushing all but the last node on the path onto the stack. We also maintain the
number of items visited, thus making the hasNext test easy.

The core routine is the private method next, shown in Figure 19.75.
After we record the value in the current node, and set lastVisited (for
remove), we need to advance current. If the current node has a right child, we
go right once and then left as far as possible (lines 11–17). Otherwise, as
lines 21–32 illustrate, we need to go back up the path toward the root until
we find the node from which we turned left. That node, which must exist
because otherwise an exception would have been thrown at line 4, is the
next node in the iteration.

Figure 19.76 shows the remarkably tricky remove. The relatively easy part
is shown at lines 3–15, where after some error checks, we remove the item
from the tree at line 11. At line 13, we fix the expectedModCount, so as to not
get a subsequent ConcurrentModificationException for this iterator (only). At
line 14, we lower visited (so hasNext will work), and at line 15, we set
lastVisited to null, so a consecutive remove will be disallowed.

figure 19.72

Public deletion
methods for TreeSet

1 /**
2 * Removes an item from this collection.
3 * @param x any object.
4 * @return true if this item was removed from the collection.
5 */
6 public boolean remove(Object x)
7 {
8 int oldSize = size();
9

10 deletedNode = nullNode;
11 root = remove((AnyType) x, root);
12
13 return size() != oldSize;
14 }
15
16 /**
17 * Change the size of this collection to zero.
18 */
19 public void clear()
20 {
21 theSize = 0;
22 modCount++;
23 root = nullNode;
24 }

19.7 implementing the collections api TreeSet and TreeMap classes 745

figure 19.73

Private remove method for TreeSet

1 /**
2 * Internal method to remove from a subtree.
3 * @param x the item to remove.
4 * @param t the node that roots the tree.
5 * @return the new root.
6 */
7 private AANode<AnyType> remove(AnyType x, AANode<AnyType> t)
8 {
9 if(t != nullNode)

10 {
11 // Step 1: Search down the tree and
12 // set lastNode and deletedNode
13 lastNode = t;
14 if(compare(x, t.element) < 0)
15 t.left = remove(x, t.left);
16 else
17 {
18 deletedNode = t;
19 t.right = remove(x, t.right);
20 }
21
22 // Step 2: If at the bottom of the tree and
23 // x is present, we remove it
24 if(t == lastNode)
25 {
26 if(deletedNode == nullNode ||
27 compare(x, deletedNode.element) != 0)
28 return t; // Item not found; do nothing
29 deletedNode.element = t.element;
30 t = t.right;
31 theSize--;
32 modCount++;
33 }
34
35 // Step 3: Otherwise, we are not at the bottom; rebalance
36 else
37 if(t.left.level < t.level - 1 || t.right.level < t.level - 1)
38 {
39 if(t.right.level > --t.level)
40 t.right.level = t.level;
41 t = skew(t);
42 t.right = skew(t.right);
43 t.right.right = skew(t.right.right);
44 t = split(t);
45 t.right = split(t.right);
46 }
47 }
48 return t;
49 }

746 chapter 19 binary search trees

If we have not removed the last item in the iteration, then we have to reset
the stack, because rotations may have rearranged the tree. This is done at lines
20–36. Line 35 is needed because we do not want current to be on the stack.

We finish by providing an implementation of the TreeMap class. A TreeMap
is simply a TreeSet in which we store key/value pairs; in fact, a similar

figure 19.74

TreeSetIterator inner class skeleton

1 /**
2 * This is the implementation of the TreeSetIterator.
3 * It maintains a notion of a current position and of
4 * course the implicit reference to the TreeSet.
5 */
6 private class TreeSetIterator implements Iterator<AnyType>
7 {
8 private int expectedModCount = modCount;
9 private int visited = 0;

10 private Stack<AANode<AnyType>> path = new Stack<AANode<AnyType>>();
11 private AANode<AnyType> current = null;
12 private AANode<AnyType> lastVisited = null;
13
14 public TreeSetIterator()
15 {
16 if(isEmpty())
17 return;
18
19 AANode<AnyType> p = null;
20 for(p = root; p.left != nullNode; p = p.left)
21 path.push(p);
22
23 current = p;
24 }
25
26 public boolean hasNext()
27 {
28 if(expectedModCount != modCount)
29 throw new ConcurrentModificationException();
30
31 return visited < size();
32 }
33
34 public AnyType next()
35 { /* Figure 19.75 */ }
36
37 public void remove()
38 { /* Figure 19.76 */ }
39 }

19.7 implementing the collections api TreeSet and TreeMap classes 747

observation will hold for HashMap, relative to HashSet. Thus we implement the
package-visible abstract class MapImpl, which can be constructed from any Set
(or Map). TreeMap and HashMap will extend MapImpl, providing implementations
of the abstract methods. The class skeleton for MapImpl is shown in Figures
19.77 and 19.78.

One data member, the underlying set theSet, is declared at line 10. The
key/value pairs are represented by a concrete implementation of the Map.Entry
class; this implementation is partially supplied by the abstract Pair class that
extends MapImpl (at lines 52–72). In TreeMap this Pair class is extended further

figure 19.75

next method for
TreeSetIterator

1 public AnyType next()
2 {
3 if(!hasNext())
4 throw new NoSuchElementException();
5
6 AnyType value = current.element;
7 lastVisited = current;
8
9 if(current.right != nullNode)

10 {
11 path.push(current);
12 current = current.right;
13 while(current.left != nullNode)
14 {
15 path.push(current);
16 current = current.left;
17 }
18 }
19 else
20 {
21 AANode<AnyType> parent;
22
23 for(; !path.isEmpty(); current = parent)
24 {
25 parent = path.pop();
26
27 if(parent.left == current)
28 {
29 current = parent;
30 break;
31 }
32 }
33 }
34
35 visited++;
36 return value;
37 }

748 chapter 19 binary search trees

by providing compareTo, while in HashMap it is extended by providing equals
and hashCode.

Lines 17–21 declare the three abstract methods. These are factories that
create the appropriate concrete object and return it through the interface type.
For instance, in TreeMap, makeEmptyKeySet returns a newly constructed TreeSet,
whereas in HashMap, makeEmptyKeySet returns a newly constructed HashSet.
Most important, makePair creates an object of type Map.Entry that represents

figure 19.76

remove method for TreeSetIterator

1 public void remove()
2 {
3 if(expectedModCount != modCount)
4 throw new ConcurrentModificationException();
5
6 if(lastVisited == null)
7 throw new IllegalStateException();
8
9 AnyType valueToRemove = lastVisited.element;

10
11 TreeSet.this.remove(valueToRemove);
12
13 expectedModCount++;
14 visited--;
15 lastVisited = null;
16
17 if(!hasNext())
18 return;
19
20 // Remaining code reinstates the stack, in case of rotations
21 AnyType nextValue = current.element;
22 path.clear();
23 AANode<AnyType> p = root;
24 for(; ;)
25 {
26 path.push(p);
27 int result = compare(nextValue, p.element);
28 if(result < 0)
29 p = p.left;
30 else if(result > 0)
31 p = p.right;
32 else
33 break;
34 }
35 path.pop();
36 current = p;
37 }

19.7 implementing the collections api TreeSet and TreeMap classes 749

figure 19.77

Abstract MapImpl helper class skeleton (part 1)

1 package weiss.util;
2
3 /**
4 * MapImpl implements the Map on top of a set.
5 * It should be extended by TreeMap and HashMap, with
6 * chained calls to the constructor.
7 */
8 abstract class MapImpl<KeyType,ValueType> implements Map<KeyType,ValueType>
9 {

10 private Set<Map.Entry<KeyType,ValueType>> theSet;
11
12 protected MapImpl(Set<Map.Entry<KeyType,ValueType>> s)
13 { theSet = s; }
14 protected MapImpl(Map<KeyType,ValueType> m)
15 { theSet = clonePairSet(m.entrySet()); }
16
17 protected abstract Map.Entry<KeyType,ValueType>
18 makePair(KeyType key, ValueType value);
19 protected abstract Set<KeyType> makeEmptyKeySet();
20 protected abstract Set<Map.Entry<KeyType,ValueType>>
21 clonePairSet(Set<Map.Entry<KeyType,ValueType>> pairSet);
22
23 private Map.Entry<KeyType,ValueType> makePair(KeyType key)
24 { return makePair((KeyType) key, null); }
25 protected Set<Map.Entry<KeyType,ValueType>> getSet()
26 { return theSet; }
27
28 public int size()
29 { return theSet.size(); }
30 public boolean isEmpty()
31 { return theSet.isEmpty(); }
32 public boolean containsKey(KeyType key)
33 { return theSet.contains(makePair(key)); }
34 public void clear()
35 { theSet.clear(); }
36 public String toString()
37 {
38 StringBuilder result = new StringBuilder("{");
39 for(Map.Entry<KeyType,ValueType> e : entrySet())
40 result.append(e + ", ");
41 result.replace(result.length() - 2, result.length(), "}");
42 return result.toString();
43 }
44
45 public ValueType get(KeyType key)
46 { /* Figure 19.79 */ }
47 public ValueType put(KeyType key, ValueType value)
48 { /* Figure 19.79 */ }
49 public ValueType remove(KeyType key)
50 { /* Figure 19.79 */ }

750 chapter 19 binary search trees

figure 19.78

Abstract MapImpl helper class skeleton (part 2)

51 // Pair class
52 protected static abstract class Pair<KeyType,ValueType>
53 implements Map.Entry<KeyType,ValueType>
54 {
55 public Pair(KeyType k, ValueType v)
56 { key = k; value = v; }
57
58 final public KeyType getKey()
59 { return key; }
60
61 final public ValueType getValue()
62 { return value; }
63
64 final public ValueType setValue(ValueType newValue)
65 { ValueType oldValue = value; value = newValue; return oldValue; }
66
67 final public String toString()
68 { return key + "=" + value; }
69
70 private KeyType key;
71 private ValueType value;
72 }
73
74 // Views
75 public Set<KeyType> keySet()
76 { return new KeySetClass(); }
77 public Collection<ValueType> values()
78 { return new ValueCollectionClass(); }
79 public Set<Map.Entry<KeyType,ValueType>> entrySet()
80 { return getSet(); }
81
82 private abstract class ViewClass<AnyType> extends AbstractCollection<AnyType>
83 { /* Figure 19.80 */ }
84 private class KeySetClass extends ViewClass<KeyType> implements Set<KeyType>
85 { /* Figure 19.80 */ }
86 private class ValueCollectionClass extends ViewClass<ValueType>
87 { /* Figure 19.80 */ }
88
89 private class ValueCollectionIterator implements Iterator<ValueType>
90 { /* Figure 19.81 */ }
91 private class KeySetIterator implements Iterator<KeyType>
92 { /* Figure 19.81 */ }
93 }

19.7 implementing the collections api TreeSet and TreeMap classes 751

the key/value pair. For a TreeSet, the object turns out to be Comparable, and
applies the TreeSet comparator to the key. Details of this will be discussed later.

Many of the map routines translate into operations on the underlying set,
as shown at lines 28–35. The basic routines get, put, and remove, are shown in
Figure 19.79. These simply translate into operations on the set. All require a
call to makePair to create an object of the same type as those in theSet; put is
representative of the strategy.

The tricky part of the MapImpl class is providing the ability to obtain the
views of the keys and values. In the MapImpl class declaration in Figure 19.78,
we see that keySet, implemented at lines 75 and 76, returns a reference to an
instance of an inner class named KeySetClass, and values, implemented at
lines 77 and 78, returns a reference to an instance of an inner class named
ValueCollectionClass. KeySetClass and ValueCollectionClass have some com-
monality, so they extend the generic inner class named ViewClass. These three
classes appear in lines 82 to 87 of the class declaration, and their implementa-
tion is shown in Figure 19.80.

In Figure 19.80, we see that in the generic ViewClass, calls to clear
and size are delegated to the underlying map. This class is abstract
because AbstractCollection does not provide the iterator method speci-
fied in Collection, and neither does ViewClass. The ValueCollectionClass
extends ViewClass<ValueType> and provides an iterator method; this method
returns a newly constructed instance of the inner class ValueCollectionIterator
(which of course implements the Iterator interface). ValueCollectionIterator
delegates calls to next and hasNext and is shown in Figure 19.81; we discuss it
shortly. KeySetClass extends ViewClass<KeyType>, but since it is a Set, it must
provide the (nonstandard) getMatch method in addition to the iterator
method. Because the KeySet class will not itself be used to represent a Map, this
method is not needed, so the implementation simply throws an exception. We
also provide a remove method to remove the associated key/value pair from the
underlying map. If this method is not provided, the default that is inherited
from AbstractCollection uses a sequential search, which is grossly inefficient.

Figure 19.81 completes the MapImpl class by providing implementations
of KeySetIterator and ValueCollectionIterator. Both maintain an iterator that
views the underlying map, and both delegate calls to next, hasNext, and remove
to the underlying map. In the case of next, the appropriate part of the
Map.Entry object being viewed by the map’s iterator is returned.

With MapImpl written, TreeMap turns out to be simple, as shown in
Figure 19.82. Most of the code centers around the definition of the private
inner class Pair, which implements the Map.Entry interface by extending
MapImpl.Pair. Pair implements Comparable, using the comparator on the key if
one is provided, or downcasting to Comparable.

752 chapter 19 binary search trees

figure 19.79

Implementations of basic MapImpl methods

1 /**
2 * Returns the value in the map associated with the key.
3 * @param key the key to search for.
4 * @return the value that matches the key or null
5 * if the key is not found. Since null values are allowed,
6 * checking if the return value is null may not
7 * be a safe way to ascertain if the key is present in the map.
8 */
9 public ValueType get(KeyType key)

10 {
11 Map.Entry<KeyType,ValueType> match = theSet.getMatch(makePair(key));
12
13 if(match == null)
14 return null;
15 else
16 return match.getValue();
17 }
18
19 /**
20 * Adds the key value pair to the map, overriding the
21 * original value if the key was already present.
22 * @param key the key to insert.
23 * @param value the value to insert.
24 * @return the old value associated with the key, or
25 * null if the key was not present prior to this call.
26 */
27 public ValueType put(KeyType key, ValueType value)
28 {
29 Map.Entry<KeyType,ValueType> match = theSet.getMatch(makePair(key));
30
31 if(match != null)
32 return match.setValue(value);
33
34 theSet.add(makePair(key, value));
35 return null;
36 }
37
38 /**
39 * Remove the key and its value from the map.
40 * @param key the key to remove.
41 * @return the previous value associated with the key,
42 * or null if the key was not present prior to this call.
43 */
44 public ValueType remove(KeyType key)
45 {
46 ValueType oldValue = get(key);
47 if(oldValue != null)
48 theSet.remove(makePair(key));
49
50 return oldValue;
51 }

19.7 implementing the collections api TreeSet and TreeMap classes 753

figure 19.80

View classes for MapImpl

1 /**
2 * Abstract class to model a view (either key or value view).
3 * Implements size and clear methods, but not iterator method.
4 * View delegates to underlying map.
5 */
6 private abstract class ViewClass<AnyType> extends AbstractCollection<AnyType>
7 {
8 public int size()
9 { return MapImpl.this.size(); }

10
11 public void clear()
12 { MapImpl.this.clear(); }
13 }
14
15 /**
16 * Class to model the key set view.
17 * remove is overridden (otherwise a sequential search is used).
18 * iterator gives a KeySetIterator (see Figure 19.81).
19 * getMatch, the nonstandard part of weiss.util.Set is not needed.
20 */
21 private class KeySetClass extends ViewClass<KeyType> implements Set<KeyType>
22 {
23 public boolean remove(Object key)
24 { return MapImpl.this.remove((KeyType) key) != null; }
25
26 public Iterator<KeyType> iterator()
27 { return new KeySetIterator(); }
28
29 public KeyType getMatch(KeyType key)
30 { throw new UnsupportedOperationException(); }
31 }
32
33 /**
34 * Class to model the value collection view.
35 * Default remove which is a sequential search is used.
36 * iterator gives a ValueCollectionIterator (see Figure 19.81).
37 */
38 private class ValueCollectionClass extends ViewClass<ValueType>
39 {
40 public Iterator<ValueType> iterator()
41 { return new ValueCollectionIterator(); }
42 }

754 chapter 19 binary search trees

figure 19.81

View iterator classes

1 /**
2 * Class used to iterate through key set view.
3 * Delegates to an underlying entry set iterator.
4 */
5 private class KeySetIterator implements Iterator<KeyType>
6 {
7 private Iterator<Map.Entry<KeyType,ValueType>> itr = theSet.iterator();
8
9 public boolean hasNext()

10 { return itr.hasNext(); }
11
12 public void remove()
13 { itr.remove(); }
14
15 public KeyType next()
16 { return itr.next().getKey(); }
17 }
18
19 /**
20 * Class used to iterate through value collection view.
21 * Delegates to an underlying entry set iterator.
22 */
23 private class ValueCollectionIterator implements Iterator<ValueType>
24 {
25 private Iterator<Map.Entry<KeyType,ValueType>> itr = theSet.iterator();
26
27 public boolean hasNext()
28 { return itr.hasNext(); }
29
30 public void remove()
31 { itr.remove(); }
32
33 public ValueType next()
34 { return itr.next().getValue(); }
35 }

19.7 implementing the collections api TreeSet and TreeMap classes 755

figure 19.82

TreeMap implementation

1 package weiss.util;
2
3 public class TreeMap<KeyType,ValueType> extends MapImpl<KeyType,ValueType>
4 {
5 public TreeMap()
6 { super(new TreeSet<Map.Entry<KeyType,ValueType>>()); }
7 public TreeMap(Map<KeyType,ValueType> other)
8 { super(other); }
9 public TreeMap(Comparator<? super KeyType> comparator)

10 {
11 super(new TreeSet<Map.Entry<KeyType,ValueType>>());
12 keyCmp = comparator;
13 }
14
15 public Comparator<? super KeyType> comparator()
16 { return keyCmp; }
17
18 protected Map.Entry<KeyType,ValueType> makePair(KeyType key, ValueType value)
19 { return new Pair(key, value); }
20
21 protected Set<KeyType> makeEmptyKeySet()
22 { return new TreeSet<KeyType>(keyCmp); }
23
24 protected Set<Map.Entry<KeyType,ValueType>>
25 clonePairSet(Set<Map.Entry<KeyType,ValueType>> pairSet)
26 { return new TreeSet<Map.Entry<KeyType,ValueType>>(pairSet); }
27
28 private final class Pair extends MapImpl.Pair<KeyType,ValueType>
29 implements Comparable<Map.Entry<KeyType,ValueType>>
30 {
31 public Pair(KeyType k, ValueType v)
32 { super(k ,v); }
33
34 public int compareTo(Map.Entry<KeyType,ValueType> other)
35 {
36 if(keyCmp != null)
37 return keyCmp.compare(getKey(), other.getKey());
38 else
39 return ((Comparable) getKey()).compareTo(other.getKey());
40 }
41 }
42
43 private Comparator<? super KeyType> keyCmp;
44 }

756 chapter 19 binary search trees

19.8 b-trees
So far, we have assumed that we can store an entire data structure in the main
memory of a computer. Suppose, however, that we have more data than can fit
in main memory, and, as a result, we must have the data structure reside on
disk. When that happens, the rules of the game change, because the Big-Oh
model is no longer meaningful.

The problem is that a Big-Oh analysis assumes that all operations are
equal. However, that is not true, especially when disk I/O is involved. On the
one hand, a 500-MIPS machine supposedly executes 500 million instructions
per second. That is fairly fast, mainly because the speed depends largely on
electrical properties. On the other hand, a disk is mechanical. Its speed
depends largely on the time required to spin the disk and move a disk head.
Many disks spin at 7,200 RPM. Thus in 1 minute, it makes 7,200 revolutions;
hence one revolution occurs in 1/120 of a second, or 8.3 ms. On average we
might expect that we have to spin a disk halfway to find what we are looking
for, but this is compensated by the time to move the disk head, so we get an
access time of 8.3 ms. (This estimate is very charitable; 9 to 11 ms. access
times are more common.) Consequently, we can do approximately 120 disk
accesses per second. This number of accesses sounds good, until we compare
it with the processor speed: We have 500 million instructions versus 120 disk
accesses. Put another way, one disk access is worth about 4,000,000 instruc-
tions. Of course, everything here is a rough calculation, but the relative speeds
are rather clear: Disk accesses are incredibly expensive. Furthermore, proces-
sor speeds are increasing at a much faster rate than disk speeds (it is disk sizes
that are increasing quite quickly). Thus, we are willing to do lots of calcula-
tions just to save a disk access. In almost all cases, the number of disk
accesses dominates the running time. By halving the number of disk accesses,
we can halve the running time.

Here is how the typical search tree performs on disk. Suppose that we want to
access the driving records for citizens in the State of Florida. We assume that we
have 10,000,000 items, that each key is 32 bytes (representing a name), and that a
record is 256 bytes. We assume that this data set does not fit in main memory and
that we are 1 of 20 users on a system (so we have 1/20 of the resources). Thus in
1 sec. we can execute 25 million instructions or perform six disk accesses.

The unbalanced binary search tree is a disaster. In the worst case, it has lin-
ear depth and thus could require 10,000,000 disk accesses. On average a
successful search would require 1.38 log N disk accesses, and as log 10,000,000
is approximately 24, an average search would require 32 disk accesses, or 5 sec.
In a typical randomly constructed tree, we would expect that a few nodes are
three times deeper; they would require about 100 disk accesses, or 16 sec. A
red–black tree is somewhat better: The worst case of 1.44 log N is unlikely to

When data are too
large to fit in mem-
ory, the number of
disk accesses
becomes impor-
tant. A disk access
is unbelievably
expensive com-
pared to a typical
computer
instruction.

Even logarithmic
performance is
unacceptable. We
need to perform
searches in three or
four accesses.
Updates can take
slightly longer.

19.8 b-trees 757

occur, and the typical case is very close to log N. Thus a red–black tree would
use about 25 disk accesses on average, requiring 4 sec.

An M-ary search
tree allows M-way
branching. As
branching
increases, the
depth decreases.

We want to reduce disk accesses to a very small constant number, such as three or
four. We are willing to write complicated code to do so because machine instructions
are essentially free, so long as we are not ridiculously unreasonable. A binary search
tree does not work because the typical red–black tree is close to optimal height, and
we cannot go below logN with a binary search tree. The solution is intuitively simple:
If we have more branching, we have less height. Thus, whereas a perfect binary tree
of 31 nodes has five levels, a 5-ary tree of 31 nodes has only three levels, as shown in
Figure 19.83. An M-ary search tree allows M-way branching, and as branching
increases, the depth decreases. Whereas a complete binary tree has height that is
roughly log2 N, a complete M-ary tree has height that is roughly logM N.

We can create an M-ary search tree in much the same way we created a
binary search tree. In a binary search tree, we need one key to decide which of
two branches to take. In an M-ary search tree, we need M – 1 keys to decide
which branch to take. To make this scheme efficient in the worst case, we
need to ensure that the M-ary search tree is balanced in some way. Otherwise,
like a binary search tree, it could degenerate into a linked list. Actually, we
want an even more restrictive balancing condition. That is, we do not want an
M-ary search tree to degenerate to even a binary search tree because then we
would be stuck with log N accesses.

One way to implement this is to use a B-tree, which is the most popular
data structure for disk-bound searching. Here, we describe the basic B-tree;3

many variations and improvements exist, and an implementation is somewhat
complex because quite a few cases must be addressed. However, in principle
this technique guarantees only a few disk accesses.

The B-tree has a
host of structure
properties.

A B-tree of order M is an M-ary tree with the following properties.4

1. The data items are stored at leaves.

2. The nonleaf nodes store as many as M – 1 keys to guide the search-
ing; key i represents the smallest key in subtree i + 1.

3. The root is either a leaf or has between 2 and M children.

3. What we describe is popularly known as a B+-tree.

figure 19.83

A 5-ary tree of 31
nodes has only three
levels

4. Properties 3 and 5 must be relaxed for the first L insertions. (L is a parameter used in property 5.)

The B-tree is the
most popular data
structure for disk-
bound searching.

758 chapter 19 binary search trees

4. All nonleaf nodes (except the root) have between ⎡M /2⎤ and M chil-
dren.

5. All leaves are at the same depth and have between ⎡L /2⎤ and L data
items, for some L (the determination of L is described shortly).

Nodes must be half
full to guarantee
that the tree does
not degenerate into
a simple binary
tree.

An example of a B-tree of order 5 is shown in Figure 19.84. Note that all
nonleaf nodes have between three and five children (and thus between two
and four keys); the root could possibly have only two children. Here, L = 5,
which means that L and M are the same in this example, but this condition is
not necessary. Because L is 5, each leaf has between three and five data items.
Requiring nodes to be half full guarantees that the B-tree does not degenerate
into a simple binary tree. Various definitions of B-trees change this structure,
mostly in minor ways, but the definition presented here is one of the most
commonly used.

We choose the
maximum M and L
that allow a node to
fit in one disk block.

Each node represents a disk block, so we choose M and L on the basis of the
size of the items being stored. Suppose that one block holds 8,192 bytes. In our
Florida example, each key uses 32 bytes, so in a B-tree of order M, we would
have M – 1 keys, for a total of 32M – 32 bytes plus M branches. Because each
branch is essentially a number of another disk block, we can assume that a
branch is 4 bytes. Thus the branches use 4M bytes, and the total memory
requirement for a nonleaf node is 36M – 32. The largest value of M for which
36M – 32 is no more than 8,192 is 228, so we would choose M = 228. As each
data record is 256 bytes, we would be able to fit 32 records in a block. Thus we
would choose L = 32. Each leaf has between 16 and 32 data records, and each
internal node (except the root) branches in at least 114 ways. For the 10,000,000
records, there are at most 625,000 leaves. Consequently, in the worst case,
leaves would be on level 4. In more concrete terms, the worst-case number of
accesses is given by approximately logM/2 N, give or take 1.

41 66 87

2
4
6

8
10
12
14
16

18
20
22
24

26
28
30
31
32

35
36
37
38
39

41
42
44
46

48
49
50

51
52
53

54
56
58
59

66
68
69
70

72
73
74
76

78
79
81

83
84
85

87
89
90

92
93
95

97
98
99

8 18 26 35 48 51 54 72 78 83 92 97

figure 19.84

A B-tree of order 5

19.8 b-trees 759

The remaining issue is how to add and remove items from the B-tree. In
the ideas sketched, note that many themes presented earlier recur.

If the leaf contains
room for a new
item, we insert it
and are done.

We begin by examining insertion. Suppose that we want to insert 57 into the
B-tree shown in Figure 19.84. A search down the tree reveals that 57 is not
already in the tree. We can add 57 to the leaf as a fifth item, but we may have to
reorganize all the data in the leaf to do so. However, the cost is negligible com-
pared to that of the disk access, which in this case also includes a disk write.

If the leaf is full, we
can insert a new
item by splitting the
leaf and forming
two half-empty
nodes.

That procedure was relatively painless because the leaf was not already
full. Suppose that we now want to insert 55. Figure 19.85 shows a problem:
The leaf where 55 should go is already full. The solution is simple: We now
have L + 1 items, so we split them into two leaves, both guaranteed to have the
minimum number of data records needed. Hence we form two leaves with
three items each. Two disk accesses are required to write these leaves and a
third disk access is required to update the parent. Note that in the parent, both
keys and branches change, but they do so in a controlled way that can easily
be calculated. The resulting B-tree is shown in Figure 19.86. Although split-
ting nodes is time consuming because it requires at least two additional disk
writes, it is a relatively rare occurrence. If L is 32, for example, when a node is
split two leaves with 16 and 17 items, respectively, are created. For the leaf
with 17 items, we can perform 15 more insertions without another split. Put
another way, for every split, there are roughly L /2 nonsplits.

The node splitting in the preceding example worked because the parent
did not have its full complement of children. But what would happen if it did?
Suppose that we insert 40 into the B-tree shown in Figure 19.86. We must
split the leaf containing the keys 35 through 39 and now 40 into two leaves.
But doing so would give the parent six children, and it is allowed only five.
The solution is to split the parent, the result of which is shown in
Figure 19.87. When the parent is split, we must update the values of the keys

figure 19.85

The B-tree after insertion of 57 in the tree shown in Figure 19.84.

41 66 87

2
4
6

8
10
12
14
16

18
20
22
24

26
28
30
31
32

35
36
37
38
39

41
42
44
46

48
49
50

51
52
53

54
56
57
58
59

66
68
69
70

72
73
74
76

78
79
81

83
84
85

87
89
90

92
93
95

97
98
99

8 18 26 35 48 51 54 57 72 78 83 92 97

760 chapter 19 binary search trees

and also the parent’s parent, incurring an additional two disk writes (so this
insertion costs five disk writes). Again, however, the keys change in a very
controlled manner, although the code is certainly not simple because of the
number of cases involved.

When a nonleaf node is split, as here, its parent gains a child. What if the
parent already has reached its limit of children? Then we continue splitting
nodes up the tree until we find a parent that does not need to be split or we
reach the root. Note that we introduced this idea in bottom-up red–black trees
and AA-trees. If we split the root, we have two roots, but obviously, this out-
come is unacceptable. However, we can create a new root that has the split
roots as its two children, which is why the root is granted the special two-
child minimum exemption. It is also the only way that a B-tree gains height.
Needless to say, splitting all the way up to the root is an exceptionally rare
event because a tree with four levels indicates that the root has been split two
times throughout the entire sequence of insertions (assuming that no deletions
have occurred). In fact, splitting of any nonleaf node is also quite rare.

There are other ways to handle the overflowing of children. One tech-
nique is to put a child up for adoption should a neighbor have room. To insert
29 in the B-tree shown in Figure 19.87, for example, we could make room by
moving 32 to the next leaf. This technique requires a modification of the par-
ent because the keys are affected. However, it tends to keep nodes fuller and
saves space in the long run.

We can perform deletion by finding the item that needs to be removed and
removing it. The problem is that, if the leaf it was in had the minimum num-
ber of data items, it is now below the minimum. We can rectify the situation
by adopting a neighboring item, if the neighbor is not itself at its minimum. If

41 66 87

2
4
6

8
10
12
14
16

18
20
22
24

26
28
30
31
32

35
36
37
38
39

41
42
44
46

48
49
50

51
52
53

54
55
56

66
68
69
70

72
73
74
76

78
79
81

83
84
85

87
89
90

92
93
95

97
98
99

8 18 26 35 48 51 54 57

57
58
59

72 78 83 92 9757

figure 19.86

Insertion of 55 in the B-tree shown in Figure 19.85 causes a split into two leaves.

Node splitting cre-
ates an extra child
for the leaf’s parent.
If the parent already
has a full number of
children, we split
the parent.

We may have to con-
tinue splitting all the
way up the tree
(though this possibil-
ity is unlikely). In the
worst case, we split
the root, creating a
new root with two
children.

19.8 b-trees 761

it is, we can combine with the neighbor to form a full leaf. Unfortunately, in
this case the parent has lost a child. If that causes the parent to fall below its
minimum, we follow the same strategy. This process could percolate up all
the way up to the root. The root cannot have just one child (and even if it were
allowed, it would be silly). If a root is left with one child as a result of the
adoption process, we remove the root, making its child the new root of the
tree—the only way for a B-tree to lose height. Suppose that we want to
remove 99 from the B-tree shown in Figure 19.87. The leaf has only two
items and its neighbor is already at its minimum of three, so we combine the
items into a new leaf of five items. As a result, the parent has only two chil-
dren. However, it can adopt from a neighbor because the neighbor has four
children. As a result of the adoption, both end up with three children, as
shown in Figure 19.88.

figure 19.87

Insertion of 40 in the B-tree shown in Figure 19.86 causes a split into two leaves and then a split of the parent node.

26 41 66 87

2
4
6

8
10
12
14
16

18
20
22
24

26
28
30
31
32

35
36
37

38
39
40

41
42
44
46

48
49
50

51
52
53

54
55
56

66
68
69
70

72
73
74
76

78
79
81

8 18 35 38 48 51 54

57
58
59

57 72 78

83
84
85

87
89
90

92
93
95

97
98
99

92 9783

figure 19.88

The B-tree after deletion of 99 from the tree shown in Figure 19.87.

26 41 66 83

2
4
6

8
10
12
14
16

18
20
22
24

26
28
30
31
32

35
36
37

38
39
40

41
42
44
46

48
49
50

51
52
53

54
55
56

66
68
69
70

72
73
74
76

78
79
81

8 18 35 38 48 51 54

57
58
59

72 78

83
84
85

87
89
90

92
93
95
97
98

87 9257

Deletion works in
reverse: If a leaf
loses a child, it may
need to combine
with another leaf.
Combining of
nodes may con-
tinue all the way up
the tree, though this
possibility is
unlikely. In the
worst case, the root
loses one of its two
children. Then we
delete the root and
use the other child
as the new root.

762 chapter 19 binary search trees

summary

Binary search trees support almost all of the useful operations in algorithm
design, and the logarithmic average cost is very small. Nonrecursive imple-
mentations of search trees are somewhat faster than recursive versions, but the
latter are sleeker, more elegant, and easier to understand and debug. The prob-
lem with search trees is that their performance depends heavily on the input’s
being random. If it is not, running time increases significantly, even to the
point where search trees become expensive linked lists.

Ways of dealing with this problem all involve restructuring the tree to
ensure some sort of balance at each node. Restructuring is achieved
through tree rotations that preserve the binary search tree property. The
cost of a search is typically less than for an unbalanced binary search tree
because the average node tends to be closer to the root. Insertion and dele-
tion costs, however, are usually higher. The balanced variations differ in the
amount of coding effort involved in implementing operations that change
the tree.

The classic scheme is the AVL tree in which, for every node, the heights
of its left and right subtrees can differ by at most 1. The practical problem
with AVL trees is that they involve large numbers of different cases, making
the overhead of each insertion and deletion relatively high. We examined two
alternatives in the chapter. The first was the top-down red–black tree. Its pri-
mary advantage is that rebalancing can be implemented in a single pass down
the tree, rather than the traditional pass down and back up. This technique
leads to simpler code and faster performance than the AVL tree allows. The
second is the AA-tree, which is similar to the bottom-up red–black tree. Its
primary advantage is a relatively simple recursive implementation of both
insertion and deletion. Both structures use sentinel nodes to eliminate annoy-
ing special cases.

You should use an unbalanced binary search tree only if you are sure that
the data are reasonably random or that the amount of data is relatively small.
Use the red–black tree if you are concerned about speed (and are not too con-
cerned about deletion). Use the AA-tree if you want an easy implementation
that has more than acceptable performance. Use the B-tree when the amount
of data is too large to store in main memory.

In Chapter 22 we examine another alternative: the splay tree. It is an inter-
esting alternative to the balanced search tree, is simple to code, and is compet-
itive in practice. In Chapter 20 we examine the hash table, a completely
different method used to implement searching operations.

key concepts 763

key concepts

AA-tree A balanced search tree that is the tree of choice when an O(log N)
worst case is needed, a casual implementation is acceptable, and deletions
are needed. (728)

AVL tree A binary search tree with the additional balance property that, for
any node in the tree, the height of the left and right subtrees can differ by
at most 1. As the first balanced search tree, it has historical significance. It
also illustrates most of the ideas that are used in other search tree
schemes. (706)

balanced binary search tree A tree that has an added structure property to
guarantee logarithmic depth in the worst case. Updates are slower than
with the binary search tree, but accesses are faster. (706)

binary search tree A data structure that supports insertion, searching, and dele-
tion in O(log N) average time. For any node in the binary search tree, all
smaller keyed nodes are in the left subtree and all larger keyed nodes are
in the right subtree. Duplicates are not allowed. (688)

B-tree The most popular data structure for disk-bound searching. There are
many variations of the same idea. (757)

double rotation Equivalent to two single rotations. (712)
external path length The sum of the cost of accessing all external tree nodes in

a binary tree, which measures the cost of an unsuccessful search. (704)
external tree node The null node. (705)
horizontal link In an AA-tree, a connection between a node and a child of

equal levels. A horizontal link should go only to the right, and there
should not be two consecutive horizontal links. (729)

internal path length The sum of the depths of the nodes in a binary tree, which
measures the cost of a successful search. (704)

lazy deletion A method that marks items as deleted but does not actually
delete them. (728)

level of a node In an AA-tree, the number of left links on the path to the
nullNode sentinel. (729)

M-ary tree A tree that allows M-way branching, and as branching increases,
the depth decreases. (757)

red–black tree A balanced search tree that is a good alternative to the AVL tree
because a single top-down pass can be used during the insertion and dele-
tion routines. Nodes are colored red and black in a restricted way that
guarantees logarithmic depth. The coding details tend to give a faster
implementation. (715)

764 chapter 19 binary search trees

single rotation Switches the roles of the parent and child while maintaining
search order. Balance is restored by tree rotations. (709)

skew Removal of left horizontal links by performing a rotation between a node
and its left child. (730)

split Fixing consecutive right horizontal links by performing a rotation
between a node and its right child. (730)

common errors

1. Using an unbalanced search tree when the input sequence is not random
will give poor performance.

2. The remove operation is very tricky to code correctly, especially for a bal-
anced search tree.

3. Lazy deletion is a good alternative to the standard remove, but you must
then change other routines, such as findMin.

4. Code for balanced search trees is almost always error-prone.

5. Forgetting to return a reference to the new subtree root is wrong for the
private helper methods insert and remove. The return value should be
assigned to root.

6. Using sentinels and then writing code that forgets about the sentinels can
lead to infinite loops. A common case is testing against null when a
nullNode sentinel is used.

on the internet

All of the code in this chapter is available online.

BinarySearchTree.java Contains the implementation of
BinarySearchTree; BinaryNode.java
has the node declaration.

BinarySearchTreeWithRank.java
Adds order statistics.

Rotations.java Contains the basic rotations, as static methods.
RedBlackTree.java Contains the implementation of the

RedBlackTree class.
AATree.java Contains the implementation of the AATree class.
TreeSet.java Contains the implementation of the TreeSet

class.
MapImpl.java Contains the abstract MapImpl class.
TreeMap.java Contains the implementation of the TreeMap

class.

exercises 765

exercises

IN SHORT

19.1 Show the result of inserting 3, 1, 4, 6, 9, 2, 5, and 7 in an initially
empty binary search tree. Then show the result of deleting the root.

19.2 Draw all binary search trees that can result from inserting permuta-
tions of 1, 2, 3, and 4. How many trees are there? What are the prob-
abilities of each tree’s occurring if all permutations are equally
likely?

19.3 Draw all AVL trees that can result from inserting permutations of 1, 2,
and 3. How many trees are there? What are the probabilities of each
tree’s occurring if all permutations are equally likely?

19.4 Repeat Exercise 19.3 for four elements.

19.5 Show the result of inserting 2, 1, 4, 5, 9, 3, 6, and 7 into an initially
empty AVL tree. Then show the result for a top-down red–black
tree.

19.6 Repeat Exercises 19.3 and 19.4 for a red–black tree.

IN THEORY

19.7 Prove Theorem 19.2.

19.8 Show the result of inserting items 1 through 15 in order in an initially
empty AVL tree. Generalize this result (with proof) to show what hap-
pens when items 1 through 2k – 1 are inserted into an initially empty
AVL tree.

19.9 Give an algorithm to perform remove in an AVL tree.

19.10 Prove that the height of a red–black tree is at most approximately
2 log N and give an insertion sequence that achieves this bound.

19.11 Show that every AVL tree can be colored as a red–black tree. Do all
red–black trees satisfy the AVL tree property?

19.12 Prove that the algorithm for deletion in an AA-tree is correct.

19.13 Suppose that the level data member in an AA-tree is represented by
an 8-bit byte. What is the smallest AA-tree that would overflow the
level data member at the root?

19.14 A B*-tree of order M is a B-tree in which each interior node has
between 2M /3 and M children. Leaves are similarly filled. Describe a
method that can be used to perform insertion in a B*-tree.

766 chapter 19 binary search trees

IN PRACTICE

19.15 Implement find, findMin, and findMax recursively.

19.16 Implement findKth nonrecursively, using the same technique used for
a nonrecursive find.

19.17 An alternative representation that allows the findKth operation is to
store in each node the value of 1 plus the size of the left subtree. Why
might this approach be advantageous? Rewrite the search tree class to
use this representation.

19.18 Write a binary search tree method that takes two keys, low and high,
and prints all elements X that are in the range specified by low and high.
Your program should run in O(K + log N) average time, where K is the
number of keys printed. Thus if K is small, you should be examining
only a small part of the tree. Use a hidden recursive method and do not
use an inorder iterator. Bound the running time of your algorithm.

19.19 Write a binary search tree method that takes two integers, low and high,
and constructs an optimally balanced BinarySearchTreeWithRank that
contains all the integers between low and high, inclusive. All leaves
should be at the same level (if the tree size is 1 less than a power of 2)
or on two consecutive levels. Your routine should take linear time.
Test your routine by using it to solve the Josephus problem presented
in Section 13.1.

19.20 The routines for performing double rotations are inefficient because
they perform unnecessary changes to children links. Rewrite them to
avoid calls to the single rotation routine.

19.21 Give a nonrecursive top-down implementation of an AA-tree. Com-
pare the implementation with the text’s for simplicity and efficiency.

19.22 Write the skew and split procedures recursively so that only one call
of each is needed for remove.

PROGRAMMING PROJECTS

19.23 Redo the BinarySearchTree class to implement lazy deletion. Note that
doing so affects all the routines. Especially challenging are findMin and
findMax, which must now be done recursively.

19.24 Implement the binary search tree to use only one two-way compari-
son per level for find, insert, and remove.

19.25 Write a program to evaluate empirically the following strategies for
removing nodes with two children. Recall that a strategy involves
replacing the value in a deleted node with some other value. Which

exercises 767

strategy gives the best balance? Which takes the least CPU time to
process an entire sequence of operations?
a. Replace with the value in the largest node, X, in TL and recur-

sively remove X.
b. Alternatively replace with the value in the largest node in TL or

the value in the smallest node in TR and recursively remove the
appropriate node.

c. Replace with the value in the largest node in TL or the value in the
smallest node in TR (recursively remove the appropriate node),
making the choice randomly.

19.26 Implement a binary search tree to allow duplicates. Have each node
store a linked list of items that are considered duplicates (using the
first item in the linked list) to control branching.

19.27 Implement a toString method for class BinarySearchTree. Make sure
your method runs in linear time. Hint: Use a private recursive method
that has a Node and a StringBuilder as its parameters.

19.28 Write the remove method for red–black trees.

19.29 Implement the search tree operations with order statistics for the bal-
anced search tree of your choice.

19.30 Implement TreeSet method lower, which returns the greatest element in
the set strictly less than the given element. Then implement method
floor, which returns the greatest element in the set less than or equal to
the given element. Both routines return null if there is no such element.

19.31 Implement TreeSet method higher, which returns the least element in the
set strictly greater than the given element. Then implement method
ceiling, which returns the least element in the set greater than or equal
to the given element. Both routines return null if there is no such element.

19.32 Reimplement the TreeSet class by using parent links.

19.33 Reimplement the TreeSet class by adding to each node two links: next and
previous, representing the previous and next item that would be obtained
in an inorder tree traversal. Also add header and tail nodes to avoid spe-
cial cases for the minimum and maximum item. This simplifies the itera-
tor implementation considerably, but requires revisions to the mutators.

19.34 Modify the TreeSet and TreeMap classes so that their iterators are
bidirectional.

19.35 Implement TreeSet method descendingSet which return a view of the
set, whose iterator and toString methods view items in decreasing
sorted order. Changes to the underlying set should reflect automati-
cally in the view, and vice-versa.

768 chapter 19 binary search trees

19.36 Implement TreeSet method descendingIterator, which returns an iter-
ator that views items in the set in decreasing order.

19.37 Add the headSet, subSet, and tailSet methods to the TreeSet class. The
behavior of these methods is specified in the Java API documentation.

19.38 List method subList(from,to) returns a view of the list ranging
from positions from, inclusive, to to, exclusive. Add subList to the
ArrayList implementation in Chapter 15 (you can either modify
weiss.util.ArrayList or extend it in another package, or extend
java.util.ArrayList). In the Java library, subList is written in terms
of the List interface, but write yours in terms of ArrayList. You will
need to define a nested class SubList that extends ArrayList, and have
subList return a reference to a new instance of SubList. To keep
matters simple, have SubList maintain a reference to the primary
ArrayList, store the size of the sublist, and store the offset into the
primary ArrayList. You can also have all the mutators in the SubList
throw an exception, so the returned sublist is in effect immutable.
Your SubList class must itself provide an inner SubListIterator class
that implements weiss.util.ListIterator. Test your code on the
method in Figure 19.89. Observe that sublists can create sublists,
that all refer to smaller portions of the same primary ArrayList.
What is the running time of your code?

19.39 Use the subList method that you wrote to implement the recursive
maximum contiguous subsequence sum algorithm in Figure 7.20 for
ArrayLists. Use iterators on the two sublists to handle the two loops.
Note that as of Java 6, the implementation will be fairly slow if you

figure 19.89

Recursion and array
sublists. An example
for Exercise 19.38.

1 public static Random r = new Random();
2
3 public static long sum(ArrayList<Integer> arr)
4 {
5 if(arr.size() == 0)
6 return 0;
7 else
8 {
9 int idx = r.nextInt(arr.size());

10
11 return arr.get(idx) +
12 sum(arr.subList(0, idx)) +
13 sum(arr.subList(idx + 1, arr.size()));
14 }
15 }

references 769

use java.util, but if Exercise 19.38 is implemented reasonably, you
should be able to have your code be comparable to the Figure 7.20
implementation.

19.40 Extend Exercise 19.38 to add code to check for structural modifications
to the primary ArrayList. A structural modification to the primary
ArrayList invalidates all the sublists. Then add checks for structural
modifications to a sublist, which invalidates all descendent sublists.

19.41 The headSet method can be used to obtain the rank of a value x in
TreeSet t: t.headSet(x,true).size(). However, there are no guaran-
tees that this is efficient. Implement the code in Figure 19.90 and test
the running time for various values of N. What can you say about the
cost of obtaining the rank of a value x? Describe how to maintain the
TreeSet and the views so the cost of size, and thus the cost to compute
a rank is O(log N).

19.42 Implement a B-tree that works in main memory.

19.43 Implement a B-tree that works for disk files.

references

More information on binary search trees, and in particular the mathematical
properties of trees, is available in [18] and [19].

Several papers deal with the theoretical lack of balance caused by biased
deletion algorithms in binary search trees. Hibbard [16] proposed the original
deletion algorithm and established that one deletion preserves the randomness
of the trees. A complete analysis has been performed only for trees with three
nodes [17] and four nodes [3]. Eppinger [10] provided early empirical evi-
dence of nonrandomness, and Culberson and Munro [7] and [8] provide some

figure 19.90

Tests the speed of a
rank computation
(Exercise 19.41).

1 public static void testRank(int N)
2 {
3 TreeSet<Integer> t = new TreeSet<Integer>();
4
5 for(int i = 1; i <= N; i++)
6 t.add(i);
7
8 for(int i = 1; i <= N; i++)
9 if(t.headSet(i, true).size() != i)

10 throw new IllegalStateException();
11 }

770 chapter 19 binary search trees

analytical evidence (but not a complete proof for the general case of inter-
mixed insertions and deletions). The claim that the deepest node in a random
binary search tree is three times deeper than the average node is proved in
[11]; the result is by no means simple.

AVL trees were proposed by Adelson-Velskii and Landis [1]. A dele-
tion algorithm is presented in [19]. Analysis of the average costs of search-
ing an AVL tree is incomplete, but some results are contained in [20]. The
top-down red–black tree algorithm is from [15]; a more accessible descrip-
tion is presented in [21]. An implementation of top-down red–black trees
without sentinel nodes is given in [12]; it provides a convincing demonstra-
tion of the usefulness of nullNode. The AA-tree is based on the symmetric
binary B-tree discussed in [4]. The implementation shown in the text is
adapted from the description in [2]. Many other balanced search trees are
described in [13].

B-trees first appeared in [5]. The implementation described in the
original paper allows data to be stored in internal nodes as well as in
leaves. The data structure described here is sometimes called a B+-tree.
Information on the B*-tree, described in Exercise 19.14, is available in [9]. A
survey of the different types of B-trees is presented in [6]. Empirical
results of the various schemes are reported in [14]. A C++ implementation
is contained in [12].

1. G. M. Adelson-Velskii and E. M. Landis, “An Algorithm for the Organi-
zation of Information,” Soviet Math. Doklady 3 (1962), 1259–1263.

2. A. Andersson, “Balanced Search Trees Made Simple,” Proceedings of
the Third Workshop on Algorithms and Data Structures (1993), 61–71.

3. R. A. Baeza-Yates, “A Trivial Algorithm Whose Analysis Isn’t: A Contin-
uation,” BIT 29 (1989), 88–113.

4. R. Bayer, “Symmetric Binary B-Trees: Data Structure and Maintenance
Algorithms,” Acta Informatica 1 (1972), 290–306.

5. R. Bayer and E. M. McCreight, “Organization and Maintenance of Large
Ordered Indices,” Acta Informatica 1 (1972), 173–189.

6. D. Comer, “The Ubiquitous B-tree,” Computing Surveys 11 (1979), 121–137.

7. J. Culberson and J. I. Munro, “Explaining the Behavior of Binary Search
Trees Under Prolonged Updates: A Model and Simulations,” Computer
Journal 32 (1989), 68–75.

8. J. Culberson and J. I. Munro, “Analysis of the Standard Deletion Algo-
rithm in Exact Fit Domain Binary Search Trees,” Algorithmica 5 (1990),
295–311.

references 771

9. K. Culik, T. Ottman, and D. Wood, “Dense Multiway Trees,” ACM
Transactions on Database Systems 6 (1981), 486–512.

10. J. L. Eppinger, “An Empirical Study of Insertion and Deletion in Binary
Search Trees,” Communications of the ACM 26 (1983), 663–669.

11. P. Flajolet and A. Odlyzko, “The Average Height of Binary Search Trees
and Other Simple Trees,” Journal of Computer and System Sciences 25
(1982), 171–213.

12. B. Flamig, Practical Data Structures in C++, John Wiley & Sons, New
York, NY, 1994.

13. G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data
Structures, 2d ed., Addison-Wesley, Reading, MA, 1991.

14. E. Gudes and S. Tsur, “Experiments with B-tree Reorganization,” Pro-
ceedings of ACM SIGMOD Symposium on Management of Data (1980),
200–206.

15. L. J. Guibas and R. Sedgewick, “A Dichromatic Framework for Balanced
Trees,” Proceedings of the Nineteenth Annual IEEE Symposium on Foun-
dations of Computer Science (1978), 8–21.

16. T. H. Hibbard, “Some Combinatorial Properties of Certain Trees with
Applications to Searching and Sorting,” Journal of the ACM 9 (1962),
13–28.

17. A. T. Jonassen and D. E. Knuth, “A Trivial Algorithm Whose Analysis
Isn’t,” Journal of Computer and System Sciences 16 (1978), 301–322.

18. D. E. Knuth, The Art of Computer Programming: Vol. 1: Fundamental
Algorithms, 3d ed., Addison-Wesley, Reading, MA, 1997.

19. D. E. Knuth, The Art of Computer Programming: Vol. 3: Sorting and
Searching, 2d ed., Addison-Wesley, Reading, MA, 1998.

20. K. Melhorn, “A Partial Analysis of Height-Balanced Trees Under Ran-
dom Insertions and Deletions,” SIAM Journal on Computing 11 (1982),
748–760.

21. R. Sedgewick, Algorithms in C++, Parts 1–4 (Fundamental Algorithms,
Data Structures, Sorting, Searching) 3rd ed., Addison-Wesley, Reading,
MA, 1998.

This page intentionally left blank

chap te r 20

hash tables

In Chapter 19 we discussed the binary search tree, which allows various
operations on a set of elements. In this chapter we discuss the hash table,
which supports only a subset of the operations allowed by binary search trees.
The implementation of hash tables is frequently called hashing, and it per-
forms insertions, deletions, and finds in constant average time.

Unlike with the binary search tree, the average-case running time of hash
table operations is based on statistical properties rather than the expectation of
random-looking input. This improvement is obtained at the expense of a loss
of ordering information among the elements: Operations such as findMin and
findMax and the printing of an entire table in sorted order in linear time are not
supported. Consequently, the hash table and binary search tree have some-
what different uses and performance properties.

In this chapter, we show

n Several methods of implementing the hash table

n Analytical comparisons of these methods

n Some applications of hashing

n Comparisons of hash tables and binary search trees

774 chapter 20 hash tables

20.1 basic ideas
The hash table is
used to implement
a set in constant
time per operation.

The hash table supports the retrieval or deletion of any named item. We want
to be able to support the basic operations in constant time, as for the stack and
queue. Because the accesses are much less restricted, this support seems like
an impossible goal. That is, surely when the size of the set increases, searches
in the set should take longer. However, that is not necessarily the case.

Suppose that all the items we are dealing with are small nonnegative inte-
gers, ranging from 0 to 65,535. We can use a simple array to implement each
operation as follows. First, we initialize an array a that is indexed from 0 to
65,535 with all 0s. To perform insert(i), we execute a[i]++. Note that a[i]
represents the number of times that i has been inserted. To perform find(i),
we verify that a[i] is not 0. To perform remove(i), we make sure that a[i] is
positive and then execute a[i]--. The time for each operation is clearly con-
stant; even the overhead of the array initialization is a constant amount of
work (65,536 assignments).

There are two problems with this solution. First, suppose that we have 32-
bit integers instead of 16-bit integers. Then the array a must hold 4 billion
items, which is impractical. Second, if the items are not integers but instead
are strings (or something even more generic), they cannot be used to index an
array.

The second problem is not really a problem at all. Just as a number 1234
is a collection of digits 1, 2, 3, and 4, the string "junk" is a collection of char-
acters 'j', 'u', 'n', and 'k'. Note that the number 1234 is just

. Recall from Section 12.1 that an ASCII
character can typically be represented in 7 bits as a number between 0 and
127. Because a character is basically a small integer, we can interpret a
string as an integer. One possible representation is 'j' ⋅ 1283 + 'u' ⋅ 1282 +
'n' ⋅ 1281 + 'k' ⋅ 1280. This approach allows the simple array implementa-
tion discussed previously.

The problem with this strategy is that the integer representation described
generates huge integers: The representation for "junk" yields 224,229,227,
and longer strings generate much larger representations. This result brings us
back to the first problem: How do we avoid using an absurdly large array?

We do so by using a function that maps large numbers (or strings inter-
preted as numbers) into smaller, more manageable numbers. A function that
maps an item into a small index is known as a hash function. If x is an arbi-
trary (nonnegative) integer, then x%tableSize generates a number between 0
and tableSize-1 suitable for indexing into an array of size tableSize. If s is a
string, we can convert s to a large integer x by using the method suggested
previously and then apply the mod operator (%) to get a suitable index. Thus, if

1 103 2 102 3 101⋅ 4 100⋅+ +⋅+⋅

A hash function
converts the item
into an integer suit-
able to index an
array where the
item is stored. If the
hash function were
one to one, we
could access the
item by its array
index.

20.2 hash function 775

tableSize is 10,000, "junk" would be indexed to 9,227. In Section 20.2 we dis-
cuss implementation of the hash function for strings in detail.

Because the hash
function is not one
to one, several
items collide at the
same index and
cause a collision.

The use of the hash function introduces a complication: Two or more dif-
ferent items can hash out to the same position, causing a collision. This situa-
tion can never be avoided because there are many more items than positions.
However, many methods are available for quickly resolving a collision. We
investigate three of the simplest: linear probing, quadratic probing, and sepa-
rate chaining. Each method is simple to implement, but each yields a different
performance, depending on how full the array is.

20.2 hash function
Computing the hash function for strings has a subtle complication: The con-
version of the String s to x generates an integer that is almost certainly larger
than the machine can store conveniently—because 1284 = 228. This integer
size is only a factor of 8 from the largest int. Consequently, we cannot expect
to compute the hash function by directly computing powers of 128. Instead,
we use the following observation. A general polynomial

(20.1)

can be evaluated as

(20.2)

By using a trick, we
can evaluate the
hash function effi-
ciently and without
overflow.

Note that in Equation 20.2, we avoid computation of the polynomial
directly, which is good for three reasons. First, it avoids a large intermediate
result, which, as we have shown, overflows. Second, the calculation in the
equation involves only three multiplications and three additions; an N-degree
polynomial is computed in N multiplications and additions. These opera-
tions compare favorably with the computation in Equation 20.1. Third, the
calculation proceeds left to right (A3 corresponds to 'j', A2 to 'u', and so
on, and X is 128).

However, an overflow problem persists: The result of the calculation is
still the same and is likely to be too large. But, we need only the result taken
mod tableSize. By applying the % operator after each multiplication (or addi-
tion), we can ensure that the intermediate results remain small.1 The resulting
hash function is shown in Figure 20.1. An annoying feature of this hash func-
tion is that the mod computation is expensive. Because overflow is allowed
(and its results are consistent on a given platform), we can make the hash

A3X3 A2X2 A1X1 A0X0+ + +

A3()X A2+()X A1+()X A0+

1. Section 7.4 contains the properties of the mod operation.

776 chapter 20 hash tables

function somewhat faster by performing a single mod operation immediately
prior to the return. Unfortunately, the repeated multiplication by 128 would
tend to shift the early characters to the left—out of the answer. To alleviate
this situation, we multiply by 37 instead of 128, which slows the shifting of
early characters.

The result is shown in Figure 20.2. It is not necessarily the best function
possible. Also, in some applications (e.g., if long strings are involved), we
may want to tinker with it. Generally speaking, however, the function is quite
good. Note that overflow could introduce negative numbers. Thus if the mod
generates a negative value, we make it positive (lines 15 and 16). Also note
that the result obtained by allowing overflow and doing a final mod is not the
same as performing the mod after every step. Thus we have slightly altered
the hash function—which is not a problem.

figure 20.1

A first attempt at a
hash function
implementation

1 // Acceptable hash function
2 public static int hash(String key, int tableSize)
3 {
4 int hashVal = 0;
5
6 for(int i = 0; i < key.length(); i++)
7 hashVal = (hashVal * 128 + key.charAt(i))
8 % tableSize;
9 return hashVal;

10 }

figure 20.2

A faster hash function
that takes advantage
of overflow

1 /**
2 * A hash routine for String objects.
3 * @param key the String to hash.
4 * @param tableSize the size of the hash table.
5 * @return the hash value.
6 */
7 public static int hash(String key, int tableSize)
8 {
9 int hashVal = 0;

10
11 for(int i = 0; i < key.length(); i++)
12 hashVal = 37 * hashVal + key.charAt(i);
13
14 hashVal %= tableSize;
15 if(hashVal < 0)
16 hashVal += tableSize;
17
18 return hashVal;
19 }

The hash function
must be simple to
compute but also
distribute the keys
equitably. If there are
too many collisions,
the performance of
the hash table will
suffer dramatically.

20.2 hash function 777

Although speed is an important consideration in designing a hash function,
we also want to be sure that it distributes the keys equitably. Consequently, we
must not take our optimizations too far. An example is the hash function shown
in Figure 20.3. It simply adds the characters in the keys and returns the result
mod tableSize. What could be simpler? The answer is that little could be sim-
pler. The function is easy to implement and computes a hash value very quickly.
However, if tableSize is large, the function does not distribute the keys well.
For instance, suppose that tableSize is 10,000. Also suppose that all keys are 8 or
fewer characters long. Because an ASCII char is an integer between 0 and 127,
the hash function can assume values only between 0 and 1,016 (127 × 8). This
restriction certainly does not permit an equitable distribution. Any speed gained
by the quickness of the hash function calculation is more than offset by the
effort taken to resolve a larger than expected number of collisions. However, a
reasonable alternative is described in Exercise 20.14.

The table runs
from 0 to
tableSize-1.

Finally, note that 0 is a possible result of the hash function, so hash tables
are indexed starting at 0.

20.2.1 hashCode in java.lang.String

In Java, library types that can be reasonably inserted into a HashSet or as keys
into a HashMap already have equals and hashCode defined. In particular the
String class has a hashCode whose implementation is critical for performance
of HashSets and HashMaps involving Strings.

The history of the String hashCode method is in itself fairly instructive.
The earliest versions of Java used essentially the same implementation as
Figure 20.2, including the constant multiplier 37, but without lines 14−16.
But later on the implementation was “optimized” so that if the String was
longer than 15 characters, only 8 or 9 characters, somewhat evenly spaced in
the String, would be used to compute the hashCode. This version was used
in Java 1.0.2 and Java 1.1, but it turned out to be a bad idea because there
were many applications containing large groups of long Strings that were

figure 20.3

A bad hash function if
tableSize is large

1 // A poor hash function when tableSize is large
2 public static int hash(String key, int tableSize)
3 {
4 int hashVal = 0;
5
6 for(int i = 0; i < key.length(); i++)
7 hashVal += key.charAt(i);
8
9 return hashVal % tableSize;

10 }

778 chapter 20 hash tables

somewhat similar. Two such examples were maps in which the keys were
URLs such as http://www.cnn.com/ and maps in which the keys were complete
filenames, such as

/a/file.cs.fiu.edu./disk/storage137/user/weiss/public_html/dsj4/code.

Performance in these maps degraded considerably because the keys
generated relatively few unique hash codes.

In Java 1.2, the hashCode was returned back to the simpler version, with 31
used as the constant multiplier. Needless to say, the programmers who designed
the Java library are among the most gifted on the planet, and so it is easy to see
that designing a top-notch hash function can be laden with pitfalls and is not as
simple as it may seem.

In Java 1.3, a new idea was attempted, with more success. Because the
expensive part of the hash table operations is computing the hashCode, the
hashCode method in the String class contains an important optimization: Each
String object stores internally the value of its hashCode. Initially it is 0, but if
hashCode is invoked, the value is remembered. Thus if hashCode is computed
on the same String object a second time, we can avoid the expensive recom-
putation. This technique is called caching the hash code, and represents
another classic time-space tradeoff. Figure 20.4 shows an implementation of
the String class that caches the hash code.

Caching the hash code works only because Strings are immutable: if
the String were allowed to change, it would invalidate the hashCode, and the
hashCode would have to be reset back to 0. Although two String objects with
the same state must have their hash codes computed independently, there are
many situations in which the same String object keeps having its hash code
queried. One situation where caching the hash code helps occurs during
rehashing, because all the Strings involved in the rehashing have already had
their hash codes cached.

figure 20.4

Excerpt of String
class hashCode

1 public final class String
2 {
3 public int hashCode()
4 {
5 if(hash != 0)
6 return hash;
7
8 for(int i = 0; i < length(); i++)
9 hash = hash * 31 + (int) charAt(i);

10 return hash;
11 }
12
13 private int hash = 0;
14 }

http://www.cnn.com/

20.3 linear probing 779

20.3 linear probing
In linear probing,
collisions are
resolved by
sequentially scan-
ning an array (with
wraparound) until
an empty cell is
found.

Now that we have a hash function, we need to decide what to do when a colli-
sion occurs. Specifically, if X hashes out to a position that is already occupied,
where do we place it? The simplest possible strategy is linear probing, or
searching sequentially in the array until we find an empty cell. The search
wraps around from the last position to the first, if necessary. Figure 20.5
shows the result of inserting the keys 89, 18, 49, 58, and 9 in a hash table
when linear probing is used. We assume a hash function that returns the key X
mod the size of the table. Figure 20.5 includes the result of the hash function.

The first collision occurs when 49 is inserted; the 49 is put in the next
available spot—namely, spot 0, which is open. Then 58 collides with 18, 89,
and 49 before an empty spot is found three slots away in position 1. The col-
lision for element 9 is resolved similarly. So long as the table is large
enough, a free cell can always be found. However, the time needed to find a
free cell can get to be quite long. For example, if there is only one free cell
left in the table, we may have to search the entire table to find it. On average
we would expect to have to search half the table to find it, which is far from
the constant time per access that we are hoping for. But, if the table is kept
relatively empty, insertions should not be so costly. We discuss this
approach shortly.

figure 20.5

Linear probing hash
table after each
insertion

0

1

2

3

4

5

6

7

8

9 89

18

89

49

18

89

49

58

18

89

49

58

9

18

89

After insert 89 After insert 18 After insert 49 After insert 58 After insert 9

hash (89, 10) = 9
hash (18, 10) = 8
hash (49, 10) = 9
hash (58, 10) = 8
hash (9, 10) = 9

780 chapter 20 hash tables

The load factor of a
probing hash table
is the fraction of
the table that is full.
It ranges from 0
(empty) to 1 (full).

The find algorithm
follows the same
probe sequence
as the insert
algorithm.

The find algorithm merely follows the same path as the insert algo-
rithm. If it reaches an empty slot, the item we are searching for is not found;
otherwise, it finds the match eventually. For example, to find 58, we start at
slot 8 (as indicated by the hash function). We see an item, but it is the wrong
one, so we try slot 9. Again, we have an item, but it is the wrong one, so we
try slot 0 and then slot 1 until we find a match. A find for 19 would involve
trying slots 9, 0, 1, and 2 before finding the empty cell in slot 3. Thus 19 is
not found.

We must use lazy
deletion.

Standard deletion cannot be performed because, as with a binary search
tree, an item in the hash table not only represents itself, but it also connects
other items by serving as a placeholder during collision resolution. Thus, if
we removed 89 from the hash table, virtually all the remaining find opera-
tions would fail. Consequently, we implement lazy deletion, or marking
items as deleted rather than physically removing them from the table. This
information is recorded in an extra data member. Each item is either active
or deleted.

20.3.1 naive analysis of linear probing
The simplistic anal-
ysis of linear prob-
ing is based on the
assumption that
successive probes
are independent.
This assumption is
not true and thus
the analysis under-
estimates the costs
of searching and
insertion.

To estimate the performance of linear probing, we make two assumptions:

1. The hash table is large

2. Each probe in the hash table is independent of the previous probe.

Assumption 1 is reasonable; otherwise, we would not be bothering with a
hash table. Assumption 2 says that, if the fraction of the table that is full
is λ , each time we examine a cell the probability that it is occupied is also
λ , independent of any previous probes. Independence is an important sta-
tistical property that greatly simplifies the analysis of random events.
Unfortunately, as discussed in Section 20.3.2, the assumption of indepen-
dence is not only unjustified, but it also is erroneous. Thus the naive anal-
ysis that we perform is incorrect. Even so, it is helpful because it tells us
what we can hope to achieve if we are more careful about how collisions
are resolved. As mentioned earlier in the chapter, the performance of the
hash table depends on how full the table is. Its fullness is given by the
load factor.

definition: The load factor, λ , of a probing hash table is the fraction of the table
that is full. The load factor ranges from 0 (empty) to 1 (completely full).

We can now give a simple but incorrect analysis of linear probing in
Theorem 20.1.

20.3 linear probing 781

In the proof of Theorem 20.1 we use the fact that, if the probability of
some event’s occurring is p, then on average 1/p trials are required until
the event occurs, provided that the trials are independent. For example, the
expected number of coin flips until a heads occurs is two, and the expected
number of rolls of a single six-sided die until a 4 occurs is six, assuming
independence.

20.3.2 what really happens: primary clustering
The effect of pri-
mary clustering is
the formation of
large clusters of
occupied cells,
making insertions
into the cluster
expensive (and
then the insertion
makes the cluster
even larger).

Unfortunately, independence does not hold, as shown in Figure 20.6. Part (a)
shows the result of filling a hash table to 70 percent capacity, if all successive
probes are independent. Part (b) shows the result of linear probing. Note the
group of clusters: the phenomenon known as primary clustering.

In primary clustering, large blocks of occupied cells are formed. Any key
that hashes into this cluster requires excessive attempts to resolve the colli-
sion, and then it adds to the size of the cluster. Not only do items that collide
because of identical hash functions cause degenerate performance, but also an
item that collides with an alternative location for another item causes poor
performance. The mathematical analysis required to take this phenomenon
into account is complex but has been solved, yielding Theorem 20.2.

For a half-full table, we obtain 2.5 as the average number of cells exam-
ined during an insertion. This outcome is almost the same as what the naive

If independence of probes is assumed, the average number of cells examined in an
insertion using linear probing is 1/(1 – λ).

Theorem 20.1

For a table with a load factor of λ , the probability of any cell’s being empty is 1 – λ .
Consequently, the expected number of independent trials required to find an empty
cell is 1/(1 – λ).

Proof

The average number of cells examined in an insertion using linear probing is roughly
.

Theorem 20.2

The proof is beyond the scope of this text. See reference [6]. Proof

1 1 1 λ–()2⁄+() 2⁄

782 chapter 20 hash tables

Primary clustering
is a problem at high
load factors. For
half-empty tables,
the effect is not
disastrous.

analysis indicated. The main difference occurs as λ gets close to 1. For
instance, if the table is 90 percent full, λ = 0.9. The naive analysis suggests
that 10 cells would have to be examined—a lot but not completely out of the
question. However, by Theorem 20.2, the real answer is that some 50 cells
need to be examined. That is excessive (especially as this number is only an
average and thus some insertions must be worse).

20.3.3 analysis of the find operation
An unsuccessful
find costs the
same as an
insertion.

The cost of an insertion can be used to bound the cost of a find. There are two
types of find operations: unsuccessful and successful. An unsuccessful find is
easy to analyze. The sequence of slots examined for an unsuccessful search of
X is the same as the sequence examined to insert X. Thus we have an immedi-
ate answer for the cost of an unsuccessful find.

The cost of a suc-
cessful find is an
average of the
insertion costs over
all smaller load
factors.

For successful finds, things are slightly more complicated. Figure 20.5
shows a table with λ = 0.5. Thus the average cost of an insertion is 2.5.
The average cost to find the newly inserted item would then be 2.5, no
matter how many insertions follow. The average cost to find the first item
inserted in the table is always 1.0 probe. Thus, in a table with λ = 0.5,
some searches are easy and some are hard. In particular, the cost of a suc-
cessful search of X is equal to the cost of inserting X at the time X was
inserted. To find the average time to perform a successful search in a table
with load factor λ, we must compute the average insertion cost by averag-
ing over all the load factors leading to λ. With this groundwork, we can

figure 20.6

Illustration of primary clustering in linear probing (b) versus no clustering (a) and the less significant secondary
clustering in quadratic probing (c). Long lines represent occupied cells, and the load factor is 0.7.

(a)

(b)

(c)

20.3 linear probing 783

compute the average search times for linear probing, as asserted and
proved in Theorem 20.3.

We can apply the same technique to obtain the cost of a successful
find under the assumption of independence (by using in
Theorem 20.3). If there is no clustering, the average cost of a successful
find for linear probing is . If the load factor is 0.5, the aver-
age number of probes for a successful search using linear probing is 1.5,
whereas the nonclustering analysis suggests 1.4 probes. Note that this
average does not depend on any ordering of the input keys; it depends
only on the fairness of the hash function. Note also that, even when we have
good hash functions, both longer and shorter probe sequences are bound
to contribute to the average. For instance, there are certain to be some

The average number of cells examined in an unsuccessful search using linear prob-
ing is roughly . The average number of cells examined in a suc-
cessful search is approximately .

Theorem 20.3

The cost of an unsuccessful search is the same as the cost of an insertion. For a suc-
cessful search, we compute the average insertion cost over the sequence of inser-
tions. Because the table is large, we can compute this average by evaluating

In other words, the average cost of a successful search for a table with a load factor
of λ equals the cost of an insertion in a table of load factor x, averaged from load fac-
tors 0 through λ . From Theorem 20.2, we can derive the following equation:

Proof

1 1 1 λ–()2⁄+() 2⁄
1 1 1 λ–()⁄+() 2⁄

S λ() 1
λ---

I x() xd
x = 0
λ∫=

S λ() 1
λ---

1
2
--- 1 1

1 x–()2
------------------+⎝ ⎠

⎛ ⎞ xd
x = 0

λ
∫=

1
2λ------ x 1

1 x–()
----------------+⎝ ⎠

⎛ ⎞
x = 0

λ

=

1
2λ------ λ 1

1 λ–()
-----------------+⎝ ⎠

⎛ ⎞ 1–⎝ ⎠
⎛ ⎞=

1
2

2 λ–
1 λ–
------------⎝ ⎠

⎛ ⎞=

1
2
--- 1 1

1 λ–()
-----------------+⎝ ⎠

⎛ ⎞=

I x() 1 1 x–()⁄=

1 λ–()ln λ⁄–

784 chapter 20 hash tables

sequences of length 4, 5, and 6, even in a hash table that is half empty.
(Determining the expected longest probe sequence is a challenging calcu-
lation.) Primary clustering not only makes the average probe sequence
longer, but it also makes a long probe sequence more likely. The main
problem with primary clustering therefore is that performance degrades
severely for insertion at high load factors. Also, some of the longer probe
sequences typically encountered (those at the high end of the average) are
made more likely to occur.

To reduce the number of probes, we need a collision resolution scheme
that avoids primary clustering. Note, however, that, if the table is half empty,
removing the effects of primary clustering would save only half a probe on
average for an insertion or unsuccessful search and one-tenth a probe on aver-
age for a successful search. Even though we might expect to reduce the prob-
ability of getting a somewhat lengthier probe sequence, linear probing is not a
terrible strategy. Because it is so easy to implement, any method we use to
remove primary clustering must be of comparable complexity. Otherwise, we
expend too much time in saving only a fraction of a probe. One such method
is quadratic probing.

20.4 quadratic probing
Quadratic probing
examines cells 1, 4,
9, and so on, away
from the original
probe point.

Quadratic probing is a collision resolution method that eliminates the pri-
mary clustering problem of linear probing by examining certain cells away
from the original probe point. Its name is derived from the use of the for-
mula to resolve collisions. Specifically, if the hash function eval-
uates to H and a search in cell H is inconclusive, we try cells ,

, , , (employing wraparound) in sequence. This
strategy differs from the linear probing strategy of searching , ,

, , .
Remember that
subsequent probe
points are a qua-
dratic number of
positions from the
original probe point.

Figure 20.7 shows the table that results when quadratic probing is used
instead of linear probing for the insertion sequence shown in Figure 20.5.
When 49 collides with 89, the first alternative attempted is one cell away.
This cell is empty, so 49 is placed there. Next, 58 collides at position 8. The
cell at position 9 (which is one away) is tried, but another collision occurs.
A vacant cell is found at the next cell tried, which is positions
away from the original hash position. Thus 58 is placed in cell 2. The same
thing happens for 9. Note that the alternative locations for items that hash
to position 8 and the alternative locations for the items that hash to posi-
tion 9 are not the same. The long probe sequence to insert 58 did not affect
the subsequent insertion of 9, which contrasts with what happened with
linear probing.

F i() i2=
H 12+

H 22+ H 32+ … H i2+
H 1+ H 2+

H 3+ … H i+

22 4=

20.4 quadratic probing 785

We need to consider a few details before we write code.

n In linear probing, each probe tries a different cell. Does quadratic
probing guarantee that, when a cell is tried, we have not already tried
it during the course of the current access? Does quadratic probing
guarantee that, when we are inserting X and the table is not full, X
will be inserted?

n Linear probing is easily implemented. Quadratic probing appears to
require multiplication and mod operations. Does this apparent added
complexity make quadratic probing impractical?

n What happens (in both linear probing and quadratic probing) if the
load factor gets too high? Can we dynamically expand the table, as is
typically done with other array-based data structures?

Fortunately, the news is relatively good on all cases. If the table size is
prime and the load factor never exceeds 0.5, we can always place a new
item X and no cell is probed twice during an access. However, for these
guarantees to hold, we need to ensure that the table size is a prime number.
We prove this case in Theorem 20.4. For completeness, Figure 20.8 shows a

figure 20.7

A quadratic probing
hash table after each
insertion (note that
the table size was
poorly chosen
because it is not a
prime number).

0

1

2

3

4

5

6

7

8

9 89

18

89

49

18

89

49

58

18

89

49

58

9

18

89

After insert 89 After insert 18 After insert 49 After insert 58 After insert 9

hash (89, 10) = 9
hash (18, 10) = 8
hash (49, 10) = 9
hash (58, 10) = 8
hash (9, 10) = 9

If the table size is
prime and the load
factor is no larger
than 0.5, all probes
will be to different
locations and an
item can always be
inserted.

786 chapter 20 hash tables

routine that generates prime numbers, using the algorithm shown in Figure 9.8
(a more complex algorithm is not warranted).

If the table is even 1 more than half full, the insertion could fail (although fail-
ure is extremely unlikely). If we keep the table size prime and the load factor
below 0.5, we have a guarantee of success for the insertion. If the table size is not
prime, the number of alternative locations can be severely reduced. For example,

Theorem 20.4 If quadratic probing is used and the table size is prime, then a new element can
always be inserted if the table is at least half empty. Furthermore, in the course of the
insertion, no cell is probed twice.

Proof Let M be the size of the table. Assume that M is an odd prime greater than 3. We
show that the first alternative locations (including the original) are distinct.
Two of these locations are and , where
0 ≤ i, j ≤ ⎣M / 2⎦ . Suppose, for the sake of contradiction, that these two locations are
the same but that . Then

Because M is prime, it follows that either or is divisible by M. As i and j are
distinct and their sum is smaller than M, neither of these possibilities can occur. Thus
we obtain a contradiction. It follows that the first alternatives (including the
original location) are all distinct and guarantee that an insertion must succeed if the
table is at least half empty.

M 2⁄
H i2 mod M()+ H j2 mod M()+

i j≠

H i2+ H j2 mod M()+≡
i2 j2 mod M()≡

i2 j2– 0 mod M()≡
i j–() i j+() 0 mod M()≡

i j– i j+

M 2⁄

figure 20.8

A routine used in
quadratic probing to
find a prime greater
than or equal to N

1 /**
2 * Method to find a prime number at least as large as n.
3 * @param n the starting number (must be positive).
4 * @return a prime number larger than or equal to n.
5 */
6 private static int nextPrime(int n)
7 {
8 if(n % 2 == 0)
9 n++;

10
11 for(; !isPrime(n); n += 2)
12 ;
13
14 return n;
15 }

20.4 quadratic probing 787

if the table size was 16, the only alternative locations would be at distances 1, 4, or
9 from the original probe point. Again, size is not really an issue: Although we
would not have a guarantee of alternatives, we would usually have more
than we need. However, it is best to play it safe and use the theory to guide us in
selecting parameters. Furthermore, it has been shown empirically that prime num-
bers tend to be good for hash tables because they tend to remove some of the non-
randomness that is occasionally introduced by the hash function.

The second important consideration is efficiency. Recall that, for a load fac-
tor of 0.5, removing primary clustering saves only 0.5 probe for an average
insertion and 0.1 probe for an average successful search. We do get some addi-
tional benefits: Encountering a long probe sequence is significantly less likely.
However, if performing a probe using quadratic probing takes twice as long,
doing so is hardly worth the effort. Linear probing is implemented with a simple
addition (by 1), a test to determine whether wraparound is needed, and a very
rare subtraction (if we need to do the wraparound). The formula for quadratic
probing suggests that we need to do an addition by 1 (to go from to i), a
multiplication (to compute i2), another addition, and then a mod operation. Cer-
tainly this calculation appears to be much too expensive to be practical. How-
ever, we can use the following trick, as explained in Theorem 20.5.

M 2⁄

i 1–

Quadratic probing can be implemented without expensive multiplications and divisions. Theorem 20.5

Let be the most recently computed probe (is the original hash position) and
 be the probe we are trying to compute. Then we have

(20.3)

If we subtract these two equations, we obtain

(20.4)

Equation 20.4 tells us that we compute the new value from the previous value
Hi – 1 without squaring i. Although we still have a multiplication, the multiplication is
by 2, which is a trivially implemented bit shift on most computers. What about the mod
operation? That, too, is not really needed because the expression must be
smaller than M. Therefore, if we add it to Hi – 1, the result will be either still smaller
than M (in which case, we do not need the mod) or just a little larger than M (in which
case, we can compute the mod equivalent by subtracting M).

ProofHi 1– H0

Hi

Hi H0 i2 mod M()+=

Hi 1– H0 i 1–()2 mod M()+=

Hi Hi 1– 2i 1 mod M()–+=

Hi

2i 1–

Quadratic probing
can be imple-
mented without
multiplications and
mod operations.
Because it does not
suffer from primary
clustering, it outper-
forms linear probing
in practice.

788 chapter 20 hash tables

When expanding a
hash table, reinsert
in the new table by
using the new hash
function.

Expand the table as
soon as the load
factor reaches 0.5,
which is called
rehashing. Always
double to a prime
number. Prime
numbers are easy
to find.

Theorem 20.5 shows that we can compute the next position to probe by
using an addition (to increment i), a bit shift (to evaluate 2i), a subtraction by 1
(to evaluate 2i – 1), another addition (to increment the old position by 2i – 1), a
test to determine whether wraparound is needed, and a very rare subtraction to
implement the mod operation. The difference is thus a bit shift, a subtraction
by 1, and an addition per probe. The cost of this operation is likely to be less
than the cost of doing an extra probe if complex keys (such as strings) are
involved.

The final detail to consider is dynamic expansion. If the load factor
exceeds 0.5, we want to double the size of the hash table. This approach raises
a few issues. First, how hard will it be to find another prime number? The
answer is that prime numbers are easy to find. We expect to have to test only
O(log N) numbers until we find a number that is prime. Consequently, the
routine shown in Figure 20.8 is very fast. The primality test takes at most
O(N1/2) time, so the search for a prime number takes at most O(N1/2 log N)
time.2 This cost is much less than the O(N) cost of transferring the contents of
the old table to the new.

Once we have allocated a larger array, do we just copy everything over?
The answer is most definitely no. The new array implies a new hash function,
so we cannot use the old array positions. Thus we have to examine each ele-
ment in the old table, compute its new hash value, and insert it in the new hash
table. This process is called rehashing. Rehashing is easily implemented in
Java.

20.4.1 java implementation
The user must pro-
vide an appropriate
hashCode method
for objects.

We are now ready to give a complete Java implementation of a quadratic
probing hash table. We will do so by implementing most of HashSet and HashMap
from the Collections API. Recall that HashSet and HashMap both require a
hashCode method. hashCode has no tableSize parameter; the hash table algorithms
perform a final mod operation internally after using the user-supplied hash
function. The class skeleton for HashSet is shown in Figure 20.9. For the algo-
rithms to work correctly, equals and hashCode must be consistent. That is, if
two objects are equal, their hash values must be equal.

The hash table consists of an array of HashEntry references. Each HashEntry
reference is either null or an object that stores an item and a data member that
tells us that the entry is either active or deleted. Because arrays of generic

2. This routine is also required if we add a constructor that allows the user to specify an
approximate initial size for the hash table. The hash table implementation must ensure that a
prime number is used.

20.4 quadratic probing 789

figure 20.9

The class skeleton for
a quadratic probing
hash table

1 package weiss.util;
2
3 public class HashSet<AnyType> extends AbstractCollection<AnyType>
4 implements Set<AnyType>
5 {
6 private class HashSetIterator implements Iterator<AnyType>
7 { /* Figure 20.18 */ }
8 private static class HashEntry implements java.io.Serializable
9 { /* Figure 20.10 */ }

10
11 public HashSet()
12 { /* Figure 20.11 */ }
13 public HashSet(Collection<? extends AnyType> other)
14 { /* Figure 20.11 */ }
15
16 public int size()
17 { return currentSize; }
18 public Iterator<AnyType> iterator()
19 { return new HashSetIterator(); }
20
21 public boolean contains(Object x)
22 { /* Figure 20.12 */ }
23 private static boolean isActive(HashEntry [] arr, int pos)
24 { /* Figure 20.13 */ }
25 public AnyType getMatch(AnyType x)
26 { /* Figure 20.12 */ }
27
28 public boolean remove(Object x)
29 { /* Figure 20.14 */ }
30 public void clear()
31 { /* Figure 20.14 */ }
32 public boolean add(AnyType x)
33 { /* Figure 20.15 */ }
34 private void rehash()
35 { /* Figure 20.16 */ }
36 private int findPos(Object x)
37 { /* Figure 20.17 */ }
38
39 private void allocateArray(int arraySize)
40 { array = new HashEntry[arraySize]; }
41 private static int nextPrime(int n)
42 { /* Figure 20.8 */ }
43 private static boolean isPrime(int n)
44 { /* See online code */ }
45
46 private int currentSize = 0;
47 private int occupied = 0;
48 private int modCount = 0;
49 private HashEntry [] array;
50 }

790 chapter 20 hash tables

types are illegal, HashEntry is not generic. The HashEntry nested class is shown
in Figure 20.10. The array is declared at line 49. We need to keep track of
both the logical size of the HashSet and the number of items in the hash table
(including elements marked as deleted); these values are stored in currentSize
and occupied, respectively, which are declared at lines 46 and 47.

The general layout
is similar to that for
TreeSet.

The rest of the class contains declarations for the hash table routines and
iterator. The general layout is similar to that for TreeSet.

Three private methods are declared; we describe them when they are used
in the class implementation. We can now discuss the implementation of the
HashSet class.

Most routines are
just a few lines of
code because they
call findPos to per-
form quadratic
probing.

The hash table constructors are shown in Figure 20.11; nothing special is
going on here. The searching routine, contains, and the nonstandard getMatch
are shown in Figure 20.12. contains uses the private method isActive, shown
in Figure 20.13. Both contains and getMatch also call findPos, shown later, to
implement quadratic probing. The findPos method is the only place in the
entire code that depends on quadratic probing. Then contains and getMatch are
easy to implement: An element is found if the result of findPos is an active cell
(if findPos stops on an active cell, there must be a match). Similarly, the remove
routine shown in Figure 20.14 is short. We check whether findPos takes us to
an active cell; if so, the cell is marked deleted. Otherwise, false is returned
immediately. Note that this lowers currentSize, but not occupied. Also, if there
are many deleted items, the hash table is resized, at lines 16–17. The mainte-
nance of modCount is identical to the other Collections API components previ-
ously implemented. clear removes all items from the HashSet.

The add routine is shown in Figure 20.15. At line 8 we call findPos. If x is
found, we return false at line 10 because duplicates are not allowed. Other-
wise, findPos gives the place to insert x. The insertion is performed at line 12.

figure 20.10

The HashEntry nested
class

1 private static class HashEntry implements java.io.Serializable
2 {
3 public Object element; // the element
4 public boolean isActive; // false if marked deleted
5
6 public HashEntry(Object e)
7 {
8 this(e, true);
9 }

10
11 public HashEntry(Object e, boolean i)
12 {
13 element = e;
14 isActive = i;
15 }
16 }

20.4 quadratic probing 791

figure 20.11

Hash table
initialization

1 private static final int DEFAULT_TABLE_SIZE = 101;
2
3 /**
4 * Construct an empty HashSet.
5 */
6 public HashSet()
7 {
8 allocateArray(DEFAULT_TABLE_SIZE);
9 clear();

10 }
11
12 /**
13 * Construct a HashSet from any collection.
14 */
15 public HashSet(Collection<? extends AnyType> other)
16 {
17 allocateArray(nextPrime(other.size() * 2));
18 clear();
19
20 for(AnyType val : other)
21 add(val);
22 }

figure 20.12

The searching
routines for a
quadratic probing
hash table

1 /**
2 * This method is not part of standard Java.
3 * Like contains, it checks if x is in the set.
4 * If it is, it returns the reference to the matching
5 * object; otherwise it returns null.
6 * @param x the object to search for.
7 * @return if contains(x) is false, the return value is null;
8 * otherwise, the return value is the object that causes
9 * contains(x) to return true.

10 */
11 public AnyType getMatch(AnyType x)
12 {
13 int currentPos = findPos(x);
14
15 if(isActive(array, currentPos))
16 return (AnyType) array[currentPos].element;
17 return null;
18 }
19
20 /**
21 * Tests if some item is in this collection.
22 * @param x any object.
23 * @return true if this collection contains an item equal to x.
24 */
25 public boolean contains(Object x)
26 {
27 return isActive(array, findPos(x));
28 }

792 chapter 20 hash tables

We adjust currentSize, occupied, and modCount at lines 13–15 and return unless
a rehash is in order; otherwise, we call the private method rehash.

The code that implements rehashing is shown in Figure 20.16. Line 7
saves a reference to the original table. We create a new, empty hash table at
lines 10–12 that will have a 0.25 load factor when rehash terminates. Then we

figure 20.13
The isActive method for a quadratic probing hash table

1 /**
2 * Tests if item in pos is active.
3 * @param pos a position in the hash table.
4 * @param arr the HashEntry array (can be oldArray during rehash).
5 * @return true if this position is active.
6 */
7 private static boolean isActive(HashEntry [] arr, int pos)
8 {
9 return arr[pos] != null && arr[pos].isActive;

10 }

figure 20.14

The remove and clear
routines for a
quadratic probing
hash table

1 /**
2 * Removes an item from this collection.
3 * @param x any object.
4 * @return true if this item was removed from the collection.
5 */
6 public boolean remove(Object x)
7 {
8 int currentPos = findPos(x);
9 if(!isActive(array, currentPos))

10 return false;
11
12 array[currentPos].isActive = false;
13 currentSize--;
14 modCount++;
15
16 if(currentSize < array.length / 8)
17 rehash();
18
19 return true;
20 }
21
22 /**
23 * Change the size of this collection to zero.
24 */
25 public void clear()
26 {
27 currentSize = occupied = 0;
28 modCount++;
29 for(int i = 0; i < array.length; i++)
30 array[i] = null;
31 }

20.4 quadratic probing 793

scan through the original array and add any active elements in the new table.
The add routine uses the new hash function (as it is logically based on the size
of array, which has changed) and automatically resolves all collisions. We can
be sure that the recursive call to add (at line 17) does not force another rehash.
Alternatively, we could replace line 17 with two lines of code surrounded by
braces (see Exercise 20.13).

figure 20.15

The add routine for a
quadratic probing
hash table

1 /**
2 * Adds an item to this collection.
3 * @param x any object.
4 * @return true if this item was added to the collection.
5 */
6 public boolean add(AnyType x)
7 {
8 int currentPos = findPos(x);
9 if(isActive(array, currentPos))

10 return false;
11
12 if(array[currentPos] == null)
13 occupied++;
14 array[currentPos] = new HashEntry(x, true);
15 currentSize++;
16 modCount++;
17
18 if(occupied > array.length / 2)
19 rehash();
20
21 return true;
22 }

figure 20.16

The rehash method
for a quadratic
probing hash table

1 /**
2 * Private routine to perform rehashing.
3 * Can be called by both add and remove.
4 */
5 private void rehash()
6 {
7 HashEntry [] oldArray = array;
8
9 // Create a new, empty table

10 allocateArray(nextPrime(4 * size()));
11 currentSize = 0;
12 occupied = 0;
13
14 // Copy table over
15 for(int i = 0; i < oldArray.length; i++)
16 if(isActive(oldArray, i))
17 add((AnyType) oldArray[i].element);
18 }

The add routine
performs rehash-
ing if the table is
(half) full.

794 chapter 20 hash tables

So far, nothing that we have done depends on quadratic probing.
Figure 20.17 implements findPos, which finally deals with the quadratic prob-
ing algorithm. We keep searching the table until we find an empty cell or a
match. Lines 22–25 directly implement the methodology described in Theo-
rem 20.5, using two additions. There are additional complications because
null is a valid item in the HashSet; the code illustrates why it is preferable to
assume that null is invalid.

Figure 20.18 gives the implementation of the iterator inner class. It is rela-
tively standard fare, though quite tricky. visited represents the number of calls
to next, while currentPos represents the index of the last object returned by next.

Finally, Figure 20.19 implements HashMap. It is much like TreeMap, except
that Pair is a nested class rather than an inner class (it does not need access to
an outer object), and implements both equals and hashCode methods instead of
the Comparable interface.

figure 20.17

The routine that finally deals with quadratic probing

1 /**
2 * Method that performs quadratic probing resolution.
3 * @param x the item to search for.
4 * @return the position where the search terminates.
5 */
6 private int findPos(Object x)
7 {
8 int offset = 1;
9 int currentPos = (x == null) ?

10 0 : Math.abs(x.hashCode() % array.length);
11
12 while(array[currentPos] != null)
13 {
14 if(x == null)
15 {
16 if(array[currentPos].element == null)
17 break;
18 }
19 else if(x.equals(array[currentPos].element))
20 break;
21
22 currentPos += offset; // Compute ith probe
23 offset += 2;
24 if(currentPos >= array.length) // Implement the mod
25 currentPos -= array.length;
26 }
27
28 return currentPos;
29 }

20.4 quadratic probing 795

figure 20.18

The HashSetIterator
inner class

1 /**
2 * This is the implementation of the HashSetIterator.
3 * It maintains a notion of a current position and of
4 * course the implicit reference to the HashSet.
5 */
6 private class HashSetIterator implements Iterator<AnyType>
7 {
8 private int expectedModCount = modCount;
9 private int currentPos = -1;

10 private int visited = 0;
11
12 public boolean hasNext()
13 {
14 if(expectedModCount != modCount)
15 throw new ConcurrentModificationException();
16
17 return visited != size();
18 }
19
20 public AnyType next()
21 {
22 if(!hasNext())
23 throw new NoSuchElementException();
24
25 do
26 {
27 currentPos++;
28 } while(currentPos < array.length &&
29 !isActive(array, currentPos));
30
31 visited++;
32 return (AnyType) array[currentPos].element;
33 }
34
35 public void remove()
36 {
37 if(expectedModCount != modCount)
38 throw new ConcurrentModificationException();
39 if(currentPos == -1 || !isActive(array, currentPos))
40 throw new IllegalStateException();
41
42 array[currentPos].isActive = false;
43 currentSize--;
44 visited--;
45 modCount++;
46 expectedModCount++;
47 }
48 }

796 chapter 20 hash tables

figure 20.19

The HashMap class

1 package weiss.util;
2
3 public class HashMap<KeyType,ValueType> extends MapImpl<KeyType,ValueType>
4 {
5 public HashMap()
6 { super(new HashSet<Map.Entry<KeyType,ValueType>>()); }
7
8 public HashMap(Map<KeyType,ValueType> other)
9 { super(other); }

10
11 protected Map.Entry<KeyType,ValueType> makePair(KeyType key, ValueType value)
12 { return new Pair<KeyType,ValueType>(key, value); }
13
14 protected Set<KeyType> makeEmptyKeySet()
15 { return new HashSet<KeyType>(); }
16
17 protected Set<Map.Entry<KeyType,ValueType>>
18 clonePairSet(Set<Map.Entry<KeyType,ValueType>> pairSet)
19 {
20 return new HashSet<Map.Entry<KeyType,ValueType>>(pairSet);
21 }
22
23 private static final class Pair<KeyType,ValueType>
24 extends MapImpl.Pair<KeyType,ValueType>
25 {
26 public Pair(KeyType k, ValueType v)
27 { super(k, v); }
28
29 public int hashCode()
30 {
31 KeyType k = getKey();
32 return k == null ? 0 : k.hashCode();
33 }
34
35 public boolean equals(Object other)
36 {
37 if(other instanceof Map.Entry)
38 {
39 KeyType thisKey = getKey();
40 KeyType otherKey = ((Map.Entry<KeyType,ValueType>) other).getKey();
41
42 if(thisKey == null)
43 return thisKey == otherKey;
44 return thisKey.equals(otherKey);
45 }
46 else
47 return false;
48 }
49 }
50 }

20.5 separate chaining hashing 797

Quadratic probing
is implemented in
findPos. It uses the
previously
described trick to
avoid multiplica-
tions and mods.

In secondary clus-
tering, elements
that hash to the
same position
probe the same
alternative cells.
Secondary cluster-
ing is a minor theo-
retical blemish.

Double hashing is a
hashing technique
that does not suf-
fer from secondary
clustering. A sec-
ond hash function
is used to drive the
collision resolution.

20.4.2 analysis of quadratic probing

Quadratic probing has not yet been mathematically analyzed, although we
know that it eliminates primary clustering. In quadratic probing, elements that
hash to the same position probe the same alternative cells, which is known as
secondary clustering. Again, the independence of successive probes cannot be
assumed. Secondary clustering is a slight theoretical blemish. Simulation
results suggest that it generally causes less than an extra one-half probe per
search and that this increase is true only for high load factors. Figure 20.6
illustrates the difference between linear probing and quadratic probing and
shows that quadratic probing does not suffer from as much clustering as does
linear probing.

Techniques that eliminate secondary clustering are available. The most
popular is double hashing, in which a second hash function is used to drive
the collision resolution. Specifically, we probe at a distance Hash2(X),
2Hash2(X), and so on. The second hash function must be carefully chosen
(e.g., it should never evaluate to 0), and all cells must be capable of being
probed. A function such as Hash2(X) = R – (X mod R), with R a prime smaller
than M, generally works well. Double hashing is theoretically interesting
because it can be shown to use essentially the same number of probes as the
purely random analysis of linear probing would imply. However, it is some-
what more complicated than quadratic probing to implement and requires
careful attention to some details.

There seems to be no good reason not to use a quadratic probing strategy,
unless the overhead of maintaining a half-empty table is burdensome. That
would be the case in other programming languages if the items being stored
were very large.

20.5 separate chaining hashing
Separate chaining
hashing is a space-
efficient alternative
to quadratic prob-
ing in which an
array of linked lists
is maintained. It is
less sensitive to
high load factors.

A popular and space-efficient alternative to quadratic probing is separate chain-
ing hashing in which an array of linked lists is maintained. For an array of
linked lists, L0, L1, ..., LM – 1, the hash function tells us in which list to insert an
item X and then, during a find, which list contains X. The idea is that, although
searching a linked list is a linear operation, if the lists are sufficiently short, the
search time will be very fast. In particular, suppose that the load factor, N/M, is
λ, which is not bounded by 1.0. Thus the average list has length λ, making the
expected number of probes for an insertion or unsuccessful search λ and the
expected number of probes for a successful search . The reason is that
a successful search must occur in a nonempty list, and in such a list we expect to
have to traverse halfway down the list. The relative cost of a successful search

1 λ 2⁄+

798 chapter 20 hash tables

For separate chain-
ing hashing, a rea-
sonable load factor
is 1.0. A lower load
factor does not sig-
nificantly improve
performance; a
moderately higher
load factor is
acceptable and can
save space.

versus an unsuccessful search is unusual in that, if , the successful search
is more expensive than the unsuccessful search. This condition makes sense,
however, because many unsuccessful searches encounter an empty linked list.

A typical load factor is 1.0; a lower load factor does not significantly
enhance performance, but it costs extra space. The appeal of separate chaining
hashing is that performance is not affected by a moderately increasing load
factor; thus rehashing can be avoided. For languages that do not allow
dynamic array expansion, this consideration is significant. Furthermore, the
expected number of probes for a search is less than in quadratic probing, par-
ticularly for unsuccessful searches.

We can implement separate chaining hashing by using our existing linked
list classes. However, because the header node adds space overhead and is not
really needed, if space were at a premium we could elect not to reuse compo-
nents and instead implement a simple stacklike list. The coding effort turns
out to be remarkably light. Also, the space overhead is essentially one refer-
ence per node, plus an additional reference per list; for example, when the
load factor is 1.0, it is two references per item. This feature could be impor-
tant in other programming languages if the size of an item is large. In that
case, we have the same trade-offs as with the array and linked list implemen-
tations of stacks. The Java Collections API uses seperate chaining hashing,
with a default load factor of 0.75.

To illustrate the complexity (or rather, the relative lack of complexity) of
the separate chaining hash table, Figure 20.20 provides a short sketch of the
basic implementation of separate chaining hash tables. It avoids issues such as
rehashing, and does not implement remove and does not even keep track of the
current size. Nonetheless, it shows the basic logic of add and contains, both of
which use the hash code to select an appropriate singly-linked list.

20.6 hash tables versus
binary search trees

Use a hash table
instead of a binary
search tree if you
do not need order
statistics and are
worried about non-
random inputs.

We can also use binary search trees to implement insert and find operations.
Although the resulting average time bounds are O(log N), binary search trees
also support routines that require order and thus are more powerful. Using a
hash table, we cannot efficiently find the minimum element or extend the table
to allow computation of an order statistic. We cannot search efficiently for a
string unless the exact string is known. A binary search tree could quickly find
all items in a certain range, but this capability is not supported by a hash table.
Furthermore, the O(log N) bound is not necessarily that much more than O(1),
especially since no multiplications or divisions are required by search trees.

λ 2<

20.6 hash tables versus binary search trees 799

figure 20.20

Simplified implementation of separate chaining hash table

1 class MyHashSet<AnyType>
2 {
3 public MyHashSet()
4 { this(101); }
5
6 public MyHashSet(int numLists)
7 { lists = new Node[numLists]; }
8
9 public boolean contains(AnyType x)

10 {
11 for(Node<AnyType> p = lists[myHashCode(x)]; p != null; p = p.next)
12 if(p.data.equals(x))
13 return true;
14
15 return false;
16 }
17
18 public boolean add(AnyType x)
19 {
20 int whichList = myHashCode(x);
21
22 for(Node<AnyType> p = lists[whichList]; p != null; p = p.next)
23 if(p.data.equals(x))
24 return false;
25
26 lists[whichList] = new Node<AnyType>(x, lists[whichList]);
27 return true;
28 }
29
30 private int myHashCode(AnyType x)
31 { return Math.abs(x.hashCode() % lists.length); }
32
33 private Node<AnyType> [] lists;
34
35 private static class Node<AnyType>
36 {
37 Node(AnyType d, Node<AnyType> n)
38 {
39 data = d;
40 next = n;
41 }
42
43 AnyType data;
44 Node<AnyType> next;
45 }
46 }

800 chapter 20 hash tables

The worst case for hashing generally results from an implementation
error, whereas sorted input can make binary search trees perform poorly. Bal-
anced search trees are quite expensive to implement. Hence, if no ordering
information is required and there is any suspicion that the input might be
sorted, hashing is the data structure of choice.

20.7 hashing applications
Hashing applica-
tions are abundant.

Hashing applications are abundant. Compilers use hash tables to keep track of
declared variables in source code. The data structure is called a symbol table.
Hash tables are the ideal application for this problem because only insert and
find operations are performed. Identifiers are typically short, so the hash func-
tion can be computed quickly. In this application, most searches are successful.

Another common use of hash tables is in game programs. As the program
searches through different lines of play, it keeps track of positions that it has
encountered by computing a hash function based on the position (and storing
its move for that position). If the same position recurs, usually by a simple
transposition of moves, the program can avoid expensive recomputation. This
general feature of all game-playing programs is called the transposition table.
We discussed this feature in Section 10.2, where we implemented the tic-tac-
toe algorithm.

A third use of hashing is in online spelling checkers. If misspelling
detection (as opposed to correction) is important, an entire dictionary can be
prehashed and words can be checked in constant time. Hash tables are well
suited for this purpose because the words do not have to be alphabetized.
Printing out misspellings in the order they occurred in the document is
acceptable.

summary

Hash tables can be used to implement the insert and find operations in con-
stant average time. Paying attention to details such as load factor is especially
important in the use of hash tables; otherwise, the constant time bounds are
not meaningful. Choosing the hash function carefully is also important when
the key is not a short string or integer. You should pick an easily computable
function that distributes well.

For separate chaining hashing, the load factor is typically close to 1,
although performance does not significantly degrade unless the load factor
becomes very large. For quadratic probing, the table size should be prime and
the load factor should not exceed 0.5. Rehashing should be used for quadratic
probing to allow the table to grow and maintain the correct load factor. This

key concepts 801

approach is important if space is tight and it is not possible just to declare a
huge hash table.

This completes the discussion of basic searching algorithms. In Chapter 21
we examine the binary heap, which implements the priority queue and thus
supports efficient access of the minimum item in a collection of items.

key concepts

collision The result when two or more items in a hash table hash out to the
same position. This problem is unavoidable because there are more items
than positions. (775)

double hashing A hashing technique that does not suffer from secondary cluster-
ing. A second hash function is used to drive the collision resolution. (797)

hash function A function that converts the item into an integer suitable to
index an array where the item is stored. If the hash function were one to
one, we could access the item by its array index. Since the hash function
is not one to one, several items will collide at the same index. (774)

hash table A table used to implement a dictionary in constant time per
operation. (774)

hashing The implementation of hash tables to perform insertions, deletions,
and finds. (773)

linear probing A way to avoid collisions by sequentially scanning an array
until an empty cell is found. (779)

load factor The number of elements in a hash table divided by the size of the
hash table array, or the fraction of the table that is full. In a probing hash
table, the load factor ranges from 0 (empty) to 1 (full). In separate chain-
ing hashing, it can be greater than 1. (780)

lazy deletion The technique of marking elements as deleted instead of physically
removing them from a hash table. It is required in probing hash tables. (780)

primary clustering Large clusters of occupied cells form during linear probing,
making insertions in the cluster expensive (and then the insertion makes
the cluster even larger) and affecting performance. (781)

quadratic probing A collision resolution method that examines cells 1, 4, 9,
and so on, away from the original probe point. (784)

secondary clustering Clustering that occurs when elements that hash to the
same position probe the same alternative cells. It is a minor theoretical
blemish. (797)

separate chaining A space-efficient alternative to quadratic probing in which
an array of linked lists is maintained. It is less sensitive to high load fac-
tors and exhibits some of the trade-offs considered in the array versus
linked list stack implementations. (797)

802 chapter 20 hash tables

common errors

1. The hash function returns an int. Because intermediate calculations allow
overflow, the local variable should check that the result of the mod opera-
tion is nonnegative to avoid risking an out-of-bounds return value.

2. The performance of a probing table degrades severely as the load factor
approaches 1.0. Do not let this happen. Rehash when the load factor
reaches 0.5.

3. The performance of all hashing methods depends on using a good hash
function. A common error is providing a poor function.

on the internet

The quadratic probing hash table is available for your perusal.

HashSet.java Contains the implementation of the HashSet class.
HashMap.java Contains the implementation of the HashMap class.

exercises

IN SHORT

20.1 What are the array indices for a hash table of size 11?

20.2 What is the appropriate probing table size if the number of items in
the hash table is 10?

20.3 Explain how deletion is performed in both probing and separate
chaining hash tables.

20.4 What is the expected number of probes for both successful and
unsuccessful searches in a linear probing table with load factor 0.25?

20.5 Given the input {4371, 1323, 6173, 4199, 4344, 9679, 1989}, a fixed
table size of 10, and a hash function H(X) = X mod 10, show the
resulting
a. Linear probing hash table
b. Quadratic probing hash table
c. Separate chaining hash table

20.6 Show the result of rehashing the probing tables in Exercise 20.5.
Rehash to a prime table size.

exercises 803

IN THEORY

20.7 An alternative collision resolution strategy is to define a sequence,
, where and is a random permu-

tation of the first integers (recall that the table size is M).
a. Prove that under this strategy, if the table is not full, the collision

can always be resolved.
b. Would this strategy be expected to eliminate primary clustering?
c. Would this strategy be expected to eliminate secondary clustering?
d. If the load factor of the table is λ , what is the expected time to

perform an insertion?
e. Generating a random permutation using the algorithm in Section 9.4

involves a large number of (expensive) calls to a random number
generator. Give an efficient algorithm to generate a random-looking
permutation that avoids calling a random number generator.

20.8 If rehashing is implemented as soon as the load factor reaches 0.5,
when the last element is inserted the load factor is at least 0.25 and at
most 0.5. What is the expected load factor? In other words, is it true
or false that the load factor is 0.375 on average?

20.9 When the rehashing step is implemented, you must use O(N) probes
to reinsert the N elements. Give an estimate for the number of probes
(i.e., N or 2N or something else). (Hint: Compute the average cost of
inserting in the new table. These insertions vary from load factor 0 to
load factor 0.25.)

20.10 Under certain assumptions, the expected cost of an insertion in a hash
table with secondary clustering is given by 1/(1 – λ) – λ – ln(1 – λ).
Unfortunately, this formula is not accurate for quadratic probing.
However, assuming that it is,
a. What is the expected cost of an unsuccessful search?
b. What is the expected cost of a successful search?

20.11 A quadratic probing hash table is used to store 10,000 String objects.
Assume that the load factor is 0.4 and that the average string length
is 8. Determine
a. The hash table size
b. The amount of memory used to store the 10,000 String objects
c. The amount of additional memory used by the hash table
d. The total memory used by the hash table
e. The space overhead

F i() Ri= R0 0= R1 R2 … RM 1–, , ,
M 1–

804 chapter 20 hash tables

IN PRACTICE

20.12 Implement linear probing.

20.13 For the probing hash table, implement the rehashing code without
making a recursive call to add.

20.14 Experiment with a hash function that examines every other character
in a string. Is this a better choice than the one in the text? Explain.

20.15 Experiment with the following alternative for line 12 in Figure 20.2:

hashVal = (hashVal << 5) ^ hashVal ^ key.charAt(i);

20.16 Provide a complete implementation of HashSet using separate chaining.

PROGRAMMING PROBLEMS

20.17 Find yourself a large online dictionary. Choose a table size that is
twice as large as the dictionary. Apply the hash function described in
the text to each word, and store a count of the number of times each
position is hashed to. You will get a distribution: Some percentage of
the positions will not be hashed to, some will be hashed to once, some
twice, and so on. Compare this distribution with what would occur for
theoretical random numbers (discussed in Section 9.3).

20.18 Perform simulations to compare the observed performance of hashing
with the theoretical results. Declare a probing hash table, insert
10,000 randomly generated integers into the table, and count the aver-
age number of probes used. This number is the average cost of a suc-
cessful search. Repeat the test several times for a good average. Run it
for both linear probing and quadratic probing, and do it for final load
factors 0.1, 0.2, ..., 0.9. Always declare the table so that no rehashing
is needed. Thus the test for load factor 0.4 would declare a table of
size approximately 25,000 (adjusted to be prime).

20.19 Compare the time required to perform successful searches and inser-
tions in a separate chaining table with load factor 1 and a quadratic
probing table with load factor 0.5. Run it for simple integers, strings,
and complex records in which the search key is a string.

20.20 A BASIC program consists of a series of statements, each of which is
numbered in ascending order. Control is passed by use of a goto or
gosub and a statement number. Write a program that reads a legal
BASIC program and renumbers the statements so that the first starts at
number F and each statement has a number D higher than the previous

references 805

statement. The statement numbers in the input might be as large as a 32-
bit integer, and you may assume that the renumbered statement numbers
fit in a 32-bit integer. Your program must run in linear time.

references

Despite the apparent simplicity of hashing, much of the analysis is quite dif-
ficult and many questions remain unresolved. Also there are many interesting
ideas that generally attempt to make it unlikely that worst-case possibilities of
hashing arise.

An early paper on hashing is [11]. A wealth of information on the subject,
including an analysis of hashing with linear probing, is presented in [6]. Dou-
ble hashing is analyzed in [5] and [7]. Yet another collision resolution scheme,
coalesced hashing, is described in [12]. An excellent survey on the subject
is [8], and [9] contains suggestions for and pitfalls in choosing hash functions.
Precise analytic and simulation results for all the methods described in this
chapter are available in [4]. Uniform hashing, in which no clustering exists, is
optimal with respect to the cost of a successful search [13].

If the input keys are known in advance, perfect hash functions, which do
not allow collisions, exist [1]. Some more complicated hashing schemes, for
which the worst case depends not on the particular input but on random num-
bers chosen by the algorithm, appear in [2] and [3]. These schemes guarantee
that only a constant number of collisions occur in the worst case (although
construction of a hash function can take a long time in the unlikely case of
bad random numbers). They are useful for implementing tables in hardware.

One method of implementing Exercise 20.7 is described in [10].

1. J. L. Carter and M. N. Wegman, “Universal Classes of Hash Func-
tions,” Journal of Computer and System Sciences 18 (1979), 143–154.

2. M. Dietzfelbinger, A. R. Karlin, K. Melhorn, F. Meyer auf def Heide, H.
Rohnert, and R. E. Tarjan, “Dynamic Perfect Hashing: Upper and Lower
Bounds,” SIAM Journal on Computing 23 (1994), 738–761.

3. R. J. Enbody and H. C. Du, “Dynamic Hashing Schemes,” Computing
Surveys 20 (1988), 85–113.

4. G. H. Gonnet and R. Baeza-Yates, Handbook of Algorithms and Data
Structures, 2d ed., Addison-Wesley, Reading, MA, 1991.

5. L. J. Guibas and E. Szemeredi, “The Analysis of Double Hashing,” Jour-
nal of Computer and System Sciences 16 (1978), 226–274.

6. D. E. Knuth, The Art of Computer Programming, Vol 3: Sorting and
Searching, 2d ed., Addison-Wesley, Reading, MA, 1998.

806 chapter 20 hash tables

7. G. Lueker and M. Molodowitch, “More Analysis of Double Hashing,”
Combinatorica 13 (1993), 83–96.

8. W. D. Maurer and T. G. Lewis, “Hash Table Methods,” Computing Sur-
veys 7 (1975), 5–20.

9. B. J. McKenzie, R. Harries, and T. Bell, “Selecting a Hashing Algo-
rithm,” Software-Practice and Experience 20 (1990), 209–224.

10. R. Morris, “Scatter Storage Techniques,” Communications of the ACM
11 (1968), 38–44.

11. W. W. Peterson, “Addressing for Random Access Storage,” IBM Journal
of Research and Development 1 (1957), 130–146.

12. J. S. Vitter, “Implementations for Coalesced Hashing,” Information Pro-
cessing Letters 11 (1980), 84–86.

13. A. C. Yao, “Uniform Hashing Is Optimal,” Journal of the ACM 32
(1985), 687–693.

chap te r 21

a priority queue:
the binary heap

The priority queue is a fundamental data structure that allows
access only to the minimum item. In this chapter we discuss one
implementation of the priority queue data structure, the elegant
binary heap. The binary heap supports the insertion of new items and
the deletion of the minimum item in logarithmic worst-case time. It
uses only an array and is easy to implement.

In this chapter, we show

n The basic properties of the binary heap

n How the insert and deleteMin operations can be performed in
logarithmic time

n A linear-time heap construction algorithm

n A Java 5 implementation of class PriorityQueue

n An easily implemented sorting algorithm, heapsort, that
runs in O(N log N) time but uses no extra memory

n The use of heaps to implement external sorting

808 chapter 21 a priority queue: the binary heap

21.1 basic ideas
A linked list or array
requires that some
operation use linear
time.

As discussed in Section 6.9, the priority queue supports the access and deletion of
the minimum item with findMin and deleteMin, respectively. We could use a sim-
ple linked list, performing insertions at the front in constant time, but then finding
and/or deleting the minimum would require a linear scan of the list. Alternatively,
we could insist that the list always be kept sorted. This condition makes the access
and deletion of the minimum cheap, but then insertions would be linear.

An unbalanced
binary search tree
does not have a
good worst case. A
balanced search
tree requires lots of
work.

Another way of implementing priority queues is to use a binary search
tree, which gives an O(log N) average running time for both operations. How-
ever, a binary search tree is a poor choice because the input is typically not
sufficiently random. We could use a balanced search tree, but the structures
shown in Chapter 19 are cumbersome to implement and lead to sluggish per-
formance in practice. (In Chapter 22, however, we cover a data structure, the
splay tree, that has been shown empirically to be a good alternative in some
situations.)

The priority queue
has properties that
are a compromise
between a queue
and a binary search
tree.

On the one hand, because the priority queue supports only some of the
search tree operations, it should not be more expensive to implement than a
search tree. On the other hand, the priority queue is more powerful than a sim-
ple queue because we can use a priority queue to implement a queue as fol-
lows. First, we insert each item with an indication of its insertion time. Then,
a deleteMin on the basis of minimum insertion time implements a dequeue.
Consequently, we can expect to obtain an implementation with properties that
are a compromise between a queue and a search tree. This compromise is
realized by the binary heap, which

n Can be implemented by using a simple array (like the queue)

n Supports insert and deleteMin in O(log N) worst-case time (a com-
promise between the binary search tree and the queue)

n Supports insert in constant average time and findMin in constant
worst-case time (like the queue)

The binary heap is
the classic method
used to implement
priority queues.

The binary heap is the classic method used to implement priority queues and—
like the balanced search tree structures in Chapter 19—has two properties: a struc-
ture property and an ordering property. And as with balanced search trees, an opera-
tion on a binary heap can destroy one of the properties, so a binary heap operation
must not terminate until both properties are in order. This outcome is simple to
achieve. (In this chapter, we use the word heap to refer to the binary heap.)

21.1.1 structure property

The only structure that gives dynamic logarithmic time bounds is the tree,
so it seems natural to organize the heap’s data as a tree. Because we want

21.1 basic ideas 809

the logarithmic bound to be a worst-case guarantee, the tree should be
balanced.

The heap is a com-
plete binary tree,
allowing represen-
tation by a simple
array and guaran-
teeing logarithmic
depth.

A complete binary tree is a tree that is completely filled, with the possible
exception of the bottom level, which is filled from left to right and has no
missing nodes. An example of a complete binary tree of 10 items is shown in
Figure 21.1. Had the node J been a right child of E, the tree would not be
complete because a node would be missing.

The complete tree has a number of useful properties. First, the height (long-
est path length) of a complete binary tree of N nodes is at most ⎣log N⎦ . The rea-
son is that a complete tree of height H has between 2H and 2H + 1 – 1 nodes.
This characteristic implies that we can expect logarithmic worst-case behavior
if we restrict changes in the structure to one path from the root to a leaf.

The parent is in
position ⎣i/2⎦ , the
left child is in posi-
tion 2i, and the
right child is in
position 2i + 1.

Second and equally important, in a complete binary tree, left and right links
are not needed. As shown in Figure 21.1, we can represent a complete binary tree
by storing its level-order traversal in an array. We place the root in position 1
(position 0 is often left vacant, for a reason discussed shortly). We also need to
maintain an integer that tells us the number of nodes currently in the tree. Then for
any element in array position i, its left child can be found in position 2i. If this
position extends past the number of nodes in the tree, we know that the left child
does not exist. Similarly, the right child is located immediately after the left child;
thus it resides in position 2i + 1. We again test against the actual tree size to be
sure that the child exists. Finally, the parent is in position .

Note that every node except the root has a parent. If the root were to have
a parent, the calculation would place it in position 0. Thus we reserve position
0 for a dummy item that can serve as the root’s parent. Doing so can simplify
one of the operations. If instead we choose to place the root in position 0, the
locations of the children and parent of the node in position i change slightly
(in Exercise 21.15 you are asked to determine the new locations).

Using an array to store a tree is called implicit representation. As a result of
this representation, not only are child links not required, but also the operations

figure 21.1

A complete binary
tree and its array
representation

A

B C

D E F G

H I J

1

2 3

654

8 9 10

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 A B C D E F G H I J 11 12 13

i 2⁄

Using an array to
store a tree is
called implicit
representation.

810 chapter 21 a priority queue: the binary heap

required to traverse the tree are extremely simple and likely to be very fast on
most computers. The heap entity consists of an array of objects and an integer
representing the current heap size.

In this chapter, heaps are drawn as trees to make the algorithms easier to
visualize. In the implementation of these trees we use an array. We do not use
the implicit representation for all search trees. Some of the problems with
doing so are covered in Exercise 21.8.

21.1.2 heap-order property
The heap-order
property states that,
in a heap, the item
in the parent is
never larger than
the item in a node.

The property that allows operations to be performed quickly is the heap-order
property. We want to be able to find the minimum quickly, so it makes sense
that the smallest element should be at the root. If we consider that any subtree
should also (recursively) be a heap, any node should be smaller than all of its
descendants. Applying this logic, we arrive at the heap-order property.

heap-order property
In a heap, for every node X with parent P, the key in P is smaller than or equal to
the key in X.

The heap-order property is illustrated in Figure 21.2. In Figure 21.3(a),
the tree is a heap, but in Figure 21.3(b), the tree is not (the dashed line

figure 21.2

Heap-order property
P

X

P <– X

figure 21.3

Two complete trees:
(a) a heap; (b) not a
heap

13

21 16

24 31 19 68

65 26 32

(a)

13

21 16

6 31 19 68

65 26 32

(b)

The root’s parent
can be stored in
position 0 and
given a value of
negative infinity.

21.1 basic ideas 811

shows the violation of heap order). Note that the root does not have a parent.
In the implicit representation, we could place the value in position 0 to
remove this special case when we implement the heap. By the heap-order
property, we see that the minimum element can always be found at the root.
Thus findMin is a constant time operation. A max heap supports access of
the maximum instead of the minimum. Minor changes can be used to imple-
ment max heaps.

21.1.3 allowed operations

Now that we have settled on the representation, we can start writing code for
our implementation of java.util.PriorityQueue. We already know that our
heap supports the basic insert, findMin, and deleteMin operations and the
usual isEmpty and makeEmpty routines. Figure 21.4 shows the class skeleton
using the naming conventions in java.util.PriorityQueue. We will refer to the
operations using both the historic names and their java.util equivalents.

We provide a con-
structor that
accepts a collection
containing an initial
set of items and
calls buildHeap.

We begin by examining the public methods. A trio of constructors are
declared at lines 9 to 14. The third constructor accepts a collection of items
that should initially be in the priority queue. Why not just insert the items one
at a time?

The reason is that in numerous applications we can add many items
before the next deleteMin occurs. In those cases, we do not need to have heap
order in effect until the deleteMin occurs. The buildHeap operation, declared at
line 32, reinstates the heap order—no matter how messed up the heap is—and
we will see that it works in linear time. Thus, if we need to place N items in
the heap before the first deleteMin, placing them in the array sloppily and then
doing one buildHeap is more efficient than doing N insertions.

The add method is declared at line 25. It adds a new item x into the
heap, performing the necessary operations to maintain the heap-order
property.

The remaining operations are as expected. The element routine is declared
at line 23 and returns the minimum item in the heap. remove is declared at line
27 and removes and then returns the minimum item. The usual size, clear,
and iterator routines are declared at lines 16 to 21.

The constructors are shown in Figure 21.5. All initialize the array, the
size, and the comparator; the third constructor additionally copies in the col-
lection passed as a parameter and then calls buildHeap. Figure 21.6 shows
element.

∞–

812 chapter 21 a priority queue: the binary heap

figure 21.4

The PriorityQueue class skeleton

1 package weiss.util;
2
3 /**
4 * PriorityQueue class implemented via the binary heap.
5 */
6 public class PriorityQueue<AnyType> extends AbstractCollection<AnyType>
7 implements Queue<AnyType>
8 {
9 public PriorityQueue()

10 { /* Figure 21.5 */ }
11 public PriorityQueue(Comparator<? super AnyType> c)
12 { /* Figure 21.5 */ }
13 public PriorityQueue(Collection<? extends AnyType> coll)
14 { /* Figure 21.5 */ }
15
16 public int size()
17 { return currentSize; }
18 public void clear()
19 { currentSize = 0; }
20 public Iterator<AnyType> iterator()
21 { /* See online code */ }
22
23 public AnyType element()
24 { /* Figure 21.6 */ }
25 public boolean add(AnyType x)
26 { /* Figure 21.9 */ }
27 public AnyType remove()
28 { /* Figure 21.13 */ }
29
30 private void percolateDown(int hole)
31 { /* Figure 21.14 */ }
32 private void buildHeap()
33 { /* Figure 21.16 */ }
34
35 private int currentSize; // Number of elements in heap
36 private AnyType [] array; // The heap array
37 private Comparator<? super AnyType> cmp;
38
39 private void doubleArray()
40 { /* See online code */ }
41 private int compare(AnyType lhs, AnyType rhs)
42 { /* Same code as in TreeSet; see Figure 19.70 */ }
43 }

21.1 basic ideas 813

figure 21.5

Constructors for the PriorityQueue class

1 private static final int DEFAULT_CAPACITY = 100;
2
3 /**
4 * Construct an empty PriorityQueue.
5 */
6 public PriorityQueue()
7 {
8 currentSize = 0;
9 cmp = null;

10 array = (AnyType[]) new Object[DEFAULT_CAPACITY + 1];
11 }
12
13 /**
14 * Construct an empty PriorityQueue with a specified comparator.
15 */
16 public PriorityQueue(Comparator<? super AnyType> c)
17 {
18 currentSize = 0;
19 cmp = c;
20 array = (AnyType[]) new Object[DEFAULT_CAPACITY + 1];
21 }
22
23
24 /**
25 * Construct a PriorityQueue from another Collection.
26 */
27 public PriorityQueue(Collection<? extends AnyType> coll)
28 {
29 cmp = null;
30 currentSize = coll.size();
31 array = (AnyType[]) new Object[(currentSize + 2) * 11 / 10];
32
33 int i = 1;
34 for(AnyType item : coll)
35 array[i++] = item;
36 buildHeap();
37 }

figure 21.6

The element routine

1 /**
2 * Returns the smallest item in the priority queue.
3 * @return the smallest item.
4 * @throws NoSuchElementException if empty.
5 */
6 public AnyType element()
7 {
8 if(isEmpty())
9 throw new NoSuchElementException();

10 return array[1];
11 }

814 chapter 21 a priority queue: the binary heap

21.2 implementation of the
basic operations

The heap-order property looks promising so far because easy access to the
minimum is provided. We must now show that we can efficiently support
insertion and deleteMin in logarithmic time. Performing the two required
operations is easy (both conceptually and practically): The work merely
involves ensuring that the heap-order property is maintained.

21.2.1 insertion
Insertion is imple-
mented by creating
a hole at the next
available location
and then percolat-
ing it up until the
new item can be
placed in it without
introducing a heap-
order violation with
the hole’s parent.

To insert an element X in the heap, we must first add a node to the tree. The
only option is to create a hole in the next available location; otherwise, the
tree is not complete and we would violate the structure property. If X can be
placed in the hole without violating heap order, we do so and are done. Other-
wise, we slide the element that is in the hole’s parent node into the node, bub-
bling the hole up toward the root. We continue this process until X can be
placed in the hole. Figure 21.7 shows that to insert 14, we create a hole in the
next available heap location. Inserting 14 into the hole would violate the heap-
order property, so 31 is slid down into the hole. This strategy is continued in
Figure 21.8 until the correct location for 14 is found.

This general strategy is called percolate up, in which insertion is imple-
mented by creating a hole at the next available location and bubbling it up the
heap until the correct location is found. Figure 21.9 shows the add method,
which implements the percolate up strategy by using a very tight loop. At
line 13, we place x as the –∞ sentinel in position 0. The statement at line 12
increments the current size and sets the hole to the newly added node. We
iterate the loop at line 15 as long as the item in the parent node is larger than x.

figure 21.7

Attempt to insert 14,
creating the hole and
bubbling the hole up

31

13

21 16

24 31 19 68

65 26 32

(a)

13

21 16

24 19 68

65 26 32

(b)

14

21.2 implementation of the basic operations 815

Line 16 moves the item in the parent down into the hole, and then the third
expression in the for loop moves the hole up to the parent. When the loop ter-
minates, line 17 places x in the hole.

Insertion takes con-
stant time on aver-
age but logarithmic
time in the worst
case.

The time required to do the insertion could be as much as O(log N) if the
element to be inserted is the new minimum. The reason is that it will be perco-
lated up all the way to the root. On average the percolation terminates early: It
has been shown that 2.6 comparisons are required on average to perform the
add, so the average add moves an element up 1.6 levels.

figure 21.8

The remaining two
steps required to
insert 14 in the
original heap shown in
Figure 21.7

31

13

16

24 21 19 68

65 26 32 31

(a)

13

14 16

24 21 19 68

65 26 32

(b)

1414

figure 21.9

The add method

1 /**
2 * Adds an item to this PriorityQueue.
3 * @param x any object.
4 * @return true.
5 */
6 public boolean add(AnyType x)
7 {
8 if(currentSize + 1 == array.length)
9 doubleArray();

10
11 // Percolate up
12 int hole = ++currentSize;
13 array[0] = x;
14
15 for(; compare(x, array[hole / 2]) < 0; hole /= 2)
16 array[hole] = array[hole / 2];
17 array[hole] = x;
18
19 return true;
20 }

816 chapter 21 a priority queue: the binary heap

21.2.2 the deleteMin operation

The deleteMin operation is handled in a similar manner to the insertion opera-
tion. As shown already, finding the minimum is easy; the hard part is remov-
ing it. When the minimum is removed, a hole is created at the root. The heap
now becomes one size smaller, and the structure property tells us that the last
node must be eliminated. Figure 21.10 shows the situation: The minimum
item is 13, the root has a hole, and the former last item needs to be placed in
the heap somewhere.

If the last item could be placed in the hole, we would be done. That is
impossible, however, unless the size of the heap is two or three, because ele-
ments at the bottom are expected to be larger than elements on the second
level. We must play the same game as for insertion: We put some item in the
hole and then move the hole. The only difference is that for the deleteMin we
move down the tree. To do so, we find the smaller child of the hole, and if that
child is smaller than the item that we are trying to place, we move the child
into the hole, pushing the hole down one level and repeating these actions
until the item can be correctly placed—a process called percolate down. In
Figure 21.11, we place the smaller child (14) in the hole, sliding the hole
down one level. We repeat this action, placing 19 in the hole and creating a
new hole one level deeper. We then place 26 in the hole and create a new

figure 21.10

Creation of the hole at
the root

13

1614

19 21 19 68

65 26 32 31

14 16

19 21 19 68

65 26 32 31

Min = 13

figure 21.11

The next two steps in
the deleteMin
operation

14

16

19 21 19 68

65 26 32

19 16

21 19 68

65 26 32 3131

14

Deletion of the min-
imum involves plac-
ing the former last
item in a hole that
is created at the
root. The hole is
percolated down
the tree through
minimum children
until the item can
be placed without
violating the heap-
order property.

The deleteMin
operation is loga-
rithmic in both the
worst and average
cases.

21.2 implementation of the basic operations 817

hole on the bottom level. Finally, we are able to place 31 in the hole, as
shown in Figure 21.12. Because the tree has logarithmic depth, deleteMin is
a logarithmic operation in the worst case. Not surprisingly, percolation rarely
terminates more than one or two levels early, so deleteMin is logarithmic on
average, too.

Figure 21.13 shows this method, which is named remove in the standard
library. The test for emptiness in remove is automatically done by the call to
element, which is named remove in the standard library, at line 8. The real work
is done in percolateDown, shown in Figure 21.14. The code shown there is sim-
ilar in spirit to the percolation up code in the add routine. However, because
there are two children rather than one parent, the code is a bit more compli-
cated. The percolateDown method takes a single parameter that indicates where
the hole is to be placed. The item in the hole is then moved out, and the perco-
lation begins. For remove, hole will be position 1. The for loop at line 10 termi-
nates when there is no left child. The third expression moves the hole to the
child. The smaller child is found at lines 13–15. We have to be careful because
the last node in an even-sized heap is an only child; we cannot always assume
that there are two children, which is why we have the first test at line 13.

figure 21.12

The last two steps in
the deleteMin
operation

14

1619

26 21 19 68

65 32

19 16

2126 19 68

65 31 3231

14

figure 21.13

The remove method

1 /**
2 * Removes the smallest item in the priority queue.
3 * @return the smallest item.
4 * @throws NoSuchElementException if empty.
5 */
6 public AnyType remove()
7 {
8 AnyType minItem = element();
9 array[1] = array[currentSize--];

10 percolateDown(1);
11
12 return minItem;
13 }

818 chapter 21 a priority queue: the binary heap

21.3 the buildHeap operation:
linear-time heap construction

The buildHeap oper-
ation can be done
in linear time by
applying a perco-
late down routine to
nodes in reverse
level order.

The buildHeap operation takes a complete tree that does not have heap order
and reinstates it. We want it to be a linear-time operation, since N insertions
could be done in O(N log N) time. We expect that O(N) is attainable because
N successive insertions take a total of O(N) time on average, based on the
result stated at the end of Section 21.2.1. The N successive insertions do more
work than we require because they maintain heap order after every insertion
and we need heap order only at one instant.

The easiest abstract solution is obtained by viewing the heap as a recur-
sively defined structure, as shown in Figure 21.15: We recursively call
buildHeap on the left and right subheaps. At that point, we are guaranteed that
heap order has been established everywhere except at the root. We can
establish heap order everywhere by calling percolateDown for the root. The
recursive routine works by guaranteeing that when we apply percolateDown(i),
all descendants of i have been processed recursively by their own calls to
percolateDown. The recursion, however, is not necessary, for the following

figure 21.14

The percolateDown method used for remove and buildHeap

1 /**
2 * Internal method to percolate down in the heap.
3 * @param hole the index at which the percolate begins.
4 */
5 private void percolateDown(int hole)
6 {
7 int child;
8 AnyType tmp = array[hole];
9

10 for(; hole * 2 <= currentSize; hole = child)
11 {
12 child = hole * 2;
13 if(child != currentSize &&
14 compare(array[child + 1], array[child]) < 0)
15 child++;
16 if(compare(array[child], tmp) < 0)
17 array[hole] = array[child];
18 else
19 break;
20 }
21 array[hole] = tmp;
22 }

21.3 the buildHeap operation: linear-time heap construction 819

reason. If we call percolateDown on nodes in reverse level order, then at the
point percolateDown(i) is processed, all descendants of node i will have been
processed by a prior call to percolateDown. This process leads to an incredibly
simple algorithm for buildHeap, which is shown in Figure 21.16. Note that
percolateDown need not be performed on a leaf. Thus we start at the highest
numbered nonleaf node.

The tree in Figure 21.17(a) is the unordered tree. The seven remaining
trees in Figures 21.17(b) through 21.20 show the result of each of the seven
percolateDown operations. Each dashed line corresponds to two comparisons:
one to find the smaller child and one to compare the smaller child with
the node. Notice that the ten dashed lines in the algorithm correspond to
20 comparisons. (There could have been an eleventh line.)

figure 21.15

Recursive view of the
heap

R

figure 21.16

Implementation of the
linear-time buildHeap
method

1 /**
2 * Establish heap order property from an arbitrary
3 * arrangement of items. Runs in linear time.
4 */
5 private void buildHeap()
6 {
7 for(int i = currentSize / 2; i > 0; i--)
8 percolateDown(i);
9 }

figure 21.17

(a) Initial heap;
(b) after
percolateDown(7)

92

47 21

20 12 45 63

61 17 55 37 25 64 83 73

(b)

92

47 21

20 12 45 63

61 17 55 37 25 64 83 73

(a)

820 chapter 21 a priority queue: the binary heap

The linear-time
bound can be
shown by comput-
ing the sum of the
heights of all the
nodes in the heap.

To bound the running time of buildHeap, we must bound the number of
dashed lines. We can do so by computing the sum of the heights of all the
nodes in the heap, which is the maximum number of dashed lines. We
expect a small number because half the nodes are leaves and have height 0
and a quarter of the nodes have height 1. Thus only a quarter of the nodes
(those not already counted in the first two cases) can contribute more than
1 unit of height. In particular, only one node contributes the maximum
height of ⎣log N⎦.

figure 21.18

(a) After
percolateDown(6);
(b) after
percolateDown(5)

92

47 21

20 12 25 63

61 17 55 37 45 64 83 73

(b)

92

47 21

20 12 25 63

61 17 55 37 45 64 83 73

(a)

figure 21.19

(a) After
percolateDown(4);
(b) after
percolateDown(3)

92

47 21

17 12 25 63

61 20 55 37 45 64 83 73

(b)

92

47 21

17 12 25 63

61 20 55 37 45 64 83 73

(a)

figure 21.20

(a) After
percolateDown(2);
(b) after
percolateDown(1)
and buildHeap
terminates

12

17 21

20 37 25 63

61 92 55 47 45 64 83 73

(b)

92

12 21

17 37 25 63

61 20 55 47 45 64 83 73

(a)

21.3 the buildHeap operation: linear-time heap construction 821

We prove the
bound for perfect
trees by using a
marking argument.

To obtain a linear-time bound for buildHeap, we need to establish that the
sum of the heights of the nodes of a complete binary tree is O(N). We do so in
Theorem 21.1, proving the bound for perfect trees by using a marking
argument.

A complete binary tree is not a perfect binary tree, but the result we have
obtained is an upper bound on the sum of the heights of the nodes in a com-
plete binary tree. A complete binary tree has between 2H and 2H + 1 – 1

figure 21.21

Marking the left
edges for height 1
nodes

For the perfect binary tree of height H containing N = 2H + 1 – 1 nodes, the sum of the
heights of the nodes is N – H – 1.

Theorem 21.1

We use a tree-marking argument. (A more direct brute-force calculation could also
be done, as in Exercise 21.10.) For any node in the tree that has some height h, we
darken h tree edges as follows. We go down the tree by traversing the left edge and
then only right edges. Each edge traversed is darkened. An example is a perfect tree
of height 4. Nodes that have height 1 have their left edge darkened, as shown in
Figure 21.21. Next, nodes of height 2 have a left edge and then a right edge dark-
ened on the path from the node to the bottom, as shown in Figure 21.22. In
Figure 21.23, three edges are darkened for each node of height 3: the first left edge
leading out of the node and then the two right edges on the path to the bottom.
Finally, in Figure 21.24 four edges are darkened: the left edge leading out of the root
and the three right edges on the path to the bottom. Note that no edge is ever dark-
ened twice and that every edge except those on the right path is darkened. As there
are (N – 1) tree edges (every node has an edge coming into it except the root) and H
edges on the right path, the number of darkened edges is N – H – 1. This proves the
theorem.

Proof

822 chapter 21 a priority queue: the binary heap

nodes, so this theorem implies that the sum is O(N). A more careful argument
establishes that the sum of the heights is N – v(N), where v(N) is the number
of 1s in the binary representation of N. A proof of this is left for you to do as
Exercise 21.12.

figure 21.22

Marking the first left
edge and the
subsequent right edge
for height 2 nodes

figure 21.23

Marking the first left
edge and the
subsequent two right
edges for height 3
nodes

figure 21.24

Marking the first left
edge and the
subsequent two right
edges for the
height 4 node

21.5 internal sorting: heapsort 823

21.4 advanced operations:
decreaseKey and merge

In Chapter 23 we examine priority queues that support two additional oper-
ations. The decreaseKey operation lowers the value of an item in the priority
queue. The item’s position is presumed known. In a binary heap this opera-
tion is easily implemented by percolating up until heap order is reestab-
lished. However, we must be careful because by assumption each item’s
position is being stored separately, and all items involved in the percolation
have their positions altered. It is possible to incorporate decreaseKey into the
PriorityQueue class. This is left as Exercise 21.30. The decreaseKey operation
is useful in implementing graph algorithms (e.g., Dijkstra’s algorithm pre-
sented in Section 14.3).

The merge routine combines two priority queues. Because the heap is
array-based, the best we can hope to achieve with a merge is to copy the items
from the smaller heap to the larger heap and do some rearranging. Doing so
takes at least linear time per operation. If we use general trees with nodes con-
nected by links, we can reduce the bound to logarithmic cost per operation.
Merging has uses in advanced algorithm design.

21.5 internal sorting: heapsort
The priority queue can be used to sort N items by the following:

1. Inserting every item into a binary heap

2. Extracting every item by calling deleteMin N times, thus sorting the result

Using the observation in Section 21.4, we can more efficiently implement this
procedure by

1. Tossing each item into a binary heap

2. Applying buildHeap

3. Calling deleteMin N times, with the items exiting the heap in sorted order

Step 1 takes linear time total, and step 2 takes linear time. In step 3, each call
to deleteMin takes logarithmic time, so N calls take O(N log N) time. Conse-
quently, we have an O(N log N) worst-case sorting algorithm, called heapsort,
which is as good as can be achieved by a comparison-based algorithm (see
Section 8.8). One problem with the algorithm as it stands now is that sorting

A priority queue
can be used to sort
in O(N log N) time.
An algorithm based
on this idea is
heapsort.

824 chapter 21 a priority queue: the binary heap

an array requires the use of the binary heap data structure, which itself carries
the overhead of an array. Emulating the heap data structure on the array that is
input—rather than going through the heap class apparatus—would be prefer-
able. We assume for the rest of this discussion that this is done.

Even though we do not use the heap class directly, we still seem to need a
second array. The reason is that we have to record the order in which items
exit the heap equivalent in a second array and then copy that ordering back
into the original array. The memory requirement is doubled, which could be
crucial in some applications. Note that the extra time spent copying the sec-
ond array back to the first is only O(N), so, unlike mergesort, the extra array
does not affect the running time significantly. The problem is space.

By using empty
parts of the array,
we can perform the
sort in place.

A clever way to avoid using a second array makes use of the fact that,
after each deleteMin, the heap shrinks by 1. Thus the cell that was last in the
heap can be used to store the element just deleted. As an example, suppose
that we have a heap with six elements. The first deleteMin produces A1. Now
the heap has only five elements, so we can place A1 in position 6. The next
deleteMin produces A2. As the heap now has only four elements, we can place
A2 in position 5.

If we use a max
heap, we obtain
items in increasing
order.

When we use this strategy, after the last deleteMin the array will contain
the elements in decreasing sorted order. If we want the array to be in the
more typical increasing sorted order, we can change the ordering property
so that the parent has a larger key than the child does. Thus we have a max
heap. For example, let us say that we want to sort the input sequence 59, 36,
58, 21, 41, 97, 31, 16, 26, and 53. After tossing the items into the max heap
and applying buildHeap, we obtain the arrangement shown in Figure 21.25.
(Note that there is no sentinel; we presume the data starts in position 0, as is
typical for the other sorts described in Chapter 8.)

Figure 21.26 shows the heap that results after the first deleteMax. The last
element in the heap is 21; 97 has been placed in a part of the heap array that is
technically no longer part of the heap.

figure 21.25

Max heap after the
buildHeap phase

97

53 59

26 41 58 31

16 21 36

0 1 2 3 4 5 6 7 8 9 10 11 12 13

97 53 59 26 41 58 31 16 21 36 J 11 12 13

21.5 internal sorting: heapsort 825

Figure 21.27 shows that after a second deleteMax, 16 becomes the last
element. Now only eight items remain in the heap. The maximum element
removed, 59, is placed in the dead spot of the array. After seven more
deleteMax operations, the heap represents only one element, but the elements
left in the array will be sorted in increasing order.

Minor changes are
required for heap-
sort because the
root is stored in
position 0.

Implementation of the heapsort operation is simple because it basically
follows the heap operation. There are three minor differences between the two
operations. First, because we are using a max heap, we need to reverse the
logic of the comparisons from > to <. Second, we can no longer assume that
there is a sentinel position 0. The reason is that all our other sorting algorithms
store data at position 0, and we must assume that heapSort is no different.
Although the sentinel is not needed anyway (there are no percolate up opera-
tions), its absence affects calculations of the child and parent. That is, for a
node in position i, the parent is in position , the left child is in posi-
tion , and the right child is next to the left child. Third, percDown needs
to be informed of the current heap size (which is lowered by 1 in each itera-
tion of deleteMax). The implementation of percDown is left for you to do as

figure 21.26

Heap after the first
deleteMax operation

59

53 58

26 41 36 31

16 21 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13

59 53 58 26 41 36 31 16 21 97 J 11 12 13

figure 21.27

Heap after the second
deleteMax operation

58

53 36

26 41 21 31

16 59 97

0 1 2 3 4 5 6 7 8 9 10 11 12 13

58 53 36 26 41 21 31 16 59 97 J 11 12 13

i 1–() 2⁄
2i 1+

826 chapter 21 a priority queue: the binary heap

Exercise 21.23. Assuming that we have written percDown, we can easily
express heapSort as shown in Figure 21.28.

Although heapsort is not as fast as quicksort, it can still be useful. As dis-
cussed in Section 8.6 (and detailed in Exercise 8.20), in quicksort we can keep
track of each recursive call’s depth, and switch to an O(N log N) worst-case sort
for any recursive call that is too deep (roughly 2 log N nested calls). Exercise
8.20 suggested mergesort, but actually heapsort is the better candidate.

21.6 external sorting
External sorting is
used when the
amount of data is
too large to fit in
main memory.

So far, all the sorting algorithms examined require that the input fit in main
memory. However, the input for some applications is much too large to fit in
main memory. In this section we discuss external sorting, which is used to
handle such very large inputs. Some of the external sorting algorithms involve
the use of heaps.

21.6.1 why we need new algorithms

Most of the internal sorting algorithms take advantage of the fact that memory
is directly accessible. Shellsort compares elements a[i] and a[i-gap] in one
time unit. Heapsort compares a[i] and a[child=i*2] in one time unit. Quick-
sort, with median-of-three pivoting, requires comparing a[first], a[center],
and a[last] in a constant number of time units. If the input is on a tape, all
these operations lose their efficiency because elements on a tape can be
accessed only sequentially. Even if the data are on a disk, efficiency still suf-
fers because of the delay required to spin the disk and move the disk head.

figure 21.28

The heapSort routine

1 // Standard heapsort.
2 public static <AnyType extends Comparable<? super AnyType>>
3 void heapsort(AnyType [] a)
4 {
5 for(int i = a.length / 2 - 1; i >= 0; i--) // Build heap
6 percDown(a, i, a.length);
7 for(int i = a.length - 1; i > 0; i--)
8 {
9 swapReferences(a, 0, i); // deleteMax

10 percDown(a, 0, i);
11 }
12 }

21.6 external sorting 827

To demonstrate how slow external accesses really are, we could create a
random file that is large but not too big to fit in main memory. When we read
in the file and sort it by using an efficient algorithm, the time needed to read
the input is likely to be significant compared to the time required to sort the
input, even though sorting is an O(N log N) operation (or worse for Shellsort)
and reading the input is only O(N).

21.6.2 model for external sorting
We assume that
sorts are performed
on tape. Only
sequential access
of the input is
allowed.

The wide variety of mass storage devices makes external sorting much more
device-dependent than internal sorting. The algorithms considered here work
on tapes, which are probably the most restrictive storage medium. Access to
an element on tape is gained by winding the tape to the correct location, so
tapes can be efficiently accessed only in sequential order (in either direction).

Let us assume that we have at least three tape drives for performing the
sort. We need two drives to do an efficient sort; the third drive simplifies mat-
ters. If only one tape drive is present, we are in trouble: Any algorithm will
require Ω(N2) tape accesses.

21.6.3 the simple algorithm
The basic external
sort uses repeated
two-way merging.
Each group of
sorted records is a
run. As a result of a
pass, the length of
the runs doubles
and eventually only
a single run
remains.

The basic external sorting algorithm involves the use of the merge routine
from mergesort. Suppose that we have four tapes A1, A2, B1, and B2, which
are two input and two output tapes. Depending on the point in the algorithm,
the A tapes are used for input and the B tapes for output, or vice versa. Sup-
pose further that the data are initially on A1 and that the internal memory can
hold (and sort) M records at a time. The natural first step is to read M records
at a time from the input tape, sort the records internally, and then write the
sorted records alternately to B1 and B2. Each group of sorted records is called
a run. When done, we rewind all the tapes. If we have the same input as in our
example for Shellsort, the initial configuration is as shown in Figure 21.29. If

figure 21.29

Initial tape
configuration

A1 81 94 11 96 12 35 17 99 28 58 41 75 15

A2

B1

B2

828 chapter 21 a priority queue: the binary heap

M = 3, after the runs have been constructed, the tapes contain the data, as
shown in Figure 21.30.

Now B1 and B2 contain a group of runs. We take the first runs from each tape,
merge them, and write the result—which is a run twice as long—to A1. Then we
take the next runs from each tape, merge them, and write the result to A2. We con-
tinue this process, alternating output to A1 and A2 until either B1 or B2 is empty. At
this point, either both are empty or one (possibly short) run is left. In the latter case,
we copy this run to the appropriate tape. We rewind all four tapes and repeat the
same steps, this time using the A tapes as input and the B tapes as output. This pro-
cess gives runs of length 4M. We continue this process until we get one run of length
N, at which point the run represents the sorted arrangement of the input. Figures
21.31– 21.33 show how this process works for our sample input.

The algorithm will require ⎡log(N/M)⎤ passes, plus the initial run-
constructing pass. For instance, if we have 10,000,000 records of 6,400 bytes
each and 200 MB of internal memory, the first pass creates 320 runs. We

figure 21.30

Distribution of length
3 runs to two tapes

A1

A2

B1 11 81 94 17 28 99 15

B2 12 35 96 41 58 75

figure 21.31

Tapes after the first
round of merging (run
length = 6)

A1 11 12 35 81 94 96 15

A2 17 28 41 58 75 99

B1

B2

figure 21.32

Tapes after the
second round of
merging (run length
= 12)

A1

A2

B1 11 12 17 28 35 41 58 75 81 94 96 99

B2 15

We need
⎡log(N/M)⎤ passes
over the input
before we have one
giant run.

21.6 external sorting 829

would then need nine more passes to complete the sort. This formula also cor-
rectly tells us that our example in Figure 21.30 requires ⎡log(13/3)⎤, or three
more passes.

21.6.4 multiway merge
K-way merging
reduces the num-
ber of passes. The
obvious implemen-
tation uses 2K
tapes.

If we have extra tapes, we can reduce the number of passes required to sort
our input with a multiway (or K-way) merge. We do so by extending the basic
(two-way) merge to a K-way merge and use 2K tapes.

Merging two runs is done by winding each input tape to the beginning of
each run. Then the smaller element is found and placed on an output tape, and
the appropriate input tape is advanced. If there are K input tapes, this strategy
works in the same way; the only difference is that finding the smallest of the
K elements is slightly more complicated. We can do so by using a priority
queue. To obtain the next element to write on the output tape, we perform a
deleteMin operation. The appropriate input tape is advanced, and if the run on
that input tape has not yet been completed, we insert the new element in the
priority queue. Figure 21.34 shows how the input from the previous example
is distributed onto three tapes. Figures 21.35 and 21.36 show the two passes
of three-way merging that complete the sort.

figure 21.33

Tapes after the third
round of merging

A1 11 12 15 17 28 35 41 58 75 81 94 96 99

A2

B1

B2

figure 21.34

Initial distribution of
length 3 runs to three
tapes

A1

A2

A3

B1 11 81 94 41 58 75

B2 12 35 96 15

B3 17 28 99

830 chapter 21 a priority queue: the binary heap

After the initial run-construction phase, the number of passes required
using K-way merging is ⎡logK(N/M)⎤ because the length of the runs gets
K times larger in each pass. For our example, the formula is verified because

. If we have 10 tapes, K = 5. For the large example in Sec-
tion 21.6.3, 320 runs would require passes.

21.6.5 polyphase merge

The K-way merging strategy requires the use of 2K tapes, which could be pro-
hibitive for some applications. We can get by with only K + 1 tapes, called a
polyphase merge. An example is performing two-way merging with only three
tapes.

Suppose that we have three tapes—T1, T2, and T3—and an input file on T1
that can produce 34 runs. One option is to put 17 runs each on T2 and T3. We
could then merge this result onto T1, thereby obtaining one tape with 17 runs. The
problem is that, as all the runs are on one tape, we must now put some of these
runs on T2 to perform another merge. The logical way to do that is to copy the

figure 21.35

After one round of
three-way merging
(run length = 9)

A1 11 12 17 28 35 81 94 96 99

A2 15 41 58 75

A3

B1

B2

B3

figure 21.36

After two rounds of
three-way merging

A1

A2

A3

B1 11 12 15 17 28 35 41 58 75 81 94 96 99

B2

B3

13 3⁄3log 2=
3205log 4=

The polyphase
merge implements
a K-way merge with
K + 1 tapes

21.6 external sorting 831

first eight runs from T1 to T2 and then perform the merge. This approach adds an
extra half pass for every pass that we make. The question is, can we do better?

The distribution of
runs affects perfor-
mance. The best
distribution is
related to the
Fibonacci
numbers.

An alternative method is to split the original 34 runs unevenly. If we put
21 runs on T2 and 13 runs on T3, we could merge 13 runs on T1 before T3
was empty. We could then rewind T1 and T3 and merge T1, with 13 runs, and
T2, with 8 runs, on T3. Next, we could merge 8 runs until T2 was empty, leav-
ing 5 runs on T1 and 8 runs on T3. We could then merge T1 and T3, and so on.
Figure 21.37 shows the number of runs on each tape after each pass.

The original distribution of runs makes a great deal of difference. For
instance, if 22 runs are placed on T2, with 12 on T3, after the first merge we
obtain 12 runs on T1 and 10 runs on T2. After another merge, there are
10 runs on T1 and 2 runs on T3. At this point, the going gets slow because we
can merge only two sets of runs before T3 is exhausted. Then T1 has 8 runs and
T2 has 2 runs. Again we can merge only two sets of runs, obtaining T1 with
6 runs and T3 with 2 runs. After three more passes, T2 has 2 runs and the
other tapes are empty. We must copy 1 run to another tape. Then we can finish
the merge.

Our first distribution turns out to be optimal. If the number of runs is a
Fibonacci number, FN, the best way to distribute them is to split them into two
Fibonacci numbers, FN – 1 and FN – 2. Otherwise, the tape must be padded with
dummy runs in order to increase the number of runs to a Fibonacci number. We
leave the details of how to place the initial set of runs on the tapes for you to handle
as Exercise 21.22. We can extend this technique to a K-way merge, in which we
need Kth-order Fibonacci numbers for the distribution. The Kth-order Fibonacci
number is defined as the sum of the K previous Kth-order Fibonacci numbers:

figure 21.37

The number of runs for a polyphase merge

Run Const.

After

T3 + T2 T1 + T2 T1 + T3 T2 + T3 T1 + T2 T1 + T3 T2 + T3

T1
T2
T3

 0
21
13

13
 8
 0

5
0
8

0
5
3

3
2
0

1
0
2

0
1
1

1
0
0

F K() N() F K() N 1–() F K() N 2–() … F K() N K–()+ + +=

F K() 0 N K 2–≤ ≤() 0=

F K() K 1–() 1=

832 chapter 21 a priority queue: the binary heap

21.6.6 replacement selection

The last topic we consider in this chapter is construction of the runs. The strat-
egy used so far is the simplest: We read as many elements as possible and sort
them, writing the result to a tape. This seems like the best approach possible,
until we realize that as soon as the first element is written to the output tape,
the memory it used becomes available for another element. If the next element
on the input tape is larger than the element just output, it can be included in
the run.

If we are clever, we
can make the
length of the runs
that we initially con-
struct larger than
the amount of avail-
able main memory.
This technique is
called replacement
selection.

Using this observation, we can write an algorithm for producing runs,
commonly called replacement selection. Initially, M elements are read into
memory and placed in a priority queue efficiently with a single buildHeap. We
perform a deleteMin, writing the smallest element to the output tape. We read
the next element from the input tape. If it is larger than the element just writ-
ten, we can add it to the priority queue; otherwise, it cannot go into the current
run. Because the priority queue is smaller by one element, this element is
stored in the dead space of the priority queue until the run has been completed
and is then used for the next run. Storing an element in the dead space is
exactly what is done in heapsort. We continue doing this process until the size
of the priority queue is 0, at which point the run is over. We start a new run by
rebuilding a new priority queue with a buildHeap operation, in the process
using all of the elements in the dead space.

Figure 21.38 shows the run construction for the small example we have
been using, with M = 3. Elements that are reserved for the next run are
shaded. Elements 11, 94, and 81 are placed with buildHeap. Element 11 is out-
put, and then 96 is placed in the heap by an insertion because it is larger than
11. Element 81 is output next, and then 12 is read. As 12 is smaller than the 81
just output, it cannot be included in the current run. Thus it is placed in the
heap dead space. The heap now logically contains only 94 and 96. After they
are output, we have only dead space elements, so we construct a heap and
begin run 2.

In this example, replacement selection produces only 3 runs, compared to
the 5 runs obtained by sorting. As a result, a three-way merge finishes in one
pass instead of two. If the input is randomly distributed, replacement selection
produces runs of average length 2M. For our large example, we would expect
160 runs instead of 320 runs, so a five-way merge would still require four
passes. In this case, we have not saved a pass, although we might if we get
lucky and have 125 runs or fewer. Because external sorts take so long, every
pass saved can make a significant difference in the running time.

As we have shown, replacement selection may do no better than the stan-
dard algorithm. However, the input is frequently nearly sorted to start with, in

summary 833

which case replacement selection produces only a few abnormally long runs.
This kind of input is common for external sorts and makes replacement selec-
tion extremely valuable.

summary

In this chapter we showed an elegant implementation of the priority queue.
The binary heap uses only an array, yet it supports the basic operations in log-
arithmic worst-case time. The heap leads to a popular sorting algorithm, heap-
sort. In Exercises 21.26 and 21.27 you are asked to compare the performance
of heapsort with that of quicksort. Generally speaking, heapsort is slower than
quicksort but it is certainly easier to implement. Finally, we showed that prior-
ity queues are important data structures for external sorting.

This completes implementation of the fundamental and classic data struc-
tures. In Part Five we examine more sophisticated data structures, beginning
with the splay tree, a binary search tree that has some remarkable properties.

figure 21.38

Example of run
construction

Three Elements in Heap Array
Next
Item Readarray[1] array[2] array[3] Output

11 94 81 11 96

81 94 96 81 12

Run 1 94 96 12 94 35

96 35 12 96 17

17 35 12 End of Run Rebuild

Run 2

12 35 17 12 99

17 35 99 17 28

28 99 35 28 58

35 99 58 35 41

41 99 58 41 75

58 99 75 58 15

75 99 15 75 End of Tape

99 15 99

15 End of Run Rebuild

Run 3 15 15

834 chapter 21 a priority queue: the binary heap

key concepts

binary heap The classic method used to implement priority queues. The binary
heap has two properties: structure and ordering. (808)

buildHeap operation The process of reinstating heap order in a complete tree,
which can be done in linear time by applying a percolate down routine to
nodes in reverse level order. (818)

complete binary tree A tree that is completely filled and has no missing nodes.
The heap is a complete binary tree, which allows representation by a simple
array and guarantees logarithmic depth. (809)

external sorting A form of sorting used when the amount of data is too large to
fit in main memory. (826)

heap-order property States that in a (min) heap, the item in the parent is never
larger than the item in a node. (810)

heapsort An algorithm based on the idea that a priority queue can be used to
sort in O(N log N) time. (823)

implicit representation Using an array to store a tree. (809)
max heap Supports access of the maximum instead of the minimum. (811)
multiway merge K-way merging that reduces the number of passes. The obvi-

ous implementation uses 2K tapes. (829)
percolate down Deletion of the minimum involves placing the former last item

in a hole that is created at the root. The hole is pushed down the tree
through minimum children until the item can be placed without violating
the heap-order property. (816)

percolate up Implements insertion by creating a hole at the next available
location and then bubbling it up until the new item can be placed in it
without introducing a heap-order violation with the hole’s parent. (814)

polyphase merge Implements a K-way merge with K + 1 tapes. (830)
replacement selection The length of the runs initially constructed can be larger

than the amount of available main memory. If we can store M objects in
main memory, then we can expect runs of length 2M. (832)

run A sorted group in the external sort. At the end of the sort, a single run
remains. (827)

common errors

1. The trickiest part of the binary heap is the percolate down case in which
only one child is present. This case occurs rarely, so spotting an incorrect
implementation is difficult.

exercises 835

2. For heapsort, the data begins in position 0, so the children of node i are in
positions 2i + 1 and 2i + 2.

on the internet

The code to implement the PriorityQueue is available in one file.

PriorityQueue.java Contains the implementation of the PriorityQueue
class.

exercises

IN SHORT

21.1 Describe the structure and ordering properties of the binary heap.

21.2 In a binary heap, for an item in position i where are the parent, left child,
and right child located?

21.3 Show the result of inserting 10, 12, 1, 14, 6, 5, 8, 15, 3, 9, 7, 4, 11, 13, and
2, one at a time, in an initially empty heap. Then show the result of using
the linear-time buildHeap algorithm instead.

21.4 Where could the 11th dashed line in Figures 21.17–21.20 have been?

21.5 A max heap supports insert, deleteMax, and findMax (but not deleteMin or
findMin). Describe in detail how max heaps can be implemented.

21.6 Show the result of the heapsort algorithm after the initial construction
and then two deleteMax operations on the input in Exercise 21.3.

21.7 Is heapsort a stable sort (i.e., if there are duplicates, do the duplicate items
retain their initial ordering among themselves)?

IN THEORY

21.8 A complete binary tree of N elements uses array positions 1 through N.
Determine how large the array must be for
a. A binary tree that has two extra levels (i.e., is slightly unbalanced)
b. A binary tree that has a deepest node at depth 2 log N
c. A binary tree that has a deepest node at depth 4.1 log N
d. The worst-case binary tree

21.9 Show the following regarding the maximum item in the heap.
a. It must be at one of the leaves
b. There are exactly leaves
c. Every leaf must be examined to find it

N 2⁄

836 chapter 21 a priority queue: the binary heap

21.10 Prove Theorem 21.1 by using a direct summation. Do the following.
a. Show that there are 2i nodes of height H – i
b. Write the equation for the sum of the heights using part (a)
c. Evaluate the sum in part (b)

21.11 Verify that the sum of the heights of all the nodes in a perfect binary
tree satisfies N – v(N), where v(N) is the number of 1s in N’s binary
representation.

21.12 Prove the bound in Exercise 21.11 by using an induction argument.

21.13 For heapsort, O(N log N) comparisons are used in the worst case. Derive
the leading term (i.e., decide whether it is N log N, 2N log N, 3N log N,
and so on).

21.14 Show that there are inputs that force every percDown in heapsort to go all
the way to a leaf. (Hint: Work backward.)

21.15 Suppose that the binary heap is stored with the root at position r. Give for-
mulas for the locations of the children and parent of the node in position i.

21.16 Suppose that binary heaps are represented by explicit links. Give a simple
algorithm to find the tree node that is at implicit position i.

21.17 Suppose that binary heaps are represented by explicit links. Consider the
problem of merging binary heap lhs with rhs. Assume that both heaps are
full complete binary trees, containing 2l – 1 and 2r – 1 nodes, respectively.
a. Give an O(log N) algorithm to merge the two heaps if l = r.
b. Give an O(logN) algorithm to merge the two heaps if .
c. Give an O(log2 N) algorithm to merge the two heaps regardless of

l and r.

21.18 A d-heap is an implicit data structure that is like a binary heap, except
that nodes have d children. A d-heap is thus shallower than a binary
heap, but finding the minimum child requires examining d children
instead of two children. Determine the running time (in terms of d and
N) of the insertion and deleteMin operations for a d-heap.

21.19 A min–max heap is a data structure that supports both deleteMin and
deleteMax at logarithmic cost. The structure is identical to the binary
heap. The min–max heap-order property is that for any node X at even
depth, the key stored at X is the smallest in its subtree, whereas for any
node X at odd depth, the key stored at X is the largest in its subtree. The
root is at even depth. Do the following.
a. Draw a possible min–max heap for the items 1, 2, 3, 4, 5, 6, 7, 8,

9, and 10. Note that there are many possible heaps.
b. Determine how to find the minimum and maximum elements.

l r– 1=

exercises 837

c. Give an algorithm to insert a new node into the min–max heap.
d. Give an algorithm to perform deleteMin and deleteMax.
e. Give an algorithm to perform buildHeap in linear time.

21.20 The 2-D heap is a data structure that allows each item to have two indi-
vidual keys. The deleteMin operation can be performed with respect to
either of these keys. The 2-D heap-order property is that for any node X at
even depth, the item stored at X has the smallest key #1 in its subtree, and
for any node X at odd depth, the item stored at X has the smallest key #2
in its subtree. Do the following.
a. Draw a possible 2-D heap for the items (1, 10), (2, 9), (3, 8), (4,

7), and (5, 6).
b. Explain how to find the item with minimum key #1.
c. Explain how to find the item with minimum key #2.
d. Give an algorithm to insert a new item in the 2-D heap.
e. Give an algorithm to perform deleteMin with respect to either key.
f. Give an algorithm to perform buildHeap in linear time.

21.21 A treap is a binary search tree in which each node stores an item, two
children, and a randomly assigned priority generated when the node is
constructed. The nodes in the tree obey the usual binary search tree order,
but they must also maintain heap order with respect to the priorities. The
treap is a good alternative to the balanced search tree because balance is
based on the random priorities, rather than on the items. Thus the average
case results for binary search trees apply. Do the following.
a. Prove that a collection of distinct items, each of which has a dis-

tinct priority, can be represented by only one treap.
b. Show how to perform insertion in a treap by using a bottom-up

algorithm.
c. Show how to perform insertion in a treap by using a top-down

algorithm.
d. Show how to perform deletion from a treap.

21.22 Explain how to place the initial set of runs on two tapes when the number
of runs is not a Fibonacci number.

IN PRACTICE

21.23 Write the percDown routine with the declaration

static void percDown(AnyType [] a, int index, int size)

Recall that the max heap starts at position 0, not position 1.

838 chapter 21 a priority queue: the binary heap

PROGRAMMING PROJECTS

21.24 Write a program to compare the running time of using the PriorityQueue’s
one-parameter constructor to initialize the heap with N items versus start-
ing with an empty PriorityQueue and performing N separate insertions.
Run your program for sorted, reverse sorted, and random inputs.

21.25 Suppose that you have a number of boxes, each of which can hold total
weight 1.0 and items i1, i2, i3, ..., iN, which weigh w1, w2, w3, ..., wN,
respectively. The object is to pack all the items, using as few boxes as
possible, without placing more weight in any box than its capacity. For
instance, if the items have weights 0.4, 0.4, 0.6, and 0.6, you can solve the
problem with two boxes. This problem is difficult, and no efficient algo-
rithm is known. Several strategies give good, but not optimal, packings.
Write programs to implement efficiently the following approximation
strategies.
a. Scan the items in the order given; place each new item in the

most-filled box that can accept it without overflowing. Use a pri-
ority queue to determine the box that an item goes in.

b. Sort the items, placing the heaviest item first; then use the strat-
egy in part (a).

21.26 Implement both heapsort and quicksort and compare their performances
on both sorted inputs and random inputs. Use different types of data for
the tests.

21.27 Suppose that you have a hole at node X. The normal percDown routine is
to compare X’s children and then move the child up to X if it is larger (in
the case of a max heap) than the element to be placed, thereby pushing
the hole down. Stop when placing the new element in the hole is safe.
Consider the following alternative strategy for percDown. Move elements
up and the hole down as far as possible without testing whether the new
cell can be inserted. These actions would place the new cell in a leaf and
probably violate heap order. To fix the heap order, percolate the new cell
up in the normal manner. The expectation is that the percolation up will
be only one or two levels on average. Write a routine to include this idea.
Compare the running time with that of a standard implementation of
heapsort.

21.28 Redo Exercise 8.20, using heapsort instead of mergesort.

21.29 Implement an external sort.

references 839

21.30 Have the PriorityQueue support decreaseKey as follows: Define a nested
class that implements PriorityQueue.Position. The binary heap will be
represented by an array of objects, in which each object stores a data item
and its index. Each PriorityQueue.Position object stores a reference
back to the corresponding object in the array.

references

The binary heap was first described in the context of heapsort in [8]. The
linear-time buildHeap algorithm is from [4]. Precise results on the number of
comparisons and data movements used by heapsort in the best, worst, and
average case are given in [7]. External sorting is discussed in detail in [6].
Exercise 21.18 is solved in [5]. Exercise 21.19 is solved in [2]. Exercise 21.20
is solved in [3]. Treaps are described in [1].

1. C. Aragon and R. Seidel, “Randomized Search Trees,” Algorithmica 16
(1996), 464–497.

2. M. D. Atkinson, J. R. Sack, N. Santoro, and T. Strothotte, “Min-Max
Heaps and Generalized Priority Queues,” Communications of the ACM 29
(1986), 996–1000.

3. Y. Ding and M. A. Weiss, “The k-d Heap: An Efficient Multi-dimensional
Priority Queue,” Proceedings of the Third Workshop on Algorithms and
Data Structures (1993), 302–313.

4. R. W. Floyd, “Algorithm 245: Treesort 3,” Communications of the ACM 7
(1964), 701.

5. D. B. Johnson, “Priority Queues with Update and Finding Minimum
Spanning Trees,” Information Processing Letters 4 (1975), 53–57.

6. D. E. Knuth, The Art of Computer Programming. Vol. 3: Sorting and
Searching, 2nd ed., Addison-Wesley, Reading, MA, 1998.

7. R. Schaffer and R. Sedgewick, “The Analysis of Heapsort,” Journal of
Algorithms 14 (1993), 76–100.

8. J. W. J. Williams, “Algorithm 232: Heapsort,” Communications of the
ACM 7 (1964), 347–348.

This page intentionally left blank

par t
f i ve

chapter 22 splay trees

chapter 23 merging priority
queues

chapter 24 the disjoint set class

Advanced
Data
Structures

This page intentionally left blank

chap te r 22

splay trees

In this chapter we describe a remarkable data structure called the splay tree,
which supports all the binary search tree operations but does not guarantee
O(log N) worst-case performance. Instead, its bounds are amortized, meaning
that, although individual operations can be expensive, any sequence of opera-
tions is guaranteed to behave as though each operation in the sequence exhib-
ited logarithmic behavior. Because this guarantee is weaker than that provided
by balanced search trees, only the data and two links per node are required for
each item and the operations are somewhat simpler to code. The splay tree has
some other interesting properties, which we reveal in this chapter.

In this chapter, we show

n The concepts of amortization and self-adjustment

n The basic bottom-up splay tree algorithm and a proof that it has loga-
rithmic amortized cost per operation

n Implementation of splay trees with a top-down algorithm, using a
complete splay tree implementation (including a deletion algorithm)

n Comparisons of splay trees with other data structures

844 chapter 22 splay trees

22.1 self-adjustment and
amortized analysis

Although balanced search trees provide logarithmic worst-case running time
per operation, they have several limitations.

n They require storing an extra piece of balancing information per node.

n They are complicated to implement. As a result, insertions and dele-
tions are expensive and potentially error-prone.

n They do not provide a win when easy inputs occur.

The real problem is
that the extra data
members add com-
plications.

Let us examine the consequences of each of these deficiencies. First, bal-
anced search trees require an extra data member. Although in theory this
member can be as small as a single bit (as in a red–black tree), in practice the
extra data member uses an entire integer for storage in order to satisfy hard-
ware restrictions. Because computer memories are becoming huge, we must
ask whether worrying about memory is a large issue. The answer in most
cases is probably not, except that maintaining the extra data members requires
more complex code and tends to lead to longer running times and more errors.
Indeed, identifying whether the balancing information for a search tree is cor-
rect is difficult because errors lead only to an unbalanced tree. If one case is
slightly wrong, spotting the errors might be difficult. Thus, as a practical mat-
ter, algorithms that allow us to remove some complications without sacrific-
ing performance deserve serious consideration.

The 90–10 rule
states that 90 per-
cent of the
accesses are to
10 percent of the
data items. How-
ever, balanced
search trees do not
take advantage of
this rule.

Second, the worst-case, average-case, and best-case performances of a
balanced search are essentially identical. An example is a find operation for
some item X. We could reasonably expect that, not only the cost of the find
will be logarithmic, but also that if we perform an immediate second find for
X, the second access will be cheaper than the first. However, in a red–black
tree, this condition is not true. We would also expect that, if we perform an
access of X, Y, and Z in that order, a second set of accesses for the same
sequence would be easy. This assumption is important because of the 90–10
rule. As suggested by empirical studies, the 90–10 rule states that in practice
90 percent of the accesses are to 10 percent of the data items. Thus we want
easy wins for the 90 percent case, but balanced search trees do not take advan-
tage of this rule.

The 90–10 rule has been used for many years in disk I/O systems. A cache
stores in main memory the contents of some of the disk blocks. The hope is that
when a disk access is requested, the block can be found in the main memory
cache and thus save the cost of an expensive disk access. Of course, only rela-
tively few disk blocks can be stored in memory. Even so, storing the most recently

22.1 self-adjustment and amortized analysis 845

accessed disk blocks in the cache enables large improvements in performance
because many of the same disk blocks are accessed repeatedly. Browsers make
use of the same idea: A cache stores locally the previously visited Web pages.

22.1.1 amortized time bounds

We are asking for a lot: We want to avoid balancing information and, at the
same time, we want to take advantage of the 90–10 rule. Naturally, we should
expect to have to give up some feature of the balanced search tree.

Amortized analysis
bounds the cost of
a sequence of
operations and dis-
tributes this cost
evenly to each
operation in the
sequence.

We choose to sacrifice the logarithmic worst-case performance. We are hop-
ing that we do not have to maintain balance information, so this sacrifice seems
inevitable. However, we cannot accept the typical performance of an unbalanced
binary search tree. But there is a reasonable compromise: O(N) time for a single
access may be acceptable so long as it does not happen too often. In particular, if
any M operations (starting with the first operation) take a total of O(M log N)
worst-case time, the fact that some operations are expensive might be inconse-
quential. When we can show that a worst-case bound for a sequence of operations
is better than the corresponding bound obtained by considering each operation
separately and can be spread evenly to each operation in the sequence, we have
performed an amortized analysis and the running time is said to be amortized. In
the preceding example, we have logarithmic amortized cost. That is, some single
operations may take more than logarithmic time, but we are guaranteed compen-
sation by some cheaper operations that occur earlier in the sequence.

However, amortized bounds are not always acceptable. Specifically, if a
single bad operation is too time consuming, we really do need worst-case
bounds rather than amortized bounds. Even so, in many cases a data structure
is used as part of an algorithm and only the total amount of time used by the
data structure in the course of running an algorithm is important.

We have already presented one example of an amortized bound. When we
implement array doubling in a stack or queue, the cost of a single operation
can be either constant, if no doubling is needed, or O(N), if doubling is
needed. However, for any sequence of M stack or queue operations, the total
cost is guaranteed to be O(M), yielding constant amortized cost per operation.
The fact that the array doubling step is expensive is inconsequential because
its cost can be distributed to many earlier inexpensive operations.

22.1.2 a simple self-adjusting strategy
(that does not work)

In a binary search tree, we cannot expect to store the frequently accessed
items in a simple table. The reason is that the caching technique benefits from
the great discrepancy between main memory and disk access times. Recall

846 chapter 22 splay trees

that the cost of an access in a binary search tree is proportional to the depth of
the accessed node. Thus we can attempt to restructure the tree by moving fre-
quently accessed items toward the root. Although this process costs extra time
during the first find operation, it could be worthwhile in the long run.

The easiest way to move a frequently accessed item toward the root is to
rotate it continually with its parent, moving the item closer to the root, a pro-
cess called the rotate-to-root strategy. Then, if the item is accessed a second
time, the second access is cheap, and so on. Even if a few other operations
intervene before the item is reaccessed, that item will remain close to the root
and thus will be quickly found. An application of the rotate-to-root strategy to
node 3 is shown in Figure 22.1.1

As a result of the rotation, future accesses of node 3 are cheap (for a
while). Unfortunately, in the process of moving node 3 up two levels, nodes 4
and 5 each move down a level. Thus, if access patterns do not follow the 90–
10 rule, a long sequence of bad accesses can occur. As a result, the rotate-to-
root rule does not exhibit logarithmic amortized behavior, which is likely
unacceptable. A bad case is illustrated in Theorem 22.1.

1. An insertion counts as an access. Thus an item would always be inserted as a leaf and then
immediately rotated to the root. An unsuccessful search counts as an access on the leaf at
which the search terminates.

Theorem 22.1 There are arbitrarily long sequences for which M rotate-to-root accesses use Θ(MN)
time.

Proof Consider the tree formed by the insertion of 1, 2, 3, , N in an initially empty tree.
The result is a tree consisting of only left children. This outcome is not bad, as the
time to construct the tree is only O(N) total.

As illustrated in Figure 22.2, each newly added item is made a child of the root. Then,
only one rotation is needed to place the new item at the root. The bad part, as shown
in Figure 22.3, is that accessing the node with key 1 takes N units of time. After the
rotations have been completed, access of the node with key 2 takes N units of time
and access of key 3 takes N – 1 units of time. The total for accessing the N keys in
order is . After they have been accessed, the tree reverts to its
original state and we can repeat the sequence. Thus we have an amortized bound of
only Θ(N).

…

N i
i 2=
N∑+ Θ N 2()=

The rotate-to-root
strategy rearranges
a binary search tree
after each access
so as to move fre-
quently accessed
items closer to
the root.

The rotate-to-root
strategy is good if
the 90–10 rule
applies. It can be a
bad strategy when
the rule does not
apply.

22.2 the basic bottom-up splay tree 847

22.2 the basic bottom-up splay tree
In a basic bottom-
up splay tree, items
are rotated to the
root by using a
slightly more com-
plicated method
than that used for a
simple rotate-to-
root strategy.

Achieving logarithmic amortized cost seems impossible because, when we
move an item to the root via rotations, other items are pushed deeper. Seem-
ingly, that would always result in some very deep nodes if no balancing
information is maintained. Amazingly, we can apply a simple fix to the
rotate-to-root strategy that allows the logarithmic amortized bound to be
obtained. Implementation of this slightly more complicated rotate-to-root
method called splaying leads to the basic bottom-up splay tree.

figure 22.1

Rotate-to-root
strategy applied when
node 3 is accessed

4

2 5

1 3

1

4

3 5

2 5

3

2 4

1

figure 22.2

Insertion of 4 using
the rotate-to-root
strategy

3

2

1

3

2 4

1

1

4

3

2

figure 22.3

Sequential access of
items takes quadratic
time

1

3

2

4 1

2

3

4

1

4

3

2

3

2 4

1

2

1 4

3

848 chapter 22 splay trees

The splaying strategy is similar to the simple rotate-to-root strategy, but
it has one subtle difference. We still rotate from the bottom up along the
access path (later in the chapter we describe a top-down strategy). If X is a
nonroot node on the access path on which we are rotating and the parent of
X is the root of the tree, we merely rotate X and the root, as shown in
Figure 22.4. This rotation is the last along the access path, and it places X at
the root. Note that this action is exactly the same as that in the rotate-to-root
algorithm and is referred to as the zig case.

The zig and zig-zag
cases are identical
to rotate-to-root.

Otherwise, X has both a parent P and a grandparent G, and we must con-
sider two cases and symmetries. The first case is the so called zig-zag case,
which corresponds to the inside case for AVL trees. Here X is a right child and
P is a left child (or vice versa). We perform a double rotation exactly like an
AVL double rotation, as shown in Figure 22.5. Note that, as a double rotation
is the same as two bottom-up single rotations, this case is no different than the
rotate-to-root strategy. In Figure 22.1, the splay at node 3 is a single zig-zag
rotation.

The zig-zig case is
unique to the splay
tree.

The final case, the zig-zig case, is unique to the splay tree and is the out-
side case for AVL trees. Here, X and P are either both left children or both
right children. In this case, we transform the left-hand tree of Figure 22.6 to
the right-hand tree. Note that this method differs from the rotate-to-root strat-
egy. The zig-zig splay rotates between P and G and then X and P, whereas the
rotate-to-root strategy rotates between X and P and then between X and G.

figure 22.4

The zig case (normal
single rotation)

B C

P

X C

A B

X

A P

figure 22.5

The zig-zag case
(same as a double
rotation); the
symmetric case has
been omitted

G

P D

A

B C

X

X

P G

A B C D

22.2 the basic bottom-up splay tree 849

The difference seems quite minor, and the fact that it matters is somewhat
surprising. To see this difference consider the sequence that gave the poor
results in Theorem 22.1. Again, we insert keys 1, 2, 3, . . . , N in an initially
empty tree in linear total time and obtain an unbalanced left-child-only tree.
However, the result of a splay is somewhat better, as shown in Figure 22.7.
After the splay at node 1, which takes N node accesses, a splay at node 2 takes
only roughly accesses, rather than N – 1 accesses. Splaying not only
moves the accessed node to the root, but it also roughly halves the depth of
most nodes on the access path (some shallow nodes are pushed down at most
two levels). A subsequent splay at node 2 brings nodes to within of the
root. Splaying is repeated until the depth becomes roughly log N. In fact, a
complicated analysis shows that what used to be a bad case for the rotate-to-
root algorithm is a good case for splaying: Sequential access of the N items in
the splay tree takes a total of only O(N) time. Thus we win on easy input. In
Section 22.4 we show, by subtle accounting, that there are no bad access
sequences.

figure 22.6

Zig-zig case (unique
to the splay tree); the
symmetric case has
been omitted

A B

G

P D

X C

DC

X

PA

GB

figure 22.7

Result of splaying at
node 1 (three zig-zigs)

1

7

2

3

4

5

6

4

52

3

7

1

6

4

2

3

5

6

7

17

5

6

3

1

2

4

N 2⁄

N 4⁄

Splaying has the
effect of roughly
halving the depth of
most nodes on the
access path and
increasing by at
most two levels the
depth of a few
other nodes.

850 chapter 22 splay trees

22.3 basic splay tree operations
After an item has
been inserted as a
leaf, it is splayed to
the root.

As mentioned earlier, a splay operation is performed after each access. When
an insertion is performed, we perform a splay. As a result, the newly inserted
item becomes the root of the tree. Otherwise, we could spend quadratic time
constructing an N item tree.

All searching oper-
ations incorporate a
splay.

For the find, we splay at the last node accessed during the search. If the
search is successful, the node found is splayed and becomes the new root. If
the search is unsuccessful, the last node accessed prior to reaching the null
reference is splayed and becomes the new root. This behavior is necessary
because, otherwise, we could repeatedly perform a find for 0 in the initial tree
in Figure 22.7 and use linear time per operation. Likewise, operations such as
findMin and findMax perform a splay after the access.

The interesting operations are the deletions. Recall that the deleteMin and
deleteMax are important priority queue operations. With splay trees, these
operations become simple. We can implement deleteMin as follows. First, we
perform a findMin. This brings the minimum item to the root, and by the
binary search tree property, there is no left child. We can use the right child as
the new root. Similarly, deleteMax can be implemented by calling findMax and
setting the root to the post-splay root’s left child.

Deletion opera-
tions are much sim-
pler than usual.
They also contain a
splaying step
(sometimes two).

Even the remove operation is simple. To perform deletion, we access the
node to be deleted, which puts the node at the root. If it is deleted, we get two
subtrees, L and R (left and right). If we find the largest element in L, using a
findMax operation, its largest element is rotated to L’s root and L’s root has no
right child. We finish the remove operation by making R the right child of L’s
root. An example of the remove operation is shown in Figure 22.8.

The cost of the remove operation is two splays. All other operations cost
one splay. Thus we need to analyze the cost of a series of splay steps. The next
section shows that the amortized cost of a splay is at most 3 log N + 1 single
rotations. Among other things, this means we do not have to worry that the
remove algorithm described previously is biased. The splay tree’s amortized

figure 22.8

The remove operation
applied to node 6:
First, 6 is splayed to
the root, leaving two
subtrees; a findMax is
performed on the left
subtree, raising 5 to
the root of the left
subtree; then the right
subtree can be
attached (not shown).

6

4 7

2 5

1

5

4 7

2

1

4 7

2 5

1

4

2 6

1 5 7

22.4 analysis of bottom-up splaying 851

The rank of a node
is the logarithm of
its size. Ranks and
sizes are not main-
tained but are
merely accounting
tools for the proof.
Only nodes on the
splay path have
their ranks
changed.

bound guarantees that any sequence of M splays will use at most 3 M log
N + M tree rotations. Consequently, any sequence of M operations starting
from an empty tree will take a total of at most O(M log N) time.

22.4 analysis of bottom-up splaying
The analysis of the
splay tree is com-
plicated and is part
of a much larger
theory of amortized
analysis.

The analysis of the splay tree algorithm is complicated because each splay
can vary from a few rotations to O(N) rotations. Each splay can drastically
change the structure of the tree. In this section we prove that the amortized
cost of a splay is at most 3 log N + 1 single rotations. The splay tree’s amortized
bound guarantees that any sequence of M splays use at most 3 M log N + M tree
rotations, and consequently any sequence of M operations starting from an
empty tree take a total of at most O(M log N) time.

The potential func-
tion is an account-
ing device used to
establish the
required time
bound.

To prove this bound, we introduce an accounting function called the
potential function. Not maintained by the algorithm, the potential function is
merely an accounting device used to establish the required time bound. Its
choice is not obvious and is the result of a large amount of trial and error.

For any node i in the splay tree, let S(i) be the number of descendants of i
(including i itself). The potential function is the sum, over all nodes i in the
tree T, of the logarithm of S(i). Specifically,

To simplify the notation, we let R(i) = log S(i), which gives

The term R(i) represents the rank of node i, or the logarithm of its size.
Note that the rank of the root is log N. Recall that neither ranks nor sizes are
maintained by splay tree algorithms (unless, of course, order statistics are
needed). When a zig rotation is performed, only the ranks of the two nodes
involved in the rotation change. When a zig-zig or a zig-zag rotation is per-
formed, only the ranks of the three nodes involved in the rotation change. And
finally, a single splay consists of some number of zig-zig or zig-zag rotations
followed by perhaps one zig rotation. Each zig-zig or zig-zag rotation can be
counted as two single rotations.

For Theorem 22.2 we let be the potential function of the tree immedi-
ately after the ith splay and be the potential prior to the first splay.

Φ T() S i()log
i T∈
∑=

Φ T() R i()∑=

Φi

Φ0

852 chapter 22 splay trees

In all the proofs in
this section we use
the concept of tele-
scoping sums.

Before proving Theorem 22.2, let us determine what it means. The cost of
M splays can be taken as rotations. If the M splays are consecutive
(i.e., no insertions or deletions intervene), the potential of the tree after the i th
splay is the same as prior to the (i + 1)th splay. Thus we can use Theorem 22.2
M times to obtain the following sequence of equations:

(22.1)

These equations telescope, so if we add them, we obtain

(22.2)

which bounds the total number of rotations as

Now consider what happens when insertions are intermingled with find
operations. The potential of an empty tree is 0, so when a node is inserted in
the tree as a leaf, prior to the splay the potential of the tree increases by at
most log N (which we prove shortly). Suppose that ri rotations are used for an
insertion and that the potential prior to the insertion is . After the inser-
tion, the potential is at most . After the splay that moves the
inserted node to the root, the new potential will satisfy

(22.3)

Suppose further that there are F finds and I insertions and that represents
the potential after the i th operation. Then, because each find is governed by
Theorem 22.2 and each insertion is governed by Equation 22.3, the telescop-
ing logic indicates that

(22.4)

Theorem 22.2 If the ith splay operation uses rotations, .ri Φi Φi 1–– ri+ 3 Nlog 1+≤

rii 1=
M∑

Φ1 Φ0– r1+ 3 Nlog 1 +≤
Φ2 Φ1– r2+ 3 Nlog 1 +≤
Φ3 Φ2– r3+ 3 Nlog 1 +≤

…
ΦM ΦM 1–– rM+ 3 Nlog 1+≤

ΦM Φ0– rii 1=
M∑+ 3 Nlog 1+()M≤

rii 1=
M∑ 3 Nlog 1+()M ΦM Φ0–()–≤

Φi 1–

Φi 1– log N+

Φi Φi 1– log N+()– ri+ 3 Nlog 1+≤
Φi Φi 1–– ri+ 4 Nlog 1+≤

Φi

rii 1=
M∑ 3 Nlog 1+()F 4 Nlog 1+()I ΦM Φ0–()–+≤

22.4 analysis of bottom-up splaying 853

Moreover, before the first operation the potential is 0, and since it can never
be negative, . Consequently, we obtain

(22.5)

showing that the cost of any sequence of finds and insertions is at most loga-
rithmic per operation. A deletion is equivalent to two splays, so it too is loga-
rithmic. Thus we must prove the two dangling claims—namely, Theorem 22.2
and the fact that an insertion of a node adds at most log N to the potential. We
prove both theorems by using telescoping arguments. We take care of the
insertion claim first, as Theorem 22.3.

To prove Theorem 22.2, we break each splay step into its constituent zig,
zig-zag, and zig-zig parts and establish a bound for the cost of each type of
rotation. By telescoping these bounds, we obtain a bound for the splay. Before
continuing, we need a technical theorem, Theorem 22.4.

We are now ready to prove Theorem 22.2.

ΦM Φ0– 0≥

rii 1=
M∑ 3 Nlog 1+()F 4 Nlog 1+()I+≤

Insertion of the Nth node in a tree as a leaf adds at most log N to the potential of the
tree.

Theorem 22.3

The only nodes whose ranks are affected are those on the path from the inserted
leaf to the root. Let be their sizes prior to the insertion and note that

 and . Let be the sizes after the inser-
tion. Clearly, for , since . Consequently, . The
change in potential is thus

Proof
S1 S2 … Sk, , ,

Sk N 1–= S1 S2
… Sk< < < S′1 S′2 … S′k, , ,

S′i Si 1+≤ i k< S′i Si 1+= R′i Ri 1+≤

R′i Ri–()
i 1=
k∑ R′k Rk– Ri 1+ Ri–()

i 1=
k 1–∑+ log N R1– log N.≤ ≤ ≤

If and a and b are both positive integers, then . Theorem 22.4

By the arithmetic–geometric mean inequality, . Thus .
Squaring both sides gives . Then taking logarithms of both sides proves
the theorem.

Proof

a b+ c≤ alog blog+ 2 clog 2–≤

ab a b+() 2⁄≤ ab c 2⁄≤
ab c2 4⁄≤

854 chapter 22 splay trees

22.4.1 proof of the splaying bound

First, if the node to splay is already at the root, there are no rotations and no
potential change. Thus the theorem is trivially true, and we may assume at
least one rotation. We let X be the node involved in the splay. We need to show
that, if r rotations are performed (a zig-zig or zig-zag counts as two rotations),
r plus the change in potential is at most 3 log N + 1. Next, we let Δ be the
change in potential caused by any of the splay steps zig, zig-zag, or zig-zig.
Finally, we let Ri(X) and Si(X) be the rank and size of any node X immediately
before a splay step and Rf (X) and Sf (X) be the rank and size of any node X
immediately after a splay step. Following are the bounds that are to be proven.

For a zig step that promotes node X, Δ ≤ 3(Rf (X) – Ri(X)); for the other
two steps, Δ ≤ 3(Rf (X) – Ri(X)) – 2. When we add these bounds over all the
steps that comprise a splay, the sum telescopes to the desired bound. We prove
each bound separately in Theorems 22.5–22.7. Then we can complete the
proof of Theorem 22.2 by applying a telescoping sum.

The zig-zag and zig-zig steps are more complicated because the ranks of
three nodes are affected. First, we prove the zig-zag case.

Theorem 22.5 For a zig step, Δ ≤ 3(Rf (X) – Ri(X)).

Proof As mentioned earlier in this section, the only nodes whose ranks change in a zig step
are X and P. Consequently, the potential change is Rf (X) – Ri(X) + Rf (P) – Ri (P).
From Figure 22.4, Sf (P) < Si (P); thus it follows that Rf (P) – Ri (P) < 0. Consequently,
the potential change satisfies Δ ≤ Rf (X) – Ri (X). As Sf (X) > Si (X), it follows that
Rf (X) – Ri (X) > 0; hence Δ ≤ 3(Rf (X) – Ri (X)).

Theorem 22.6 For a zig-zag step, Δ ≤ 3(Rf (X) – Ri(X)) – 2.

Proof As before, we have three changes, so the potential change is given by

From Figure 22.5, , so their ranks must be equal. Thus we obtain

(continues next page)

Δ Rf X() Ri X()– Rf P() Ri P()– Rf G() Ri G()–+ +=

Sf X() Si G()=

Δ R– i X() Rf P() R– i P() Rf G()+ +=

22.4 analysis of bottom-up splaying 855

Finally, we prove the bound for the zig-zig case.

(continued from previous page)

Also, . Consequently, . Making this substitution and rear-
ranging terms gives

(22.6)

From Figure 22.5, . Applying Theorem 22.4, we obtain
log , which by the definition of rank, becomes

(22.7)

Substituting Equation 22.7 into Equation 22.6 yields

(22.8)

As for the zig rotation, , so we can add it to the right side of Equa-
tion 22.8, factor, and obtain the desired

Proof of
Theorem 22.6

Si P() Si X()≥ Ri P() Ri X()≥

Δ Rf P() Rf G() 2Ri X()–+≤

Sf P() Sf G() Sf X()≤+
Sf P() log Sf G() 2 log Sf X() 2–≤+

Rf P() Rf G() 2Rf X() 2–≤+

Δ 2Rf X() 2Ri X()– 2–≤

Rf X() Ri X() 0>–

Δ 3 Rf X() Ri X()–() 2–≤

For a zig-zig step, Theorem 22.7

As before, we have three changes, so the potential change is given by

From Figure 22.6, their ranks must be equal, so we obtain

We also can obtain and Making this substitution and
rearranging gives

(22.9)

(continues next page)

Proof

Δ 3(Rf X() Ri X())– 2.–≤

Δ Rf X() Ri X()– Rf P() Ri P()– Rf G() Ri G()–+ +=

Sf X() Si G();=

Δ R– i X() Rf P() Ri P()– Rf G()+ +=

Ri P() Ri X()> Rf P() Rf X().<

Δ Rf X() Rf G() 2Ri X()–+<

856 chapter 22 splay trees

Now that we have established bounds for each splaying step, we can
finally complete the proof of Theorem 22.2.

Although it is complex, the proof of the splay tree bound illustrates sev-
eral interesting points. First, the zig-zig case is apparently the most expensive:
It contributes a leading constant of 3, whereas the zig-zag contributes 2. The
proof would fall apart if we tried to adapt it to the rotate-to-root algorithm
because, in the zig case, the number of rotations plus the potential change is

The 1 at the end does not telescope out, so we would not
be able to show a logarithmic bound. This is fortunate because we already
know that a logarithmic bound would be incorrect.

Proof of
Theorem 22.7

(continued from previous page)

From Figure 22.6, so applying Theorem 22.4 yields

(22.10)

Rearranging Equation 22.10, we obtain

(22.11)

When we substitute Equation 22.11 into Equation 22.9, we get

Si X() Sf G() Sf X(),≤+

Ri X() Rf G() 2Rf X() 2–≤+

Rf G() 2Rf X() Ri X()– 2–≤

Δ 3 Rf X() Ri X()–() 2–≤

Proof of
Theorem 22.2

Let R0(X) be the rank of X prior to the splay. Let Ri(X) be X’s rank after the ith splay-
ing step. Prior to the last splaying step, all splaying steps must be zig-zags or zig-zigs.
Suppose that there are k such steps. Then the total number of rotations performed at
that point is 2k. The total potential change is This
sum telescopes to At this point, the total number of rotations
plus the total potential change is bounded by because the 2k term cancels
and the initial rank of X is not negative. If the last rotation is a zig-zig or a zig-zag,
then a continuation of the telescoping sum gives a total of 3R(root). Note that here,
on the one hand, the –2 in the potential increase cancels the cost of two rotations.
On the other hand, this cancellation does not happen in the zig, so we would get a
total of 3R(root) +1. The rank of the root is log N, so then—in the worst case—the total
number of rotations plus the change in potential during a splay is at most 3 log N + 1.

Σi 1=

k
(3(Ri X() Ri 1– X())– 2.–

3(Rk X() R0 X())– 2k.–
3Rk X()

Rf X() Ri X()– 1.+

22.5 top-down splay trees 857

The technique of amortized analysis is very interesting, and some general
principles have been developed to formalize the framework. Check the refer-
ences for more details.

22.5 top-down splay trees
As for red–black
trees, top-down
splay trees are
more efficient in
practice than their
bottom-up counter-
parts.

A direct implementation of the bottom-up splay strategy requires a pass
down the tree to perform an access and then a second pass back up the tree.
These passes can be made by maintaining parent links, by storing the access
path on a stack, or by using a clever trick to store the path (using the avail-
able links in the accessed nodes). Unfortunately, all these methods require
expending a substantial amount of overhead and handling many special
cases. Recall from Section 19.5 that implementing search tree algorithms
with a single top-down pass is a better approach and we can use dummy
nodes to avoid special cases. In this section we describe a top-down splay
tree that maintains the logarithmic amortized bound, is faster in practice,
and uses only constant extra space. It is the method recommended by the
inventors of the splay tree.

The basic idea behind the top-down splay tree is that, as we descend the
tree searching for some node X, we must take the nodes that are on the access
path and move them and their subtrees out of the way. We must also perform
some tree rotations to guarantee the amortized time bound.

We maintain three
trees during the
top-down pass.

At any point in the middle of the splay, a current node X is the root of its
subtree; it is represented in the diagrams as the middle tree. Tree L stores
nodes that are less than X; similarly, tree R stores nodes that are larger than X.
Initially, X is the root of T, and L and R are empty. Descending the tree two
levels at a time, we encounter a pair of nodes. Depending on whether these
nodes are smaller or larger than X, we place them in L or R, along with sub-
trees that are not on the access path to X. Thus the current node on the search
path is always the root of the middle tree. When we finally reach X, we can
then attach L and R to the bottom of the middle tree. As a result, X has been
moved to the root. The remaining tasks then are to place nodes in L and R and
to perform the reattachment at the end, as illustrated in the trees shown in
Figure 22.9. As is customary, three symmetric cases are omitted.

In all the diagrams, X is the current node, Y is its child, and Z is a grand-
child (should an applicable node exist). (The precise meaning of the term
applicable is made clear during the discussion of the zig case.)

If the rotation should be a zig, the tree rooted at Y becomes the new root of
the middle tree. Node X and subtree B are attached as a left child of the smallest

858 chapter 22 splay trees

item in R; X’s left child is logically made null.2 As a result, X is the new small-
est element in R, making future attachments easy.

Note that Y does not have to be a leaf for the zig case to apply. If the item
sought is found in Y, a zig case will apply even if Y has children. A zig case
also applies if the item sought is smaller than Y and Y has no left child, even if
Y has a right child, and also for the symmetric case.

A similar dissection applies to the zig-zig case. The crucial point is that a
rotation between X and Y is performed. The zig-zag case brings the bottom
node Z to the top of the middle tree and attaches subtrees X and Y to R and L,
respectively. Note that Y is attached to, and then becomes, the largest item in L.

2. In the code written here, the smallest node in R does not have a null left link because it is
not needed.

figure 22.9

Top-down splay
rotations: (a) zig,
(b) zig-zig, and
(c) zig-zag

L

A B

R L R

B

X

Y A

Y

X

L R L R

B C

C

B

X

A

Z

A

Z

Y

Y

X

L R L R

C

C

B

X

A

Z

B

Z

X

A

Y

Y

(a)

(b)

(c)

22.5 top-down splay trees 859

The zig-zag step can be simplified somewhat because no rotations are
performed. Instead of making Z the root of the middle tree, we make Y the
root, as shown in Figure 22.10. This action simplifies the coding because the
action for the zig-zag case becomes identical to the zig case and would seem
advantageous, as testing for a host of cases is time-consuming. The disadvan-
tage is that a descent of only one level results in more iterations in the splay-
ing procedure.

Eventually, the
three trees are
reassembled into
one.

Once we have performed the final splaying step, L, R, and the middle
tree are arranged to form a single tree, as shown in Figure 22.11. Note that
the result is different from that obtained with bottom–up splaying. The cru-
cial fact is that the O(log N) amortized bound is preserved (see Exercise 22.3).

An example of the simplified top-down splaying algorithm is shown in
Figure 22.12. When we attempt to access 19, the first step is a zig-zag. In accor-
dance with a symmetric version of Figure 22.10, we bring the subtree rooted at
25 to the root of the middle tree and attach 12 and its left subtree to L.

Next, we have a zig-zig: 15 is elevated to the root of the middle tree, and a
rotation between 20 and 25 is performed, with the resulting subtree being
attached to R. The search for 19 then results in a terminal zig. The middle’s
new root is 18, and 15 and its left subtree are attached as a right child of L’s
largest node. The reassembly, in accordance with Figure 22.11, terminates the
splay step.

figure 22.10

Simplified top-down
zig-zagL R L R

C

C

B

X

A

Z X

Y

BA

Z

Y

figure 22.11

Final arrangement for
top-down splayingL R

B

X

A R

X

L

BA

860 chapter 22 splay trees

22.6 implementation of
top-down splay trees

The splay tree class skeleton is shown in Figure 22.13. We have the usual
methods, except that find is a mutator rather than an accessor. The BinaryNode
class is our standard package-visible node class that contains data and two
child references, but it is not shown. To eliminate annoying special cases,

figure 22.12

Steps in a top-down
splay (accessing 19 in
the top tree)

16

24

1813

Empty

Empty

Empty
12

5

15

25

20 30

16

24

1813

12

5

12

5

15

16

18

16

18

13

15

25

20 30

25

20

3024

25

20

3024

25

20

3024

Simplified zig-zag

Zig-zig

Zig

Reassemble

18

12

5

13

15

12

5

13

15

16

22.6 implementation of top-down splay trees 861

we maintain a nullNode sentinel. We allocate and initialize the sentinel in
the constructor, as shown in Figure 22.14.

Figure 22.15 shows the method for insertion of an item x. A new node
(newNode) is allocated, and if the tree is empty, a one-node tree is created. Oth-
erwise, we splay around x. If the data in the tree’s new root equal x, we have a
duplicate. In this case, we do not want to insert x; we throw an exception
instead at line 39. We use an instance variable so that the next call to insert

figure 22.13

The top-down SplayTree class skeleton

1 package weiss.nonstandard;
2
3 // SplayTree class
4 //
5 // CONSTRUCTION: with no initializer
6 //
7 // ******************PUBLIC OPERATIONS*********************
8 // void insert(x) --> Insert x
9 // void remove(x) --> Remove x

10 // Comparable find(x) --> Return item that matches x
11 // boolean isEmpty() --> Return true if empty; else false
12 // void makeEmpty() --> Remove all items
13 // ******************ERRORS********************************
14 // Exceptions are thrown by insert and remove if warranted
15
16 public class SplayTree<AnyType extends Comparable<AnyType>>
17 {
18 public SplayTree()
19 { /* Figure 22.14 */ }
20
21 public void insert(AnyType x)
22 { /* Figure 22.15 */ }
23 public void remove(AnyType x)
24 { /* Figure 22.16 */ }
25 public AnyType find(AnyType x)
26 { /* Figure 22.18 */ }
27
28 public void makeEmpty()
29 { root = nullNode; }
30 public boolean isEmpty()
31 { return root == nullNode; }
32
33 private BinaryNode<AnyType> splay(AnyType x, BinaryNode<AnyType> t)
34 { /* Figure 22.17 */ }
35
36 private BinaryNode<AnyType> root;
37 private BinaryNode<AnyType> nullNode;
38 }

862 chapter 22 splay trees

figure 22.14

The SplayTree class
constructor

1 /**
2 * Construct the tree.
3 */
4 public SplayTree()
5 {
6 nullNode = new BinaryNode<AnyType>(null);
7 nullNode.left = nullNode.right = nullNode;
8 root = nullNode;
9 }

figure 22.15

The top-down
SplayTree class
insertion routine

1 // Used between different inserts
2 private BinaryNode<AnyType> newNode = null;
3
4 /**
5 * Insert into the tree.
6 * @param x the item to insert.
7 * @throws DuplicateItemException if x is already present.
8 */
9 public void insert(AnyType x)

10 {
11 if(newNode == null)
12 newNode = new BinaryNode<AnyType>(null);
13 newNode.element = x;
14
15 if(root == nullNode)
16 {
17 newNode.left = newNode.right = nullNode;
18 root = newNode;
19 }
20 else
21 {
22 root = splay(x, root);
23 if(x.compareTo(root.element) < 0)
24 {
25 newNode.left = root.left;
26 newNode.right = root;
27 root.left = nullNode;
28 root = newNode;
29 }
30 else
31 if(x.compareTo(root.element) > 0)
32 {
33 newNode.right = root.right;
34 newNode.left = root;
35 root.right = nullNode;
36 root = newNode;
37 }
38 else
39 throw new DuplicateItemException(x.toString());
40 }
41 newNode = null; // So next insert will call new
42 }

22.6 implementation of top-down splay trees 863

can avoid calling new, in the case that the insert fails because of a duplicate
item. (Normally, we would not be so concerned with this exceptional case;
however, a reasonable alternative is to use a Boolean return value rather than
using exceptions.)

If the new root contains a value larger than x, the new root and its right
subtree become a right subtree of newNode, and the root’s left subtree becomes
a left subtree of newNode. Similar logic applies if the new root contains a value
smaller than x. In either case, newNode is assigned to root to indicate that it is
the new root. Then we make newNode null at line 41 so that the next call to
insert will call new.

Figure 22.16 shows the deletion routine for splay trees. A deletion proce-
dure rarely is shorter than the corresponding insertion procedure. Next, is the
top-down splaying routine.

Our implementation, shown in Figure 22.17, uses a header with left and
right links to contain eventually the roots of the left and right trees. These
trees are initially empty; a header is used to correspond to the min or max
node of the right or left tree, respectively, in this initial state. In this way we
can avoid checking for empty trees. The first time the left tree becomes non-
empty, the header’s right link is initialized and does not change in the future.

figure 22.16

The top-down
SplayTree class
deletion routine

1 /**
2 * Remove from the tree.
3 * @param x the item to remove.
4 * @throws ItemNotFoundException if x is not found.
5 */
6 public void remove(AnyType x)
7 {
8 BinaryNode<AnyType> newTree;
9

10 // If x is found, it will be at the root
11 root = splay(x, root);
12 if(root.element.compareTo(x) != 0)
13 throw new ItemNotFoundException(x.toString());
14
15 if(root.left == nullNode)
16 newTree = root.right;
17 else
18 {
19 // Find the maximum in the left subtree
20 // Splay it to the root; and then attach right child
21 newTree = root.left;
22 newTree = splay(x, newTree);
23 newTree.right = root.right;
24 }
25 root = newTree;
26 }

864 chapter 22 splay trees

figure 22.17

A top-down splay algorithm

1 private BinaryNode<AnyType> header = new BinaryNode<AnyType>(null);
2
3 /**
4 * Internal method to perform a top-down splay.
5 * The last accessed node becomes the new root.
6 * @param x the target item to splay around.
7 * @param t the root of the subtree to splay.
8 * @return the subtree after the splay.
9 */

10 private BinaryNode<AnyType> splay(AnyType x, BinaryNode<AnyType> t)
11 {
12 BinaryNode<AnyType> leftTreeMax, rightTreeMin;
13
14 header.left = header.right = nullNode;
15 leftTreeMax = rightTreeMin = header;
16
17 nullNode.element = x; // Guarantee a match
18
19 for(; ;)
20 if(x.compareTo(t.element) < 0)
21 {
22 if(x.compareTo(t.left.element) < 0)
23 t = Rotations.rotateWithLeftChild(t);
24 if(t.left == nullNode)
25 break;
26 // Link Right
27 rightTreeMin.left = t;
28 rightTreeMin = t;
29 t = t.left;
30 }
31 else if(x.compareTo(t.element) > 0)
32 {
33 if(x.compareTo(t.right.element) > 0)
34 t = Rotations.rotateWithRightChild(t);
35 if(t.right == nullNode)
36 break;
37 // Link Left
38 leftTreeMax.right = t;
39 leftTreeMax = t;
40 t = t.right;
41 }
42 else
43 break;
44
45 leftTreeMax.right = t.left;
46 rightTreeMin.left = t.right;
47 t.left = header.right;
48 t.right = header.left;
49 return t;
50 }

22.7 comparison of the splay tree with other search trees 865

Thus it contains the root of the left tree at the end of the top-down search.
Similarly, the header’s left link eventually contains the root of the right tree.
The header variable is not local because we want to allocate it only once over
the entire sequence of splays.

Before the reassembly at the end of the splay, header.left and header.right
reference R and L, respectively (this is not a typo—follow the links). Note that we
are using the simplified top-down splay. The find method, shown in Figure 22.18,
completes the implementation of the splay tree.

22.7 comparison of the splay tree
with other search trees

The implementation just presented suggests that splay trees are not as compli-
cated as red–black trees and almost as simple as AA-trees. Are they worth
using? The answer has yet to be resolved completely, but if the access patterns
are nonrandom, splay trees seem to perform well in practice. Some properties
relating to their performances also can be proved analytically. Nonrandom
accesses include those that follow the 90–10 rule, as well as several special
cases such as sequential access, double-ended access, and apparently access
patterns that are typical of priority queues during some types of event simula-
tions. In the exercises you are asked to examine this question in more detail.

Splay trees are not perfect. One problem with them is that the find opera-
tion is expensive because of the splay. Hence when access sequences are ran-
dom and uniform, splay trees do not perform as well as other balanced trees.

figure 22.18

The find routine, for
top-down splay trees

1 /**
2 * Find an item in the tree.
3 * @param x the item to search for.
4 * @return the matching item or null if not found.
5 */
6 public AnyType find(AnyType x)
7 {
8 root = splay(x, root);
9

10 if(isEmpty() || root.element.compareTo(x) != 0)
11 return null;
12
13 return root.element;
14 }

866 chapter 22 splay trees

summary

In this chapter we described the splay tree, which is a recent alternative to the
balanced search tree. Splay trees have several remarkable properties that can
be proved, including their logarithmic cost per operation. Other properties are
suggested in the exercises. Some studies have suggested that splay trees can
be used for a wide range of applications because of their apparent ability to
adapt to easy access sequences.

In Chapter 23 we describe two priority queues that, like the splay tree,
have poor worst-case performance but good amortized performance. One of
these, the pairing heap, seems to be an excellent choice for some applications.

key concepts

90–10 rule States 90 percent of the accesses are to 10 percent of the data items.
However, balanced search trees do not take advantage of this rule. (844)

amortized analysis Bounds the cost of a sequence of operations and distributes
the cost evenly to each operation in the sequence. (845)

bottom-up splay tree A tree in which items are rotated to the root by using a
slightly more complicated method than that used for a simple rotate-to-
root strategy. (847)

potential function An accounting device used to establish an amortized time
bound. (851)

rank In the splay tree analysis, the logarithm of a node’s size. (851)
rotate-to-root strategy Rearranges a binary search tree after each access so as

to move frequently accessed items closer to the root. (846)
splaying A rotate-to-root strategy that allows the logarithmic amortized bound

to be obtained. (847)
top-down splay tree A type of splay tree that is more efficient in practice than

its bottom-up counterpart, as was the case for red–black trees. (857)
zig and zig-zag Cases that are identical to the rotate-to-root cases. Zig is used

when X is a child of the root, and zig-zag is used when X is an inside
(grandchild) node. (848)

zig-zig A case unique to the splay tree, which is used when X is an outside
(grandchild) node. (848)

exercises 867

common errors

1. A splay must be performed after every access, even an unsuccessful one,
or the performance bounds are not valid.

2. The code is still tricky.

3. Recursive private methods cannot be used safely in the SplayTree class
because the tree depth may be large, even while performance is otherwise
acceptable.

on the internet

The SplayTree class is available online. The code includes versions of
findMin and findMax that are efficient in an amortized sense but not com-
pletely optimized.

SplayTree.java Contains the implementation for the SplayTree class.

exercises

IN SHORT

22.1 Show the result of inserting 3, 1, 4, 5, 2, 9, 6, and 8 into a
a. Bottom-up splay tree
b. Top-down splay tree

22.2 Show the result of deleting 3 from the splay tree shown in Exercise 22.1
for both the bottom-up and top-down versions.

IN THEORY

22.3 Prove that the amortized cost of a top-down splay is O(log N).

22.4 Prove that if all nodes in a splay tree are accessed in sequential order,
the resulting tree consists of a chain of left children.

22.5 Suppose that, in an attempt to save time, we splay on every second
tree operation. Does the amortized cost remain logarithmic?

22.6 Nodes 1 through N = 1024 form a splay tree of left children.
a. What is the internal path length of the tree (exactly)?
b. Calculate the internal path length after each of find(1), find(2),

and find(3) when a bottom-up splay is performed.

868 chapter 22 splay trees

22.7 By changing the potential function, you can prove different bounds
for splaying. Let the weight function W(i) be some function assigned
to each node in the tree and S(i) be the sum of the weights of all nodes
in the subtree rooted at i, including i itself. The special case W(i) = 1
for all nodes corresponds to the function used in the proof of the
splaying bound. Let N be the number of nodes in the tree and M be
the number of accesses. Prove the following two theorems.
a. The total access time is O(M + (M + N) log N).
b. If qi is the total number of times that item i is accessed and qi > 0

for all i, then the total access time is O(M + log(M/qi)).

IN PRACTICE

22.8 Use the splay tree to implement a priority queue class.

22.9 Modify the splay tree to support order statistics.

PROGRAMMING PROJECTS

22.10 Compare empirically the simplified top-down splay implemented in
Section 22.6 with the original top-down splay discussed in Section
22.5.

22.11 Unlike balanced search trees, splay trees incur overhead during a find
operation that can be undesirable if the access sequence is sufficiently
random. Experiment with a strategy that splays on a find operation
only after a certain depth d is traversed in the top-down search. The
splay does not move the accessed item all the way to the root, but
rather to the point at depth d where the splaying is started.

22.12 Compare empirically a top-down splay tree priority queue implemen-
tation with a binary heap by using
a. Random insert and deleteMin operations
b. insert and deleteMin operations corresponding to an event-driven

simulation
c. insert and deleteMin operations corresponding to Dijkstra’s

algorithm

references

The splay tree is described in the paper [3]. The concept of amortized analysis
is discussed in the survey paper [4] and also in greater detail in [5]. A compar-
ison of splay trees and AVL trees is given in [1], and [2] shows that splay trees
perform well in some types of event-driven simulations.

Σ i 1=
N

qi

references 869

1. J. Bell and G. Gupta, “An Evaluation of Self-Adjusting Binary Search
Tree Techniques,” Software-Practice and Experience 23 (1993), 369–382.

2. D. W. Jones, “An Empirical Comparison of Priority-Queue and Event-Set
Implementations,” Communications of the ACM 29 (1986), 300–311.

3. D. D. Sleator and R. E. Tarjan, “Self-adjusting Binary Search Trees,”
Journal of the ACM 32 (1985), 652–686.

4. R. E. Tarjan, “Amortized Computational Complexity,” SIAM Journal on
Algebraic and Discrete Methods 6 (1985), 306–318.

5. M. A. Weiss, Data Structures and Algorithm Analysis in Java, 2nd ed.,
Addison-Wesley, Reading, MA, 2007.

This page intentionally left blank

chap te r 23

merging
priority queues

In this chapter we examine priority queues that support an additional opera-
tion: The merge operation, which is important in advanced algorithm design,
combines two priority queues into one (and logically destroys the originals).
We represent the priority queues as general trees, which simplifies somewhat
the decreaseKey operation and is important in some applications.

In this chapter, we show

n How the skew heap—a mergeable priority queue implemented with
binary trees—works.

n How the pairing heap—a mergeable priority queue based on the
M-ary tree—works. The pairing heap appears to be a practical alter-
native to the binary heap even if the merge operation is not needed.

23.1 the skew heap
The skew heap is a heap-ordered binary tree without a balancing condition.
Without this structural constraint on the tree—unlike with the heap or the bal-
anced binary search trees—there is no guarantee that the depth of the tree is

The skew heap is a
heap-ordered
binary tree without
a balancing condi-
tion and supports all
operations in loga-
rithmic amortized
time.

872 chapter 23 merging priority queues

logarithmic. However, it supports all operations in logarithmic amortized
time. The skew heap is thus somewhat similar to the splay tree.

23.1.1 merging is fundamental

If a heap-ordered, structurally unconstrained binary tree is used to represent a
priority queue, merging becomes the fundamental operation. This is because
we can perform other operations as follows:

n h.insert(x): Create a one-node tree containing x and merge that tree
into the priority queue.

n h.findMin(): Return the item at the root.

n h.deleteMin(): Delete the root and merge its left and right subtrees.
The decreaseKey
operation is imple-
mented by detach-
ing a subtree from
its parent and then
using merge.

n h.decreaseKey(p, newVal): Assuming that p is a reference to a node
in the priority queue, we can lower p’s key value appropriately and
then detach p from its parent. Doing so yields two priority queues that
can be merged. Note that p (meaning the position) does not change as
a result of this operation (in contrast to the equivalent operation in a
binary heap).

We need show only how to implement merging; the other operations
become trivial. The decreaseKey operation is important in some advanced
applications. We presented one illustration in Section 14.3—Dijkstra’s algo-
rithm for shortest paths in a graph. We did not use the decreaseKey operation in
our implementation because of the complications of maintaining the position
of each item in the binary heap. In a merging heap, the position can be main-
tained as a reference to the tree node, and unlike in the binary heap, the posi-
tion never changes.

In this section we discuss one implementation of a mergeable priority
queue that uses a binary tree: the skew heap. First, we show that, if we are not
concerned with efficiency, merging two heap-ordered trees is easy. Next, we
cover a simple modification (the skew heap) that avoids the obvious ineffi-
ciencies in the original algorithm. Finally, we give a proof that the merge oper-
ation for skew heaps is logarithmic in an amortized sense and comment on the
practical significance of this result.

23.1.2 simplistic merging of heap-ordered trees
Two trees are easily
merged recursively.

Let us assume that we have two heap-ordered trees, H1 and H2, that need to be
merged. Clearly, if either of the two trees is empty, the other tree is the result
of the merge. Otherwise, to merge the two trees, we compare their roots. We

23.1 the skew heap 873

recursively merge the tree with the larger root into the right subtree of the tree
with the smaller root.1

The result is that
right paths are
merged. We must
be careful not to
create unduly long
right paths.

Figure 23.1 shows the effect of this recursive strategy: The right paths of
the two priority queues are merged to form the new priority queue. Each node
on the right path retains its original left subtree, and only the nodes on the
right path are touched. The outcome shown in Figure 23.1 is unattainable by
using only insertions and merges because, as just mentioned, left children
cannot be added by a merge. The practical effect is that what seems to be a
heap-ordered binary tree is in fact an ordered arrangement consisting only of
a single right path. Thus all operations take linear time. Fortunately, a simple
modification ensures that the right path is not always long.

23.1.3 the skew heap: a simple modification
To avoid the prob-
lem of unduly long
right paths, we
make the resulting
right path after a
merge a left path.
Such a merge
results in a skew
heap.

The merge shown in Figure 23.1 creates a temporary merged tree. We can make
a simple modification in the operation as follows. Prior to the completion of a
merge, we swap the left and right children for every node in the resulting right
path of the temporary tree. Again, only those nodes on the original right paths are
on the right path in the temporary tree. As a result of the swap, shown in
Figure 23.2, these nodes then form the left path of the resulting tree. When a
merge is performed in this way, the heap-ordered tree is also called a skew heap.

1. Clearly, either subtree could be used. We arbitrarily use the right subtree.

figure 23.1

Simplistic merging of
heap-ordered trees:
Right paths are
merged.

3

6 5

9 7

8

5

9 7

3

6 8
+

figure 23.2

Merging of skew
heap; right paths are
merged, and the result
is made a left path.

2

4 3

65 9

78

6 7

4

9 5

2

3 8
+

874 chapter 23 merging priority queues

A recursive viewpoint is as follows. If we let L be the tree with the smaller
root and R be the other tree, the following is true.

1. If one tree is empty, the other can be used as the merged result.

2. Otherwise, let Temp be the right subtree of L.

3. Make L’s left subtree its new right subtree.

4. Make the result of the recursive merge of Temp and R the new left
subtree of L.

A long right path is
still possible. How-
ever, it rarely occurs
and must be pre-
ceded by many
merges involving
short right paths.

We expect the result of the child swapping to be that the length of the
right path will not be unduly large all the time. For instance, if we merge a
pair of long right-path trees, the nodes involved in the path do not reappear on
a right path for quite some time in the future. Obtaining trees that have the
property that every node appears on a right path is still possible, but that can
be done only as a result of a large number of relatively inexpensive merges. In
Section 23.1.4, we prove this assertion rigorously by establishing that the
amortized cost of a merge operation is only logarithmic.

23.1.4 analysis of the skew heap
The actual cost of a
merge is the num-
ber of nodes on the
right paths of the
two trees that are
merged.

Suppose that we have two heaps, H1 and H2, and that there are r1 and r2
nodes on their respective right paths. Then the time required to perform the
merge is proportional to r1 + r2. When we charge 1 unit for each node on the
right paths, the cost of the merge is proportional to the number of charges.
Because the trees have no structure, all the nodes in both trees may lie on
the right path. This condition would give a Θ(N) worst-case bound for merg-
ing the trees (in Exercise 23.4 you are asked to construct such a tree). As we
demonstrate shortly, the amortized time needed to merge two skew heaps is
O(log N).

As with the splay tree, we introduce a potential function that cancels the
varying costs of skew heap operations. We want the potential function to
increase by a total of O(log N) – (r1 + r2) so that the total of the merge cost
and potential change is only O(log N). If the potential is minimal prior to the
first operation, applying the telescoping sum guarantees that the total spent
for any M operations is O(M log N), as with the splay tree.

What we need is some potential function that captures the effect of skew
heap operations. Finding such a function is quite challenging. Once we have
found one, however, the proof is relatively short.

definition: A node is a heavy node if the size of its right subtree is larger than the
size of its left subtree. Otherwise, it is a light node; a node is light if its subtrees are
of equal size.

23.1 the skew heap 875

The potential func-
tion is the number
of heavy nodes.
Only nodes on the
merged path have
their heavy or light
status changed.
The number of light
nodes on a right
path is logarithmic.

In Figure 23.3, prior to the merge, nodes 3 and 4 are heavy. After the
merge, only node 3 is heavy. Three facts are easily shown. First, as a result of
a merge, only nodes on the right path can have their heavy or light status
changed because no other nodes have their subtrees altered. Second, a leaf is
light. Third, the number of light nodes on the right path of an N node tree is at most
⎣log N⎦ + 1. The reason is that the right child of a light node is less than half the
size of the light node itself, and the halving principle applies. The additional
+1 is a result of the leaf’s being light. With these preliminaries, we can now
state and prove Theorems 23.1 and 23.2.

figure 23.3

Change in the heavy
or light status of
nodes after a merge

2

4 3

65 9

78

6 7

4

9 5

2

3 8
+

L H

L L

L

L

L

L

Let H1 and H2 be two skew heaps with N1 and N2 nodes, respectively, and let N be their
combined size (that is, N1 + N2). Suppose that the right path of H1 has l1 light nodes and
h1 heavy nodes, for a total of l1 + h1, whereas the right path of H2 has l2 light nodes and
h2 heavy nodes, for a total of l2 + h2. If the potential is defined as the total number of heavy
nodes in the collection of skew heaps, then the merge costs at most 2 log N + (h1 + h2),
but the change in potential is at most 2 log N – (h1 + h2).

Theorem 23.1

The cost of the merge is merely the total number of nodes on the right paths,
l1 + l2 + h1 + h2. The number of light nodes is logarithmic, so and

. Thus l1 + l2 ≤ log N1 + log N2 + 2 ≤ 2 log N, where the last inequality
follows from Theorem 22.4. The merge cost is thus at most 2 log N + (h1 + h2). The
bound on the potential change follows from the fact that only the nodes involved in
the merge can have their heavy/light status changed and from the fact that any
heavy node on the path must become light because its children are swapped. Even if
all the light nodes became heavy, the potential change would still be limited to
l1 + l2 – (h1 + h2). Based on the same argument as before, that is at most
2 log N – (h1 + h2).

Proof
l1 N1log 1+≤

l2 N2log 1+≤

876 chapter 23 merging priority queues

Finding a useful
potential function is
the most difficult
part of the analysis.

The skew heap is a remarkable example of a simple algorithm with an
analysis that is not obvious. The analysis, however, is easy to perform once
we have identified the appropriate potential function. Unfortunately, there is
still no general theory that allows us to decide on a potential function. Typi-
cally, many different functions have to be tried before a usable one is found.

A nonrecursive
algorithm should be
used because of
the possibility that
we could run out of
stack space.

One comment is in order: Although the initial description of the algorithm
uses recursion and recursion provides the simplest code, it cannot be used in
practice. The reason is that the linear worst-case time for an operation could
cause an overflow of the runtime stack when the recursion is implemented.
Consequently, a nonrecursive algorithm must be used. Rather than explore
those possibilities, we discuss an alternative data structure that is slightly
more complicated: the pairing heap. This data structure has not been com-
pletely analyzed, but it seems to perform well in practice.

23.2 the pairing heap
The pairing heap is
a heap-ordered
M-ary tree with no
structural con-
straints. Its analysis
is incomplete, but it
appears to perform
well in practice.

The pairing heap is a structurally unconstrained heap-ordered M-ary tree for
which all operations except deletion take constant worst-case time. Although
deleteMin could take linear worst-case time, any sequence of pairing heap
operations has logarithmic amortized performance. It has been conjectured—
but not proved—that even better performance is guaranteed. However, the
best possible scenario—namely, that all operations except for deleteMin have
constant amortized cost, while deleteMin has logarithmic amortized cost—has
recently been shown to be untrue.

Theorem 23.2 The amortized cost of the skew heap is at most 4 log N for the merge, insert, and
deleteMin operations.

Proof Let be the potential in the collection of skew heaps immediately following the ith
operation. Note that and . An insertion creates a single node tree
whose root is by definition light and thus does not alter the potential prior to the
resulting merge. A deleteMin operation discards the root prior to the merge, so it can-
not raise the potential (it may, in fact, lower it). We need to consider only the merging
costs. Let be the cost of the merge that occurs as a result of the ith operation.
Then . Telescoping over any M operations yields

 because is not negative.

Φi

Φ0 0= Φi 0≥

ci

ci Φi Φi 1––+ 4 Nlog≤
cii 1=

M∑ 4M Nlog≤ ΦM Φ0–

23.2 the pairing heap 877

The pairing heap is
stored by using a
left child/right sib-
ling representation.
A third link is used
for decreaseKey.

Figure 23.4 shows an abstract pairing heap. The actual implementa-
tion uses a left child/right sibling representation (see Chapter 18). The
decreaseKey method, as we discuss shortly, requires that each node contain an
additional link. A node that is a leftmost child contains a link to its parent;
otherwise, the node is a right sibling and contains a link to its left sibling. This
representation is shown in Figure 23.5, where the darkened line indicates that
two links (one in each direction) connect pairs of nodes.

23.2.1 pairing heap operations
Merging is simple:
Attach the larger
root tree as a left
child of the smaller
root tree. Insertion
and decreasing are
also simple.

In principle, the basic pairing heap operations are simple, which is why the
pairing heap performs well in practice. To merge two pairing heaps, we
make the heap with the larger root the new first child of the heap with the
smaller root. Insertion is a special case of merging. To perform a decreaseKey
operation, we lower the value of the requested node. Because we are not
maintaining parent links for all nodes, we do not know if this action violates
the heap order. Thus we detach the adjusted node from its parent and com-
plete decreaseKey by merging the two pairing heaps that result. Figure 23.5
shows that detaching a node from its parent means removing it from what is
essentially a linked list of children. So far we are in great shape: Every oper-
ation described takes constant time. However, we are not so lucky with the
deleteMin operation.

figure 23.4

Abstract
representation of a
sample pairing heap

1816

2

6 3

1310

4

8

5

1511

7

19

9

12 1714

figure 23.5

Actual representation
of the pairing heap
shown in Figure 23.4;
the dark lines
represent a pair of
links that connect
nodes in both
directions

1816

2

6 3

1310

4

8

5

1511

7

19

9

12 1714

878 chapter 23 merging priority queues

The deleteMin
operation is expen-
sive because the
new root could be
any of the c
children of the old
root. We need
c – 1 merges.

To perform a deleteMin, we must remove the root of the tree, creating a
collection of heaps. If there are c children of the root, combining these heaps
into one heap requires c – 1 merges. Hence, if there are lots of children of the
root, the deleteMin operation costs lots of time. If the insertion sequence is 1,
2, . . . , N, then 1 is at the root and all the other items are in nodes that are chil-
dren of the root. Consequently, deleteMin is O(N) time. The best that we can
hope to do is to arrange the merges so that we do not have repeatedly expen-
sive deleteMin operations.

The order in which
pairing heap sub-
trees are merged is
important. The sim-
plest algorithm is
two-pass merging.

The order in which pairing heap subtrees are merged is important. The
simplest and most practical of the many variants of doing so that have been
proposed is two-pass merging, in which a first scan merges pairs of children
from left to right2 and then a second scan, right to left, is performed to com-
plete the merging. After the first scan, we have half as many trees to merge. In
the second scan, at each step, we merge the rightmost tree that remains from
the first scan with the current merged result. For example, if we have children
c1 through c8, the first scan performs the merges c1 and c2, c3 and c4, c5 and
c6, and c7 and c8. The result is d1, d2, d3, and d4. We perform the second pass
by merging d3 and d4; d2 is then merged with that result, and d1 is then
merged with the result of that merge, completing the deleteMin operation.
Figure 23.6 shows the result of using deleteMin on the pairing heap shown in
Figure 23.5.

Several alterna-
tives have been
proposed. Most are
indistinguishable,
but using a single
left-to-right pass is
a bad idea.

Other merging strategies are possible. For instance, we can place each
subtree (corresponding to a child) on a queue, repeatedly dequeue two trees,
and then enqueue the result of merging them. After c – 1 merges, only one
tree remains on the queue, which is the result of the deleteMin. However,
using a stack instead of a queue is a disaster because the root of the resulting
tree may possibly have c – 1 children. If that occurs in a sequence, the
deleteMin operation will have linear, rather than logarithmic, amortized cost
per operation. In Exercise 23.8 you are asked to construct such a sequence.

23.2.2 implementation of the pairing heap
The prev data
member links to
either a left sibling
or a parent.

The PairingHeap class skeleton is shown in Figure 23.7. The nested class
PairNode implements the nested Position interface that is declared at lines
16 and 17.

In the pairing heap, insert returns a Position which is the newly created
PairNode.

The basic node of a pairing heap, PairNode, is shown in Figure 23.8 and
consists of an item and three links. Two of these links are the left child and the

2. Care must be exercised if there is an odd number of children. When that happens, we merge
the last child with the result of the rightmost merge to complete the first scan.

23.2 the pairing heap 879

next sibling. The third link is prev, which references the parent if the node is a
first child or to a left sibling otherwise.

The findMin routine is coded in Figure 23.9. The minimum is at the root,
so this routine is easily implemented. The insert routine, shown in
Figure 23.10, creates a one-node tree and merges it with the root to obtain a
new tree. As mentioned earlier in the section, insert returns a reference to the
newly allocated node. Note that we must handle the special case of an inser-
tion in an empty tree.

figure 23.6

Recombination of
siblings after a
deleteMin. In each
merge, the larger root
tree is made the left
child of the smaller
root tree: (a) the
resulting trees;
(b) after the first pass;
(c) after the first
merge of the second
pass; (d) after the
second merge of the
second pass

3

(a)

(b)

(c)

(d)

1816

6 3

1310

3

1310

4

8

5

1511

7

19

9

12 1714

6

3

13106

4

85

1816

1511

7

199

12 1714

4

85

1816

1511

7

199

12 1714

4 6 10 13

85

1816

1511

7

199

12 1714

880 chapter 23 merging priority queues

figure 23.7

The PairingHeap class skeleton

1 package weiss.nonstandard;
2
3 // PairingHeap class
4 //
5 // CONSTRUCTION: with no initializer
6 //
7 // ******************PUBLIC OPERATIONS*********************
8 // General methods for priority queues and also:
9 // void decreaseKey(Position p, newVal)

10 // --> Decrease value in node p
11 // ******************ERRORS********************************
12 // Exceptions thrown as warranted
13
14 public class PairingHeap<AnyType extends Comparable<? super AnyType>>
15 {
16 public interface Position<AnyType>
17 { AnyType getValue(); }
18
19 private static class PairNode<AnyType> implements Position<AnyType>
20 { /* Figure 23.8 */ }
21
22 private PairNode<AnyType> root;
23 private int theSize;
24
25 public PairingHeap()
26 { root = null; theSize = 0; }
27
28 public boolean isEmpty()
29 { return root == null; }
30 public int size()
31 { return theSize; }
32 public void makeEmpty()
33 { root = null; theSize = 0; }
34
35 public Position<AnyType> insert(AnyType x)
36 { /* Figure 23.10 */ }
37 public AnyType findMin()
38 { /* Figure 23.9 */ }
39 public AnyType deleteMin()
40 { /* Figure 23.11 */ }
41 public void decreaseKey(Position<AnyType> pos, AnyType newVal)
42 { /* Figure 23.12 */ }
43
44 private PairNode<AnyType> compareAndLink(PairNode<AnyType> first,
45 PairNode<AnyType> second)
46 { /* Figure 23.14 */ }
47 private PairNode [] doubleIfFull(PairNode [] array, int index)
48 { /* Implementation is as usual; see online code */ }
49 private PairNode<AnyType> combineSiblings(PairNode<AnyType> firstSibling)
50 { /* Figure 23.15 */ }
51 }

23.2 the pairing heap 881

figure 23.8
The PairNode nested class

1 /**
2 * Private static class for use with PairingHeap.
3 */
4 private static class PairNode<AnyType> implements Position<AnyType>
5 {
6 /**
7 * Construct the PairNode.
8 * @param theElement the value stored in the node.
9 */

10 public PairNode(AnyType theElement)
11 {
12 element = theElement;
13 leftChild = null;
14 nextSibling = null;
15 prev = null;
16 }
17
18 /**
19 * Returns the value stored at this position.
20 */
21 public AnyType getValue()
22 {
23 return element;
24 }
25
26 public AnyType element;
27 public PairNode<AnyType> leftChild;
28 public PairNode<AnyType> nextSibling;
29 public PairNode<AnyType> prev;
30 }

figure 23.9
The findMin method
for the PairingHeap
class

1 /**
2 * Find the smallest item in the priority queue.
3 * @return the smallest item.
4 * @throws UnderflowException if pairing heap is empty.
5 */
6 public AnyType findMin()
7 {
8 if(isEmpty())
9 throw new UnderflowException();

10 return root.element;
11 }

882 chapter 23 merging priority queues

The deleteMin
operation is imple-
mented as a call to
combineSiblings.

Figure 23.11 implements the deleteMin routine. If the pairing heap is
empty, we have an error. After saving the value found in the root (at line 11)
and clearing the value at line 12, we make a call to combineSiblings at line 16
to merge the root’s subtrees and set the result to the new root. If there are no
subtrees, we merely set root to null at line 14.

figure 23.10
The insert routine for
the PairingHeap class

1 /**
2 * Insert into the priority queue, and return a Position
3 * that can be used by decreaseKey.
4 * Duplicates are allowed.
5 * @param x the item to insert.
6 * @return the node containing the newly inserted item.
7 */
8 public Position<AnyType> insert(AnyType x)
9 {

10 PairNode<AnyType> newNode = new PairNode<AnyType>(x);
11
12 if(root == null)
13 root = newNode;
14 else
15 root = compareAndLink(root, newNode);
16
17 theSize++;
18 return newNode;
19 }

figure 23.11
The deleteMin method for the PairingHeap class

1 /**
2 * Remove the smallest item from the priority queue.
3 * @return the smallest item.
4 * @throws UnderflowException if pairing heap is empty.
5 */
6 public AnyType deleteMin()
7 {
8 if(isEmpty())
9 throw new UnderflowException();

10
11 AnyType x = findMin();
12 root.element = null; // So decreaseKey can detect stale Position
13 if(root.leftChild == null)
14 root = null;
15 else
16 root = combineSiblings(root.leftChild);
17
18 theSize--;
19 return x;
20 }

23.2 the pairing heap 883

The decreaseKey method is implemented in Figure 23.12. If the new value
is larger than the original, we might destroy the heap order. We have no way
of knowing that without examining all the children. Because many children
may exist, doing so would be inefficient. Thus we assume that it is always an
error to attempt to increase the key by using the decreaseKey. (In Exercise 23.9
you are asked to describe an algorithm for increaseKey.) After performing this
test, we lower the value in the node. If the node is the root, we are done. Oth-
erwise, we splice the node out of the list of children that it is in, using the code
in lines 21 to 28. After doing that, we merely merge the resulting tree with the
root.

The two remaining routines are compareAndLink, which combines two
trees, and combineSiblings, which combines all the siblings, when given the
first sibling. Figure 23.13 shows how two subheaps are combined. The proce-
dure is generalized to allow the second subheap to have siblings (which is
needed for the second pass in the two-pass merge). As mentioned earlier in

figure 23.12

The decreaseKey
method for the
PairingHeap class

1 /**
2 * Change the value of the item stored in the pairing heap.
3 * @param pos any Position returned by insert.
4 * @param newVal the new value, which must be smaller
5 * than the currently stored value.
6 * @throws IllegalArgumentException if pos is null.
7 * @throws IllegalValueException if new value is larger than old.
8 */
9 public void decreaseKey(Position<AnyType> pos, AnyType newVal)

10 {
11 if(pos == null)
12 throw new IllegalArgumentException();
13
14 PairNode<AnyType> p = (PairNode<AnyType>) pos;
15
16 if(p.element == null || p.element.compareTo(newVal) < 0)
17 throw new IllegalValueException();
18 p.element = newVal;
19 if(p != root)
20 {
21 if(p.nextSibling != null)
22 p.nextSibling.prev = p.prev;
23 if(p.prev.leftChild == p)
24 p.prev.leftChild = p.nextSibling;
25 else
26 p.prev.nextSibling = p.nextSibling;
27
28 p.nextSibling = null;
29 root = compareAndLink(root, p);
30 }
31 }

884 chapter 23 merging priority queues

the chapter, the subheap with the larger root is made a leftmost child of the
other subheap, the code for which is shown in Figure 23.14. Note that in sev-
eral instances a link reference is tested against null before it accesses its prev
data member. This action suggests that having a nullNode sentinel—as was
customary in the advanced search tree implementations—might be useful.
This possibility is left for you to explore as Exercise 23.12.

Finally, Figure 23.15 implements combineSiblings. We use the array
treeArray to store the subtrees. We begin by separating the subtrees and stor-
ing them in treeArray, using the loop at lines 16 to 22. Assuming that we have
more than one sibling to merge, we make a left-to-right pass at lines 28 and
29. The special case of an odd number of trees is handled at lines 31–36. We
finish the merging with a right-to-left pass at lines 40 and 41. Once we have
finished, the result appears in array position 0 and can be returned.

23.2.3 application: dijkstra’s shortest
weighted path algorithm

The decreaseKey
operation is an
improvement for
Dijkstra’s algorithm
in instances for
which there are
many calls
to it.

As an example of how the decreaseKey operation is used, we rewrite Dijkstra’s
algorithm (see Section 14.3). Recall that at any point we are maintaining a
priority queue of Path objects, ordered by the dist data member. For each ver-
tex in the graph, we needed only one Path object in the priority queue at any
instant, but for convenience we had many. In this section, we rework the code
so that if a vertex w’s distance is lowered, its position in the priority queue is
found, and a decreaseKey operation is performed for its corresponding Path
object.

The new code is shown in Figure 23.16, and all the changes are rela-
tively minor. First, at line 6 we declare that pq is a pairing heap rather than a
binary heap. Note that the Vertex object has an additional data member pos

figure 23.13
The compareAndLink
method merges two
trees

+
F

A

S

B

C

F

A

B

S

C

S

B

A

F

C

F > S

F<– S

23.2 the pairing heap 885

that represents its position in the priority queue (and is null if the Vertex is
not in the priority queue). Initially, all the positions are null (which is done
in clearAll). Whenever a vertex is inserted in the pairing heap, we adjust its
pos data member—at lines 13 and 35. The algorithm itself is simplified.
Now we merely call deleteMin so long as the pairing heap is not empty,

figure 23.14
The compareAndLink routine

1 /**
2 * Internal method that is the basic operation to maintain order.
3 * Links first and second together to satisfy heap order.
4 * @param first root of tree 1, which may not be null.
5 * first.nextSibling MUST be null on entry.
6 * @param second root of tree 2, which may be null.
7 * @return result of the tree merge.
8 */
9 private PairNode<AnyType> compareAndLink(PairNode<AnyType> first,

10 PairNode<AnyType> second)
11 {
12 if(second == null)
13 return first;
14
15 if(second.element.compareTo(first.element) < 0)
16 {
17 // Attach first as leftmost child of second
18 second.prev = first.prev;
19 first.prev = second;
20 first.nextSibling = second.leftChild;
21 if(first.nextSibling != null)
22 first.nextSibling.prev = first;
23 second.leftChild = first;
24 return second;
25 }
26 else
27 {
28 // Attach second as leftmost child of first
29 second.prev = first;
30 first.nextSibling = second.nextSibling;
31 if(first.nextSibling != null)
32 first.nextSibling.prev = first;
33 second.nextSibling = first.leftChild;
34 if(second.nextSibling != null)
35 second.nextSibling.prev = second;
36 first.leftChild = second;
37 return first;
38 }
39 }

886 chapter 23 merging priority queues

figure 23.15

The heart of the pairing heap algorithm: implementing a two-pass merge to combine all the siblings,
given the first sibling

1 // The tree array for combineSiblings
2 private PairNode [] treeArray = new PairNode[5];
3
4 /**
5 * Internal method that implements two-pass merging.
6 * @param firstSibling the root of the conglomerate;
7 * assumed not null.
8 */
9 private PairNode<AnyType> combineSiblings(PairNode<AnyType> firstSibling)

10 {
11 if(firstSibling.nextSibling == null)
12 return firstSibling;
13
14 // Store the subtrees in an array
15 int numSiblings = 0;
16 for(; firstSibling != null; numSiblings++)
17 {
18 treeArray = doubleIfFull(treeArray, numSiblings);
19 treeArray[numSiblings] = firstSibling;
20 firstSibling.prev.nextSibling = null; // break links
21 firstSibling = firstSibling.nextSibling;
22 }
23 treeArray = doubleIfFull(treeArray, numSiblings);
24 treeArray[numSiblings] = null;
25
26 // Combine subtrees two at a time, going left to right
27 int i = 0;
28 for(; i + 1 < numSiblings; i += 2)
29 treeArray[i] = compareAndLink(treeArray[i], treeArray[i + 1]);
30
31 int j = i - 2;
32
33 // j has the result of last compareAndLink.
34 // If an odd number of trees, get the last one.
35 if(j == numSiblings - 3)
36 treeArray[j] = compareAndLink(treeArray[j], treeArray[j + 2]);
37
38 // Now go right to left, merging last tree with
39 // next to last. The result becomes the new last.
40 for(; j >= 2; j -= 2)
41 treeArray[j - 2] = compareAndLink(treeArray[j - 2], treeArray[j]);
42
43 return (PairNode<AnyType>) treeArray[0];
44 }

23.2 the pairing heap 887

rather than repeatedly calling deleteMin until an unseen vertex emerges.
Consequently, we no longer need the scratch data member. Compare lines
15–18 to the corresponding code presented in Figure 14.27. All that remains

figure 23.16

Dijkstra’s algorithm, using the pairing heap and the decreaseKey operation

1 /**
2 * Single-source weighted shortest-path algorithm using pairing heaps.
3 */
4 public void dijkstra(String startName)
5 {
6 PairingHeap<Path> pq = new PairingHeap<Path>();
7
8 Vertex start = vertexMap.get(startName);
9 if(start == null)

10 throw new NoSuchElementException("Start vertex not found");
11
12 clearAll();
13 start.pos = pq.insert(new Path(start, 0)); start.dist = 0;
14
15 while (!pq.isEmpty())
16 {
17 Path vrec = pq.deleteMin();
18 Vertex v = vrec.dest;
19
20 for(Edge e : v.adj)
21 {
22 Vertex w = e.dest;
23 double cvw = e.cost;
24
25 if(cvw < 0)
26 throw new GraphException("Graph has negative edges");
27
28 if(w.dist > v.dist + cvw)
29 {
30 w.dist = v.dist + cvw;
31 w.prev = v;
32
33 Path newVal = new Path(w, w.dist);
34 if(w.pos == null)
35 w.pos = pq.insert(newVal);
36 else
37 pq.decreaseKey(w.pos, newVal);
38 }
39 }
40 }
41 }

888 chapter 23 merging priority queues

to be done are the updates after line 28 that indicate a change is in order. If
the vertex has never been placed in the priority queue, we insert it for the
first time, updating its pos data member. Otherwise, we merely call
decreaseKey at line 37.

Whether the binary heap implementation of Dijkstra’s algorithm is faster
than the pairing heap implementation depends on several factors. One study
(see the Reference section), suggests that the pairing heap is slightly better
than the binary heap when both are carefully implemented. The results
depend heavily on the coding details and the frequency of the decreaseKey
operations. More study is needed to decide when the pairing heap is suitable
in practice.

summary

In this chapter we described two data structures that support merging and that
are efficient in the amortized sense: the skew heap and the pairing heap. Both
are easy to implement because they lack a rigid structure property. The pair-
ing heap seems to have practical utility, but its complete analysis remains an
intriguing open problem.

In Chapter 24, which is the last chapter, we describe a data structure that
is used to maintain disjoint sets and that also has a remarkable amortized
analysis.

key concepts

pairing heap A structurally unconstrained heap-ordered M-ary tree for which
all operations except deletion take constant worst-case time. Its analysis is
not complete, but it appears to perform well in practice. (876)

skew heap A heap-ordered binary tree without a balancing condition that sup-
ports all operations in logarithmic amortized time. (871)

two-pass merging The order in which the pairing heap subtrees are merged is
important. The simplest algorithm is two-pass merging, in which subtrees
are merged in pairs in a left-to-right scan and then a right-to-left scan is
performed to finish the merging. (878)

common errors

1. A recursive implementation of the skew heap cannot be used in practice
because the depth of the recursion could be linear.

2. Be careful not to lose track of the prev links in the skew heap.

exercises 889

3. Tests to ensure that references are not null must be made throughout the
pairing heap code.

4. When a merge is performed, a node should not reside in two pairing heaps.

on the internet

The pairing heap class is available, with a test program. Figure 23.16 is part of
the Graph class shown in Chapter 14 (Graph.java).

PairingHeap.java Contains the implementation for the PairingHeap
class.

exercises

IN SHORT

23.1 Show the result of a skew heap built from the insertion sequence
a. 1, 2, 3, 4, 5, 6, 7
b. 4, 3, 5, 2, 6, 7, 1

23.2 Show the result of a pairing heap built from the insertion sequence
a. 1, 2, 3, 4, 5, 6, 7
b. 4, 3, 5, 2, 6, 7, 1

23.3 For each heap in Exercises 23.1 and 23.2, show the result of two
deleteMin operations.

IN THEORY

23.4 Show that the logarithmic amortized bound for skew heap operations
is not a worst-case bound by giving a sequence of operations that lead
to a merge that requires linear time.

23.5 Show that both the decreaseKey and increaseKey operations can be
supported by skew heaps in logarithmic amortized time.

23.6 Describe a linear-time buildHeap algorithm for the skew heap.

23.7 Show that storing the length of the right path for each node in the tree
enables you to impose a balancing condition that yields logarithmic
worst-case time per operation. Such a structure is called a leftist heap.

23.8 Show that using a stack to implement the combineSiblings operation
for pairing heaps is bad. Do so by constructing a sequence that has
linear amortized cost per operation.

23.9 Describe how to implement increaseKey for pairing heaps.

890 chapter 23 merging priority queues

IN PRACTICE

23.10 Add the public merge method to the PairingHeap class. Be sure that a
node appears in only one tree.

PROGRAMMING PROBLEMS

23.11 Implement a nonrecursive version of the skew heap algorithm.

23.12 Implement the pairing heap algorithm with a nullNode sentinel.

23.13 Implement the queue algorithm for combineSiblings and compare its
performance with the two-pass algorithm code shown in Figure 23.15.

23.14 If the decreaseKey operation is not supported, parent links are not nec-
essary. Implement the pairing heap algorithm without parent links
and compare its performance with the binary heap and/or skew heap
and/or splay tree algorithm.

references

The leftist heap [1] was the first efficient mergeable priority queue. It is the
worst-case variant of the skew heap suggested in Exercise 23.7. Skew heaps
are described in [6], which also contains solutions to Exercises 23.4 and 23.5.

[3] describes the pairing heap and proves that, when two-pass merging is
used, the amortized cost of all operations is logarithmic. It was long conjec-
tured that the amortized cost of all operations except deleteMin is actually
constant and that the amortized cost of the deleteMin is logarithmic, so that
any sequence of D deleteMin and I other operations takes O(I + D log N) time.
However, this conjecture was recently shown to be false [2]. A data structure
that does achieve this bound, but is too complicated to be practical, is the
Fibonacci heap [4]. The hope is that the pairing heap is a practical alternative
to the theoretically interesting Fibonacci heap, even though its worst case is
slightly worse. Leftist heaps and Fibonacci heaps are discussed in [7].

In [5] is a comparison of various priority queues in the setting of solving
the minimum spanning tree problem (discussed in Section 24.2.2) using a
method very similar to Dijkstra’s algorithm.

1. C. A. Crane, “Linear Lists and Priority Queues as Balanced Binary
Trees,” Technical Report STAN-CS-72-259, Computer Science Depart-
ment, Stanford University, Palo Alto, CA, 1972.

2. M. L. Fredman, “On the Efficiency of Pairing Heaps and Related Data
Structures,” Journal of the ACM 46 (1999), 473–501.

references 891

3. M. L. Fredman, R. Sedgewick, D. D. Sleator, and R. E. Tarjan, “The Pair-
ing Heap: A New Form of Self-adjusting Heap,” Algorithmica 1 (1986),
111–129.

4. M. L. Fredman and R. E. Tarjan, “Fibonacci Heaps and Their Uses in
Improved Network Optimization Algorithms,” Journal of the ACM 34
(1987), 596–615.

5. B. M. E. Moret and H. D. Shapiro, “An Empirical Analysis of Algorithms
for Constructing a Minimum Spanning Tree,” Proceedings of the Second
Workshop on Algorithms and Data Structures (1991), 400–411.

6. D. D. Sleator and R. E. Tarjan, “Self-adjusting Heaps,” SIAM Journal on
Computing 15 (1986), 52–69.

7. M. A. Weiss, Data Structures and Algorithm Analysis in Java, 2nd ed.,
Addison-Wesley, Reading, MA, 2007.

This page intentionally left blank

chap te r 24

the disjoint
set class

In this chapter we describe an efficient data structure for solving the
equivalence problem: the disjoint set class. This data structure is simple to
implement, with each routine requiring only a few lines of code. Its imple-
mentation is also extremely fast, requiring constant average time per opera-
tion. This data structure is also very interesting from a theoretical point of
view because its analysis is extremely difficult; the functional form of the
worst case is unlike any discussed so far in this text.

In this chapter, we show

n Three simple applications of the disjoint set class

n A way to implement the disjoint set class with minimal coding effort

n A method for increasing the speed of the disjoint set class, using two
simple observations

n An analysis of the running time of a fast implementation of the dis-
joint set class

894 chapter 24 the disjoint set class

24.1 equivalence relations
A relation is defined
on a set if every
pair of elements
either is related or
is not. An equiva-
lence relation is
reflexive,
symmetric, and
transitive.

A relation R is defined on a set S if for every pair of elements (a, b),
a R b is either true or false. If a R b is true, we say that a is related to b.

An equivalence relation is a relation R that satisfies three properties.

1. Reflexive: a R a is true for all

2. Symmetric: a R b if and only if b R a.

3. Transitive: a R b and b R c implies that a R c.

Electrical connectivity, where all connections are by metal wires, is an
equivalence relation. The relation is clearly reflexive, as any component is
connected to itself. If a is electrically connected to b, then b must be electri-
cally connected to a, so the relation is symmetric. Finally, if a is connected to
b and b is connected to c, then a is connected to c.

Likewise, connectivity through a bidirectional network forms equivalence
classes of connected components. However, if the connections in the network
are directed (i.e., a connection from v to w does not imply one from w to v),
we do not have an equivalence relation because the symmetric property does
not hold. An example is a relation in which town a is related to town b if trav-
eling from a to b by road is possible. This relationship is an equivalence rela-
tion if the roads are two-way.

24.2 dynamic equivalence
and applications

For any equivalence relation, denoted ~, the natural problem is to decide for
any a and b whether a ~ b. If the relation is stored as a two-dimensional array
of Boolean variables, equivalence can be tested in constant time. The problem
is that the relation is usually implicitly, rather than explicitly, defined.

The equivalence
class of an ele-
ment x in set S is
the subset of S that
contains all the ele-
ments related to x.
The equivalence
classes form
disjoint sets.

For example, an equivalence relation is defined over the five-element set
. This set yields 25 pairs of elements, each of which either

is or is not related. However, the information that a1 ~ a2, a3 ~ a4, a1 ~ a5, and
a4 ~ a2 are all related implies that all pairs are related. We want to be able to
infer this condition quickly.

The equivalence class of an element is the subset of S that contains
all the elements related to x. Note that the equivalence classes form a parti-
tion of S: Every member of S appears in exactly one equivalence class. To
decide whether a ~ b, we need only check whether a and b are in the same

a b, S,∈

a S.∈

a1 a2 a3 a4 a5, , , ,{ }

x S∈

24.2 dynamic equivalence and applications 895

equivalence class. This information provides the strategy to solve the equiva-
lence problem.

The input is initially a collection of N sets, each with one element. In this
initial representation all relations (except reflexive relations) are false. Each
set has a different element, so and such sets (in which any two
sets contain no common elements) are called disjoint sets.

The two basic
disjoint set class
operations are
union and find.

The two basic disjoint set class operations are find, which returns the
name of the set (i.e., the equivalence class) containing a given element, and
the union, which adds relations. If we want to add the pair (a, b) to the list of
relations, we first determine whether a and b are already related. We do so by
performing find operations on both a and b and finding out whether they are
in the same equivalence class; if they are not, we apply union. This operation
merges the two equivalence classes containing a and b into a new equivalence
class. In terms of sets the result is a new set , which we create by
simultaneously destroying the originals and preserving the disjointedness of
all the sets. The data structure to do this is often called the disjoint set union/
find data structure. The union/find algorithm is executed by processing union/
find requests within the disjoint set data structure.

In an online algo-
rithm, an answer
must be provided
for each query
before the next
query can be
viewed.

The algorithm is dynamic because, during the course of algorithm execu-
tion, the sets can change via the union operation. The algorithm must also
operate as an online algorithm so that, when a find is performed, an answer
must be given before the next query can be viewed. Another possibility is an
offline algorithm in which the entire sequence of union and find requests are
made visible. The answer it provides for each find must still be consistent
with all the unions performed before the find. However, the algorithm can give
all its answers after it has dealt with all the questions. This distinction is simi-
lar to the difference between taking a written exam (which is generally offline
because you only have to give the answers before time expires) and taking an
oral exam (which is online because you must answer the current question
before proceeding to the next question).

The set elements
are numbered
sequentially, start-
ing from 0.

Note that we do not perform any operations to compare the relative values
of elements but merely require knowledge of their location. For this reason,
we can assume that all elements have been numbered sequentially, starting
from 0, and that the numbering can be determined easily by some hashing
scheme.

Before describing how to implement the union and find operations, we
provide three applications of the data structure.

24.2.1 application: generating mazes

An example of the use of the union/find data structure is to generate mazes,
such as the one shown in Figure 24.1. The starting point is the top-left corner,

Si Sj∩ ∅=

Sk Si Sj∪=

896 chapter 24 the disjoint set class

and the ending point is the bottom-right corner. We can view the maze as a
50 × 88 rectangle of cells in which the top-left cell is connected to the bottom-
right cell, and cells are separated from their neighboring cells via walls.

A simple algorithm to generate the maze is to start with walls everywhere
(except for the entrance and exit). We then continually choose a wall ran-
domly and knock it down if the cells that the wall separates are not already
connected to each other. If we repeat this process until the starting and ending
cells are connected, we have a maze. Continuing to knock down walls until
every cell is reachable from every other cell is actually better because doing
so generates more false leads in the maze.

We illustrate the algorithm with a 5 × 5 maze, and Figure 24.2 shows the
initial configuration. We use the union/find data structure to represent sets of
cells that are connected to each other. Initially, walls are everywhere, and each
cell is in its own equivalence class.

Figure 24.3 shows a later stage of the algorithm, after a few walls have
been knocked down. Suppose, at this stage, that we randomly target the wall
that connects cells 8 and 13. Because 8 and 13 are already connected (they
are in the same set), we would not remove the wall because to do so would
simply trivialize the maze. Suppose that we randomly target cells 18 and 13
next. By performing two find operations, we determine that these cells are
in different sets; thus 18 and 13 are not already connected. Therefore we
knock down the wall that separates them, as shown in Figure 24.4. As a

figure 24.1

A 50 × 88 maze

24.2 dynamic equivalence and applications 897

figure 24.2

Initial state: All walls
are up, and all cells
are in their own sets.0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

{0} {1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11} {12} {13} {14}
{15} {16} {17} {18} {19} {20} {21} {22} {23} {24}

figure 24.3

At some point in the
algorithm, several
walls have been
knocked down and
sets have been
merged. At this point,
if we randomly select
the wall between 8
and 13, this wall is not
knocked down
because 8 and 13 are
already connected.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

{0, 1} {2} {3} {4, 6, 7, 8, 9, 13,14} {5} {10, 11, 15} {12}
{16, 17, 18, 22} {19} {20} {21} {22} {23} {24}

figure 24.4

We randomly select
the wall between
squares 18 and 13 in
Figure 24.3; this wall
has been knocked
down because 18 and
13 were not already
connected, and their
sets have been
merged.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

{0,1} {2} {3} {5} {10, 11, 15} {12}
{4, 6, 7, 8, 9, 13, 14, 16, 17, 18, 22} {19} {20} {21} {23} {24}

898 chapter 24 the disjoint set class

result of this operation, the sets containing cells 18 and 13 are combined by
a union operation. The reason is that all the cells previously connected to 18
are now connected to all the cells previously connected to 13. At the end of
the algorithm, as depicted in Figure 24.5, all the cells are connected, and we
are done.

The running time of the algorithm is dominated by the union/find costs.
The size of the union/find universe is the number of cells. The number of find
operations is proportional to the number of cells because the number of
removed walls is 1 less than the number of cells. If we look carefully, how-
ever, we can see that there are only about twice as many walls as cells in the
first place. Thus, if N is the number of cells and as there are two finds per ran-
domly targeted wall, we get an estimate of between (roughly) 2N and 4N find
operations throughout the algorithm. Therefore the algorithm’s running time
depends on the cost of O(N) union and O(N) find operations.

24.2.2 application: minimum spanning trees
The minimum
spanning tree is a
connected sub-
graph of G that
spans all vertices at
minimum total cost.

A spanning tree of an undirected graph is a tree formed by graph edges that
connect all the vertices of the graph. Unlike the graphs in Chapter 14, an edge
(u, v) in a graph G is identical to an edge (v, u). The cost of a spanning tree is
the sum of the costs of the edges in the tree. The minimum spanning tree is a
connected subgraph of G that spans all vertices at minimum cost. A minimum
spanning tree exists only if the subgraph of G is connected. As we show
shortly, testing a graph’s connectivity can be done as part of the minimum
spanning tree computation.

In Figure 24.6(b), the graph is a minimum spanning tree of the graph in
Figure 24.6(a) (it happens to be unique, which is unusual if the graph has
many edges of equal cost). Note that the number of edges in the minimum
spanning tree is The minimum spanning tree is a tree because it is

figure 24.5

Eventually, 24 walls
have been knocked
down, and all the
elements are in the
same set.

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24}

V 1.–

24.2 dynamic equivalence and applications 899

acyclic, it is spanning because it covers every vertex, and it is minimum for
the obvious reason. Suppose that we need to connect several towns with
roads, minimizing the total construction cost, with the provision that we can
transfer to another road only at a town (in other words, no extra junctions are
allowed). Then we need to solve a minimum spanning tree problem, where
each vertex is a town, and each edge is the cost of building a road between the
two cities it connects.

A related problem is the minimum Steiner tree problem, which is like the
minimum spanning tree problem, except that junctions can be created as
part of the solution. The minimum Steiner tree problem is much more diffi-
cult to solve. However, it can be shown that if the cost of a connection is
proportional to the Euclidean distance, the minimum spanning tree is at
most 15 percent more expensive than the minimum Steiner tree. Thus a mini-
mum spanning tree, which is easy to compute, provides a good approximation
for the minimum Steiner tree, which is hard to compute.

Kruskal’s algorithm
is used to select
edges in order of
increasing cost and
adds an edge to
the tree if it does
not create a cycle.

A simple algorithm, commonly called Kruskal’s algorithm, is used to
select edges continually in order of smallest weight and to add an edge to the
tree if it does not cause a cycle. Formally, Kruskal’s algorithm maintains a
forest—a collection of trees. Initially, there are single-node trees. Adding
an edge merges two trees into one. When the algorithm terminates, there is
only one tree, which is the minimum spanning tree.1 By counting the number
of accepted edges, we can determine when the algorithm should terminate.

Figure 24.7 shows the action of Kruskal’s algorithm on the graph shown
in Figure 24.6. The first five edges are all accepted because they do not create
cycles. The next two edges, (v1, v3) (of cost 3) and then (v0, v2) (of cost 4), are
rejected because each would create a cycle in the tree. The next edge consid-
ered is accepted, and because it is the sixth edge in a seven-vertex graph, we
can terminate the algorithm.

figure 24.6

(a) A graph G and
(b) its minimum
spanning tree2V2

V0

V3 V4

V1

V5 V6

1 3 10

V2

V0

V3

(a) (b)

V4

V1

V5 V6
1

2

1

4

2

4

5 8 4 6

1

2 2 2

1. If the graph is not connected, the algorithm will terminate with more than one tree. Each
tree then represents a minimum spanning tree for each connected component of the graph.

V

900 chapter 24 the disjoint set class

The edges can be
sorted, or a priority
queue can be used.

Ordering the edges for testing is simple enough to do. We can sort them at a
cost of and then step through the ordered array of edges. Alternatively,
we can construct a priority queue of edges and repeatedly obtain edges by
calling deleteMin. Although the worst-case bound is unchanged, using a priority
queue is sometimes better because Kruskal’s algorithm tends to test only a small
fraction of the edges on random graphs. Of course, in the worst case, all the edges
may have to be tried. For instance, if there were an extra vertex v8 and edge (v5,
v8) of cost 100, all the edges would have to be examined. In this case, a quicksort
at the start would be faster. In effect, the choice between a priority queue and an
initial sort is a gamble on how many edges are likely to have to be examined.

More interesting is the issue of how we decide whether an edge (u, v)
should be accepted or rejected. Clearly, adding the edge (u, v) causes a cycle
if (and only if) u and v are already connected in the current spanning forest,

figure 24.7

Kruskal’s algorithm
after each edge has
been considered. The
stages proceed left-
to-right, top-to-
bottom, as numbered.

V2

V0

V3 V4

V1

V5 V6

1

1

V2

V0

V3 V4

V1

V5 V6
1

1

2

V2

V0

V3 V4

V1

V5 V6
1

2

1

3

V2

V0

V3 V4

V1

V5 V6
1

2

2

1

4

V2

V0

V3 V4

V1

V5 V6
1

2 2

2

5

V2

V0

V3 V4

V1

V5 V6
1

2 2

2

11 3

6

V2

V0

V3 V4

V1

V5 V6
1

2 2

2

1 14

7

V2

V0

V3 V4

V1

V5 V6
1

2 2

2

4

8

E Elog
E

24.2 dynamic equivalence and applications 901

The test for cycles
is done by using a
union/find data
structure.

which is a collection of trees. Thus we merely maintain each connected com-
ponent in the spanning forest as a disjoint set. Initially, each vertex is in its
own disjoint set. If u and v are in the same disjoint set, as determined by two
find operations, the edge is rejected because u and v are already connected.
Otherwise, the edge is accepted and a union operation is performed on the two
disjoint sets containing u and v, in effect, combining the connected compo-
nents. This result is what we want because once edge (u, v) has been added to
the spanning forest, if w was connected to u and x was connected to v, x and w
must be connected and thus belong in the same set.

24.2.3 application: the nearest
common ancestor problem

Another illustration of the union/find data structure is the offline nearest com-
mon ancestor (NCA) problem.

offline nearest common ancestor problem
Given a tree and a list of pairs of nodes in the tree, find the nearest common
ancestor for each pair of nodes.

Solution of the
NCA is important in
graph algorithm
and computational
biology applica-
tions.

As an example, Figure 24.8 shows a tree with a pair list containing five
requests. For the pair of nodes u and z, node C is the nearest ancestor of both. (A
and B are also ancestors, but they are not the closest.) The problem is offline
because we can see the entire request sequence prior to providing the first
answer. Solution of this problem is important in graph theory applications and
computational biology (where the tree represents evolution) applications.

A postorder tra-
versal can be
used to solve
the problem.

The algorithm works by performing a postorder tree traversal. When we
are about to return from processing a node, we examine the pair list to deter-
mine whether any ancestor calculations are to be performed. If u is the current

figure 24.8

The nearest common
ancestor for each
request in the pair
sequence (x, y), (u, z),
(w, x), (z, w), and
(w, y) is A, C, A, B,
and y, respectively.

A

C

B

y

wu D

z

x

902 chapter 24 the disjoint set class

node, (u, v) is in the pair list and we have already finished the recursive call to
v, we have enough information to determine NCA(u, v).

The anchor of a vis-
ited (but not neces-
sarily marked) node
v is the node on the
current access path
that is closest to v.

Figure 24.9 helps in understanding how this algorithm works. Here, we
are about to finish the recursive call to D. All shaded nodes have been visited
by a recursive call, and except for the nodes on the path to D, all the recursive
calls have already finished. We mark a node after its recursive call has been
completed. If v is marked, then NCA(D, v) is some node on the path to D. The
anchor of a visited (but not necessarily marked) node v is the node on the cur-
rent access path that is closest to v. In Figure 24.9, p’s anchor is A, q’s anchor
is B, and r is unanchored because it has yet to be visited; we can argue that r’s
anchor is r at the point that r is first visited. Each node on the current access
path is an anchor (of at least itself). Furthermore, the visited nodes form
equivalence classes: Two nodes are related if they have the same anchor, and
we can regard each unvisited node as being in its own class. Now suppose
once again that (D, v) is in the pair list. Then we have three cases.

1. v is unmarked, so we have no information to compute NCA(D, v).
However, when v is marked, we are able to determine NCA(v, D).

2. v is marked but not in D’s subtree, so NCA(D, v) is v’s anchor.

3. v is in D’s subtree, so NCA(D, v) = D. Note that this is not a special
case because v’s anchor is D.

The union/find
algorithm is used to
maintain the sets of
nodes with com-
mon anchors.

All that remains to be done is to ensure that, at any instant, we can deter-
mine the anchor of any visited node. We can easily do so with the union/find
algorithm. After a recursive call returns, we call union. For instance, after the
recursive call to D in Figure 24.9 returns, all nodes in D have their anchor

figure 24.9

The sets immediately
prior to the return
from the recursive call
to D ; D is marked as
visited and NCA(D, v)
is v ’s anchor to the
current path.

r

B

q

p

D

A

C

24.2 dynamic equivalence and applications 903

changed from D to C. The new situation is shown in Figure 24.10. Thus we
need to merge the two equivalence classes into one. At any point, we can
obtain the anchor for a vertex v by a call to a disjoint set find. Because find
returns a set number, we use an array anchor to store the anchor node corre-
sponding to a particular set.

The pseudocode is
compact.

A pseudocode implementation of the NCA algorithm is shown in
Figure 24.11. As mentioned earlier in the chapter, the find operation gener-
ally is based on the assumption that elements of the set are 0, 1, , so
we store a preorder number in each tree node in a preprocessing step that
computes the size of the tree. An object-oriented approach might attempt to
incorporate a mapping into the find, but we do not do so. We also assume that
we have an array of lists in which to store the NCA requests; that is, list i
stores the requests for tree node i. With those details taken care of, the code is
remarkably short.

When a node u is first visited, it becomes the anchor of itself, as in line 18
of Figure 24.11. It then recursively processes its children v by making the call
at line 23. After each recursive call returns, the subtree is combined into u’s
current equivalence class and we ensure that the anchor is updated at lines 24
and 25. When all the children have been processed recursively, we can mark u
as processed at line 29 and finish by checking all NCA requests involving u at
lines 30 to 33.2

figure 24.10

After the recursive call
from D returns, we
merge the set
anchored by D into
the set anchored by
C and then compute
all NCA(C, v) for
nodes v marked prior
to completing C ’s
recursive call.

A

B

C

D

2. Strictly speaking, u should be marked at the last statement, but marking it earlier handles the
annoying request NCA(u, u).

… N 1,–

904 chapter 24 the disjoint set class

24.3 the quick-find algorithm
In this section and Section 24.4 we lay the groundwork for the efficient
implementation of the union/find data structure. There are two basic strat-
egies for solving the union/find problem. The first approach, the quick-find
algorithm, ensures that the find instruction can be executed in constant
worst-case time. The other approach, the quick-union algorithm, ensures

figure 24.11

Pseudocode for the nearest common ancestors problem

1 // Nearest Common Ancestors algorithm
2 //
3 // Preconditions (and global objects):
4 // 1. union/find structure is initialized
5 // 2. All nodes are initially unmarked
6 // 3. Preorder numbers are already assigned in num field
7 // 4. Each node can store its marked status
8 // 5. List of pairs is globally available
9

10 DisjSets s = new DisjSets(treeSize); // union/find
11 Node [] anchor = new Node[treeSize]; // Anchor node for each set
12
13 // main makes the call NCA(root)
14 // after required initializations
15
16 void NCA(Node u)
17 {
18 anchor[s.find(u.num)] = u;
19
20 // Do postorder calls
21 for(each child v of u)
22 {
23 NCA(v);
24 s.union(s.find(u.num), s.find(v.num));
25 anchor[s.find(u.num)] = u;
26 }
27
28 // Do nca calculation for pairs involving u
29 u.marked = true;
30 for(each v such that NCA(u, v) is required)
31 if(v.marked)
32 System.out.println("NCA(" + u + ", " + v +
33 ") is " + anchor[s.find(v.num)]);
34 }

24.4 the quick-union algorithm 905

that the union operation can be executed in constant worst-case time. It has
been shown that both cannot be done simultaneously in constant worst-
case (or even amortized) time.

For the find operation to be fast, in an array we could maintain the
name of the equivalence class for each element. Then find is a simple constant-
time lookup. Suppose that we want to perform union(a, b). Suppose, too,
that a is in equivalence class i and that b is in equivalence class j. Then we
can scan down the array, changing all i’s to j’s. Unfortunately, this scan
takes linear time. Thus a sequence of N – 1 union operations (the maxi-
mum because then everything is in one set) would take quadratic time. In
the typical case in which the number of finds is subquadratic, this time is
clearly unacceptable.

One possibility is to keep all the elements that are in the same equiva-
lence class in a linked list. This approach saves time when we are updating
because we do not have to search the entire array. By itself that does not
reduce the asymptotic running time, as performing Θ(N 2) equivalence
class updates over the course of the algorithm is still possible.

The argument that
an equivalence
class can change
at most log N
times per item is
also used in the
quick-union algo-
rithm. Quick-find is
a simple algo-
rithm, but quick-
union is better.

If we also keep track of the size of the equivalence classes—and when
performing a union change the name of the smaller class to the larger—the
total time spent for N unions is O(N log N). The reason is that each element
can have its equivalence class changed at most log N times because every
time its class is changed, its new equivalence class is at least twice as
large as its old class (so the repeated doubling principle applies).

This strategy provides that any sequence of at most M find and N – 1
union operations take at most O(M + N log N) time. If M is linear (or slightly
nonlinear), this solution is still expensive. It also is a bit messy because we
must maintain linked lists. In Section 24.4 we examine a solution to the
union/find problem that makes union easy but find hard—the quick-union
algorithm. Even so, the running time for any sequence of at most M find and
N – 1 union operations is only negligibly more than O(M + N) time and, more-
over, only a single array of integers is used.

24.4 the quick-union algorithm
Recall that the union/find problem does not require a find operation to return
any specific name; it requires just that finds on two elements return the same
answer if and only if they are in the same set. One possibility might be to use
a tree to represent a set, as each element in a tree has the same root and the
root can be used to name the set.

906 chapter 24 the disjoint set class

A tree is repre-
sented by an array
of integers repre-
senting parent
nodes. The set
name of any node
in a tree is the root
of a tree.

Each set is represented by a tree (recall that a collection of trees is
called a forest). The name of a set is given by the node at the root. Our trees
are not necessarily binary trees, but their representation is easy because the
only information we need is the parent. Thus we need only an array of inte-
gers: Each entry p[i] in the array represents the parent of element i, and we
can use –1 as a parent to indicate a root. Figure 24.12 shows a forest and the
array that represents it.

The union opera-
tion is constant
time.

To perform a union of two sets, we merge the two trees by making the root
of one tree a child of the root of the other. This operation clearly takes con-
stant time. Figures 24.13–24.15 represent the forest after each of union(4, 5),
union(6, 7), and union(4, 6), where we have adopted the convention that the
new root after union(x, y) is x.

The cost of a find
depends on the
depth of the
accessed node and
could be linear.

A find operation on element x is performed by returning the root of the tree
containing x. The time for performing this operation is proportional to the number
of nodes on the path from x to the root. The union strategy outlined previously
enables us to create a tree whose every node is on the path to x, resulting in a
worst-case running time of Θ(N) per find. Typically (as shown in the preceding

figure 24.12

A forest and its eight
elements, initially in
different sets 76543210

0

1

2

3

4

5

6

7

-1

-1

-1

-1

-1

-1

-1

-1

figure 24.13

The forest after the
union of trees with
roots 4 and 5 76

5

43210

0

1

2

3

4

5

6

7

-1

-1

-1

-1

-1

4

-1

-1

24.4 the quick-union algorithm 907

applications), the running time is computed for a sequence of M intermixed
instructions. In the worst case, M consecutive operations could take Θ(MN) time.

Quadratic running time for a sequence of operations is generally unac-
ceptable. Fortunately, there are several ways to easily ensure that this running
time does not occur.

24.4.1 smart union algorithms

We performed the previous unions rather arbitrarily by making the second
tree a subtree of the first. A simple improvement is always to make the
smaller tree a subtree of the larger, breaking ties by any method, an
approach called union-by-size. The preceding three union operations were
all ties, so we can consider that they were performed by size. If the next
operation is union(3, 4), the forest shown in Figure 24.16 forms. Had the
size heuristic not been used, a deeper forest would have been formed (three
nodes rather than one would have been one level deeper).

figure 24.14

The forest after the
union of trees with
roots 6 and 7

7

6

5

43210

0

1

2

3

4

5

6

7

-1

-1

-1

-1

-1

4

-1

6

figure 24.15

The forest after the
union of trees with
roots 4 and 6

7

65

43210

0

1

2

3

4

5

6

7

-1

-1

-1

-1

-1

4

4

6

908 chapter 24 the disjoint set class

Union-by-size guar-
antees logarithmic
finds.

If the union operation is done by size, the depth of any node is never more
than log N. A node is initially at depth 0, and when its depth increases as a
result of a union, it is placed in a tree that is at least twice as large as before.
Thus its depth can be increased at most log N times. (We used this argument
in the quick-find algorithm in Section 24.3.) This outcome implies that the
running time for a find operation is O(log N) and that a sequence of M opera-
tions takes at most O(M log N) time. The tree shown in Figure 24.17 illus-
trates the worst tree possible after 15 union operations and is obtained if all the
unions are between trees of equal size. (The worst-case tree is called a bino-
mial tree. Binomial trees have other applications in advanced data structures.)

Instead of –1 being
stored for roots, the
negative of the size
is stored.

To implement this strategy, we need to keep track of the size of each tree.
Since we are just using an array, we can have the array entry of the root con-
tain the negative of the size of the tree, as shown in Figure 24.16. Thus the ini-
tial representation of the tree with all –1s is reasonable. When a union
operation is performed, we check the sizes; the new size is the sum of the old.
Thus union-by-size is not at all difficult to implement and requires no extra
space. It is also fast on average because, when random union operations are

figure 24.16

The forest formed by
union-by-size, with the
sizes encoded as
negative numbers

7

65

4

3

210

0

1

2

3

4

5

6

7

-1

-1

-1

4

-5

4

4

6

7

8

9 10

11

12

13 14

15

65

4

3

21

0
figure 24.17

Worst-case tree for
N = 16

24.4 the quick-union algorithm 909

performed, generally very small (usually one-element) sets are merged with
large sets throughout the algorithm. Mathematical analysis of this process is
quite complex; the references at the end of the chapter provide some pointers
to the literature.

Union-by-height
also guarantees
logarithmic find
operations.

An alternative implementation that also guarantees logarithmic depth is
union-by-height in which we keep track of the height of the trees instead of
the size and perform union operations by making a shallower tree a subtree of
the deeper tree. This algorithm is easy to write and use because the height of a
tree increases only when two equally deep trees are joined (and then the
height goes up by 1). Thus union-by-height is a trivial modification of union-
by-size. As heights start at 0, we store the negative of the number of nodes
rather than the height on the deepest path, as shown in Figure 24.18.

24.4.2 path compression

The union/find algorithm, as described so far, is quite acceptable for most
cases. It is very simple and linear on average for a sequence of M instructions.
However, the worst case is still unappealing. The reason is that a sequence of
union operations occurring in some particular application (such as the NCA
problem) is not obviously random (in fact, for certain trees, it is far from ran-
dom). Hence we have to seek a better bound for the worst case of a sequence
of M operations. Seemingly, no more improvements to the union algorithm
are possible because the worst case is achievable when identical trees are
merged. The only way to speed up the algorithm then, without reworking the
data structure entirely, is to do something clever with the find operation.

That something clever is path compression. Clearly, after we perform a
find on x, changing x’s parent to the root would make sense. In that way, a
second find on x or any item in x’s subtree becomes easier. There is no need to
stop there, however. We might as well change the parents for all the nodes on
the access path. In path compression every node on the path from x to the root

figure 24.18

A forest formed by
union-by-height, with
the height encoded as
a negative number

7

65

4

3

210

0

1

2

3

4

5

6

7

-1

-1

-1

4

-3

 4

4

6

Path compression
makes every
accessed node a
child of the root
until another union
occurs.

910 chapter 24 the disjoint set class

has its parent changed to the root. Figure 24.19 shows the effect of path com-
pression after find(14) on the generic worst tree shown in Figure 24.17. With
an extra two parent changes, nodes 12 and 13 are now one position closer to
the root and nodes 14 and 15 are now two positions closer. The fast future
accesses on the nodes pay (we hope) for the extra work to do the path com-
pression. Note that subsequent unions push the nodes deeper.

Path compression
guarantees
logarithmic amor-
tized cost for the
find operation.

When unions are done arbitrarily, path compression is a good idea because
of the abundance of deep nodes; they are brought near the root by path com-
pression. It has been proved that when path compression is done in this case, a
sequence of M operations requires at most O(M log N) time, so path compres-
sion by itself guarantees logarithmic amortized cost for the find operation.

Path compression
and a smart union
rule guarantee
essentially con-
stant amortized
cost per operation
(i.e., a long
sequence can be
executed in almost
linear time).

Path compression is perfectly compatible with union-by-size. Thus both
routines can be implemented at the same time. However, path compression is
not entirely compatible with union-by-height because path compression can
change the heights of the trees. We do not know how to recompute them effi-
ciently, so we do not attempt to do so. Then the heights stored for each tree
become estimated heights, called ranks, which is not a problem. The resulting
algorithm, union-by-rank, is thus obtained from union-by-height when com-
pression is performed. As we show in Section 24.6, the combination of a
smart union rule and path compression gives an almost linear guarantee on the
running time for a sequence of M operations.

24.5 java implementation
Disjoint sets are
relatively simple to
implement.

The class skeleton for a disjoint sets class is given in Figure 24.20, and the
implementation is completed in Figure 24.21. The entire algorithm is amaz-
ingly short.

7

8

9 10

11

12

13

14

1565

4

3

21

0
figure 24.19

Path compression
resulting from a
find(14) on the tree
shown in
Figure 24.17

24.5 java implementation 911

In our routine, union is performed on the roots of the trees. Sometimes the
operation is implemented by passing any two elements and having union per-
form the find operation to determine the roots.

The interesting procedure is find. After the find has been performed
recursively, array[x] is set to the root and then is returned. Because this pro-
cedure is recursive, all nodes on the path have their entries set to the root.

figure 24.20

The disjoint sets class
skeleton

1 package weiss.nonstandard;
2
3 // DisjointSets class
4 //
5 // CONSTRUCTION: with int representing initial number of sets
6 //
7 // ******************PUBLIC OPERATIONS*********************
8 // void union(root1, root2) --> Merge two sets
9 // int find(x) --> Return set containing x

10 // ******************ERRORS********************************
11 // Error checking or parameters is performed
12
13 public class DisjointSets
14 {
15 public DisjointSets(int numElements)
16 { /* Figure 24.21 */ }
17
18 public void union(int root1, int root2)
19 { /* Figure 24.21 */ }
20
21 public int find(int x)
22 { /* Figure 24.21 */ }
23
24 private int [] s;
25
26
27 private void assertIsRoot(int root)
28 {
29 assertIsItem(root);
30 if(s[root] >= 0)
31 throw new IllegalArgumentException();
32 }
33
34 private void assertIsItem(int x)
35 {
36 if(x < 0 || x >= s.length)
37 throw new IllegalArgumentException();
38 }
39 }

912 chapter 24 the disjoint set class

figure 24.21

Implementation of a
disjoint sets class

1 /**
2 * Construct the disjoint sets object.
3 * @param numElements the initial number of disjoint sets.
4 */
5 public DisjointSets(int numElements)
6 {
7 s = new int[numElements];
8 for(int i = 0; i < s.length; i++)
9 s[i] = -1;

10 }
11
12 /**
13 * Union two disjoint sets using the height heuristic.
14 * root1 and root2 are distinct and represent set names.
15 * @param root1 the root of set 1.
16 * @param root2 the root of set 2.
17 * @throws IllegalArgumentException if root1 or root2
18 * are not distinct roots.
19 */
20 public void union(int root1, int root2)
21 {
22 assertIsRoot(root1);
23 assertIsRoot(root2);
24 if(root1 == root2)
25 throw new IllegalArgumentException();
26
27 if(s[root2] < s[root1]) // root2 is deeper
28 s[root1] = root2; // Make root2 new root
29 else
30 {
31 if(s[root1] == s[root2])
32 s[root1]--; // Update height if same
33 s[root2] = root1; // Make root1 new root
34 }
35 }
36
37 /**
38 * Perform a find with path compression.
39 * @param x the element being searched for.
40 * @return the set containing x.
41 * @throws IllegalArgumentException if x is not valid.
42 */
43 public int find(int x)
44 {
45 assertIsItem(x);
46 if(s[x] < 0)
47 return x;
48 else
49 return s[x] = find(s[x]);
50 }

24.6 worst case for union-by-rank and path compression 913

24.6 worst case for union-by-rank
and path compression

When both heuristics are used, the algorithm is almost linear in the worst
case. Specifically, the time required to process a sequence of at most N – 1
union operations and M find operations in the worst case is Θ(Mα(M, N))
(provided that M ≥ N), where α(M, N) is a functional inverse of Ackermann’s
function, which grows very quickly and is defined as follows:3

From the preceding, we define

Ackermann’s func-
tion grows very
quickly, and its
inverse is essen-
tially at most 4.

You might want to compute some values, but for all practical purposes,
α(M, N) ≤ 4, which is all that really matters here. For instance, for any j > 1,
we have

where the number of 2s in the exponent is j. The function F(N) = A(2, N) is
commonly called a single-variable Ackermann’s function. The single-variable
inverse of Ackermann’s function, sometimes written as log*N, is the number
of times the logarithm of N needs to be applied until N ≤ 1. Thus log*65536 = 4,
because log log log log 65536 = 1, and log*265536 = 5. However, keep in mind
that 265536 has more than 20,000 digits. The function α(M, N) grows even
slower than log*N. For instance, A(3, 1) = A(2, 2) = 222

= 16. Thus for N < 216,
α(M, N) ≤ 3. Further, because A(4, 1) = A(3, 2) = A(2, A(3, 1)) = A(2, 16), which
is 2 raised to a power of 16 stacked 2s, in practice, α(M, N) ≤ 4. However, α(M, N) is
not a constant when M is slightly more than N, so the running time is not linear.4

3. Ackermann’s function is frequently defined with A(1, j) = j + 1 for j ≥ 1. The form we use in
this text grows faster; thus the inverse grows more slowly.

A 1 j,() 2j=

A i 1,() A(i 1 2),–=

A i j,() A(i 1 A i j 1–,()),–=

j 1≥
i 2≥

i j, 2≥

α M N,() min i 1 (A i M N⁄), Nlog>()≥{ }=

4. Note, however, that if M = N log*N, then α(M, N) is at most 2. Thus, so long as M is slightly
more than linear, the running time is linear in M.

A 2 j,() A 1 A 2 j 1–,(),()=

2A 2 j 1–,()=

22
2

2…

=

914 chapter 24 the disjoint set class

In the remainder of this section, we prove a slightly weaker result. We
show that any sequence of M = Ω(N) union and find operations takes a total of
O(M log*N) time. The same bound holds if we replace union-by-rank with
union-by-size. This analysis is probably the most complex in this text and is
one of the first truly complex analyses ever performed for an algorithm that is
essentially trivial to implement. By extending this technique, we can show the
stronger bound claimed previously.

24.6.1 analysis of the union/find algorithm

In this section, we establish a fairly tight bound on the running time of a
sequence of M = Ω(N) union and find operations. The union and find opera-
tions may occur in any order, but union is done by rank and find is done with
path compression.

We begin with some theorems concerning the number of nodes of rank r.
Intuitively, because of the union-by-rank rule, there are many more nodes of small
rank than of large rank. In particular, there can be at most one node of rank log N.
What we want to do is to produce as precise a bound as possible on the number of
nodes of any particular rank r. Because ranks change only when union operations
are performed (and then only when the two trees have the same rank), we can
prove this bound by ignoring path compression. We do so in Theorem 24.1.

Theorem 24.1 says that if no path compression is performed, any node of
rank r must have at least 2r descendants. Path compression can change this
condition, of course, because it can remove descendants from a node. However,

Theorem 24.1 In the absence of path compression, when a sequence of union instructions is being
executed, a node of rank r must have 2r descendants (including itself).

Proof The proof is by induction. The basis r = 0 is clearly true. Let T be the tree of rank r
with the fewest number of descendants and x be T ’s root. Suppose that the last
union with which x was involved was between T1 and T2. Suppose that T1’s root was
x. If T1 had rank r, then T1 would be a tree of rank r with fewer descendants than T.
This condition contradicts the assumption that T is the tree with the smallest number
of descendants. Hence the rank of T1 is at most r – 1. The rank of T2 is at most the
rank of T1 because of union-by-rank. As T has rank r and the rank could only
increase because of T2, it follows that the rank of T2 is r – 1. Then the rank of T1 is
also r – 1. By the induction hypothesis, each tree has at least 2r – 1 descendants,
giving a total of 2r and establishing the theorem.

24.6 worst case for union-by-rank and path compression 915

when union operations are performed—even with path compression—we are
using ranks, or estimated heights. These ranks behave as if there is no path
compression. Thus when the number of nodes of rank r are being bounded,
path compression can be ignored, as in Theorem 24.2.

Theorem 24.3 seems somewhat obvious, but it is crucial to the analysis.

There are not too
many nodes of
large rank, and the
ranks increase on
any path up toward
a root.

The following is a summary of the preliminary results. Theorem 24.2
describes the number of nodes that can be assigned rank r. Because ranks are
assigned only by union operations, which do not rely on path compression,
Theorem 24.2 is valid at any stage of the union/find algorithm—even in the
midst of path compression. Theorem 24.2 is tight in the sense that there can be

nodes for any rank r. It also is slightly loose because the bound cannot
hold for all ranks r simultaneously. While Theorem 24.2 describes the number
of nodes in a rank r, Theorem 24.3 indicates the distribution of nodes in a
rank r. As expected, the rank of nodes strictly increases along the path from a
leaf to the root.

We are now ready to prove the main theorem, and our basic plan is as fol-
lows. A find operation on any node v costs time proportional to the number of
nodes on the path from v to the root. We charge 1 unit of cost for every node
on the path from v to the root during each find. To help count the charges, we

The number of nodes of rank r is at most N/2r. Theorem 24.2

Without path compression, each node of rank r is the root of a subtree of at least 2r

nodes. No other node in the subtree can have rank r. Thus all subtrees of nodes of
rank r are disjoint. Therefore there are at most N/2r disjoint subtrees and hence
N/2rnodes of rank r.

Proof

At any point in the union/find algorithm, the ranks of the nodes on a path from a leaf
to a root increase monotonically.

Theorem 24.3

The theorem is obvious if there is no path compression. If after path compression,
some node v is a descendant of w, then clearly v must have been a descendant of w
when only union operations were considered. Hence the rank of v is strictly less than
the rank of w.

Proof

N 2r⁄

916 chapter 24 the disjoint set class

Pennies are used
like a potential
function. The total
number of pennies
is the total time.

deposit an imaginary penny in each node on the path. This is strictly an
accounting gimmick that is not part of the program. It is somewhat equivalent
to the use of a potential function in the amortized analysis for splay trees and
skew heaps. When the algorithm has finished, we collect all the coins that
have been deposited to determine the total time.

We have both U.S.
and Canadian
pennies. Canadian
pennies account for
the first few times a
node is com-
pressed; U.S.
pennies account
for later com-
pressions or
noncompressions.

As a further accounting gimmick, we deposit both U.S. and Canadian
pennies. We show that, during execution of the algorithm, we can deposit only
a certain number of U.S. pennies during each find operation (regardless of
how many nodes there are). We will also show that we can deposit only a cer-
tain number of Canadian pennies to each node (regardless of how many finds
there are). Adding these two totals gives a bound on the total number of pen-
nies that can be deposited.

We now sketch our accounting scheme in more detail. We begin by
dividing the nodes by their ranks. We then divide the ranks into rank groups.
On each find, we deposit some U.S. pennies in a general kitty and some
Canadian pennies in specific nodes. To compute the total number of Cana-
dian pennies deposited, we compute the deposits per node. By summing all
the deposits for each node in rank r, we get the total deposits per rank r.
Then we sum all the deposits for each rank r in group g and thereby obtain
the total deposits for each rank group g. Finally, we sum all the deposits for
each rank group g to obtain the total number of Canadian pennies deposited
in the forest. Adding that total to the number of U.S. pennies in the kitty
gives us the answer.

Ranks are parti-
tioned into groups.
The actual groups
are determined at
the end of the
proof. Group 0 has
only rank 0.

As mentioned previously, we partition the ranks into groups. Rank r goes
into group G(r), and G is to be determined later (to balance the U.S. and
Canadian deposits). The largest rank in any rank group g is F(g), where
F = G–1 is the inverse of G. The number of ranks in any rank group, g > 0, is
thus F(g) – F(g – 1). Clearly, G(N) is a very loose upper bound on the largest
rank group. Suppose that we partitioned the ranks as shown in Figure 24.22.
In this case, The largest rank in group g is F(g) = g2. Also,
observe that group g > 0 contains ranks F(g – 1) + 1 through F(g). This for-
mula does not apply for rank group 0, so for convenience we ensure that rank
group 0 contains only elements of rank 0. Note that the groups comprise con-
secutive ranks.

As mentioned earlier in the chapter, each union instruction takes constant
time, so long as each root keeps track of its rank. Thus union operations are
essentially free, as far as this proof goes.

When a node is
compressed, its
new parent will
have a higher rank
than its old parent.

Each find operation takes time proportional to the number of nodes on the
path from the node representing the accessed item i to the root. We thus
deposit one penny for each vertex on the path. If that is all we do, however, we
cannot expect much of a bound because we are not taking advantage of path

G r() r .=

24.6 worst case for union-by-rank and path compression 917

compression. Thus we must use some fact about path compression in our
analysis. The key observation is that, as a result of path compression, a node
obtains a new parent and the new parent is guaranteed to have a higher rank
than the old parent.

Rules for U.S. and
Canadian deposits.

To incorporate this fact into the proof, we use the following fancy
accounting: For each node v on the path from the accessed node i to the root,
we deposit one penny in one of two accounts.

1. If v is the root or if the parent of v is the root or if the parent of v is in
a different rank group from v, then charge 1 unit under this rule and
deposit a U.S. penny in the kitty.

2. Otherwise, deposit a Canadian penny in the node.

Theorem 24.4 states that the accounting is accurate.

Thus we need only sum all the U.S. pennies deposited under rule 1 and all
the Canadian pennies deposited under rule 2. Before we go on with the proof,
let us sketch the ideas. Canadian pennies are deposited in a node when it is
compressed and its parent is in the same rank group as the node. Because the

figure 24.22

Possible partitioning
of ranks into groups

Group Rank

0 0

1 1

2 2,3,4

3 5 through 9

4 10 through 16

i (i – 1)2 through i 2

For any find operation, the total number of pennies deposited, either in the kitty or in
a node, is exactly equal to the number of nodes accessed during the find.

Theorem 24.4

Obvious. Proof

918 chapter 24 the disjoint set class

node gets a parent of higher rank after each path compression and because the
size of a rank group is finite, eventually the node obtains a parent that is not in
its rank group. Consequently, on the one hand, only a limited number of
Canadian pennies can be placed in any node. This number is roughly the size
of the node’s rank group. On the other hand, the U.S. charges are also limited,
essentially by the number of rank groups. Thus we want to choose both small
rank groups (to limit the Canadian charges) and few rank groups (to limit the
U.S. charges). We are now ready to fill in the details with a rapid-fire series of
theorems, Theorems 24.5–24.10.

The bound in Theorem 24.6 can be improved by using only the size of the
rank group rather than its largest member. However, this modification does
not improve the bound obtained for the union/find algorithm.

Theorem 24.5 Over the entire algorithm, the total deposits of U.S. pennies under rule 1 amount to
M(G(N) + 2).

Proof For any find operation, at most two U.S. pennies are deposited because of the root
and its child. By Theorem 24.3, the vertices going up the path are monotonically
increasing in rank, and thus the rank group never decreases as we go up the path.
Because there are at most G(N) rank groups (besides group 0), only G(N) other ver-
tices can qualify as a rule 1 deposit for any particular find. Thus, during any find, at
most G(N) + 2 U.S. pennies can be placed in the kitty. Thus at most M(G(N) + 2) U.S.
pennies can be deposited under rule 1 for a sequence of M finds.

Theorem 24.6 For any single node in rank group g, the total number of Canadian pennies deposited
is at most F(g).

Proof If a Canadian penny is deposited in a vertex v under rule 2, v will be moved by path
compression and get a new parent of rank higher than its old parent. As the largest
rank in its group is F(g), we are guaranteed that after F(g) coins are deposited, v’s
parent will no longer be in v’s rank group.

U.S. charges are
limited by the num-
ber of different
groups. Canadian
charges are limited
by the size of the
groups. We eventu-
ally need to balance
these costs.

24.6 worst case for union-by-rank and path compression 919

The number of nodes, N(g), in rank group g > 0 is at most N/2F(g – 1). Theorem 24.7

By Theorem 24.2, there are at most N/2r nodes of rank r. Summing over the ranks in
group g, we obtain

Proof

The maximum number of Canadian pennies deposited in all vertices in rank group g
is at most NF(g)/2F(g – 1).

Theorem 24.8

The result follows from a simple multiplication of the quantities obtained in Theorems
24.6 and 24.7.

Proof

The total deposit under rule 2 is at most F(g)/2F(g – 1) Canadian pennies. Theorem 24.9

Because rank group 0 contains only elements of rank 0, it cannot contribute to rule 2
charges (it cannot have a parent in the same rank group). The bound is obtained by
summing the other rank groups.

Proof

N g() N

2r

r=F g 1–()+1

F g()

∑≤

N

2r

r=F g 1–()+1

∞

∑≤

N
1

2r

r=F g 1–()+1

∞

∑≤

N

2F g 1–()+1

1

2s

s=0

∞

∑≤

2N

2F g 1–()+1
---------------------≤

N

2F g 1–()-----------------≤

NΣg 1=
G N()

920 chapter 24 the disjoint set class

Thus we have the deposits under rules 1 and 2. The total is

(24.1)

Now we can spec-
ify the rank groups
to minimize the
bound. Our choice
is not quite minimal,
but it is close.

We still have not specified G(N) or its inverse F(N). Obviously, we are free to
choose virtually anything we want, but choosing G(N) to minimize the bound
in Equation 24.1 makes sense. However, if G(N) is too small, F(N) will be
large, thus hurting the bound. An apparently good choice is F(i) to be the
function recursively defined by F(0) and F(i) = 2F(i – 1), which gives G(N) =
1+ ⎣log*N⎦. Figure 24.23 shows how this choice partitions the ranks. Note
that group 0 contains only rank 0, which we required in the proof of Theorem
24.9. Note also that F is very similar to the single-variable Ackermann’s func-
tion, differing only in the definition of the base case. With this choice of F and
G, we can complete the analysis in Theorem 24.10.

M G N() 2+() N F g()
2F g 1–()----------------

g 1=

G N()

∑+

Group Rank

0 0

1 1

2 2

3 3, 4

4 5 through 6

5 17 through 65,536

6 65,537 through 265,536

7 Truly huge ranks

figure 24.23

Actual partitioning of
ranks into groups
used in the proof

Theorem 24.10 The running time of the union/find algorithm with M = Ω(N) find operations is
O(M log*N).

Proof Insert the definitions of F and G in Equation 24.1. The total number of U.S. pennies is
O(MG(N)) = O(M log*N). Because F(g) = 2F(g – 1), the total number of Canadian pen-
nies is NG(N) = O(N log*N), and because M = Ω(N), the bound follows.

key concepts 921

Note that we have more U.S. pennies than Canadian pennies. The func-
tion α(M, N) balances things out, which is why it gives a better bound.

summary

In this chapter we discussed a simple data structure for maintaining disjoint
sets. When the union operation is performed, it does not matter, as far as cor-
rectness is concerned, which set retains its name. A valuable lesson that
should be learned here is that considering the alternatives when a particular
step is not totally specified can be very important. The union step is flexible.
By taking advantage of this flexibility, we can get a much more efficient algo-
rithm.

Path compression is one of the earliest forms of self-adjustment, which
we have used elsewhere (splay trees and skew heaps). Its use here is
extremely interesting from a theoretical point of view because it was one of
the first examples of a simple algorithm with a not-so-simple worst-case
analysis.

key concepts

Ackermann’s function A function that grows very quickly. Its inverse is essen-
tially at most 4. (913)

disjoint set class operations The two basic operations needed for disjoint set
manipulation: They are union and find. (895)

disjoint sets Sets having the property that each element appears in only one
set. (894)

equivalence class The equivalence class of an element x in set S is the subset
of S that contains all the elements related to x. (894)

equivalence relation A relation that is reflexive, symmetric, and transitive.
(894)

forest A collection of trees. (906)
Kruskal’s algorithm An algorithm used to select edges in increasing cost and

that adds an edge to the tree if it does not create a cycle. (899)
minimum spanning tree A connected subgraph of G that spans all vertices at

minimum total cost. It is a fundamental graph theory problem. (898)
nearest common ancestor problem Given a tree and a list of pairs of nodes in

the tree, find the nearest common ancestor for each pair of nodes. Solu-
tion of this problem is important in graph algorithm and computational
biology applications. (901)

922 chapter 24 the disjoint set class

off line algorithm An algorithm in which the entire sequence of queries are
made visible before the first answer is required. (895)

online algorithm An algorithm in which an answer must be provided for each
query before the next query can be viewed. (895)

path compression Makes every accessed node a child of the root until another
union occurs. (909)

quick-find algorithm The union/find implementation in which find is a
constant-time operation. (904)

quick-union algorithm The union/find implementation in which union is a
constant-time operation. (904)

ranks In the disjoint set algorithm, the estimated heights of nodes. (910)
relation Defined on a set if every pair of elements either is related or is not.

(894)
spanning tree A tree formed by graph edges that connect all the vertices of an

undirected graph. (898)
union-by-height Makes a shallower tree a child of the root of a deeper tree dur-

ing a union operation. (909)
union-by-rank Union-by-height when path compression is performed. (910)
union-by-size Makes a smaller tree a child of the root of a larger tree during a

union operation. (908)
union/find algorithm An algorithm that is executed by processing union and

find operations within a union/find data structure. (895)
union/find data structure A method used to manipulate disjoint sets. (895)

common errors

1. In using union we often assume that its parameters are tree roots. Havoc
can result in code if we call such a union with non-roots as parameters.

on the internet

The disjoint sets class is available online. The following is the filename.

DisjointSets.java Contains the disjoint sets class.

exercises 923

exercises

IN SHORT

24.1 Show the result of the following sequence of instructions: union (1, 2),
union (3, 4), union (3, 5), union (1, 7), union (3, 6), union (8, 9),
union (1, 8), union (3, 10), union (3, 11), union (3, 12), union (3, 13),
union (14, 15), union (16, 0), union (14, 16), union (1, 3), and
union (1, 14) when the union operations are performed
a. Arbitrarily
b. By height
c. By size

24.2 For each of the trees in Exercise 24.1, perform a find operation with
path compression on the deepest node.

24.3 Find the minimum spanning tree for the graph shown in
Figure 24.24.

24.4 Show the operation of the NCA algorithm for the data given in
Figure 24.8.

IN THEORY

24.5 Prove that for the mazes generated by the algorithm in Section 24.2.1
the path from the starting to ending points is unique.

24.6 Design an algorithm that generates a maze that contains no path from
start to finish but has the property that the removal of a prespecified
wall creates a unique path.

24.7 Prove that Kruskal’s algorithm is correct. In your proof do you
assume that the edge costs are nonnegative?

24.8 Show that, if a union operation is performed by height, the depth of
any tree is logarithmic.

figure 24.24

A graph G for
Exercise 24.3

V2

V0

V3 V4

V1

V5 V6
12

8

37

9 610

10

5

2

1

11

924 chapter 24 the disjoint set class

24.9 Show that, if all the union operations precede the find operations, then
the disjoint set algorithm with path compression is linear, even if the
unions are done arbitrarily. Note that the algorithm does not change;
only the performance changes.

24.10 Suppose that you want to add an extra operation, remove(x), which
removes x from its current set and places it in its own. Show how to
modify the union/find algorithm so that the running time of a sequence
of M union, find, and remove operations is still O(Mα(M, N)).

24.11 Prove that, if union operations are done by size and path compression
is performed, the worst-case running time is still O(M log*N).

24.12 Suppose that you implement partial path compression on find(i) by
changing the parent of every other node on the path from i to the root
to its grandparent (where doing so makes sense). This process is
called path halving. Prove that, if path halving is performed on the
finds and either union heuristic is used, the worst-case running time is
still O(M log*N).

IN PRACTICE

24.13 Implement the find operation nonrecursively. Is there a noticeable
difference in running time?

24.14 Suppose that you want to add an extra operation, deunion, which
undoes the last union operation not already undone. One way to do so
is to use union-by-rank—but a compressionless find—and use a stack
to store the old state prior to a union. A deunion can be implemented
by popping the stack to retrieve an old state.
d. Why can’t we use path compression?
e. Implement the union/find/deunion algorithm.

PROGRAMMING PROBLEMS

24.15 Write a program to determine the effects of path compression and the
various union strategies. Your program should process a long
sequence of equivalence operations, using all the strategies discussed
(including path halving, introduced in Exercise 24.12).

24.16 Implement Kruskal’s algorithm.

24.17 An alternative minimum spanning tree algorithm is due to Prim [12].
It works by growing a single tree in successive stages. Start by pick-
ing any node as the root. At the start of a stage, some nodes are part of
the tree and the rest are not. In each stage, add the minimum-cost edge

references 925

that connects a tree node with a nontree node. An implementation of
Prim’s algorithm is essentially identical to Dijkstra’s shortest-path
algorithm given in Section 14.3, with an update rule:

(instead of . Also, as the graph is undirected,
each edge appears in two adjacency lists. Implement Prim’s algorithm
and compare its performance to that of Kruskal’s algorithm.

24.18 Write a program to solve the offline NCA problem for binary trees.
Test its efficiency by constructing a random binary search tree of
10,000 elements and performing 10,000 ancestor queries.

references

Representation of each set by a tree was proposed in [8]. [1] attributes path
compression to McIlroy and Morris and contains several applications of the
union/find data structure. Kruskal’s algorithm is presented in [11], and the
alternative discussed in Exercise 24.17 is from [12]. The NCA algorithm is
described in [2]. Other applications are described in [15].

The O(M log*N) bound for the union/find problem is from [9]. Tarjan
[13] obtained the O(Mα(M, N)) bound and showed that the bound is tight.
That the bound is intrinsic to the general problem and cannot be improved
by an alternative algorithm is demonstrated in [14]. A more precise bound
for M < N appears in [3] and [16]. Various other strategies for path compres-
sion and union achieve the same bounds; see [16] for details. If the sequence
of union operations is known in advance, the union/find problem can be
solved in O(M) time [7]. This result can be used to show that the offline
NCA problem is solvable in linear time.

Average-case results for the union/find problem appear in [6], [10], [17],
and [5]. Results bounding the running time of any single operation (as
opposed to the entire sequence) are given in [4].

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

2. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, “On Finding Lowest Com-
mon Ancestors in Trees,” SIAM Journal on Computing 5 (1976), 115–132.

3. L. Banachowski, “A Complement to Tarjan’s Result about the Lower
Bound on the Set Union Problem,” Information Processing Letters 11
(1980), 59–65.

dw min dw cv w,,()=

dw=min dw dv, cv w,+())

926 chapter 24 the disjoint set class

4. N. Blum, “On the Single-Operation Worst-Case Time Complexity of the
Disjoint Set Union Problem,” SIAM Journal on Computing 15 (1986),
1021–1024.

5. B. Bollobas and I. Simon, “Probabilistic Analysis of Disjoint Set Union
Algorithms,” SIAM Journal on Computing 22 (1993), 1053–1086.

6. J. Doyle and R. L. Rivest, “Linear Expected Time of a Simple Union Find
Algorithm,” Information Processing Letters 5 (1976), 146–148.

7. H. N. Gabow and R. E. Tarjan, “A Linear-Time Algorithm for a Special
Case of Disjoint Set Union,” Journal of Computer and System Sciences
30 (1985), 209–221.

8. B. A. Galler and M. J. Fischer, “An Improved Equivalence Algorithm,”
Communications of the ACM 7 (1964), 301–303.

9. J. E. Hopcroft and J. D. Ullman, “Set Merging Algorithms,” SIAM Jour-
nal on Computing 2 (1973), 294–303.

10. D. E. Knuth and A. Schonage, “The Expected Linearity of a Simple
Equivalence Algorithm,” Theoretical Computer Science 6 (1978),
281–315.

11. J. B. Kruskal, Jr., “On the Shortest Spanning Subtree of a Graph and the
Traveling Salesman Problem,” Proceedings of the American Mathemati-
cal Society 7 (1956), 48–50.

12. R. C. Prim, “Shortest Connection Networks and Some Generalizations,”
Bell System Technical Journal 36 (1957), 1389–1401.

13. R. E. Tarjan, “Efficiency of a Good but Not Linear Set Union Algorithm,”
Journal of the ACM 22 (1975), 215–225.

14. R. E. Tarjan, “A Class of Algorithms Which Require Nonlinear Time to
Maintain Disjoint Sets,” Journal of Computer and System Sciences 18
(1979), 110–127.

15. R. E. Tarjan, “Applications of Path Compression on Balanced Trees,”
Journal of the ACM 26 (1979), 690–715.

16. R. E. Tarjan and J. van Leeuwen, “Worst Case Analysis of Set Union
Algorithms,” Journal of the ACM 31 (1984), 245–281.

17. A. C. Yao, “On the Average Behavior of Set Merging Algorithms,” Pro-
ceedings of the Eighth Annual ACM Symposium on the Theory of Compu-
tation (1976), 192–195.

append ix A

operators

Figure A.1 shows the precedence and associativity of the common Java oper-
ators discussed. The bitwise operators are discussed in Appendix C.

Category Examples Associativity

Operations on References . [] Left to right

Unary ++ -- ! - (type) Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift (bitwise) << >> Left to right

Relational < <= > >= instanceof Left to right

Equality == != Left to right

Boolean (or bitwise) AND & Left to right

Boolean (or bitwise) XOR ^ Left to right

Boolean (or bitwise) OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = *= /= %= += -= Right to left

figure A.1

Java operators listed
from highest to lowest
precedence

This page intentionally left blank

append ix B

graphical user
interfaces

A graphical user interface (GUI) is the modern alternative to terminal
I/O that allows a program to communicate with its user. In a GUI, a window
application is created. Some of the ways to perform input include selection
from a list of alternatives, pressing buttons, checking boxes, typing in text
fields, and using the mouse. Output can be performed by writing into text
fields as well as drawing graphics. In Java 1.2 or higher, GUI programming
is performed by using the Swing package.

A graphical user
interface (GUI) is
the modern alterna-
tive to terminal I/O
that allows a pro-
gram to communi-
cate with its user.

In this appendix, we will see

n The basic GUI components in Swing

n How these components communicate information

n How these components can be arranged in a window

n How to draw graphics

930 appendix B graphical user interfaces

B.1 the abstract window
toolkit and swing

The Abstract Win-
dow Toolkit (AWT)
is a GUI toolkit that
is supplied with all
Java systems.

The Abstract Window Toolkit (AWT) is a GUI toolkit that is supplied with all
Java systems. It provides the basic classes to allow user interfaces. These
classes can be found in the package java.awt.1 The AWT is designed to be
portable and work across multiple platforms. For relatively simple interfaces,
the AWT is easy to use. GUIs can be written without resorting to visual devel-
opment aids and provide a significant improvement over basic terminal inter-
faces.

GUI programming
is event-driven.

In a program that uses terminal I/O, the program typically prompts the
user for input and then executes a statement that reads a line from the termi-
nal. When the line is read, it is processed. The flow of control in this situation
is easy to follow. GUI programming is different. In GUI programming, the
input components are arranged in a window. After the window is displayed,
the program waits for an event, such as a button push, at which point an event
handler is called. This means that the flow of control is less obvious in a GUI
program. The programmer must supply the event handler to execute some
piece of code.

The event model
changed in incom-
patible ways from
Java 1.0 to Java
1.1. The latter ver-
sion is described
here.

Java 1.0 provided an event model that was cumbersome to use. It was
replaced in Java 1.1 by a more robust event model. Not surprisingly, these
models are not entirely compatible. Specifically, a Java 1.0 compiler will not
successfully compile code that uses the new event model. Java 1.1 compilers
will give diagnostics about Java 1.0 constructs. However, already compiled
Java 1.0 code can be run by a Java 1.1 Virtual Machine. This appendix
describes the newer event model only. Many of the classes required by the
new event model are found in the java.awt.event package.

Swing is a GUI
package provided
in Java 1.2 that is
built on top of the
AWT and provides
slicker components.

The AWT provided a simple GUI but was criticized for its lack of flair, as
well as poor performance. In Java 1.2, an improved set of components was
added in a new package called javax.swing. These components are known as
Swing. Components in Swing look much better than their AWT counterparts;
there are new Swing components that did not exist in AWT (such as sliders
and progress bars) and have many more options (such as easy tooltips and
mnemonics). Additionally, Swing provides the notion of look-and-feel, in
which a programmer can display the GUI in Windows, X-Motif, Macintosh,
platform independent (metal), or even customized style, regardless of the
underlying platform (although, because of copyright issues and perhaps bad
blood between Sun and Microsoft, Windows look-and-feel works only on
Windows systems).

1. Code in this appendix uses the wild-card import directive to save space.

B.2 basic objects in swing 931

Swing is built on top of the AWT, and as a result, the event-handling
model is unchanged. Programming in Swing is very similar to the program-
ming in Java 1.1 AWT, except that many names have changed. In this appen-
dix we describe Swing programming only. Swing is a large library; it is not
unusual to see entire books devoted to the topic, so our presentation greatly
understates the issues that are involved in user interface design.

Figure B.1 illustrates some of the basic components provided by Swing.
These include the JComboBox (currently Circle is selected), a JList (currently blue
is selected), basic JTextFields for input, three JRadioButtons and a JCheckBox,
and a JButton (named Draw). Next to the button is a JTextField that is used for
output only (hence, it is darker than the input JTextFields above it). In the top
left-hand corner is a JPanel object that can be used for drawing pictures and
handling mouse input.

This appendix describes the basic organization of the Swing API. It
covers the different types of objects, how they can be used to perform
input and output, how these objects are arranged in a window, and how
events are handled.

B.2 basic objects in swing
The AWT and Swing are organized using a class inheritance hierarchy. A
compressed version of this hierarchy is shown in Figure B.2. This is com-
pressed because some intermediate classes are not shown. In the full hierar-
chy, JTextField and JTextArea, for instance, are extended from JTextComponent,
while many classes that deal with fonts, colors, and other objects and are not
in the Component hierarchy are not shown at all. The classes Font and Color,
which are defined in the java.awt package, are extended from Object.

figure B.1

A GUI that illustrates some of the basic Swing components

932 appendix B graphical user interfaces

JButton

JCheckBox

JComboBox

JLabel

JList

JRadioBox

JTextArea

JTextField

Component

Container

JComponent

Frame

Window

JFrame
JPanel

B.2.1 Component

The Component class is an abstract class that is the superclass of many AWT
objects, and thus Swing objects. Because it is abstract, it cannot be instanti-
ated. A Component represents something that has a position and a size and can
be painted on the screen as well as receive input events. Some examples of the
Component are evident from Figure B.2.

The Component
class is an abstract
class that is the
superclass of many
AWT objects. It rep-
resents something
that has a position
and a size and can
be painted on the
screen as well as
receive input
events.

The Component class contains many methods. Some of these can be used to
specify the color or font; others are used to handle events. Some of the impor-
tant methods are

void setSize(int width, int height);
void setBackground(Color c);
void setFont(Font f);
void setVisible(boolean isVisible);

The setSize method is used to change the size of an object. It works with
JFrame objects, but it should not be called for objects that use an automatic
layout, such as JButtons. For those, use setPreferredSize; this method takes a
Dimension object that itself is constructed with a length and width (and is

figure B.2

Compressed
hierarchy of Swing

B.2 basic objects in swing 933

defined in JComponent). The setBackground and setFont methods are used to
change the background color and font associated with a Component. They
require a Color and Font object, respectively. Finally, the show method makes a
component visible. Its typical use is for a JFrame.

B.2.2 Container

A Container is the
abstract super-
class representing
all components that
can hold other
components.

In the AWT, a Container is the abstract superclass representing all components
that can hold other components. An example of an AWT Container is the
Window class, which represents a top-level window. As the inheritance hierar-
chy shows, a Container IS-A Component. A particular instance of a Container
object will store a collection of Components as well as other Containers.

The container has a useful helper object called a LayoutManager, which is a
class that positions components inside the container. Some useful methods are

void setLayout(LayoutManager mgr);
void add(Component comp);
void add(Component comp, Object where);

Layout managers are described in Section B.3.1. A container must first
define how objects in the container should be arranged. This is done by using
setLayout. It then adds the objects into the container one-by-one by using add.
Think of the container as a suitcase, in which you can add clothes. Think of the
layout manager as the packing expert who will explain how clothes are to be
added to the suitcase.

B.2.3 top-level containers
The basic contain-
ers are the top-
level Window and
JComponent. The
typical heavy-
weight compo-
nents are JWindow,
JFrame, and
JDialog.

As Figure B.2 shows, there are two types of Container objects, namely

1. The top-level windows, which eventually reaches JFrame
2. The JComponent, which eventually reaches most other Swing

components

JFrame is an example of a “heavyweight component,” while all Swing
components in the JComponent hierarchy are “lightweight.” The basic differ-
ence between heavyweight and lightweight components is that lightweight
components are drawn on a canvas entirely by Swing whereas heavyweight
components interact with the native windowing system. As a result, light-
weight components can add other lightweight components (for instance, you
can use add to place several JButton objects in a JPanel), but you should not
add directly into a heavyweight component. Instead you obtain a Container
representing its “content pane” and add into the content pane, thus allowing

934 appendix B graphical user interfaces

Swing to update the content pane. Thus the native windowing system is not
involved in the update (you will get a run-time exception if you attempt to add
into a heavyweight component), increasing update performance.

There are only a few basic top-level windows, including

1. JWindow: A top-level window that has no border
2. JFrame: A top-level window that has a border and can also have an

associated JMenuBar2

3. JDialog: A top-level window used to create dialogs

An application that uses a Swing interface should have a JFrame (or a class
extended from JFrame) as the outermost container.

B.2.4 JPanel

The JPanel is used
to store a collection
of objects but does
not create borders.
As such, it is the
simplest of the
Container classes.

The other Container subclass is the JComponent. One such JComponent is the
JPanel, which is used to store a collection of objects but does not create bor-
ders, so it is the simplest of the container classes.

The primary use of the JPanel is to organize objects into a unit. For
instance, consider a registration form that requires a name, address, social
security number, and home and work telephone numbers. All of these form
components might produce a PersonPanel. Then the registration form could
contain several PersonPanel entities to allow the possibility of multiple regis-
trants.

As an example, Figure B.3 shows how the components shown in Figure
B.1 are grouped into a JPanel class and illustrates the general technique of
creating a subclass of JPanel. It remains to construct the objects, lay them out
nicely, and handle the button push event.

Note that GUI implements the ActionListener interface. This means that it
understands how to handle an action event (in this case, a button push). To
implement the ActionListener interface, a class must provide an actionPerformed
method. Also, when the button generates an action event, it must know which
component is to receive the event. In this case, by making the call at 11 (in
Figure B.3), the GUI object that contains the JButton tells the Button to send it
the event. These event-handling details are discussed in Section B.3.3.

A second use of the JPanel is the grouping of objects into a unit for the
purpose of simplifying layouts. This is discussed in Section B.3.5.

2. Menus are not discussed in this appendix.

B.2 basic objects in swing 935

Almost all of the JPanel functionality is in fact inherited from JComponent.
This includes routines for painting, sizing, and event handling and the method
to set tooltips:

void setToolTipText(String txt);
void setPreferredSize(Dimension d);

figure B.3

Basic GUI class
shown in Figure B.1

1 import java.awt.*;
2 import java.awt.event.*;
3 import javax.swing.*;
4
5 class GUI extends JPanel implements ActionListener
6 {
7 public GUI()
8 {
9 makeTheObjects();

10 doTheLayout();
11 theDrawButton.addActionListener(this);
12 }
13 // Make all the objects
14 private void makeTheObjects()
15 { /* Implementation in Figure B.4*/ }
16
17 // Lay out all the objects
18 private void doTheLayout()
19 { /* Implementation in Figure B.7 */ }
20
21 // Handle the draw button push
22 public void actionPerformed(ActionEvent evt)
23 { /* Implementation in Figure B.9 */ }
24
25 private GUICanvas theCanvas;
26 private JComboBox theShape;
27 private JList theColor;
28 private JTextField theXCoor;
29 private JTextField theYCoor;
30 private JRadioButton smallPic;
31 private JRadioButton mediumPic;
32 private JRadioButton largePic;
33 private JCheckBox theFillBox;
34 private JButton theDrawButton;
35 private JTextField theMessage;
36 }

936 appendix B graphical user interfaces

B.2.5 important i/o components

Swing provides a set of components that can be used to perform input and output.
These components are easy to set up and use. The code in Figure B.4 illustrates
how each of the basic components that are shown in Figure B.1 are constructed.
Generally, this involves calling a constructor and applying a method to customize
a component. This code does not specify how items are arranged in the JPanel or
how the states of the components are examined. Recall that GUI programming
consists of drawing the interface and then waiting for events to occur. Component
layout and event handling is discussed in Section B.3.

figure B.4

Code that constructs
the objects in
Figure B.1

1 // Make all the objects
2 private void makeTheObjects()
3 {
4 theCanvas = new GUICanvas();
5 theCanvas.setBackground(Color.green);
6 theCanvas.setPreferredSize(new Dimension(99, 99));
7
8 theShape = new JComboBox(new String []
9 { "Circle", "Square" });

10
11 theColor = new JList(new String [] { "red", "blue" });
12 theColor.setSelectionMode(
13 ListSelectionModel.SINGLE_SELECTION);
14 theColor.setSelectedIndex(0); // make red default
15
16 theXCoor = new JTextField(3);
17 theYCoor = new JTextField(3);
18
19 ButtonGroup theSize = new ButtonGroup();
20 smallPic = new JRadioButton("Small", false);
21 mediumPic = new JRadioButton("Medium", true);
22 largePic = new JRadioButton("Large", false);
23 theSize.add(smallPic);
24 theSize.add(mediumPic);
25 theSize.add(largePic);
26
27 theFillBox = new JCheckBox("Fill");
28 theFillBox.setSelected(false);
29
30 theDrawButton = new JButton("Draw");
31
32 theMessage = new JTextField(25);
33 theMessage.setEditable(false);
34 }

B.2 basic objects in swing 937

JLabel

A JLabel is a component for placing text in a container. Its primary use is to
label other components such as a JComboBox, JList, JTextField, or JPanel
(many other components already have their names displayed in some way). In
Figure B.1, the phrases Shape, X Coor, and Y Coor are labels. A JLabel is con-
structed with an optional String and can be changed with the method setText.
These methods are

JLabel();
JLabel(String theLabel);
void setText(String theLabel);

JButton

The JButton is used
to create a labeled
button. When it is
pushed, an action
event is generated.

The JButton is used to create a labeled button. Figure B.1 contains a JButton
with the label Draw. When the JButton is pushed, an action event is generated.
Section B.3.3 describes how action events are handled. The JButton is similar
to the JLabel in that a JButton is constructed with an optional String. The
JButton label can be changed with the method setText. These methods are

JButton();
JButton(String theLabel);
void setText(String theLabel);
void setMnemonic(char c);

JComboBox

The JComboBox is
used to select a
single string via a
pop-up list of
choices.

The JComboBox is used to select a single object (typically a string) via a pop-up
list of choices. Only one choice can be selected at any time, and by default
only an object that is one of the choices can be selected. If the JComboBox is
made editable, the user can type in an entry that is not one of the choices. In
Figure B.1, the type of shape is a JComboBox object; Circle is currently
selected. Some of the JComboBox methods are

JComboBox();
JComboBox(Object [] choices);
void addItem(Object item);
Object getSelectedItem();
int getSelectedIndex();
void setEditable(boolean edit);
void setSelectedIndex(int index);

A JComboBox is constructed with no parameters or with an array of
options. Objects (typically strings) can then be added to (or removed from) the
list of JComboBox options. When getSelectedItem is called, an Object represent-
ing the current selected item (or null, if no choice is selected) is returned.

A JLabel is a com-
ponent for placing
text in a container.
Its primary use is to
label other compo-
nents.

938 appendix B graphical user interfaces

Instead of returning the actual Object, its index (as computed by the order of
calls to addItem) can be returned by calling getSelectedIndex. The first item
added has index 0, and so on. This can be useful because if an array stores
information corresponding to each of the choices, getSelectedIndex can be
used to index this array. The setSelectedIndex method is used to specify a
default selection.

JList

The JList compo-
nent allows the
selection from a
scrolling list of
Objects. It can be
set up to allow for
either one selected
item or multiple
selected items.

The JList component allows the selection from a scrolling list of Objects. In
Figure B.1, the choice of colors is presented as a JList. The JList differs from
the JComboBox in three fundamental ways:

1. The JList can be set up to allow either one selected item or
multiple selected items (the default is multiple selection).

2. The JList allows the user to see more than one choice at a time.

3. The JList will take up more screen real estate than the Choice.

The basic JList methods are

JList();
JList(Object [] items);
void setListData(Object [] items);
int getSelectedIndex();
int [] getSelectedIndices();
Object getSelectedValue();
Object [] getSelectedValues();
void setSelectedIndex(int index);
void setSelectedValue(Object value);
void setSelectionMode(int mode);

A JList is constructed with either no parameters or an array of items
(there are other constructors that are more sophisticated). Most of the listed
methods have the same behavior (with possibly different names) as the corre-
sponding methods in JComboxBox. getSelectedValue returns null if no items are
selected. getSelectedValues is used to handle multiple selection; it returns an
array of Objects (possibly length 0) corresponding to the selected items. As
with the JComboxBox, indices instead of Objects can be obtained by other public
methods.

setSelectionMode is used to allow only single-item selection. The boiler-
plate code is

lst.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

B.2 basic objects in swing 939

JCheckBox and JRadioButton
A check box is a
GUI component
that has an on state
and an off state. A
ButtonGroup can
contain a set of
buttons in which
only one may be
true at a time.

A JCheckBox is a GUI component that has an on state and an off state. The on
state is true and the off state is false. It is considered a button (a class
AbstractButton is defined in the Swing API from which JButton, JCheckBox,
and JRadioButton are all derived). A JRadioButton is similar to a check box,
except that JRadioButtons are round; we use check box as a generic term to
describe both. Figure B.1 contains four check box objects. In this figure, the
Fill check box is currently true and the three other check boxes are in a
ButtonGroup: Only one check box in the group of three may be true. When a
check box in a group is selected, all the others in the group are deselected.
A ButtonGroup is constructed with zero parameters. Note that it is not a
Component; it is simply a helper class that extends Object.

The common methods for JCheckBox are similar to JRadioButton and are:

JCheckBox();
JCheckBox(String theLabel);
JCheckBox(String theLabel, boolean state);
boolean isSelected();
void setLabel(String theLabel);
void setSelected(boolean state);

A stand-alone JCheckBox is constructed with an optional label. If a label is
not provided, it can be added later with setLabel. setLabel can also be used to
change the existing JCheckBox label. setSelected is most commonly used to set a
default for a stand-alone JCheckBox. isSelected returns the state of a JCheckBox.

A JCheckBox that is part of a ButtonGroup is constructed as usual and is
then added to the ButtonGroup object by use of the ButtonGroup add method.
The ButtonGroup methods are

ButtonGroup();
void add(AbstractButton b);

Canvases
A Canvas compo-
nent represents a
blank rectangular
area of the screen
onto which the
application can
draw or receive
input events.

In the AWT, a Canvas component represents a blank rectangular area of the
screen onto which the application can draw. Primitive graphics are described
in Section B.3.2. A Canvas could also receive input from the user in the form
of mouse and keyboard events. The Canvas was never used directly: Instead,
the programmer defined a subclass of Canvas with appropriate functionality.
The subclass overrode the public method

void paint(Graphics g);

940 appendix B graphical user interfaces

In Swing, this is no longer in vogue. The same effect is obtained by extending
JPanel and overriding the public method

void paintComponent(Graphics g);

Although this works for any component, by using a JPanel of a preferred size, one
can avoid having any painting run over the boundary of the “canvasing area.”

JTextField and JTextAreas
A JTextField is a component that presents the user with a single line of text. A
JTextArea allows multiple lines and has similar functionality. Thus only
JTextField is considered here. By default, the text can be edited by the user,
but it is possible to make the text uneditable. In Figure B.1, there are three
JTextField objects: two for the coordinates and one, which is not editable by
the user, that is used to communicate error messages. The background color
of an uneditable text field differs from that of an editable text field. Some of
the common methods associated with JTextField are

JTextField();
JTextField(int cols);
JTextField(String text, int cols);
String getText();
boolean isEditable();
void setEditable(boolean editable);
void setText(String text);

A JTextField is constructed either with no parameters or by specifying
initial optional text and the number of columns. The setEditable method
can be used to disallow input into the JTextField. setText can be used to
print messages into the JTextField, and getText can be used to read from the
JTextField.

B.3 basic principles
This section examines three important facets of AWT programming: first, how
objects are arranged inside a container, followed by how events, such as but-
ton pushing, are handled. Finally, it describes how graphics are drawn inside
canvas objects.

A JTextField is a
component that
presents the user
with a single line of
text. A JTextArea
allows multiple lines
and has similar
functionality.

B.3 basic principles 941

B.3.1 layout managers
The layout man-
ager automatically
arranges compo-
nents of the con-
tainer. A layout
manager is associ-
ated with a con-
tainer by the
setLayout method.

A layout manager automatically arranges components of the container. It is
associated with a container by issuing the setLayout command. An example of
using setLayout is the call

setLayout(new FlowLayout());

Notice that a reference to the layout manager need not be saved. The con-
tainer in which the setLayout command is applied stores it as a private data
member. When a layout manager is used, requests to resize many of the com-
ponents, such as buttons, do not work because the layout manager will choose
its own sizes for the components, as it deems appropriate. The idea is that the
layout manager will determine the best sizes that allow the layout to meet the
specifications.

Think of the layout manager as an expert packer hired by the container
to make the final decisions about how to pack items that are added to the
container.

FlowLayout

The simplest of the
layouts is the
FlowLayout, which
adds components
in a row from left to
right.

The simplest of the layouts is the FlowLayout. When a container is arranged
using the FlowLayout, its components are added in a row from left to right.
When there is no room left in a row, a new row is formed. By default, each
row is centered. This can be changed by providing an additional parameter in
the constructor with the value FlowLayout.LEFT or FlowLayout.RIGHT.

The problem with using a FlowLayout is that a row may break in an awk-
ward place. For instance, if a row is too short, a break may occur between a
JLabel and a JTextField, even though logically they should always remain
adjacent. One way to avoid this is to create a separate JPanel with those two
elements and then add the JPanel into the container. Another problem with the
FlowLayout is that it is difficult to line up things vertically.

The FlowLayout is the default for a JPanel.

BorderLayout

BorderLayout is the
default for objects
in the Window hier-
archy, such as
JFrame and JDialog.
It lays out a con-
tainer by placing
components in one
of five locations.

A BorderLayout is the default for objects in the Window hierarchy, such as
JFrame. It lays out a container by placing components in one of five locations.
For this to happen, the add method must provide as a second parameter one of
the strings "North", "South", "East", "West", and "Center"; the second parame-
ter defaults to "Center" if not provided (so one single-parameter add will work,
but several adds place items on top of each other). Figure B.5 shows five but-
tons added to a Frame using a BorderLayout. The code to generate this layout is

942 appendix B graphical user interfaces

shown in Figure B.6. Observe that we use the typical idiom of adding into a
lightweight JPanel and then adding the JPanel into the top-level JFrame’s con-
tent pane. Typically, some of the five locations may be unused. Also, the com-
ponent placed in a location is typically a JPanel that contains other
components using some other layout.

As an example, the code in Figure B.7 shows how the objects in Fig-
ure B.1 are arranged. Here, we have two rows, but we want to ensure that
the check boxes, buttons, and output text field are placed below the rest of
the GUI. The idea is to create a JPanel that stores the items that should be
in the top half and another JPanel that stores the items in the bottom half.
These two JPanels can be placed on top of each other by arranging them
using a BorderLayout.

figure B.5

Five buttons arranged
using BorderLayout

figure B.6

Code that illustrates
BorderLayout

1 import java.awt.*;
2 import javax.swing.*;
3
4 // Generate Figure B.5
5 public class BorderTest extends JFrame
6 {
7 public static void main(String [] args)
8 {
9 JFrame f = new BorderTest();

10 JPanel p = new JPanel();
11
12 p.setLayout(new BorderLayout());
13 p.add(new JButton("North"), "North");
14 p.add(new JButton("East"), "East");
15 p.add(new JButton("South"), "South");
16 p.add(new JButton("West"), "West");
17 p.add(new JButton("Center"), "Center");
18
19 Container c = f.getContentPane();
20 c.add(p);
21 f.pack(); // Resize frame to minimum size
22 f.setVisible(true); // Display the frame
23 }
24 }

B.3 basic principles 943

Lines 4 and 5 create the two JPanel objects topHalf and bottomHalf. Each
of the JPanel objects are then separately arranged using a FlowLayout. Notice
that the setLayout and add methods are applied to the appropriate JPanel.
Because the JPanels are arranged with the FlowLayout, they may consume
more than one row if there is not enough horizontal real estate available.
This could cause a bad break between a JLabel and a JTextField. It is left as
an exercise for the reader to create additional JPanels to ensure that any
breaks do not disconnect a JLabel and the component it labels. Once the
JPanels are done, we use a BorderLayout to line them up. This is done at
lines 28 to 30. Notice also that the contents of both JPanels are centered.
This is a result of the FlowLayout. To have the contents of the JPanels left-
aligned, lines 8 and 19 would construct the FlowLayout with the additional
parameter FlowLayout.LEFT.

figure B.7

Code that lays out the
objects in Figure B.1

1 // Lay out all the objects
2 private void doTheLayout()
3 {
4 JPanel topHalf = new JPanel();
5 JPanel bottomHalf = new JPanel();
6
7 // Lay out the top half
8 topHalf.setLayout(new FlowLayout());
9 topHalf.add(theCanvas);

10 topHalf.add(new JLabel("Shape"));
11 topHalf.add(theShape);
12 topHalf.add(theColor);
13 topHalf.add(new JLabel("X coor"));
14 topHalf.add(theXCoor);
15 topHalf.add(new JLabel("Y coor"));
16 topHalf.add(theYCoor);
17
18 // Lay out the bottom half
19 bottomHalf.setLayout(new FlowLayout());
20 bottomHalf.add(smallPic);
21 bottomHalf.add(mediumPic);
22 bottomHalf.add(largePic);
23 bottomHalf.add(theFillBox);
24 bottomHalf.add(theDrawButton);
25 bottomHalf.add(theMessage);
26
27 // Now lay out GUI
28 setLayout(new BorderLayout());
29 add(topHalf, "North");
30 add(bottomHalf, "South");
31 }

944 appendix B graphical user interfaces

When the BorderLayout is used, any add commands that are issued without
a String use "Center" as the default. If a String is provided but is not one of
the acceptable five (including having correct case), then a run-time exception
is thrown.3

null layout
The null layout is used to perform precise positioning. In the null layout,
each object is added to the container by add. Its position and size may then be
set by calling the setBounds method:

void setBounds(int x, int y, int width, int height);

Here x and y represent the location of the upper left-hand corner of the object,
relative to the upper left-hand corner of its container. And width and height
represent the size of the object. All units are pixels.

The null layout is platform dependent; typically, this is a significant liability.

fancier layouts
Other layouts simu-
late tabbed index
cards and allow
arranging over an
arbitrary grid.

Java also provides the CardLayout, GridLayout, and GridBagLayout. The
CardLayout simulates the tabbed index cards popular in Windows applications.
The GridLayout adds components into a grid but will make each grid entry the
same size. This means that components are stretched in sometimes unnatural
ways. It is useful for when this is not a problem, such as a calculator keypad
that consists of a two-dimensional grid of buttons. The GridBagLayout adds
components into a grid but allows components to cover several grid cells. It is
more complicated than the other layouts.

visual tools
Commercial products include tools that allow the programmer to draw the
layout using a CAD-like system. The tool then produces the Java code to con-
struct the objects and provide a layout. Even with this system, the program-
mer must still write most of the code, including the handling of events, but is
relieved of the dirty work involved in calculating precise object positions.

3. Note that in Java 1.0, the arguments to add were reversed, and missing or incorrect Strings
were quietly ignored, thus leading to difficult debugging. The old style is still allowed, but it
is officially discouraged.

When the
BorderLayout is
used, an add com-
mand that is issued
without a String
defaults to
"Center".

The null layout is
used to perform
precise positioning.

B.3 basic principles 945

Graphics is an
abstract class that
defines several
drawing methods.

B.3.2 graphics
Graphics are drawn
by defining a class
that extends
JPanel. The new
class overrides the
paintComponent
method and pro-
vides a public
method that can be
called from the
canvas’s container.

As mentioned in Section B.2.5, graphics are drawn by using a JPanel object.
Specifically, to generate graphics, the programmer must define a new class
that extends JPanel. This new class provides a constructor (if a default is unac-
ceptable), overrides a method named paintComponent, and provides a public
method that can be called from the canvas’s container. The paintComponent
method is

void paintComponent(Graphics g);

Graphics is an abstract class that defines several methods. Some of these are

void drawOval(int x, int y, int width, int height);
void drawRect(int x, int y, int width, int height);
void fillOval(int x, int y, int width, int height);
void fillRect(int x, int y, int width, int height);
void drawLine(int x1, int y1, int x2, int y2);
void drawString(String str, int x, int y);
void setColor(Color c);

In Java, coordinates
are measured rela-
tive to the upper
left-hand corner of
the component.

In Java, coordinates are measured relative to the upper left-hand corner of
the component. drawOval, drawRect, fillOval, and fillRect all draw an object
of specified width and height with the upper left-hand corner at coordinates
given by x and y. drawLine and drawString draw lines and text, respectively.
setColor is used to change the current color; the new color is used by all draw-
ing routines until it is changed.

It is important that
the first line of
paintComponent calls
the superclass’s
paintComponent.

It is important that the first line of paintComponent calls the superclass’s
paintComponent.

Figure B.8 illustrates how the canvas in Figure B.1 is implemented. The
new class GUICanvas extends JPanel. It provides various private data members
that describe the current state of the canvas. The default GUICanvas constructor
is reasonable, so we accept it.

The data members are set by the public method setParams, which is provided
so that the container (that is, the GUI class that stores the GUICanvas) can commu-
nicate the state of its various input components to the GUICanvas. setParams is
shown at lines 3 to 13. The last line of setParams calls the method repaint.

The repaint
method schedules
a component clear-
ing and then calls
paintComponent.

The repaint method schedules a component clearing and subsequent call
to paintComponent. Thus all we need to do is to write a paintComponent method
that draws the canvas as specified in the class data members. As can be seen
by its implementation in lines 15 to 35, after chaining up to the superclass,
paintComponent simply calls the Graphics methods described previously in this
appendix.

946 appendix B graphical user interfaces

figure B.8

Basic canvas shown
in top left-hand
corner of Figure B.1

1 class GUICanvas extends JPanel
2 {
3 public void setParams(String aShape, String aColor, int x,
4 int y, int size, boolean fill)
5 {
6 theShape = aShape;
7 theColor = aColor;
8 xcoor = x;
9 ycoor = y;

10 theSize = size;
11 fillOn = fill;
12 repaint();
13 }
14
15 public void paintComponent(Graphics g)
16 {
17 super.paintComponent(g);
18 if(theColor.equals("red"))
19 g.setColor(Color.red);
20 else if(theColor.equals("blue"))
21 g.setColor(Color.blue);
22
23 theWidth = 25 * (theSize + 1);
24
25 if(theShape.equals("Square"))
26 if(fillOn)
27 g.fillRect(xcoor, ycoor, theWidth, theWidth);
28 else
29 g.drawRect(xcoor, ycoor, theWidth, theWidth);
30 else if(theShape.equals("Circle"))
31 if(fillOn)
32 g.fillOval(xcoor, ycoor, theWidth, theWidth);
33 else
34 g.drawOval(xcoor, ycoor, theWidth, theWidth);
35 }
36
37 private String theShape = "";
38 private String theColor = "";
39 private int xcoor;
40 private int ycoor;
41 private int theSize; // 0 = small, 1 = med, 2 = large
42 private boolean fillOn;
43 private int theWidth;
44 }

B.3 basic principles 947

B.3.3 events
Java’s original
event-handling sys-
tem was cumber-
some and has been
completely redone.

When the user types on the keyboard or uses the mouse, the operating system pro-
duces an event. Java’s original event-handling system was cumbersome and has
been completely redone. The new model, in place since Java 1.1, is much simpler
to program than the old. Note that the two models are incompatible: Java 1.1
events are not understood by Java 1.0 compilers. The basic rules are as follows:

1. Any class that is willing to provide code to handle an event
must implement a listener interface. Examples of listener inter-
faces are ActionListener, WindowListener, and MouseListener. As
usual, implementing an interface means that all methods of the
interface must be defined by the class.

2. An object that is willing to handle the event generated by a
component must register its willingness with an addListener
message sent to the event-generating component. When a com-
ponent generates an event, the event will be sent to the object
that has registered to receive it. If no object has registered to
receive it, then it is ignored.

An action event is
generated when
the user presses a
JButton; it is han-
dled by an
actionListener.

For an example, consider the action event, which is generated when the
user presses a JButton, hits Return while in a JTextField, or selects from a
JList or JMenuItem. The simplest way to handle the JButton click is to have its
container implement ActionListener by providing an actionPerformed method
and registering itself with the JButton as its event handler.

This is shown for our running example in Figure B.1 as follows. Recall
that in Figure B.3, we already have done two things. At line 5, GUI declares
that it implements the ActionListener, and at line 11, an instance of GUI reg-
isters itself as its JButton’s action event handler. In Figure B.9, we imple-
ment the listener by having actionPerformed call setParam in the GUICanvas
class. This example is simplified by the fact that there is only one JButton, so
when actionPerformed is called, we know what to do. If GUI contained several
JButtons and it registered to receive events from all of these JButtons, then
actionPerformed would have to examine the evt parameter to determine
which JButton event was to be processed: This might involve a sequence of
if/else tests.4 The evt parameter, which in this case is an ActionEvent refer-
ence, is always passed to an event handler. The event will be specific to the
type of handler (ActionEvent, WindowEvent, and so on), but it will always be a
subclass of AWTEvent.

4. One way to do this is to use evt.getSource(), which returns a reference to the object that
generated the event.

948 appendix B graphical user interfaces

A window-closing
event is generated
when an applica-
tion is closed.

An important event that needs to be processed is the window-closing
event. This event is generated when an application is closed by pressing on
the that is at the top right-hand corner of the application window. Unfortu-
nately, by default, this event is ignored, so if an event handler is not provided,
the normal mechanism for closing an application will not work.

Window closing is one of several events that is associated with a
WindowListener interface. Because implementing the interface requires us to pro-
vide implementations for many methods (which are likely to be empty bodies),
the most reasonable course of action is to define a class that extends JFrame and
implements the WindowListener interface. This class, CloseableFrame, is shown in
Figure B.10. The window-closing event handler is simple to write—it just calls
System.exit. The other methods remain without a special implementation. The
constructor registers that it is willing to accept the window-closing event. Now
we can use CloseableFrame instead of JFrame throughout.

Notice that the code for CloseableFrame is cumbersome; we will revisit it
shortly and see a use for anonymous inner classes.

Figure B.11 provides a main that can be used to start the application in
Figure B.1. We place this in a separate class, which we call BasicGUI. BasicGUI
extends the class CloseableFrame. main simply creates a JFrame into which we
place a GUI object. We then add an unnamed GUI object into the JFrame’s con-
tent pane and pack the JFrame. The pack method simply makes the JFrame as
tight as possible, given its constituent components. The show method displays
the JFrame.

figure B.9

Code to handle the
draw button push for
Figure B.1

1 // Handle the draw button push
2 public void actionPerformed(ActionEvent evt)
3 {
4 try
5 {
6 theCanvas.setParams(
7 (String) theShape.getSelectedItem(),
8 (String) theColor.getSelectedValue(),
9 Integer.parseInt(theXCoor.getText()),

10 Integer.parseInt(theYCoor.getText()),
11 smallPic.isSelected() ? 0 :
12 mediumPic.isSelected() ? 1 : 2,
13 theFillBox.isSelected());
14
15 theMessage.setText("");
16 }
17 catch(NumberFormatException e)
18 { theMessage.setText("Incomplete input"); }
19 }

The window-
closing event is
handled by imple-
menting the
WindowListener
interface.

CloseableFrame
extends JFrame
and implements
WindowListener.

The pack method
simply makes the
JFrame as tight as
possible, given its
constituent compo-
nents. The show
method displays
the JFrame.

B.3 basic principles 949

B.3.4 event handling: adapters and
anonymous inner classes

The CloseableFrame class is a mess. To listen for a WindowEvent, we must declare
a class that implements the WindowListener interface, instantiate the class, and
then register that object with the CloseableFrame. Since the Window-Listener

figure B.10

CloseableFrame class:
same as JFrame but
handles the window-
closing event

1 // Frame that closes on a window-close event
2
3 public class CloseableFrame extends JFrame
4 implements WindowListener
5 {
6 public CloseableFrame()
7 { addWindowListener(this); }
8
9 public void windowClosing(WindowEvent event)

10 { System.exit(0); }
11 public void windowClosed(WindowEvent event)
12 { }
13 public void windowDeiconified(WindowEvent event)
14 { }
15 public void windowIconified(WindowEvent event)
16 { }
17 public void windowActivated(WindowEvent event)
18 { }
19 public void windowDeactivated(WindowEvent event)
20 { }
21 public void windowOpened(WindowEvent event)
22 { }
23 }

figure B.11

main routine for
Figure B.1

1 class BasicGUI extends CloseableFrame
2 {
3 public static void main(String [] args)
4 {
5 JFrame f = new BasicGUI();
6 f.setTitle("GUI Demo");
7
8 Container contentPane = f.getContentPane();
9 contentPane.add(new GUI());

10 f.pack();
11 f.show();
12 }
13 }

950 appendix B graphical user interfaces

interface has seven methods, we must implement all seven methods, even
though we are interested in only one of the seven methods.

One can imagine the messy code that will ensue when a large program
handles numerous events. The problem is that every event-handling strategy
corresponds to a new class, and it would be bizarre to have many classes with
lots of methods that simply declare { }.

The listener adapter
classes provide
default implemen-
tations of all the
listener methods.

As a result, the java.awt.event package defines a set of listener adapter
classes. Each listener interface that has more than one method is implemented
by a corresponding listener adapter class, with empty bodies. Thus instead of
providing the empty bodies ourselves, we can simply extend the adapter class
and override the methods we are interested in. In our case, we need to extend
WindowAdapter. This gives the (flawed) implementation for CloseableFrame,
shown in Figure B.12.

The code in Figure B.12 fails because multiple implementation inherit-
ance is illegal in Java. This is not a serious problem, however, because we do
not need the CloseableFrame to be the object that handles its own events.
Instead, it can be delegated to a function object.

Figure B.13 illustrates this approach. The ExitOnClose class implements
the WindowListener interface by extending WindowAdapter. An instance of that
class is created and registered as the frame’s window listener. ExitOnClose is
declared as an inner class instead of a nested class. This would give it access
to any of the CloseableFrame’s instance members, should it need it. The event-
handling model is a classic example of the use of function objects and is the
reason that inner classes were deemed an essential addition to the language
(recall that inner classes and the new event model appeared simultaneously in
Java 1.1).

Figure B.14 shows the logical continuation, using anonymous inner
classes. Here we are adding a WindowListener and explaining, on pretty much
the next line of code, what the WindowListener does. This is a classic use of the
anonymous inner classes. The pollution of braces, parentheses, and semicolons

figure B.12

CloseableFrame class
using WindowAdapter.
This does not work
because there is no
multiple inheritance in
Java.

1 // Frame that closes on a window-close event: (flawed)
2 public class CloseableFrame extends JFrame, WindowAdapter
3 {
4 public CloseableFrame()
5 { addWindowListener(this); }
6
7 public void windowClosing(WindowEvent event)
8 { System.exit(0); }
9 }

B.3 basic principles 951

is horrific, but experienced readers of Java code skip over those syntactic
details and easily see what the event-handling code does. The main benefit
here is that if there are lots of small event-handling methods, they need not be
scattered in top-level classes but instead can be placed near the objects that
these events are coming from.

B.3.5 summary: putting the pieces together

Here is a summary of how to create a GUI application. Place the GUI func-
tionality in a class that extends JPanel. For that class, do the following:

1. Decide on the basic input elements and text output elements. If the
same elements are used twice, make an extra class to store the com-
mon functionality and apply these principles on that class.

figure B.13

CloseableFrame class
using WindowAdapter
and inner class

1 // Frame that closes on a window-close event: (works!)
2 public class CloseableFrame extends JFrame
3 {
4 public CloseableFrame()
5 { addWindowListener(new ExitOnClose()); }
6
7 private class ExitOnClose extends WindowAdapter
8 {
9 public void windowClosing(WindowEvent event)

10 { System.exit(0); }
11 }
12 }

figure B.14

CloseableFrame class
using WindowAdapter
and anonymous inner
class

1 // Frame that closes on a window-close event: (works!)
2 public class CloseableFrame extends JFrame
3 {
4 public CloseableFrame()
5 {
6 addWindowListener(new WindowAdapter()
7 {
8 public void windowClosing(WindowEvent event)
9 { System.exit(0); }

10 }
11);
12 }
13 }

952 appendix B graphical user interfaces

2. If graphics are used, make an extra class that extends JPanel. That
class must provide a paintComponent method and a public method that
can be used by the container to communicate to it. It may also need to
provide a constructor.

3. Pick a layout and issue a setLayout command.

4. Add components to the GUI using add.

5. Handle events. The simplest way to do this is to use a JButton and trap
the button push with actionPerformed.

Once a GUI class is written, an application defines a class that extends
CloseableFrame with a main routine. The main routine simply creates an
instance of this extended frame class, places the GUI panel inside the frame’s
content pane, and issues a pack command and a show command for the frame.

B.3.6 is this everything i need to
know about swing?

What we have described so far will work well for toy user interfaces and is an
improvement over console-based applications. But there are significant com-
plications that a professional applications programmer would have to deal
with.

It is rare that the layout manager will make you happy. Often you need to
tinker by adding additional subpanels. To help out, Swing defines elements
such as spacers, struts, and so on that allow you to position elements more
precisely, along with elaborate layout managers. Using these elements is quite
challenging.

Other Swing components include sliders, progress bars, scrolling (which
can be added to any JComponent), password textfields, file choosers, option
panes and dialog boxes, tree structures (such as what you see in File Manager
on Windows systems), tables, and on and on. Image acquisition and display is
also supported by Swing. Additionally, one often needs to know about fonts,
colors, and the screen environment that one is working in.

Additionally, there is the important issue of what happens if an event
occurs while you are in an event handler. It turns out that events are queued.
However, if you get trapped in an event handler for a long time, your applica-
tion can appear unresponsive; we’ve all seen this in application code. For
instance, if the button-handling code has an infinite loop, you will not be able
to close a window. To solve this problem, typically programmers use a tech-
nique known as multithreading, which opens up a whole new can of worms.

key concepts 953

summary

This appendix examined the basics of the Swing package, which allows the
programming of GUIs. This makes the program look much more professional
than simple terminal I/O.

GUI applications differ from terminal I/O applications in that they are
event-driven. To design a GUI, we write a class. We must decide on the basic
input elements and output elements, pick a layout and issue a setLayout com-
mand, add components to the GUI using add, and handle events. All this is
part of the class. Starting with Java 1.1, event-handling is done with event lis-
teners.

Once this class is written, an application defines a class that extends
JFrame with a main routine and an event handler. The event handler processes
the window-closing event. The simplest way to do this is to use the
CloseableFrame class in Figure B.14. The main routine simply creates an
instance of this extended frame class, places an instance of the class (whose
constructor likely creates a GUI panel) inside the frame’s content pane, and
issues a pack command and a show command for the frame.

Only the basics of Swing have been discussed here. Swing is the topic of
entire books.

key concepts

Abstract Window Toolkit (AWT) A GUI toolkit that is supplied with all Java
systems. Provides the basic classes to allow user interfaces. (930)

ActionEvent An event generated when a user presses a JButton, hits Return in a
JTextField, or selects from a JList or JMenuItem. Should be handled by the
actionPerformed method in a class that implements the ActionListener
interface. (947)

ActionListener interface An interface used to handle action events. Contains
the abstract method actionPerformed. (947)

actionPerformed A method used to handle action events. (947)
AWTEvent An object that stores information about an event. (947)
BorderLayout The default for objects in the Window hierarchy. Used to lay out a

container by placing components in one of five locations ("North",
"South", "East", "West", "Center"). (941)

ButtonGroup An object used to group a collection of button objects and guaran-
tee that only one may be on at any time. (939)

954 appendix B graphical user interfaces

Canvas A blank rectangular area of the screen onto which an application can
draw and receive input from the user in the form of keyboard and mouse
events. In Swing, this is implemented by extending JPanel. (939)

Component An abstract class that is the superclass of many AWT objects. Rep-
resents something that has a position and a size and that can be painted on
the screen as well as receive input events. (932)

Container The abstract superclass representing all components that can hold
other components. Typically has an associated layout manager. (933)

event Produced by the operating system for various occurrences, such as input
operations, and passed to Java. (947)

FlowLayout A layout that is the default for JPanel. Used to lay out a container
by adding components in a row from left to right. When there is no room
left in a row, a new row is formed. (941)

graphical user interface (GUI) The modern alternative to terminal I/O that
allows a program to communicate with its user via buttons, check boxes,
text fields, choice lists, menus, and the mouse. (929)

Graphics An abstract class that defines several methods that can be used to
draw shapes. (945)

JButton A component used to create a labeled button. When the button is
pushed, an action event is generated. (937)

JCheckBox A component that has an on state and an off state. (939)
JComboBox A component used to select a single string via a pop-up list of

choices. (937)
JComponent An abstract class that is the superclass of lightweight Swing

objects. (933)
JDialog A top-level window used to create dialogs. (934)
JFrame A top-level window that has a border and can also have an associated

JMenuBar. (934)
JLabel A component that is used to label other components such as a

JComboBox, JList, JTextField, or JPanel. (937)
JList A component that allows the selection from a scrolling list of strings.

Can allow one or multiple selected items but uses more screen real estate
than JComboBox. (938)

JPanel A container used to store a collection of objects but does not create
borders. Also used for canvases. (934)

JTextArea A component that presents the user with several lines of text. (940)
JTextField A component that presents the user with a single line of text. (940)

common errors 955

JWindow A top-level window that has no border. (934)
layout manager A helper object that automatically arranges components of a

container. (941)
listener adapter class Provides default implementations for a listener interface

that has more than one method. (950)
null layout A layout used to perform precise positioning. (944)
pack A method used to pack a JFrame into its smallest size given its constituent

components. (948)
paintComponent A method used to draw onto a component. Typically overrid-

den by classes that extend JPanel. (945)
repaint A method used to clear and repaint a component. (945)
setLayout A method that associates a layout with a container. (941)
show A method that makes a component visible. (948)
WindowAdapter A class that provides default implementations of the

WindowListener interface. (950)
WindowListener interface An interface used to specify the handling of window

events, such as window closing. (948)

common errors

1. Forgetting to set a layout manager is a common mistake. If you forget it,
you’ll get a default. However, it may not be the one you want.

2. The layout manager must appear prior to the calls to add.

3. Applying add or setting a layout manager to the wrong container is a com-
mon mistake. For instance, in a container that contains panels, applying
the add method without specifying the panel means that the add is applied
to the main container.

4. A missing String argument to add for BorderLayout uses "Center" as the
default. A common mistake is to specify it in the wrong case, as in
"north". The five valid arguments are "North", "South", "East", "West", and
"Center". In Java 1.1, if the String is the second parameter, a run-time
exception will catch the error. If you use the old style, in which the String
comes first, the error might not be detected.

5. Special code is needed to process the window-closing event.

956 appendix B graphical user interfaces

on the internet

All code found in this Appendix is available:

BorderTest.java Simple illustration of the BorderLayout, shown in Fig-
ure B.6.

BasicGUI.java The main example for the GUI application used in
this chapter, with CloseableFrame from Figure B.14.

exercises

IN SHORT

B.1 What is a GUI?

B.2 List the various JComponent classes that can be used for GUI input.

B.3 Describe the difference between heavyweight components and lightweight
components and give examples of each.

B.4 What are the differences between the JList and JComboBox components?

B.5 What is a ButtonGroup used for?

B.6 Explain the steps taken to design a GUI.

B.7 Explain how the FlowLayout, BorderLayout, and null layouts arrange com-
ponents.

B.8 Describe the steps taken to include a graphical component inside a JPanel.

B.9 What is the default behavior when an event occurs? How is the default
changed?

B.10 What events generate an ActionEvent?

B.11 How is the window-closing event handled?

IN PRACTICE

B.12 paintComponent can be written for any component. Show what happens
when a circle is painted in the GUI class instead of its own canvas.

B.13 Handle the pressing of the Enter key in the y-coordinate text field in class
GUI.

B.14 Add a default of (0, 0) for the coordinates of a shape in class GUI.

references 957

PROGRAMMING PROJECTS

B.15 Write a program that can be used to input two dates and output the number
of days between them. Use the Date class from Exercise 3.29.

B.16 Write a program that allows you to draw lines inside a canvas using the
mouse. A click starts the line draw; a second click ends the line. Multiple
lines can be drawn on the canvas. To do this, extend the JPanel class and
handle mouse events by implementing MouseListener. You should keep an
ArrayList that maintains the set of lines that have been drawn, and use it to
guide paintComponent. Add a button to clear the canvas.

B.17 Write an application that contains two GUI objects. When actions occur in
one of the GUI objects, the other GUI object saves its old state. You will need
to add a copyState method to the GUI class that will copy the states of all of
the GUI fields and redraw the canvas.

B.18 Write a program that contains a single canvas and a set of ten GUI input
components that each specify a shape, color, coordinates, and size, and a
check box that indicates the component is active. Then draw the union of
the input components onto a canvas. Represent the GUI input component
by using a class with accessor functions. The main program should have
an array of these input components plus the canvas.

references

In addition to the standard set of references in Chapter 1, a complete Swing
tutorial is provided in the 950-page book [1].

1. K. Walrath and M. Campione, The JFC Swing Tutorial, Addison-Wesley,
Reading, MA, 1999.

This page intentionally left blank

append ix C

bitwise operators

Java provides bitwise operators for the bit-by-bit manipulation of integers.
This process allows the packing of several Boolean objects into an integral type.
The operators ~ (unary complement), << and >> (left and right shift), & (bitwise
AND), ^ (bitwise exclusive OR), | (bitwise OR), and assignment operators cor-
responding to all these operators except unary complement. Figure C.1 illus-
trates the result of applying these operators. Note that >> is considered a
signed bit shift: the value that is filled in the highest bit can depend on sign
extension. >>> is considered an unsigned bit shift and is used to guarantee that
the highest bit is filled with a 0.

The precedence and associativity of the bitwise operators are somewhat
arbitrary. When working with them, you should use parentheses.

figure C.1

Examples of bitwise
operators

//Pretend ints are 16 bits
int a = 3737; // 0000111010011001
int b = a << 1; // 0001110100110010
int c = a >> 2; // 0000001110100110
int d = 1 << 15; // 1000000000000000
int e = a | b; // 0001111110111011
int f = a & b; // 0000110000010000
int g = a ^ b; // 0001001110101011
int h = ~g; // 1110110001010100

Java provides bit-
wise operators for
the bit-by-bit
manipulation
of integers. This
process allows the
packing of several
Boolean objects
into an integral type.

960 appendix C bitwise operators

Figure C.2 shows how the bitwise operators are used to pack information
into a 16-bit integer. Such information is maintained by a typical university
for a wide variety of reasons, including state and federal mandates. Many of
the items require simple yes/no answers and are thus logically representable
by a single bit. As Figure C.2 shows, 10 bits are used to represent 10 catego-
ries. A faculty member can have one of four possible ranks (assistant, associ-
ate, and full professor, as well as nontenure earning), and thus two bits are
required. The remaining 4 bits are used to represent one of 16 possible col-
leges in the university.

Lines 24 and 25 show how tim is represented. Tim is a tenured associate
professor in the College of Arts and Science. He holds a Ph.D., is a U.S. citi-
zen, and works on the university’s main campus. He is not a member of a
minority group, disabled, or a veteran. He is on a 12-month contract. Thus
tim’s bit pattern is given by

0011 10 1 0 1 1 1 1 0 0 0 0

or 0x3af0. This bit pattern is formed by applying the OR operator on the
appropriate fields.

Lines 28 and 29 show the logic used when Tim is deservedly promoted to
the rank of full professor. The RANK category has the two rank bits set to 1 and
all other bits set to 0; or

0000 11 0 0 0 0 0 0 0 0 0 0

The complement, ~RANK, is thus

1111 00 1 1 1 1 1 1 1 1 1 1

Applying a bitwise AND of this pattern and tim’s current setting turns off
tim’s rank bits, giving

0011 00 1 0 1 1 1 1 0 0 0 0

The result of the bitwise OR operator at line 29 thus makes tim a full profes-
sor without altering any other bits, yielding

0011 11 1 0 1 1 1 1 0 0 0 0

We learn that Tim is tenured because tim&TENURED is a nonzero result. We
can also find out that Tim is in College #3 by shifting to the right 12 bits and
then looking at the resulting low 4 bits. Note that parentheses are required.
The expression is (tim>>12)&0xf.

961

figure C.2

Packing bits for
faculty profiles

1 // Faculty Profile Fields
2 static int SEX = 0x0001; // On if female
3 static int MINORITY = 0x0002; // On if in a minority group
4 static int VETERAN = 0x0004; // On if veteran
5 static int DISABLED = 0x0008; // On if disabled
6 static int US_CITIZEN = 0x0010; // On if citizen
7 static int DOCTORATE = 0x0020; // On if holds a doctorate
8 static int TENURED = 0x0040; // On if tenured
9 static int TWELVE_MON = 0x0080; // On if 12 month contract

10 static int VISITOR = 0x0100; // On if visiting faculty
11 static int CAMPUS = 0x0200; // On if at main campus
12
13 static int RANK = 0x0c00; // 2 bits to represent rank
14 static int ASSISTANT = 0x0400; // Assistant Professor
15 static int ASSOCIATE = 0x0800; // Associate Professor
16 static int FULL = 0x0c00; // Full Professor
17
18 static int COLLEGE = 0xf000; // Represents 16 colleges
19 ...
20 static int ART_SCIENCE = 0x3000; // Arts & Science: College 3
21 ...
22
23 // Later in a method initialize appropriate fields
24 tim = ART_SCIENCE | ASSOCIATE | CAMPUS | TENURED |
25 TWELVE_MON | DOCTORATE | US_CITIZEN;
26
27 // Promote tim To Full Professor
28 tim &= ~RANK; // Turn all rank fields off
29 tim |= FULL; // Turn rank fields on

This page intentionally left blank

i ndex

Symbols
& (ampersand), 12, 23
< > (angle brackets), 150
* (asterisk), 9
*= (asterisk and equals), 9
{ } (braces), 13–14, 31, 458–459
[] (brackets), 37, 38
^ (caret), 458
, (comma), 15
. (dot), 29
&& (double ampersand), 12, 628
= = (double equals), 33–34, 60
-- (double minus), 11
|| (double pipes), 12
++ (double plus), 10
“...” (double quotes), 7
// (double slash), 5
= (equals), 9, 32–34, 60
! (exclamation mark), 12, 21
!= (exclamation mark and equals), 11, 12
> (greater than), 11
> = (greater than and equals), 11
< (less than), 11–12
< = (less than and equals), 11
- (minus), 10
-= (minus and equals), 9
% (percentage), 10
% = (percentage and equals), 927
| (pipe), 927
+ (plus), 10
+= (plus and equals), 9
? : (question mark and colon), 17, 21
; (semicolon), 13, 16
‘...’ (single quotes), 7
/ (slash), 10
/**...**/ (slash and double asterisk), 5
/ = (slash and equals), 9

A
AA-trees, 728–739, 763

defined, 763
deletion and, 732–733
insertion and, 730–732
Java implementation and, 733–737
overview of, 728–729

abstract class
defined, 129, 168
in inheritance hierarchies, 126–130
interface as, 136
placeholders and, 126, 128
summary of, 129

AbstractCollection class
defined, 591
overview of, 580–583

abstract methods
defined, 128, 168
in inheritance hierarchies, 126–130
placeholders and, 126, 128
summary of, 130

Abstract Window Toolkit (AWT), 930–931
basic principles of, 940–952
defined, 953
event handling, 947–951
graphics, 945–946
I/O components, 936–940
swing, basic objects in, 931–933
top-level containers and, 933–935

accessors, 76–78, 97
Ackermann’s function, 913, 921
acrylic graphs, path problems in, 555–562

critical path analysis and, 560–562
Java implementation, 557–559
shortest path algorithm and, theory

of, 557
topological sorting, 555–557

964 index

ActionEvent, 947, 953
ActionListener interface, 947, 953
actionPerformed, 947, 953
activation record, 303, 338
activity-node graph, 560, 563
actual arguments, 18–19
adapter class, 143, 169
adapter patterns, 146–147
adapters

event handling, 947–951
adjacency list, 530, 535
adjacency matrix, 530, 563
adjacent vertices, 528, 563
advance routine, 674
agency lists, 530, 563
aggregate, 37, 60
algorithm

Kruskal’s, 899, 921
algorithm analysis, 187–227

Big Oh analysis and, limitations of, 213–214
Big Oh notation and, 201–205
brute force, 194
checking, 212–213
common errors, 215–216
exercises and projects, 216–227
on the Internet, 216
key concepts, 214–215
linear, 197–200
maximum contiguous subsequence sum

problem, 193–194
O(N2), 197
O(N3), 194–197
overview of, 188–191
quadratic, 204–205
running times, examples of, 192–193
static searching problem and, 207–212
subquadratic, 202
summary of, 214

algorithms
Bellman-Ford, 553
binary heap, reasons for needing, 826–827
Dijkstra’s, 546–550, 564, 884–888
encryption and decryption algorithms, 318–319
Euclid’s, 314
generic, collections API and, 242–248
greedy, 329, 338

for Josephus problem, 509–512
on line, 895, 922
linear, 197–200
linear worst-case, 381
mergesort, 363–364
off line, 895, 922
operator precedence parsing, 280, 456–460, 470
quick-find, 904–905, 922
quicksort, 367–369
quick-union, 905–907, 922
randomized, 394, 406–408, 413
shortest-path, 533–534
simple binary heap, 827–829
single-source, 533–534
smart union, 907–909
union/find, 895, 914–921, 922

algorithms, sorting, 351–391
duplicates, detecting, 353
exercises and projects, 385–391
external, 351
importance of, 352–353
insertion sort, 353–357
on the Internet, 385
key concepts, 384–385
lower bound for, 381–383
mergesort, 361–364
overview, 351–352
preliminaries of, 353
quickselect, 380–381
quicksort (See quicksort)
Shellsort, 357–361
summary of, 383–384

aliases, 81–82, 97, 663
almost sorted, 355
alpha-beta pruning

defined, 338, 438
minimax algorithm and, 336
refutation and, 430–431
in Tic-Tac-Toe, 428–431, 436, 437
transposition tables and, 433–435

amortization, 597
amortized analysis, self-adjustment

and, 844–847, 866
amortized time bounds, 845
ancestor, 653, 680
anonymous class

index 965

defined, 169
functors and, 163–164

arcs, 528
array indexing operator, 37, 60
ArrayList. See also inner classes and

implementation of ArrayList
with an iterator, implementation of, 585–590
vs. LinkedList, 254–255
overview of, 42–44, 253

ArrayList iterators, 585–590
arrays, 37–47

assignment of, 39–40
command-line arguments, 45–46
covariant, 124, 169
declaration of, 38–39
defined, 60
dynamic array expansion, 40–44
enhanced for loop, 46–47
linear-time merging of assorted, 361–363
methods of, 40
minimum element in, 192
multidimensional, 45
overview of, 37–38
of parameterized types, generic restrictions

and, 157
as a parameter to a method, 40
polymorphism and, 121–123
ragged two-dimensional, 45
small, 377–378
static methods operated on, 246, 279
type compatibility and, 121–124

ArrayStack class, 598–599
assignment of arrays, 39–40
assignment operators, 9, 20
associativity used to break ties in

precedence, 459
atomicity principle, 70
autoboxing/unboxing, 145–146
autodecrement (++) operators, 10, 20
autoincrement (++) operators, 10, 20
automatic unit, 70, 97
average-case analysis, 214
average-case bound, 203, 214
AVL trees, 706–714

defined, 706, 763
double rotation and, 712–714

overview of, 706
properties of, 707–709
single rotation and, 709–711
summary of, 714

AWTEvent, 947, 953

B
backtracking, 333–336, 338
backward compatibility, 43, 237
balanced binary search tree, 706, 763
balanced-symbol checker, 443–454

basic algorithm and, 444–445
implementation and, 445–454
overview of, 443–444

ballot problem, 415
base case, 298, 338
base class

default implementation and, 128, 130
defined, 169
derived class and, 114–115
extends clause and, 114
HAS-A relationships and, 110
IS-A relationships and, 110

basic operations in binary heap, implementation
of, 814–818

deleteMin operation and, 816–818
insertion and, 814–816

basis, 296, 338
Bellman-Ford algorithm, 553, 563
BigInteger, 78–79, 80–81
Big Oh analysis, limitations of, 213–214
Big Oh notation, 201–205
Big-Omega, 201, 214
BigRational class, 86–90
Big-Theta, 202, 214
binary arithmetic operators, 10, 21
binary heap, 807–839

allowed operations and, 811–813
basic operations, implementation of, 814–818
buildHeap operation and, 818–822, 834
common errors, 834–835
decreaseKey and merge, 823
defined, 275, 279, 834
exercises and projects, 835–839

966 index

external sorting and, 826–833
heap-order property and, 810–811
heapsort and internal sorting, 823–826
on the Internet, 835
key concepts, 834
linear-time heap construction and, 818–822
overview of, 807–808
structure property and, 808–810
summary of, 833

BinaryNode class, 660–661, 665, 691
BinaryOp routine, 465
binary search

defined, 215
generic algorithms and, 246
recursive, 307–308
in static searching, 208–210

BinarySearchTree, 690
binary search trees, 687–770

AA-trees (See AA-trees)
analysis of operations, 702–706
AVL trees (See AVL trees)
binary search tree order property, 688
B-trees, 756–761, 763
Collections API TreeSet and TreeMap classes,

implementing, 738–755
common errors, 764
defined, 279, 688
exercises and projects, 765–770
vs. hash tables, 798–800
on the Internet, 764
Java implementation, 690–697
key concepts, 763–764
M-ary trees, 757, 763
operations, 688–690
order statistics, 697–702
overview of, 687–688
red-black trees (See red-black trees)
summary of, 762

BinarySearchTreeWithRank class, 699
BinaryTree class, 660, 662, 664
binary trees, 306, 658–664, 680. See also binary

search trees
binary trie, 475, 500
binomial tree, 910
bit-input and bit-output stream classes, 480–482
bitwise operators, 959–961

blocks
catch, 48
defined, 21
if statement and, 13–14
try, 48

Boolean algebra concept, 12
boolean, primitive type, 7
BorderLayout, 941–944, 953
bottom-up splaying

analysis of, 851–857
defined, 866
overview of, 847–849

boxing
autoboxing, 145–146
defined, 145–146
unboxing, 145–146

breadth-first search, 542, 563, 678
break statement, 16–17, 21
bridges, 139
brute force algorithm, 194
B+-tree, 757, 770
B-trees, 756–761, 763
BufferedReader, 139
buildHeap operation, 818–822, 834
buildTree, 511–512
ButtonGroup, 939, 953
bytecode, 4, 21
byte, integral type, 6

C
cache, 844
caching, 378
caching the hash code, 778
calculator used in stacks, 454–469

expression trees and, 468–469
implementation and, 459–468
infix to postfix conversion, 457–459
overview of, 454–456
postfix machines, 456–457

call bank simulation (example), 514–522
call-by-reference, 33, 60
call-by-value parameter passing

defined, 21

index 967

in methods, 18–19
in objects and references, 33

CallSim constructor, 518
canvas, 939, 954
Carmichael numbers, 410
case-sensitive, 8
catch blocks, 48, 60
catching technique, 378
change-making problem, 329–333
character constant, 7
character-counting class, 483
char, primitive type, 6
checkBalance routine, 451, 453
checked exceptions, 50, 60
chess. See computer chess
child, 306, 652, 681
chooseMove method, 433–435
circular array implementation, 601, 615
circularly linked lists, 630–633, 646
class, 69–107

abstract (See abstract class)
AbstractCollection class, 580–583, 591
adapter, 143, 169
anonymous, 163–164, 169
ArrayStack, 598–599
base (See base class)
BigInteger, 78–79, 80–81
BigRational class, example of implementing,

86–90
collections, 243–246, 279
common errors, 100
composite (pair) design pattern, 95–96
constructs, additional, 79–86
creating new, inheritance and, 110–115
declaration, type parameters and, 150
defined, 101–107
derived (See derived class)
EvalTokenizer nested, 462
Evaluator, 459, 461
example of, simple, 71–73
exercises and projects, 101–107
fields in, 71–72, 83–86, 97
final methods and, 119–120, 168, 169
functors and, 163–164
Graph, 536, 539
inheritance hierarchy and, methods in, 126–130

inner, 235
IntCell, 72–73
interface and, 136
on the Internet, 100–101
javadoc and, 73–75
java.math.BigInteger, example of using, 78–79,

80–81
key concepts, 97–100
leaf, 120, 170
local, functors and, 161–163, 170
members, 71–72, 118
methods in, 71, 76–78
nested, functors and, 161, 164, 170
new types of, defining, 6
Object, 136–137
object as instance of, 71
object-oriented programming and, 69–71
overview of, 101–107
packages, 90–95
package-visible, 95
protected members, 118, 170
raw type, 154, 170
specification, 73, 97
subclass/superclass relationships, 117, 170
summary of, 96–97
Tokenizer, 445–446, 462, 470
vertex, 535

.class files, 4
CLASSPATH environment variable, 94, 97
clearAll routine, 537
clone, 298
CloseableFrame class, 950–951
closest points in the plane, 192–193
code reuse

direct, 114
inheritance and, 109
object-oriented programming and, 109

colinear points in the plane, 193
collection interface, 237–240, 279
Collections API, 229–292

common errors, 280
containers and iterators, 236–242
exercises and projects, 281–292
generic algorithms and, 242–248
on the Internet, 281
introduction of, 230–231

968 index

iterator pattern, 231–236
key concepts, 279–280
LinkedList class, implementing, 635–646
List interface and, 248–258
maps, 268–274
overview of, 229–230
priority queues and, 274–276
queues and, 260–261
sets and, 261–268
stacks and, 258–260
summary of, 278–279
TreeSet and TreeMap classes, implementing,

738–755
views in, 277–278

collections class, 243–246, 279
collision, 775, 801
command-line arguments

in arrays, 45–46, 60
in invocation of the Virtual Machine, 4

comments
defined, 21
forms of, 5

comparator function objects, 243
comparing, 36
comparison-based sorting algorithm, 353, 384
compilers. See stacks and compilers
complete binary tree, 809, 834
Component, 932, 954
composite (pair) design pattern, 95–96, 97
composition, 110, 169
compound interest rule, 305
compression, 474, 500

defined, 474, 500
file (See file compression)
standard coding scheme in, 474
stream classes, 490–492

computer chess, 435–437
Deep Blue computer program, 437
grandmaster level of, 436
terminal positions and, 435

concatenation of strings, 35–36, 61
conditional operator (? :)

defined, 21
overview of, 17

conditional statements
break statement, 16–17

conditional operator (? :), 17
continue statement, 17
do statement, 15–16
if statement, 13–14
logical operators, 12
relational and equality operators, 11–12
for statement, 14–15
switch statement, 17, 18
while statement, 14

conjunction, 12
construction, 31, 60
constructor

CallSim, 518
default, 76
defined, 97
overview of, 76
super constructor cell, 119, 170
this constructor call, 82, 99
this shorthand for, 82
zero-parameter, 118–119

constructs
class, 79–86
instance members vs. static members, 83
instanceof power, 82
static fields and methods, 83–86
static initializers, 86
this reference, 81–82
this shorthand for constructors, 82

containers
defined, 954

containers and iterators, 236–242
collection interface and, 237–240
Iterator interface and, 240–242
overview of, 236

continue statement, 17, 21
copy-and-paste, 110–112
covariant arrays, 124, 169
covariant return types, 124, 169
critical-path analysis, 560, 563
cross-reference generator, 495–499

basic ideas and, 495
defined, 495, 500
Java implementation and, 495–499

C-style global function, 18
cut-and-paste, 648
cycle, 529, 563

index 969

D
data structure

defined, 230, 279
overview of, 229

declaration
of arrays, 38–39
of class, type parameters and, 150
of objects, 30–31
of primitive types, 7–8

decorator pattern, 4
defined, 141, 169
in input/output (I/O), 138–141

decreaseKey operation, 823, 872, 883
Deep Blue computer program, 437
deleteMin operation, 816–818
deletion

AA-trees and, 732–733
lazy, 728, 763, 780, 801
top-down, red-black trees and, 726–728

dense and sparse graphs, 529, 564
depth of node, 652, 681
dequeue, 600–601, 603–604, 611–612
dereferencing the pointer, 29
derived class

with base class, 110, 114, 116
defined, 169
description of, 114–115
in heritance, 110
type-compatible and, 117

DES, 319
descendant, 653, 680
design pattern, composite (pair), 95–96, 97
digraphs, 528
Dijkstra’s algorithm, 546–550, 564, 884–888
diminishing gap sort. See Shellsort
direct code reuse, 114
directed acyclic graph (DAG), 529, 564
directed graph, 528, 564
discrete time-driven simulation, 513, 522
disjoint set class, 893–925

common errors, 922
defined, 921
dynamic equivalence and applications, 894–904
equivalence relations and, 894
exercises and projects, 923–925

on the Internet, 922
Java implementation and, 910–912
key concepts, 921–922
overview of, 893
path compression and, 909–910
quick-find algorithm and, 904–905
quick-union algorithm and, 905–907
smart union algorithm and, 907–909
summary of, 921
union-by-rank and path compression, worst case

for, 913–921
union/find algorithm, 895, 922

disjunction, 12
divide-and-conquer algorithms, 319–329

analysis of, 323–326
defined, 338
maximum contiguous subsequence sum

problem, 320–323
overview of, 319–320
running times, general upper bound

for, 327–329
do statement, 15–16, 21
dot operator (.), 30, 60
double-ended queue (deque), 615
double hashing, 797, 801
double, primitive types, 6
double rotation, 712–714, 763
doubly linked lists, 630–633, 646
downcast, 123
driver routine, 300, 338
dynamic array expansion, 40–44, 60
dynamic array implementations, 595–605

overview of, 595–596
queues and, 600–605
stacks and, 596–599

dynamic dispatch
defined, 169
overview of, 164–168
polymorphism and, 116–117
static methods and, 164

dynamic equivalence and applications,
894–904

generating mazes, 895–898
minimum spanning trees, 898–901
nearest common ancestor problem, 901–904
overview of, 894–895

970 index

dynamic programming
change-making problem in, 329–333
defined, 338
in recursion, 329–333

E
echo command, 45, 47
edge cost (weight), 528, 564
elementAt method, 693
elements

in Collection interface, 237
equivalence class of, 894–895

encapsulation, 70, 97
encryption, 317, 338
enhanced for loops, 46–47, 60
enqueue, 600–601, 603–604, 611–612
entrySet, 272
equality operators

defined, 21
overview of, 11–12

equals method, 78, 97
of comparing strings, 32–34
defined, 60
implementing, 265–268

equivalence class of an element, 894–895, 921
equivalence relations, 894, 921
Error, unrecoverable exceptions, 50, 60
escape sequence, 7, 21
Euclid’s algorithm, 314
EvalTokenizer nested class, 462
Evaluator class, 459, 461
event, 947, 954
event-driven simulation, 513–522

basic ideas in, 513–514
call bank simulation as example of, 514–522
defined, 522
overview of, 513
in priority queues, 276

event handling, 947–951
event-node graph, 560, 564
event set, 514
exceptional occurrences, 48
exceptions, 47–51

common, 49–50

defined, 60
errors as unrecoverable, 50, 60
finally clause and, 48–49
overview of, 47–48
processing, 48
runtime, 49–50
standard checked, 50
throw and throws clauses and, 51

expressions, 8
expression tree, 468, 470, 658
extends clause, 114, 169
external path length, 704–705, 763
external sorting, 351
external sorting, binary heap and, 826–833

algorithms and, reasons for needing, 826–827
defined, 834
model for, 827
multiway merge and, 829–830
polyphase merge and, 830–831
replacement selection and, 832–833, 834
simple algorithm and, 827–829

external tree node, 705, 763

F
factorials, 307
factory method, 234–236, 279
failure to progress, 300
false positives / false negatives, 408, 412
fancier layouts, 944
Fermat’s Little Theorem, 409–410, 413
Fibonacci numbers, 304–305, 338
fields

defined, 97
in object-oriented programming, 71–72
static, 83–86

file compression, 474–494
Huffman’s algorithm and, 477–479, 500
implementation of (See file compression,

implementation of)
overview of, 474
prefix codes, 475–476

file compression, implementation of, 479–494
bit-input and bit-output stream classes

and, 480–482

index 971

character-counting class and, 483
compression stream classes and, 490–492
HuffmanTree class and, 483–489
improving the program, 493
main routine and, 493, 494
overview of, 479–480

FileReader, 56–53, 60
file redirection, 4
file systems application

Java implementation, 658
trees and, 654–658

FileWriter, 59, 60
final class, 119–120, 169
finally clause

defined, 60
exception handling and, 48–49

final methods
defined, 169
in inheritance, 119–120, 129

find and findPrevious routines, 629–630
find disjoint set class, 895
findKth operation, 511, 699–700
findMin operation, 689
find operation, linear probing and, 782–784
first child/next sibling method, 653, 681
floating-point numbers, 6
float, primitive types, 6
FlowLayout, 941, 954
forest, 906, 921
formal parameters, 18
for statement, 14–15, 21
fractal star, 309–311
full-period linear congruential generator, 397, 413
full tree, 475, 500
function object

comparator, 243
defined, 169
overview of, 158

functors, 157–164
anonymous classes and, 163–164
defined, 169
generic classes and, 164
local classes and, 161–163
nested classes and, 161, 164
overview of, 157–160

G
games, 421–441

common errors, 438
computer chess (See computer chess)
exercises and projects, 439–441
on the Internet, 438–439
key concepts, 438
summary of, 438
Tic-Tac-Toe (See Tic-Tac-Toe)
word search puzzles (See word search puzzles)

gap insertion sort, 358
garbage collection, 31–32, 60
Gaussian distribution, 402
generic algorithms, 242–248

binary search and, 246
collections class and, 243–246
comparator function objects and, 243
overview of, 242
sorting, 246–248

generic array objects, 155–156
generic classes

defined, 169
functors and, 164

generic code, 70
generic components implemented by using

inheritance, 142–149
adapter patterns and, 146–147
autoboxing/unboxing and, 145–146
interface types used for, 147–149
Object used for, 142–143
wrappers for primitive types and, 143–145

generic components implemented by using java 5
generics, 150–157

generic static methods and, 152–153
restrictions on generics and, 154–157
simple generic classes and interfaces

and, 150–151
type bounds and, 153–154
type erasure and, 154
wildcards with bounds and, 151–152

generic programming, 142, 169
generics, 43–44
getNextOpenClose routine, 452
getToken routine, 462–463

972 index

getValue routine, 462, 464
getVertex routine, 537
Graph class, 536, 539
graph, defined, 528, 564
graphical user interface (GUI), 929–957

Abstract Window Toolkit (AWT), 930–931
basic principles of, 940–952
common errors, 955
defined, 954
exercises and projects, 956–957
on the Internet, 956
I/O components, 936–940
key concepts, 953–955
overview of, 929
summary of, 953
swing, basic objects in, 931–933
top-level containers and, 933–935

graphics, 945–946, 954
graphs and paths, 527–569

acrylic graphs, path problems in,
555–562

arcs in, 528
common errors, 564–565
definitions, 528–529
dense, 529
edges added to, 537
exercises and projects, 565–569
on the Internet, 565
key concepts, 563–564
negative-weighted, single-source, shortest-path

problem, 552–554
nodes in, 528
positive-weighted, single-source, shortest-path

problem, 545–552
representation, 530–539
summary of, 563–564
unweighted single-source, shortest-path

problem, 539–545
vertex and, 528
weighted single-source, shortest-path problem

for acyclic graphs, 555–562
greatest common divisor (gcd), 311,

314–316, 338
greedy algorithm, 329, 338
growth functions, 202

H
hang-up, 520
harmonic numbers, 206–207, 215
HAS-A relationship, 110, 169
hashCode

defined, 279
implementing, 265–268

hash function, 774, 775–778, 801
defined, 801
hashCode in java.lang.String, 777–778
overview of, 774

hashing, 797, 801
HashMap, 268, 279
HashSet class, 264–268

defined, 279
implementing equals and hashCode,

265–268
overview of, 264–265

hash tables, 773–805
vs. binary search tress, 798–800
common errors, 802
defined, 801
exercises and projects, 802–805
hash function and, 774, 775–778, 801
hashing applications, 800
on the Internet, 802
key concepts, 801
linear probing and, 779–784, 801
overview of, 773–775
quadratic probing and, 784–788, 784–797, 801
separate chaining and, 797–798, 801
summary of, 800–801
transposition table and, 433

header nodes, 621–622, 646
headSet methods, 277–278
heap-order property, 810–811, 834
heapsort, internal sorting and, 823–826, 834
heavy nodes, 874
height of a node, 652, 681
hierarchies

abstract methods and classes, 126–130
designing, 125–131
of exceptions in java inheritance, 137–138
inheritance, 110, 117
Person, 117

index 973

high-precedence operator, 458
horizontal link, 729, 763
Huffman coding tree, 658–659
Huffman’s algorithm, 477–479, 500
HuffmanTree class, 483–489

I
identifier, 7–8, 21
if statement, 13–14, 21
immutable strings, 35, 61
implementation

file, 73–74, 99
of interface, 135

implement clause, 135, 169
implicit representation, 809, 834
import directive, 91–93, 99
increment sequence, 357
indegree, 555, 564
indexes, 37–38
induction, 295, 338

mathematical, 295–297
proof by, 295–297

inductive hypothesis, 296, 338
infix expression

defined, 470
to postfix conversion, 457–459

information-hiding, 70, 76, 99
inheritance, 109–183

array compatibility and, 121–124
code reuse and, 109
common errors, 171
constructor and, 118–119
covariant return types and, 124
creating new classes and, 110–115
defined, 169
derived class in, 110
dynamic dispatch and, 116–117, 164–168
exercises and projects, 173–182
final methods and, 119–120, 129
functors and, 157–164
generic components implemented by

using, 142–149
generic components implemented by using java 5

generics, 150–157

hierarchies and, 110, 117, 125–131
interface, 134–136
on the Internet, 171–173
iterators, factories and, 234–236
key concepts, 168–170
mechanism, 71
multiple, 131–134
object-oriented programming and, 71
overriding methods and, 121
overview of, 109–110
polymorphism and, 116–117
relationships in, 110
summary of, 168
super and, 118–119
type compatibility and, 115–116, 121–124
visibility rules and, 117–118

inheritance in java, fundamental, 136–141
decorator pattern in I/O, 138–141
hierarchies of exceptions in, 137–138
Object class and, 136–137

initializing primitive types, 7–8
inner class. See also inner classes and

implementation of ArrayList
defined, 591
iterators and, 576–580
vs. nested class, 577

inner classes
event handling, 947–951

inner classes and implementation of ArrayList,
573–593

AbstractCollection class, 580–583
ArrayList with an iterator, implementation

of, 585–590
common errors, 591
exercises and projects, 591–593
on the Internet, 591
iterators and inner classes, 576–580
iterators and nested classes, 574–576
key concepts, 591
overview of, 573
StringBuilder, 584, 591
summary of, 590

inorder traversal, 469, 667, 675, 681
input and output (I/O), 51–59

decorator pattern in, 138–141
defined, 61

974 index

overview of, 51–52
Scanner type, 53–56
sequential files, 56–59
stream operations and, 52–53
swing components, 936–940
terminal, 8

InputStreamReader, 139
insertion

AA-trees and, 730–732
in binary heap, 814–816
bottom-up, red-black trees and, 716–717
sort, 353–357

insert routine, 630
instance members

defined, 99
vs. static members, 83

instanceof operator, 82, 99
in inheritance hierarchies, 117, 126
type-compatibility and, 136

instanceof tests, restrictions on generics
and, 155

instantiation of generic types, 155
int, 6
int as primitive types, 6
IntCell class, 72–73
integer constants, 7
integral types, 6, 21
interarrival times, 513
interface

as abstract class, 136
Collection, 237–240
defined, 170
implementing, 135
Iterator, 240–242
List (See List interface)
multiple, 135
programming to, 232, 235, 280
specifying, 134–135
types used for genericity, 147–149

internal path length, 703–704, 763
internal sorting, heapsort and, 823–826
interpolation search, 211–212, 215
Intuitive analysis, 323
inversion, 355–356, 384
IS-A relationship, 110, 170
Iterator interface, 240–242, 280

iterator object, 231–232
iterator pattern, 231–236

design of, 232–234
overview of, 231–232

iterators, 236–242. See also containers and
iterators

ArrayList with, implementation of, 585–590
defined, 279, 646
inheritance-based, factories and, 234–236
inner classes and, 576–580
Iterator/container relationship, 577–578
linked lists and, 622–624
nested classes and, 574–576
tree transversal and (See tree transversal, iterator

classes and)

J
jar file, 94
jar tool, 94
java

defined, 21
environment, general, 4
program, 5–6

javac, 4, 21
javadoc, 73–75, 99
javadoc tag, 74, 99
javadoc utility

comments providing information
from, 5

.java files, 4
java.io, 51, 61
java.lang, 92
java.math.BigInteger, 78–79, 80–81
java quicksort routine, 378–380
java.util.Stack class, 613–614
JButton, 937, 954
JCheckBox and JRadioButton, 939, 954
JComboBox, 937–938, 954
JComponent, 933, 954
JDialog, 934, 954
JFrame, 934, 954
JLabel, 937, 954
JList, 938, 954
Josephus problem, 507–512

index 975

algorithm used in, 509–512
defined, 522
solution to, simple, 509

JPanel, 934, 954
JTextAreas, 940, 954
JTextField, 940, 954
JWindow, 934, 955

K
keys equal to the pivot, 376
keySet, 272
Kraft’s inequality, 683
Kruskal’s algorithm, 899, 921

L
labeled break statement, 16, 21
lastToken, processing, 467
late binding, 116–117, 164–168
layout managers, 941

BorderLayout, 941–944
defined, 955
fancier layouts, 944
FlowLayour, 941
null layout, 944
visual tools, 944

lazy deletion, 728, 763, 780, 801
leaf, 306, 338, 652, 681
leaf class, 120, 170
leftist heap, 889
length field, 38, 61
length method, 36–37, 61
level of a node, 729, 763
level-order traversal, 678–679, 681
lexical analysis, 448, 470
lhs (left-hand side)

assignment references and, 32
defined, 61

linear congruential generator, 397, 413
linear probing, 779–784, 801

defined, 801
find operation and, analysis of,

782–784
naive analysis of, 780–781

overview of, 779–780
primary clustering and, 781–782

linear time algorithm, 197–200, 215
linear-time heap construction, 818–822
linear-time merging of assorted arrays, 361–363
linear worst-case algorithm, 381
LinkedList

vs. ArrayList cost, 254–255
class, 251–252
defined, 280
overview of, 254

linked list implementations, 605–612
Collections API LinkedList class, 635–646
Java, 624–630
overview of, 605–606
queues and, 609–612
stacks and, 606–609

LinkedListIterator class, 624–625
linked lists, 619–650

common errors, 647
defined, 280
doubly and circularly, 630–633, 646
exercises and projects, 647–650
header nodes and, 621–622
implementations (See linked list

implementations)
insertion in, 620
on the Internet, 647
iterator classes and, 622–624
key concepts, 646
overview, 619–621
overview of, 251
removal command in, 621
singly, 620
sorted, 633–634
summary of, 646

List

defined, 248, 280
linked, 251, 280
subList method for, in Collections

API views, 277
listener adapter classes, 950, 955
List interface, 248–258

ArrayList costs and, 253
ArrayList vs. LinkedList costs, 254–255
LinkedList class and, 251–252

976 index

LinkedList costs and, 254
ListIterator interface and, 249–250
overview of, 248
removing/adding to the middle of, 265–258
running time for, 253

ListIterator interface, 249–250, 280
Little-Oh, 201, 202, 215
load factor, 780, 801
local class, 161–163, 170
logarithm, 205–207

bits required to represent numbers in, 206
defined, 205, 215
growth of, 205
Nth harmonic number in, 206–207
repeated doubling principle in, 206
repeated halving principle in, 206

logical operators, 12, 21
long, integral type, 6
loops

enhanced for arrays, 46–47, 60
flow control and, 11
forms of, 14
nesting, 15

lower-bound proof for sorting, 357, 381–383, 384
low-precedence operator, 458–459

M
main methods

in classes, 78
defined, 21
invoking, 6

main routine, 455, 493, 494
manipulation of strings, basics of, 35
Map.Entry, 272, 280
maps, 268–274

defined, 280
HashMap, 268, 279
interface, sample, 268–271
Map.Entry, 272, 280
transposition tables implemented by, 433
TreeMap, 268, 272–274, 280
of vertex names, 531

M-ary trees, 757, 763

mathematical induction, 295–297
max heap, 809, 834
maximum contiguous subsequence sum problem,

193–194
mazes, generating, 895–898
median-of-three partitioning, 373, 376–377, 379, 384
members, class, 71–72

protected, 118, 170
memoizing, 431
merge routine, 663
mergesort, 361–364

algorithm, 363–364
defined, 384
linear-time merging of assorted arrays, 361–363
overview of, 361

merging
fundamentals, skew heap and, 872
modification of the skew heap and, 873–874
priority queues (See priority queues, merging)
simplistic, of heap-ordered trees, 872–873
two-pass merging, 878

method body, 18
method calling, 303
method declaration, 18–19, 21
method header, 18, 21
method return sequences, 303
methods, 76–78

constructors, 76
defined, 21, 99
equals, 78
final, classes and, 119–120
main, 78
mutators and accessors, 76–78
output and toString, 78
overloading of method names, 19–20
overriding, 121
overview of, 18–19
recursive, 294, 297–298, 339
static (See static methods)
storage classes, 20
super, 118–119

minimax strategy
defined, 338, 438
Tic-Tac-Toe, 334, 427–428

minimum spanning trees, 898–901, 921

index 977

modular arithmetic, 311–312
modular exponentiation, 311, 312–313
move to front, 649
multidimensional arrays, 45, 61
multiple inheritance, 131–134, 170
multiple interfaces, 135
multiplicative constant, 41
multiplicative inverse, 311, 314–316, 338
multiway merge, 829–830, 834
mutators, 76–78, 99
MyContainer class, 575
MyContainerIterator, 574–575

N
nearest common ancestor problem,

901–904, 921
negation, 12
negative-cost cycle, 552, 564
negative exponential distribution, 404, 413
negative-weighted, single-source, shortest-path

problem, 552–554
Java implementation, 553–554
overview of, 552
theory of, 552–553

nested class
functors and, 161, 164, 170
vs. inner class, 577
iterators and, 574–576

nesting wrappers, 141
new, 31, 61
nextCall method, 518
nextLine, 8
90–10 rule, 844–845, 866
N-item array, 213
nodes

defined, 528
depth of, 652, 681
header, 621–622, 646
heavy, 874
height of, 652, 681
level of, 729, 763
size of, 653, 681

no operating overloading, 34

normal distribution, 402
Nth harmonic number, 206–207
null layout, 944, 955
NullPointerException error message, 31, 61
null reference, 28, 61
null statement, 13, 21
numbers. See random numbers
numerical applications, 311–319

greatest common divisor, 311, 314–316
modular arithmetic, 311–312
modular exponentiation, 311, 312–313
multiplicative inverse, 311, 314–316
primality testing, 311, 317
RSA cryptosystem, 317–319

O
O(N2) algorithm, 197
O(N3) algorithm, 194–197
object-based programming, 71, 99
Object class, 136–137
object-oriented language, 303
object-oriented programming, 69–71, 99
objects, 30–34

as automatic unit, 70
constructing, 31, 60
declaration of, 30–31
defined, 61, 99
dot operator (.), 30
garbage collection, 31–32, 60
as instance of class, 71
iterator, 231–232
==, meaning of, 33–34, 60
=, meaning of, 32–33, 60
no operating overloading for, 34
in object-oriented programming, 70
parameter passing, 33
Scanner, 8

octal and hexadecimal integer constants, 21
off-by-one errors, 39
off line algorithm, 895, 922
operator precedence parsing, 280, 456–460, 470
operators

assignment operators, 9

978 index

binary arithmetic operators, 10
bitwise, 959–961
equality operators, 11–12
illustrated, 9
logical operators, 12
overview, 927
relational operators, 11–12
type conversions, 10–11
unary operators, 10

operator stack, 458
order statistics, 697–702

Java implementation of, 698–702
OutputStreamWriter, 139
overloading of a method name, 19–20, 21
overriding, 121, 130

P
pack, 948, 955
package, 90–95

CLASSPATH environment variable, 94
defined, 99
import directive, 91–93
overview of, 90–91
package statement, 93–94

package statement, 93–94, 99
package visibility rules, 95
package-visible access, 73, 95, 99
paintComponent, 945, 955
pair, 96, 99
pairing heap, 877–888

defined, 888
Dijkstra’s algorithm and, 884–888
implementation of, 878–884
operations, 877–878
overview of, 876–877

PairingHeap class, 878–879
parameter passing, 33

of arrays, 40
call-by-reference, 33
call-by-value, 33
overview of, 33

parameters
arrays of, generic restrictions and, 157
zero-parameter constructors, 118–119

parent, 306, 652, 681

partial overriding, 121
partition, 367, 384
partitioning strategy, 367, 374–376
path. See also graphs and paths

critical-path analysis, 560, 563
defined, 528, 564
halving, 924
length, 306, 528, 564
shortest-path algorithms, 533–534
simple, 529, 564
unweighted path length, 539, 564
weighted path length, 528–529, 545, 564

path compression, 909–910, 922
patterns

adapter, 146–147
decorator, in input/output (I/O), 138–141

percolate down, 816, 834
percolate up, 814, 834
period, 397, 413
permutations, 356, 394, 413
Person hierarchy, 117
pivot

defined, 384
function of, 367
keys equal to, 376
median-of-three partitioning, 373–374
safe way to pick, 373
wrong way to pick, 373

placeholders, 126, 128
pointer, 29
Poisson distribution, 402–404, 413
polymorphism, 71

arrays and, 121–123
dynamic dispatch and, 116–117

polyphase merge, 830–831, 834
popping, 464, 677
positionOf, 129
positive-cost cycle, 561, 564
positive-weighted, single-source, shortest-path

problem, 545–552
Dijkstra’s algorithm as theory

of, 546–550
Java implementation, 550–552
overview of, 545–546

postfix conversion
defined, 470
infix expression to, 457–459

index 979

overview of, 456–457
popping the top item in, 464

postfix increment, 10
postfix machine, 456, 470
PostOrder class, 672–673
postorder tree traversal, 469, 656, 671–675, 681
potential function, 847, 851, 866
precedence, associativity used to break ties in, 459
precedence table, 463, 466, 470
predefined streams, 52
prefix code, 475–476, 500
prefix increment, 10
PreOrder class, 675–677
preorder tree traversal, 656, 675–678, 681
primality testing

randomization, 311, 409–412
in RSA cryptosystem, 317

primary clustering, 781–782, 801
primitive features of Java, 1–25

basic operators, 8–11
common errors, 22–23
conditional statements, 11–18
exercises and projects, 23–25
on the Internet, 23
key concepts, 20–22
methods, 18–20
overview of, 3–4
primitive types, 6–8
summary, 20

primitive types
constants, 7
declaration and initialization of, 7–8
defined, 22
overview of, 6–7
restrictions on generics and, 155
terminal input and output in, 8
wrappers for, 143–145

printin method, 6, 8
printPath routine, 537
PrintWriter, 59
priority queues, defined, 280
priority queues, merging, 871–890

common errors, 888–889
exercises and projects, 889–890
on the Internet, 889
key concepts, 888
overview of, 274–276, 871

pairing heap and, 877–888
skew heap and, 871–876
summary of, 888

private class members, 71–72, 99
private routine, 538
probability function, 513
procedural language, 303
processing

in exception handling, 48
processToken routine, 467
programming to an interface, 232, 235, 280
programs, java

comments, 5–6
input options, 4
main method, 6
terminal output, 6

proof by induction, 295–297
proper ancestor, 653, 681
proper descendant, 653, 681
protected class member, 118, 170
pseudorandom numbers, 395, 413
public class members, 72, 99
public key cryptography, 318, 339

Q
quadratic algorithms, 204–205
quadratic probing, 784–797

analysis of, 797
defined, 801
Java implementation and, 788–796
overview of, 784–788

queues, 260–261. See also stacks and queues
in Collections API, 261
defined, 280
double-ended, 615
dynamic array implementations and, 600–605
event-driven simulation and, 276
linked list implementations and, 609–612
overview of, 260–261
priority, 274–276, 280

quick-find algorithm, 904–905, 922
quickselect

defined, 384
overview of, 380–381
randomized, 407

980 index

quicksort, 364–380
algorithm, 367–369
average case analysis of, 370–372
best case analysis of, 369
defined, 384
java quicksort routine, 378–380
keys equal to the pivot, 376
median-of-three partitioning, 376–377, 379
overview of, 364–366
partitioning strategy, 374–376
picking the pivot, 372–374
small arrays, 377–378
worst case analysis of, 369–370

quick-union algorithm, 905–907
defined, 922
path compression and, 909–910
smart union algorithms and, 907–909

R
ragged two-dimensional arrays, 45
randomization, 393–416. See also random

numbers
algorithms, 406–408
common errors, 413–414
exercises and projects, 414–416
on the Internet, 414
key concepts, 412–413
permutation, generating, 404–406
primality testing, 409–412
quickselect, 407
summary of, 412

randomized algorithm, 394, 406–408, 413
random numbers, 393

generators for, 394–402
need for, 393–394
nonuniform, 402–404
pseudorandom numbers, 395, 413
uniform distribution of, 395, 413

random permutation, 405–406, 413
Random remove operations, 705
rank, 851, 866
ranks, 910, 922
recursion, 278, 293–348

backtracking, 333–336

basic, 297–311
common errors, 339
dangers in too much, 304–305
divide-and-conquer algorithms in, 319–329
dynamic programming in, 329–333
exercises and projects, 340–348
how it works, 302–304
on the Internet, 339–340
key concepts, 338–339
mathematical induction in, 295–297
numerical applications in, 311–319
overview of, 293–294
printing numbers in any base and, 299–301
rules of, 298–299, 305, 339
summary of, 336–338
trees and, 665–667
trees and, preview of, 305–306
why it works, 301–302

recursion examples, 306–311
binary search, 307–308
drawing a ruler, 308–309
factorials, 307
fractal star, 309–311

recursive method, 294, 297–298, 339
recursive routine, 538
red-black trees, 715–728, 763

bottom-up insertion, 716–717
defined, 763
Java implementation, 719–726
overview of, 715
top-down deletion and, 726–728
top-down red-black trees, 718–719

refactoring, 131
reference types, 27–42

arrays, 37–47
common errors, 61–62
defined, 61
exception handling, 47–51
exercises and projects, 62–68
input and output, 51–59
on the Internet, 62
key concepts, 60–61
objects and, 30–34
overview of, 27–29
strings, 35–37
summary, 59–60

index 981

reference variables (references), 27–29
reflection, 582
refutation, 428–431, 438
rehashing, 778
relational operators, 11–12
relation, defined, 894, 922
relationships in subclass/superclass, 117, 170
removeMin method, 696, 701
remove operation, 689, 698
repaint, 945, 955
repeated doubling principle, 206, 215
repeated halving principle

defined, 215
in logarithms, 206
in static searching problem, 207–212

replacement selection, 832–833, 834
retreat method, 630
return statement, 19, 22
reverse words, 7–8
rhs (right-hand side)

assignment references and, 32
defined, 61

rotate-to-root strategy, 846, 866
roving eyeball, 543
RSA cryptosystem, 317–319, 339

computation of the RSA constants, 317–318
encryption and decryption algorithms, 318–319

ruler, drawing, 308–309
rules of recursion, 298–299, 305, 339
run, 827, 834
running times

for divide-and-conquer algorithms, general
upper bound for, 327–329

examples of, 192–193
for Lists, 253
observed, 204
for randomized algorithms, 407

runSim method, 518
runtime exceptions, 49–50, 61

S
Scanner object, 8
Scanner type I/O

defined, 61
overview of, 53–56

secondary clustering, 797, 801
seed, 397, 413
selection, 380–381, 384
self-adjusting strategy, 845–847
self-adjustment and amortized analysis,

844–847, 866
separate chaining, 797–798, 801
sequential I/O files, 56–59
sequential search, 207–208, 215
serialization, 141
service time, 513
setLayout, 941, 955
sets, 261–268

defined, 280
HashSet class, 264–268
overview of, 261–263
SortedSet, 263, 280
TreeSet, 264–265, 280
TreeSet class, 263–264

Shellsort, 357–361
defined, 384
overview of, 357–358
performance of, 358–361

short-circuit evaluation, 12, 22
short-circuiting, 628
shortest-path algorithms, 533–534
short, integral type, 6
show, 941, 955
siblings, 653, 681
signature, 19, 22
simple path, 529, 564
simulation, 507–525

call bank simulation (example), 514–522
computers used in, 507
defined, 522
discrete time-driven, 513
event-driven, 513–522
Josephus problem and, 507–512
key concepts, 522
overview of, 507
summary of, 522

single rotation, 709–711, 764
single-source algorithms, 533–534, 564
single-variable Ackermann’s function, 913, 921
singly linked lists, 620
size of nodes, 653, 681

982 index

skew, 764
skew heap, 871–876

analysis of, 874–876
defined, 888
merging fundamentals, 872
modification of, 873–874

skipComment routine, 449–450
skipQuote routine, 450
slack time, 562, 564
small arrays, 377–378
smart union algorithm, 907–909
sorted linked lists, 633–634, 646
SortedSet, 263, 280
sorting generic algorithms, 246–248
spanning trees, 898, 922

minimum, 898–901, 921
splaying, 848, 866
splay trees, 843–868

basic-bottom-up splay tree, 847–849
basic splay tree operations, 850–851
bottom-up splaying, analysis of, 851–857
common errors, 867
exercises and projects, 867–868
on the Internet, 867
key concepts, 866
vs. other search trees, 865
overview of, 843
self-adjustment and amortized analysis, 844–847
summary of, 866
top-down splaying, 857–860
top-down splaying, implementation of, 860–865

split, 730, 764
stacks

dynamic array implementations and, 596–599
linked list implementations and, 606–609

stacks and compilers, 258–260, 443–472
balanced-symbol checker and, 443–454
calculator used in, 454–469
in Collections API, 261
common errors, 470
computer language and, 259–260
defined, 280
exercises and projects, 471–472
on the Internet, 471
key concepts, 470
method calling and, 303
method return sequences and, 303

operator, 458
overview of, 258–259, 443
summary of, 469

stacks and queues, 595–617
common errors, 615
comparison of dynamic array and linked list

implementations, 613
double-ended queues, 615
dynamic array implementations, 595–605
exercises and projects, 616–617
on the Internet, 616
java.util.Stack class and, 613–614
key concepts, 614
linked list implementations, 605–612
summary of, 614

standard checked exceptions, 50, 60
standard input, 4, 22
state machine, 450, 470
static binding and, 165, 170
static contexts, 155

restrictions on generics and, 155
static field, 83–86, 99
static final entity, 20, 22
static import directive, 93
static initializer, 86, 99
static members vs. instance members, 83
static methods, 83–86

defined, 22, 99
dynamic dispatch and, 164
generic, 152–153
main method and, 6, 83
overview of, 83–86
static binding and, 165, 170
static contexts and, 155
summary of, 130

static overloading, 165–168, 170
static searching problem, 207–212

binary search and, 208–210
defined, 207, 215
interpolation search and, 211–212
sequential search and, 207–208

storage classes, 20
stream operations, 52–53
StringArrayList, 97, 98
StringBuilder, 584, 591
string constant, 7, 22
strings, 35–37

index 983

comparing, 36
concatenation, 35–36, 61
converting other types to, 37
defined, 61
immutable, 35, 61
length of, 36–37
manipulation, basics of, 35
other string methods, 36–37
overview of, 35

String type, 8
subclass/superclass relationships,

117, 170
subList methods, 277
subquadratic algorithm, 202
subSet methods, 277–278
sufficiently large, 204
summary of, 866
super constructor cell, 119, 170
super method, 118–119
super object, 121, 170
swing, basic objects in, 931–933

component, 932–933
container, 933
top-level containers, 933–935

swing components, I/O, 936–940
JButton, 937
JCheckBox and JRadioButton, 939
JComboBox, 937–938
JLabel, 937
JList, 938
JTextField and JTextAreas, 940

switch statement, 17, 18, 22
symbol table, 800
symmetry, 631
System.err, 52–53, 61
System.in, 8, 52–53, 61
System.out, 8, 52–53, 61

T
tailSet methods, 277–278
telescoping sum, 326, 339
terminal input and output (I/O), 8
terminal position, 428, 438
this constructor call, 82, 99
this reference, 81–82, 100

this shorthand for constructors, 82
threaded trees, 738
throw and throws clauses, 51, 61
tick, 513, 522
Tic-Tac-Toe, 427–435

alpha-beta pruning and, 428–431, 436, 437, 438
minimax strategy in, 334, 427–428
terminal position in, 428, 438
transposition tables and, 431–435, 438

toArray, 582
Tokenization, 445–446, 470
top-down red-black trees, 718–719
top-down splaying, 857–860

defined, 866
implementation of, 860–865

top-level containers, 933–935
JPanel, 934–935

topological sorting, 555–557, 564
toString method, 37, 61, 78, 100
transposition tables, 431–435, 438, 800
transversing the tree, 667
traversal

inorder, 667, 675, 681
level-order, 678–679, 681
postorder, 656, 671–675, 681
preorder tree, 656, 675–678, 681
simple, 667

TreeMap, 268, 272–274, 280
and TreeSet classes, implementing Collections

API and, 738–755
trees, 651–685

AA-trees (See AA-trees)
aliases, 663
AVL trees (See AVL trees)
binary, 658–664
binomial, 910
B-trees, 756–761, 763
common errors, 681
defined, 339, 652, 681
definitions, 652–653
exercises and projects, 682–685
expression, 658
file systems application, 654–658
general, 651–658
Huffman coding, 658–659
implementations, 653–654
on the Internet, 682

984 index

Java implementation, 658
key concepts, 680–681
M-ary trees, 757, 763
preview of, 305–306
recursion and, 665–667
red-black trees (See red-black trees)
summary of, 679–680
threaded, 738
transversal (See tree transversal, iterator

classes and)
TreeSet, 264–265, 280

and TreeMap classes, implementing Collections
API and, 738–755

tree transversal, iterator classes and, 667–679
inorder transversal, 667, 675, 681
level-order transversal, 678–679, 681
postorder transversal, 656, 671–675, 681
preorder tree transversal, 656, 675–678, 681
simple transversal, 667

trial division, 409, 413
try blocks, 48, 61
two-pass merging, 878, 888
type bounds, 152, 170
type-compatibility

arrays and, 121–124
derived classes and, 117
instanceof operator and, 136

type conversion operator, 10–11, 22
type erasure, 154, 170
type parameters

arrays of, generic restrictions and, 157
class declaration and, 150
defined, 170
wildcards as, 151–152, 170

U
unary operators, 10, 22
unboxing, 145–146, 170
Unicode

defined, 22
standard for primitive types, 6–7

uniform distribution, 395, 413
union-by-height, 909, 922
union-by-rank, 910, 922

and path compression, worst case for, 913–921
union-find algorithm and, analysis of, 914–921

union-by-size, 908, 922
union disjoint set class, 895
union/find algorithm

analysis of, 914–921
defined, 895, 922

union/find data structure, 895, 922
Unix file system, 654, 656
unweighted path length, 539, 564
unweighted single-source, shortest-path problem,

539–545
for acrylic graphs (See acrylic graphs, path

problems in)
Java implementation, 545
overview of, 539
theory of, 539–545

utilities, 473–505
common errors, 500
cross-reference generator, 495–499
exercises and projects, 500–505
file compression, 474–494
on the Internet, 500
key concepts, 500
overview of, 473
summary of, 499

V
values

handling primitive types by, 30
in return views of maps, 272

variables, 8
vertex

adjacent, 528, 543–544
class, 535
defined, 528
getVertex routine, 537
names, 531

views in Collections API, 277–278
headSet methods and, 277–278
overview of, 277
subList method for Lists and, 277
subSet methods and, 277–278
tailSet methods and, 277–278

index 985

Virtual Machine
defined, 22
overview of, 4

visibility rules
inheritance and, 117–118
package, 95

visual tools, 944

W
weighted path length, 528–529, 545, 564
weighted single-source, shortest-path problem

for acrylic graphs. See acrylic graphs, path
problems in

while statement, 14, 22
wildcards

defined, 170
as type parameter, 151–152

WindowAdapter, 950, 955
WindowListener interface, 948, 955

witness to compositeness, 410, 413
word search puzzles, 421–423

defined, 438
Java implementation, 423–427
theory for solving, 422–423

worst-case analysis, 214
worst-case bound, 203, 215
wraparound, 601, 615
wrappers

defined, 170
nesting, 141
for primitive types, 143–145

Z
zero-parameter constructor, 118–119
zig, 848, 866
zig-zag, 848, 866
zig-zig, 848, 866

	Cover������������
	Title Page�����������������
	Copyright����������������
	Contents
	Part one: Tour of Java
	Chapter 1 primitive java
	1.1 The general environment
	1.2 The first program
	1.3 Primitive types
	1.4 Basic operators
	1.5 Conditional statements
	1.6 Methods
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Chapter 2 reference types
	2.1 What is a reference?
	2.2 Basics of objects and references
	2.3 Strings
	2.4 Arrays
	2.5 Exception handling
	2.6 Input and output
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Chapter 3 objects and classes
	3.1 What is object-oriented programming?
	3.2 A simple example
	3.3 Javadoc
	3.4 Basic methods
	3.5 Example: using java.math.BigInteger
	3.6 Additional constructs
	3.7 Example: implementing a BigRational class
	3.8 Packages
	3.9 A design pattern: composite (pair)
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Chapter 4 inheritance
	4.1 What is inheritance?
	4.2 Designing hierarchies
	4.3 Multiple inheritance
	4.4 The interface
	4.5 Fundamental inheritance in java
	4.6 Implementing generic components using inheritance
	4.7 Implementing generic components using java 5 generics
	4.8 The functor (function objects)
	4.9 Dynamic dispatch details
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Part two: Algorithms and Building Blocks
	Chapter 5 algorithm analysis
	5.1 What is algorithm analysis?
	5.2 Examples of algorithm running times
	5.3 The maximum contiguous subsequence sum problem
	5.4 General big-oh rules
	5.5 The logarithm
	5.6 Static searching problem
	5.7 Checking an algorithm analysis
	5.8 Limitations of big-oh analysis
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Chapter 6 the collections api
	6.1 Introduction
	6.2 The iterator pattern
	6.3 Collections api: containers and iterators
	6.4 Generic algorithms
	6.5 The List interface
	6.6 Stacks and queues
	6.7 Sets
	6.8 Maps
	6.9 Priority queues
	6.10 Views in the collections api
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Chapter 7 recursion
	7.1 What is recursion?
	7.2 Background: proofs by mathematical induction
	7.3 Basic recursion
	7.4 Numerical applications
	7.5 Divide-and-conquer algorithms
	7.6 Dynamic programming
	7.7 Backtracking
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Chapter 8 sorting algorithms
	8.1 Why is sorting important?
	8.2 Preliminaries
	8.3 Analysis of the insertion sort and other simple sorts
	8.4 Shellsort
	8.5 Mergesort
	8.6 Quicksort
	8.7 Quickselect
	8.8 A lower bound for sorting
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Chapter 9 randomization
	9.1 Why do we need random numbers?
	9.2 Random number generators
	9.3 Nonuniform random numbers
	9.4 Generating a random permutation
	9.5 Randomized algorithms
	9.6 Randomized primality testing
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Part three: Applications
	Chapter 10 fun and games
	10.1 Word search puzzles
	10.2 The game of tic-tac-toe
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Chapter 11 stacks and compilers
	11.1 Balanced-symbol checker
	11.2 A simple calculator
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Chapter 12 utilities
	12.1 File compression
	12.2 A cross-reference generator
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Chapter 13 simulation
	13.1 The josephus problem
	13.2 Event-driven simulation
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises

	Chapter 14 graphs and paths
	14.1 Definitions
	14.2 Unweighted shortest-path problem
	14.3 Positive-weighted, shortest-path problem
	14.4 Negative-weighted, shortest-path problem
	14.5 Path problems in acyclic graphs
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Part four: Implementations
	Chapter 15 inner classes and implementation of ArrayList
	15.1 Iterators and nested classes
	15.2 Iterators and inner classes
	15.3 The AbstractCollection class
	15.4 StringBuilder
	15.5 Implementation of ArrayList with an iterator
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises

	Chapter 16 stacks and queues
	16.1 Dynamic array implementations
	16.2 Linked list implementations
	16.3 Comparison of the two methods
	16.4 The java.util.Stack class
	16.5 Double-ended queues
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises

	Chapter 17 linked lists
	17.1 Basic ideas
	17.2 Java implementation
	17.3 Doubly linked lists and circularly linked lists
	17.4 Sorted linked lists
	17.5 Implementing the collections api LinkedList class
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises

	Chapter 18 trees
	18.1 General trees
	18.2 Binary trees
	18.3 Recursion and trees
	18.4 Tree traversal: iterator classes
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises

	Chapter 19 binary search trees
	19.1 Basic ideas
	19.2 Order statistics
	19.3 Analysis of binary search tree operations
	19.4 Avl trees
	19.5 Red–black trees
	19.6 Aa-trees
	19.7 Implementing the collections api TreeSet and TreeMap classes
	19.8 B-trees
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Chapter 20 hash tables
	20.1 Basic ideas
	20.2 Hash function
	20.3 Linear probing
	20.4 Quadratic probing
	20.5 Separate chaining hashing
	20.6 Hash tables versus binary search trees
	20.7 Hashing applications
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Chapter 21 a priority queue: the binary heap
	21.1 Basic ideas
	21.2 Implementation of the basic operations
	21.3 The buildHeap operation: linear-time heap construction
	21.4 Advanced operations: decreaseKey and merge
	21.5 Internal sorting: heapsort
	21.6 External sorting
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Part five: Advanced Data Structures
	Chapter 22 splay trees
	22.1 Self-adjustment and amortized analysis
	22.2 The basic bottom-up splay tree
	22.3 Basic splay tree operations
	22.4 Analysis of bottom-up splaying
	22.5 Top-down splay trees
	22.6 Implementation of top-down splay trees
	22.7 Comparison of the splay tree with other search trees
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Chapter 23 merging priority queues
	23.1 The skew heap
	23.2 The pairing heap
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Chapter 24 the disjoint set class
	24.1 Equivalence relations
	24.2 Dynamic equivalence and applications
	24.3 The quick-find algorithm
	24.4 The quick-union algorithm
	24.5 Java implementation
	24.6 Worst case for union-by-rank and path compression
	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Appendix A: operators
	Appendix B: graphical user interfaces
	B.1 The abstract window toolkit and swing
	B.2 Basic objects in swing
	B.2.1 Component
	B.2.2 Container
	B.2.3 Top-level containers
	B.2.4 JPanel
	B.2.5 Important i/o components

	B.3 Basic principles
	B.3.1 Layout managers
	B.3.2 Graphics
	B.3.3 Events
	B.3.4 Event handling: adapters and anonymous inner classes
	B.3.5 Summary: putting the pieces together
	B.3.6 Is this everything i need to know about swing?

	Summary
	Key concepts
	Common errors
	On the internet
	Exercises
	References

	Appendix C: bitwise operators
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

