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Abstract

We study realcompactness in the classes of submaximal and maximal spaces. It is shown that a normal submaximal space of car-
dinality less than the first measurable is realcompact. ZFC examples of submaximal not realcompact and maximal not realcompact
spaces are constructed. These examples answer questions posed in [O.T. Alas, M. Sanchis, M.G. Tkačenko, V.V. Tkachuk, R.G.
Wilson, Irresolvable and submaximal spaces: homogeneity versus σ -discreteness and new ZFC examples, Topology Appl. 107
(3) (2000) 259–273] and generalize some results from [D.P. Baturov, On perfectly normal dense subspaces of products, Topology
Appl. 154 (2) (2007) 374–383].
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0. Introduction

The class of submaximal spaces was introduced by N. Bourbaki in Topologie Générale. We recall that a subset A

of a space X is locally closed if A is open in its closure in X or, equivalently, is the intersection of an open subset and
a closed subset of X.

Definition 1. A space X is a submaximal space if every subset of X is locally closed.

Independently, Hewitt [8] defined a space to be an MI-space if it has no isolated points and every dense subset is
open. Hewitt showed that every subset of a space is locally closed if and only if every dense subset is open, hence
we adopt the convention that a space is submaximal if it has no isolated points and every dense subset is open. In the
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same paper, Hewitt defined a space to be maximal if its topology is maximal in the collection of all topologies on X

with no isolated points. The existence of a maximal space that is Tychonoff is nontrivial and due to van Douwen [6].
The paper of Arhangel’skiǐ and Collins [2] gave the first comprehensive study of the class of submaximal spaces.

There a number of questions were raised and answered in a subsequent paper of Alas et al. [1]. In the second paper it
was asked whether (ZFC) submaximal dense subsets of I2κ

exist for cardinals κ � ℵ0 (interestingly, there can be no
such maximal spaces). Also, it was asked whether maximal or submaximal spaces are realcompact. In this note we
provide a number of ZFC examples answering these questions. In addition it is shown that normal submaximal spaces
of cardinality less than the first measurable cardinal are realcompact.

1. Normal submaximal spaces

In this section we prove that if X is normal, submaximal and of cardinality less than the first measurable cardinal,
then X is realcompact. Thus any ZFC example of a submaximal realcompact space cannot be provably normal.

Recall that a point a of βX \ X is called a far point if a is not in the closure of any discrete closed subset of X.

Theorem 2. A normal submaximal space of a non-Ulam-measurable cardinality is realcompact.

Proof. Let X be as in the wording of the theorem and let a ∈ βX \ X. According to [7], it is enough to prove that
there is a Gδ set in βX that contains a and is disjoint from X. Denote the family of all the open neighborhoods of a

in βX by Φ .
Case I. a is not a far point. Let D ⊂ X be discrete and closed subset of X such that a ∈ D. Because X is normal, the

set ΦD = {F ∩ D: F ∈ Φ} is an ultrafilter on D. ΦD is not countably centered because |D| is not Ulam-measurable.
Let {Dn ∈ ΦD: n ∈ ω} be a countable family of subsets that has empty intersection. For every n ∈ ω, the sets Dn+1 \Dn

and Dn are functionally disjoint, therefore there are Un ∈ Φ such that Dn ⊂ Un and (Dn+1 \ Dn) ∩ Un = ∅. The set⋂
n∈ω Un

X , which we denote by H , is a closed subset of X that is disjoint from D. Now, a /∈ HβX because a ∈ D and
because X is normal. Hence, the set U−1 = βX \ HβX is an element of Φ . This implies that {Un: n � −1} is a family
of open neighborhoods of a in βX whose intersection is disjoint from X as required.

Case II. a is a far point. By 5.2 from [5], a is not in the closure of any two disjoint open sets, hence the family
Ψ = {U is open in X: a ∈ U} is an ultrafilter of open subsets of X. Hence, Ψ contains a base B for a set-theoretic
ultrafilter (Corollary 20 from [11]). This ultrafilter is not countably centered because the cardinality of X is not Ulam-
measurable. Therefore, there is a countable family {Vn ∈ B: n ∈ ω} such that (

⋂
n∈ω Vn) ∩ X = ∅. The proof will be

complete when we show that for every n ∈ ω there is Wn ∈ Φ such that Wn ∩ X ⊂ Vn. Indeed, let V ′
n = IntβX(Vn

βX).
The set Hn = (V ′

n \ Vn) ∩ X is a nowhere dense, hence discrete subset of X. So it does not contain a in its closure
since a is a far point. Again by 5.2 from [5], the set X \ V ′

n does not contain a in its closure. Therefore, the set
Wn = βX \ (Hn

βX ∪ X \ V ′
n
βX) = βX \ X \ Vn

βX is an open neighborhood of a in βX. Clearly, Wn ∩ X = Vn. �
2. Dense submaximal subspaces of I 2κ

Recently Juhasz, Soukup and Szentmiklóssy [9] proved that for any κ the Cantor cube 22κ
includes a dense sub-

maximal space of cardinality κ . From this they concluded that [0,1]c includes a countable dense submaximal space.
Here we give a direct construction of a dense submaximal space in M2κ

for every separable metric space M consisting
of more than one point and for every κ . The construction is flexible enough to also directly give dense submaximal
not realcompact subspaces of I 2κ

thus answering two questions from [1].

Theorem 3. Let κ be an infinite cardinal and let M be a separable metric space consisting of more than one point.
If Z is a subset of M2κ

of cardinality κ , then there is a normal dense submaximal subspace Y of M2τ \ Z such that
every discrete subspace of Y is closed in Z ∪ Y .

Proof. It is known that a dense-in-itself space X is submaximal if and only if it is open-hereditarily dense (that is, no
nonempty open subset of X can be represented as a union of two disjoint dense subsets) and nodec (every nowhere
dense subset of X is discrete and closed in X). Hence, the desired set Y is submaximal whenever it satisfies both of
the following conditions:
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(i) For every disjoint subsets A0, A1 of Y , the set A1 ∩A2 (both closures are taken in M2κ
) is nowhere dense in M2κ

.
(ii′) For every a ∈ Y and every nowhere dense subset B of Y \ {a}, a /∈ B .

Both (ii′) and the condition that every discrete subspace of Y is closed in Z ∪ Y follow from the following condi-
tion (ii):

(ii) For every a ∈ Z ∪ Y and every nowhere dense subset B of Y \ {a}, a /∈ B .

Malykhin proved that Y is normal iff it satisfies condition (iii):

(iii) For every two disjoint discrete subsets A0, A1 of Y , there is a continuous function f :Y → [0,1] such that
f |A0 ≡ 0 and f |A1 ≡ 1.

We will construct dense Y ⊂ M2κ
that satisfies (i)–(iii). Start with a dense X0 ⊂ M2κ \Z of size κ such that every point

of X0 differs from every other point of X0 and from every point of Z on 2κ coordinates. Define sets Xα ⊂ M2κ \Z for
every α with 1 � α � 2κ . If α is a successor ordinal, Xα will be obtained from Xα− by changing the αth coordinate
of some points of Xα− . If α is a limit ordinal, Xα will be the limit of Xβ , β < α as described below. The desired set
X2κ will also be denoted by Y . To assure that Y remains disjoint from Z, let us assume that the indices which witness
Y ∩ Z = ∅ are all limit ordinals of 2κ and we will only modify the points of X on successor ordinals. Also, we can
assume that M contains at least two nonisolated points (if not, replace M with Mω), which we denote by p0 and p1.
For every x ∈ M2κ

, the γ th coordinate is denoted by πγ (x) and x(γ ). Let
{
(A0

α,A1
α): α is an even successor and α < 2κ

}
be an enumeration of all disjoint pairs of infinite disjoint subsets of κ . Also, let{

(Bα, aα): α is an odd successor and α < 2κ
}

be an enumeration of all pairs (B,a) such that B is a subset of κ and a ∈ κ ∪ Z, a /∈ B . We assume that in both
enumerations each pair occurs 2κ times.

Fix an enumeration of X0 = {x0
η : η < κ}. Let γ � 2κ and suppose that Xβ have been defined for all β < γ and

enumerated by Xβ = {xβ
η : η < κ} subject to the following conditions

(1β ) If β is a successor ordinal, then Xβ− \ Xβ is a co-dense subset of M2κ
.

(2β ) For every δ < β � 2κ and every η < κ , if xδ
η(α) �= x

β
η (α), then δ < α � β .

Note that property (2β ) implies the following property (3β )

(3β ) {α ∈ 2κ : x
β−
η (α) �= x

β
η (α)} ⊆ {β} whenever β is a successor ordinal.

Case I. γ is an even successor ordinal. Denote the sets {xγ −
η : η ∈ A0

γ } ⊂ Xγ − and {xγ −
η : η ∈ A1

γ } ⊂ Xγ − by A0
and A1, respectively.

Subcase 1. The intersection A0 ∩ A1 (both closures are taken in M2κ
) contains a nonempty open subset of M2κ

,
which we denote by A.

If x
γ −
η ∈ A0 ∩ A and α < 2κ , then

xγ
η (α) =

{
x

γ −
η (α) if α �= γ,

p0 if α = γ.

If x
γ −
η ∈ Xγ − \ (A0 ∩ A), then x

γ
η = x

γ −
η .

Note that Xγ − \Xγ is a subset of A1 ∩A, which is co-dense in M2κ
, hence property (1γ ) holds. Also, πγ ({xγ

η : η ∈
A0

γ }) = {p0}, therefore {xγ
η � γ : η ∈ A0

γ } is a nowhere dense subset of Mγ+1.
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Subcase 2. The sets A0 and A1 are disjoint and nowhere dense in M2κ
. Then

xγ
η (α) =

{
x

γ −
η (α) if α �= γ,

pi if α = γ

whenever η ∈ Ai
γ and x

γ
η = x

γ −
η if η /∈ A0

γ ∪ A1
γ .

In this subcase, Xγ − \ Xγ is a subset of A0 ∪ A1, which is a nowhere dense subset of M2κ
, hence property (1γ )

holds. Also, continuous function πγ assumes constant values p0 and p1 on the sets {xγ
η : η ∈ A0

γ } and {xγ
η : η ∈ A1

γ },
respectively. Therefore, there is a continuous function f :Xγ � γ → [0,1] that assumes constant values 0 and 1 on
sets {xγ

η � γ : η ∈ A0
γ } and {xγ

η � γ : η ∈ A1
γ }, respectively.

Subcase 3. Subcases 1 and 2 fail. Put x
γ
η = x

γ −
η for every η < κ .

Property (3γ ) follows directly from the construction in each subcase. Together with (2β ), which is true for every
β < γ , property (3γ ) implies (2γ ).

Case II. γ is an odd successor ordinal. Denote the set {xγ −
η : η ∈ Bγ } ⊂ Xγ − by B .

Subcase 1. aγ ∈ κ , hence x
γ −
aγ

∈ Xγ − . Denote either of the points p0, p1 that is distinct from πγ (x
γ −
aγ

) by p.

Let x
γ
aγ

= x
γ −
aγ

. If B is nowhere dense in M2κ
and x

γ −
aγ

∈ B , then for every η ∈ Bγ \ {aγ },

xγ
η (α) =

{
x

γ −
η (α) if α �= γ,

p if α = γ.

(Note that Xγ − \ Xγ is a subset of B , which is a nowhere dense subset of M2κ
, hence property (1γ ) holds. Also,

x
γ
aγ

� γ /∈ ({xγ
η : η ∈ Bγ }) � γ .)

Otherwise, x
γ
η = x

γ −
η for every η < κ .

Subcase 2. aγ ∈ Z. Denote either of points p0, p1 that is distinct from πγ (aγ ) by p.
If B is a nowhere dense subset of M2κ

and aγ ∈ B , then for every η ∈ Bγ and α < 2κ ,

xγ
η (α) =

{
x

γ −
η (α) if α �= γ,

p if α = γ.

(Note that Xγ − \ Xγ is a subset of B , which is a nowhere dense subset of M2κ
, hence property (1γ ) holds. Also,

aγ
γ � γ /∈ ({xγ

η : η ∈ Bγ }) � γ .)

Otherwise, x
γ
η = x

γ −
η for every η < κ .

The proof of (2γ ) in case II is the same as in case I.
Case III. γ is a limit ordinal. It follows from (3β ), β < γ , that for every η < κ there is a unique point in M2κ

that
is a complete accumulation point of {xα

η : α < γ }. Denote this point by x
γ
η .

Property (2γ ) is true because it is true for every β < γ .
Now we prove the desired properties of Y .
Assume towards contradiction that Y is not dense in M2κ

. Let γ � 2κ be the smallest ordinal such that Xγ is not
dense in M2κ

. Then (1γ ) implies that γ is a limit ordinal. Pick a nonempty canonical neighborhood U of M2κ
that

misses Xγ . This neighborhood depends on a finite set s ⊂ 2κ , so there is ordinal α < 2κ such that s ⊂ α. Due to
minimality of γ , Xα is dense in M2κ

, so there exist x ∈ Xα ∩ U . But then x ∈ Y by (22κ ), which is a contradiction.
Prove (i). Assume towards contradiction that A0, A1 are disjoint subsets of Y such that A0 ∩ A1 contains a

nonempty open subset U of M2κ
. We can assume that U is a canonical neighborhood of M2κ

that depends on a

finite set s ⊂ 2κ . Then there is an even successor ordinal γ < 2κ such that s ⊂ γ and {xγ −
η : η ∈ A0

γ } = A0 and

{xγ −
η : η ∈ A1

γ } = A1. It then follows from subcase 1 of case I that {xγ
η � γ : η ∈ A0

γ } is a nowhere dense subset of Mγ .
Hence, A0 is a nowhere dense subset of Y by (22κ ), a contradiction.

Prove (ii). Let B be a nowhere dense subset of Y and a ∈ Z, a ∈ B . Since M is separable, there is an open set
U ⊂ M2κ \ B that depends on a countable index set s ⊂ 2κ and that is dense in M2κ \ B . The projection B � γ ′ is
nowhere dense in Mγ ′

for every γ ′ that contains s. Furthermore, there is an odd successor ordinal γ , γ ′ � γ < 2κ ,
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such that aγ = a, and {xγ −
η : η ∈ Bγ } = B . Now by subcase 2 of case II, aγ

γ � γ /∈ ({xγ
η : η ∈ Bγ }) � γ , therefore a /∈ B

by (22κ ). This is a contradiction.
Now let B be a nowhere dense subset of Y and a ∈ Y \ B , a ∈ B . Similarly to the previous paragraph, there is an

odd successor ordinal γ < 2κ such that B � γ is a nowhere dense subset of 2γ , a � γ /∈ B � γ , and x
γ
aγ

= a, Bγ = B .

Then by subcase 1 of case II, x
γ
aγ

� γ /∈ ({xγ
η : η ∈ Bγ }) � γ , therefore a /∈ B by (22κ ). A contradiction.

Prove (iii). Let A1, A2 be disjoint discrete subsets of Y . Similar to the proof of property (ii), there is an ordinal
γ ′ < 2κ such that A1 � γ ′ and A2 � γ ′ are disjoint nowhere dense subsets of Mγ ′

. Then, there is an even successor

ordinal γ , γ ′ � γ < 2κ , such that {xγ −
η : η ∈ A0

γ } = A0 and {xγ −
η : η ∈ A1

γ } = A1. By subcase 2 of case I, there is a
continuous function f :X → [0,1] that depends on the first γ coordinates and assumes constant values 0 and 1 on
sets {xγ

η � γ : η ∈ A0
γ } and {xγ

η � γ : η ∈ A1
γ }, respectively. The proof is complete. �

Corollary 4. Let M be a separable metric space consisting of more than one point. For each infinite κ , there is a
dense submaximal normal (hence perfectly normal) subset X ⊆ M2κ

of cardinality κ .

Proof. Take Z = ∅ in Theorem 3 and use the fact that every normal ccc submaximal space is perfectly normal.
(Indeed, every ccc submaximal space is perfect: to see this, suppose that U is open in such a space. Let {Un: n ∈ ω}
be a maximal disjoint family of open sets such that each Un ⊆ U . Since

⋃{Un: n ∈ ω} covers all but a nowhere dense
(hence closed) subset of U , U is an Fσ .) �

In the recent paper [4] D.P. Baturov studied perfectly normal dense subspaces of products of separable metric
spaces. Theorem 3 generalizes two results from this paper. One is the particular case of 2κ = 2ω of Theorem 3. The
other is the case κ = 2ω of the following corollary.

Corollary 5. Let κ be an infinite cardinal and let M be a separable metric space consisting of more than one point.
There is a perfectly normal dense submaximal subspace of M2κ

that is strongly σ -discrete (is a union of countably
many of its discrete closed subsets).

Proof. Take Z = ∅ in Theorem 3 and use that X0 has a countable projection {xn: n ∈ ω} on the 0th coordinate. The
resulting subset Y of M2κ

will be submaximal and dense in M2κ
. Therefore, π−1

0 (xn) will be a discrete and closed
subset of Y for every n ∈ ω. �
Corollary 6. There is a separable submaximal not realcompact space of cardinality ω1.

Proof. In I 2ω
, take Z to be a convergent ω1-sequence. E.g., for each α < ω1 � 2ω, take aα to be the point that is

0 at all coordinates β � α and is equal to 1 at all coordinates > α. Then Z converges to the constant 0 function in
the co-countable sense. The space Y ∪ Z given by Theorem 2 is submaximal (since Z is discrete) and, since any
continuous f :Y ∪ Z → [0,1] is determined by countably many coordinates, any zero set Z′ ⊆ Z is either countable
or co-countable. Thus the filter of co-countable subsets of Z is a free zero-set ultrafilter with the countable intersection
property. �
3. Another submaximal not realcompact space in ZFC

A construction previously considered by Levy and Porter [10] also can be used to provide a submaximal not real-
compact space and a maximal not realcompact spaces in ZFC. For completeness sake we give a complete description
of the spaces. The first example is obtained by blowing up the isolated points of a Ψ -space using a submaximal space.
The maximal example, presented in the next section, is similar but requires a bit more work.

Given an almost disjoint family A, and a submaximal space X ⊆ 22ℵ0 , we define a Tychonoff topology on A ∪
(ω × X).

We will need that X admits a remote filter. I.e., a family U of nonempty open subsets of X with the following
properties

(1) U is a filter of open sets.
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(2) For any dense (hence open) subset D of X there is U ∈ U such that U ⊆ D.
(3) For any U ∈ U there is V ∈ U such that V ⊆ U .

The existence of such a family of open sets in an arbitrary (Tychonoff) topological space is equivalent to the
existence of a remote point in βX \ X (p ∈ βX \ X is remote if p is not in the closure of any nowhere dense subset
of X). We do not know the answer to the following question

Question 1. Does every (countable) submaximal Tychonoff space have a remote point?

Nonetheless, it is not hard to show that the X ⊆ I 2ω
constructed in Theorem 3 has a remote filter. Indeed, let

c ∈ [0,1]2ω
be the constant function with constant value 0.5 (any constant value different than 0 or 1 suffices by

property (iii) of the proof). Let

U = {
U ∩ X: U ⊆ [0,1]2ω

is open and c ∈ U
}
.

Then U satisfies (1), (2) and (3).
Given a mad family A we define the topology on A ∪ (ω × X) as follows. The set ω × X will be an open subspace

where ω × X is the direct sum
⊕

n{n} × X of ω copies of X. And a point a ∈ A will have a neighborhoods of the
form {a} ∪ ⋃{{n} × Un: n ∈ a \ F } where F is finite, and each Un ∈ U . We will denote this space Y = Y(A,X,U).
We need to prove:

Claim 7. For any almost disjoint family A and any submaximal X with a remote filter of open sets U , the space
Y = Y(A,X,U) is Tychonoff and submaximal. Moreover, if Ψ (A) is not realcompact, then neither is Y .

Proof. Let D be a dense subset of Y = Y(A,X,U). Then D ∩ {n} × X is dense in {n} × X for each n ∈ ω, hence
open. Therefore, D ∩ ω × X is open. Suppose that a ∈ D ∩ A. Then, for each n ∈ a, by remoteness of U , we may
choose Un ∈ U such that {n} × Un ⊆ D ∩ {n} × X. This shows that a is in the interior of D. So D is open. Hence Y

is submaximal.
It is easy to see that (3) implies that Y is regular. In the case that X is countable, Y is Tychonoff follows from the

fact that any regular, locally countable space is Tychonoff.
In the case that X is not countable, suppose that B ⊆ Y is a closed set and a0 ∈ A \B , then there is a neighborhood

U = {a0} ∪ {{n} × Un: n ∈ a0 \ F
}

of a0 in Y which misses B . Let r ∈ βX \ X be the point which corresponds to the remote filter U . Then
r /∈ clβX(B ∩{n}×X) for all n ∈ a0 \F . Hence there is a continuous function fn :βX → [0,1] such that fn(r) = 0 and
fn(B ∩ {n} × X) ⊆ {1} for all n ∈ a0 \ F . Define f :Y → [0,1] by f (a0) = 0, f (a) = 1 for all a ∈ A \ {a0},
f (n, x) = fn(x) for all n ∈ a0 \ F and all x ∈ X and f (n, x) = 1 for all n /∈ a0 \ F and all x ∈ X. Then f is
a continuous function which witnesses that a0 and B are completely separated.

Finally to see that Y is not realcompact, for each n let pn ∈ βY be a limit of the filter{{n} × U : U ∈ U}
.

Let Z = {pn: n ∈ ω} ∪ Y .
The subspace {pn: n ∈ ω} ∪ A is a closed subspace of Z homeomorphic to Ψ (A), thus Z is not realcompact.

Therefore, there is a p ∈ βZ \Z = βY \Z such that any Gδ containing p meets Z. Since the space Z \Y is countable
it must be that every Gδ containing p in fact meets Y . Thus Y is not realcompact. (This is essentially the proof that
if Z is a subspace of βY obtained by adding to Y countably many points from βY \ Y , then if Y is realcompact,
so is Z.)2 �
4. Maximal not realcompact examples

We now modify the constructions of the previous sections to give two constructions of a maximal not realcompact
space. This answers a question of [1].

2 We would like to thank Alan Dow for pointing out this proof.
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Theorem 8 (ZFC). There are separable maximal not realcompact spaces in ZFC.

Proof. We give two constructions. For the first construction consider the example Y ∪ A of Corollary 6 with A the
ω1-sequence {aα: α ∈ ω1} that is convergent in the co-countable sense to 
0.

To make Y ∪ A maximal, consider Y ∪ A as a subset of the Cantor cube C2ω
. Let f denote a continuous map from

the absolute of A ∪ Y onto C2ω
, and let E be a subset of this absolute such that the restriction f � E is a one-to-one

map onto A ∪ Y . f will be irreducible, thus preimages of dense sets will be dense and images of nowhere dense sets
will be nowhere dense. To ensure that E is not realcompact, we should be a little more careful about the preimages
of A. Fix a single e in E that maps onto any given a in A. For a′ in A, there’s a unique e′ in E such that the group
action in 22ω

which takes a to a′ will also take e to e′ (as regular open ultrafilters on Y ∩ A). See Lemma 3.4 of [3]
where it is shown that in the absolute of 22ω

the family E′ = {f −1(a′): a′ ∈ A} will be converging in the co-countable
sense to the point f −1(
0). Since E is dense and extremally disconnected, it follows that βE is just its closure, hence
z is a point of βE which does not have a Gδ disjoint from E.

For the second construction, we modify the topology on the Ψ -space example of Section 3. Let A be a mad family
on ω, and for each a ∈ A fix an ultrafilter pa ∈ a∗. Let D = {pa: a ∈ A}. Then D is discrete in βω. Let Z(D) = ω∪D

with the subspace topology inherited from βω. The role of the mad family A seems to be unimportant (see Question
2 below) and we only need to find a discrete D ⊆ ω∗ such that this space Z(D) is not realcompact.

We also need a maximal space X with a remote filter r . If a given maximal X does not have a remote filter, then
for any point x ∈ X, the subspace Y = X \ {x} is maximal and the neighborhood filter of x restricted to Y is a remote
filter on Y .3 Given X and r , we define Y(Z(D),X, r) as in Section 3: The set ω × X will be an open subspace where
ω × X is the direct sum

⊕
n{n} × X of ω copies of X. And a point p ∈ D will have neighborhoods of the form

{p} ∪ ⋃{{n} × Un: n ∈ x} where x ∈ p and each Un ∈ r . The space Y(Z(D),X, r) will always be regular (hence
Tychonoff) as in the proof of Claim 7. We need to prove it maximal and not realcompact.

Claim 9. Assuming X is maximal, so is Y = Y(Z(D),X, r).

Proof. Clearly Y has no isolated points. Suppose that τ is some stronger topology on Y . And let V ∈ τ . By maximality
of X, V ∩ {n} × X is open in {n} × X. So if V is not open in Y , there must be a p ∈ V ∩ D that is not in the interior
of V . Consider the set x = {n: V ∩ {n} × X ∈ r}. If x ∈ p then p would be in the interior of V . So x /∈ p. But
then, since maximal spaces are extremally disconnected and r is remote, for each n /∈ x we can find Un ∈ r such that
({n} × Un) ∩ V = ∅. But then p is isolated in τ . �
Claim 10. Y = Y(Z(D),X, r) is not realcompact whenever Z(D) is not realcompact.

Proof. The proof is the same as for Claim 7: Adding a countable set of points to a realcompact subspace of βY

preserves realcompactness. But Z(D) can be realized as a closed subspace of Y ∪ {rn: n ∈ ω} ⊆ βY where each rn is
the copy of the remote point r of {n} × X. �

We are left with the question whether Z(D) can fail to be realcompact for some discrete subset of ω∗. As in the
previous construction, we may use a convergent ω1 sequence in ω∗.

Claim 11. If D = {pα: α < ω1} is a convergent sequence (without the limit point) in ω∗, then D∪ω is not realcompact.

Proof. In this case the co-countable filter on D in Z(D) is a zero-set ultrafilter witnessing the failure of realcompact-
ness. �

This construction raises some natural questions:

3 Again, we thank Alan Dow for pointing out this construction and remarking that it is open whether or not every maximal space has a remote
filter.
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Question 2. Give a combinatorial characterization of those discrete subspace D ⊆ ω∗, such that Z(D) is not realcom-
pact?

For example, if discreteness of D is witnessed by a mad family, is Z(D) not realcompact? While it is possible to
find a mad family A and choose pa ∈ a∗ for each a ∈ A such that ω ∪ {pa: a ∈ A} is realcompact, we do not know
the answer to the following

Question 3. If A is mad, is there a choice of pa ∈ a∗ for each a ∈ A such that ω ∪ {pa: a ∈ A} is not realcompact?
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