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We provide simple characterizations of spaces admitting full r-skeletons, c-skeletons 
and q-skeletons, by using ω-monotone functions. We use this characterization to
prove that every countably compact space admitting a full r-skeleton is proximal; 
furthermore the characterizations are used to show that the class of spaces admitting 
full c-skeletons is invariant under subspaces, disjoint topological sums and Σ-
products, in addition to prove that the class of spaces admitting full q-skeletons 
is closed under extensions, continuous images and one-point Lindelöf extensions of 
disjoint topological sums. These characterizations also yield some positive results 
for products.
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1. Introduction

One of the most important classes of compact spaces in Topology and Functional Analysis is the class of 
Corson compact spaces. Let R denote the real line, κ a cardinal, and Rκ the product of κ-many real lines. 
We consider the Σ-product

ΣRκ = {x ∈ Rκ : |{α ∈ κ : xα �= 0}| ≤ ω}.

A compact space X is Corson if it is homeomorphic to a subspace of ΣRκ for some cardinal κ. The study 
of Corson compact spaces is directly related with several important concepts in Topology and Functional 
Analysis, such as weakly Lindelöf determined Banach spaces [13, Chapters 3 and 5], r-skeletons [14, Chapter 
19], and proximal spaces [7].
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The following result shows that a compact space is Corson if and only if it admits certain structure of 
retractions; full r-skeletons. This theorem follows from results of Bandlow [3] and Kubiś [15], and can be 
founded in [8].

Theorem 1.1. A compact space X is Corson if and only if it admits a full r-skeleton.

Some years later Casarrubias et al. provided another characterization of Corson compact spaces using a 
structure of closed subsets; full c-skeletons.

Theorem 1.2 ([5]). A compact space X is Corson if and only if it admits a full c-skeleton.

This last characterization is useful to detect Corson compact subspaces of the spaces of continuous 
functions Cp(X) for two reasons. First, full c-skeletons are inherited by arbitrary subspaces and so they 
can be identified in subspaces of Cp(X) trough a dual property, a structure of R-quotient functions; full 
q-skeletons. Indeed, the following two results were established in [5].

Theorem 1.3 ([5]). If X admits a full q-skeleton, then Cp(X) admits a full c-skeleton.

Theorem 1.4 ([5]). If X admits a full c-skeleton, then Cp(X) admits a full q-skeleton.

The other reason which makes full c-skeletons useful is that the class of spaces admitting a full q-skeleton 
is reasonably wide, as the following result shows (see [11] for the corresponding definitions).

Theorem 1.5 ([11]). The class of spaces admitting a full q-skeleton includes the following:

(i) spaces admitting a strong r-skeleton, particularly, monotonically retractable spaces and monotonically 
Sokolov spaces;

(ii) monotonically ω-stable spaces, in particular, pseudocompact and Lindelöf Σ-spaces.

We do not know how much these classes can be extended, as currently, there is not known example of a 
space X for which every compact subspace of Cp(X) is Corson but X does not admit a full q-skeleton.

The aim of this paper is to provide characterizations of r-skeletons, c-skeletons and q-skeletons by using 
ω-monotone functions. These characterizations are simple and in many cases let us simplify the use of these 
properties. We use them to prove that countably compact spaces admitting a full r-skeleton are proximal, 
also to determine the categorical behavior of the class of spaces admitting full c-skeletons and the class of 
spaces admitting full q-skeletons. We show that the class of spaces admitting full c-skeletons is invariant 
under subspaces, disjoint topological sums, and Σ-products; and show that the class of spaces admitting 
full q-skeletons is closed under extensions, continuous images and one-point Lindelöf extensions of disjoint 
topological sums. We also give some positive results for finite and infinite products. This development allows
us to clarify the scope of the class of spaces admitting full q-skeletons while in the task of detecting Corson 
compact subspaces of Cp(X)-spaces. The results in this paper solve two open problems; [11, Question 4.10]
and [5, Question 5.8].

2. Notation and preliminaries

In terminology and notation we follow [10] and [18]. All spaces in consideration are Tychonoff. By R we 
denote the real line together with its usual topology. The symbol κ denotes a cardinal. By ω we denote the 
first infinite ordinal, and c denotes the cardinality of the continuum. Given a set X the families of all finite 
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and countable subsets of X will be denoted as [X]<ω and [X]≤ω, respectively. The topology of a space X
is denoted as τ(X). The closure of A ⊂ X in X is denoted by clX(A) or simply cl(A).

We denote by Cp(X, Y ) the set of all continuous functions from X to Y endowed with the topology 
inherited from the product Y X . If A ⊂ Cp(X, Y ) the diagonal function ΔA : X → Y A of A is defined as 
[ΔA(x)]f = f(x) for each x ∈ X and f ∈ A. Given f : X → Y the weak topology generated by f on X is 
f−1(τ(Y )). For A ⊂ Cp(X, Y ) the weak topology generated by A on X is the weak topology generated by 
ΔA. Given A ⊂ Cp(X, Y ) and B ⊂ X, we say that A separates the points of B if for each pair of distinct 
points x, y ∈ B there exists f ∈ A such that f(x) �= f(y), that is, if ΔA �B is injective. If f : X → Z

and g : X → Y are continuous, we say that f factorizes trough g if there exists a continuous function 
h : g(X) → Z such that f = h ◦g. A function f : X → Y is R-quotient if, for each g : Y → R, the continuity 
of g ◦ f implies the continuity of g. The space Cp(X, R) will be denoted as Cp(X). Given f : X → Y the 
dual function f∗ : Cp(Y ) → Cp(X) of f is defined by f∗(g) = g ◦ f for each g ∈ Cp(Y ). For A ⊂ X the 
restriction function πA : Cp(X) → Cp(A) is given by πA(f) = f �A for each f ∈ Cp(X).

Along the paper, (Γ, ≤) will denote an up-directed and σ-complete partially ordered set; when there is no 
possibility of confusion, we simply write Γ instead of (Γ, ≤). Given a set X we will consider the set [X]≤ω

partially ordered by ⊂, which is up-directed and σ-complete.

Definition 2.1. A function φ : (Γ, ≤) → (Γ′, �) between up-directed and σ-complete partially ordered sets 
is ω-monotone if satisfies the following:

(i) φ(s) � φ(t) whenever s ≤ t;
(ii) if {sn}n∈ω ⊂ Γ, sn ≤ sn+1 for each n ∈ ω, and s = supn∈ω sn, then φ(s) = supn∈ω φ(sn).

Remark 2.2. Now we list without a proof some facts concerning ω-monotone functions that we will be using 
without reference along the text.

(i) The composition of ω-monotone functions is ω-monotone.
(ii) Given a function f : X → Y the function φ : [X]≤ω → [Y ]≤ω defined as φ(A) = f(A) is ω-monotone.
(iii) A function φ : [X]≤ω → [Y ]≤ω is ω-monotone if and only if there exists ϕ : [X]<ω → [Y ]≤ω such that 

φ(A) =
⋃

F∈[A]<ω ϕ(F ) for each A ∈ [X]≤ω.
(iv) If ϕ : [X]≤ω → [κ]≤ω and φα : [X]≤ω → [Y ]≤ω are ω-monotone for each α < κ, then the function 

φ : [X]≤ω → [Y ]≤ω defined as φ(A) =
⋃

α∈ϕ(A) φα(A) is ω-monotone.

We will also need the following lemmas.

Lemma 2.3 ([11]). If ϕ : [X]≤ω → [X]≤ω is an ω-monotone function, then there exists and ω-monotone 
function φ : [X]≤ω → [X]≤ω such that A ⊂ φ(A) and ϕ(φ(A)) ⊂ φ(A) for each A ∈ [X]≤ω.

Lemma 2.4 ([11]). For each function f : X → Γ there exists an ω-monotone function φ : [X]≤ω → Γ such 
that f(x) ≤ φ({x}) for each x ∈ X.

The next two lemmas will be useful later. We will be using the fact that for a subset A of X and a 
continuous function f : X → Y , the set f(A) is dense in f(X) if and only if A is a dense subspace of X in 
the weak topology generated by f .

Lemma 2.5. If A ⊂ Cp(X, Y ), D ⊂ X and ΔF (D) is a dense subset of ΔF (X) for each F ∈ [A]<ω, then 
ΔA(D) is a dense subset of ΔA(X).
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Proof. It suffices to show that D is a dense subset of X endowed with the weak topology generated by ΔA. 
Let U be a nonempty basic open subset of X with the weak topology generated by ΔA. Then there exists 
a nonempty finite set F ∈ [A]<ω such that U =

⋂
f∈F f−1(Uf ), where Uf is open in Y for each f ∈ F . 

Observe that U is a nonempty open subset of X in the weak topology generated by F . By hypothesis D is 
a dense subset of X endowed with weak topology generated by F . Therefore U ∩D �= ∅. �
Lemma 2.6. If A ⊂ Cp(X) and DF is a dense subset of Δ∗

F (Cp(ΔF (X))) for each F ∈ [A]<ω, then D =
⋃

F∈[A]<ω DF is a dense subset of Δ∗
A(Cp(ΔA(X))).

Proof. Let UA be a nonempty open set of the space Δ∗
A(Cp(ΔA(X))). Since the function Δ∗

A : Cp(ΔA(X)) →
Cp(X) is continuous, we can find a nonempty open set VA ⊂ Cp(ΔA(X)) satisfying Δ∗

A(VA) ⊂ UA. We can 
assume that

VA = {h ∈ Cp(ΔA(X)) : h(zi) ∈ Ui, i = 1, . . . , n}

for some set of distinct points z1, . . . , zn ∈ ΔA(X), open sets U1, . . . , Un ∈ τ(R), and n ∈ N+. Choose 
xi ∈ X such that ΔA(xi) = zi for each i = 1, . . . , n. Then we can find a finite set F ⊂ A such that 
ΔF (xi) �= ΔF (xj) for each i, j ∈ {1, . . . , n} with i �= j. Let yi = ΔF (xi) for i = 1, . . . , n. Since ΔF (X)
is a Tychonoff space we can find f ∈ Cp(ΔF (X)) such that f(yi) ∈ Ui for i = 1, . . . , n. It follows that 
Δ∗

F (f)(xi) = f(ΔF (xi)) ∈ Ui for i = 1, . . . , n. Hence the function Δ∗
F (f) belongs to the open subset

UF = {g ∈ Δ∗
F (Cp(ΔF (X))) : g(zi) ∈ Ui, i = 1, . . . , n}

of Δ∗
F (Cp(ΔF (X))). Since DF is a dense subset of Δ∗

F (Cp(ΔF (X))), we can find g ∈ DF ∩ UF ⊂ D ∩ UF . 
Because g ∈ Δ∗

F (Cp(ΔF (X))), we can fix h ∈ Cp(ΔF (X)) such that g = Δ∗
F (h) = h ◦ΔF . Note that h(yi) =

h(ΔF (xi)) = g(xi) ∈ Ui for i = 1, . . . , n. Let p : ΔA(X) → ΔF (x) be the natural projection. Observe that 
the equality ΔF = p ◦ ΔA implies that h(p(zi)) = h(p(ΔA(xi))) = h(ΔF (xi)) = h(yi) ∈ Ui for i = 1, . . . , n. 
It follows that h ◦ p ∈ VA and so g = Δ∗

F (h) = (p ◦ ΔA)∗(h) = Δ∗
A(p∗(h)) = Δ∗

A(h ◦ p) ∈ Δ∗
A(VA) ⊂ UA. 

Therefore g ∈ D ∩ UA and hence D is a dense subset of Δ∗
A(Cp(ΔA(X))). �

3. Spaces admitting full r-skeleton

The notion of r-skeleton was introduced by Kubiś and Michalewski in [16] where it was used to char-
acterize Valdivia compact spaces. Using an ω-monotone function we give a characterization of countably 
compact spaces admitting full r-skeletons. Similar characterizations have been obtained using elementary 
substructures instead of ω-monotone functions in [3] when characterizing Corson compacta, in [15] when 
characterizing compact spaces with r-skeleton, and in [9] when characterizing countably compact spaces 
with full r-skeleton. Let us recall the definition of full r-skeleton.

Definition 3.1. A full r-skeleton in a space X is a family {rs}s∈Γ of retractions on the space X satisfying:

(i) rs(X) has a countable network for each s ∈ Γ;
(ii) rs ◦ rt = rt ◦ rs = rs whenever s ≤ t;
(iii) if {sn}n∈ω ⊂ Γ, sn ≤ sn+1 for each n ∈ ω and t = supn∈ω sn, then rt(x) = limn→∞ rsn(x) for each 

x ∈ X; and
(iv) X =

⋃
s∈Γ rs(X).

We are ready to prove the promised characterization.
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Theorem 3.2. A countably compact space X admits a full r-skeleton if and only if there exist an ω-monotone 
function φ : [X]≤ω → [Cp(X)]≤ω such that Δφ(A) embeds cl(A) as a closed subspace in Δφ(A)(X) for each 
A ∈ [X]≤ω.

Proof. For any s ∈ Γ the space rs(X) is countably compact and has countable network weight, so it is a 
metrizable compact. Repeating the argument in [11, Proposition 2.6], we can assume that Γ = [X]≤ω and 
A ⊂ rA(X) for all A ∈ Γ. For each n ∈ ω let pn : Rω → R be the projection of Rω onto the n-th coordinate. 
Choose F ∈ [X]<ω; since rF (X) is a metrizable compact, there exists an embedding eF : rF (X) → Rω. 
Let MF = {pn ◦ eF ◦ rF }n∈ω ∈ [Cp(X)]≤ω and observe that ΔMF

�rF (X)= eF is an embedding. Consider 
the ω-monotone function φ : [X]≤ω → [Cp(X)]≤ω defined as φ(A) =

⋃
F∈[A]<ω MF for each A ∈ [X]≤ω. 

Choose an arbitrary A ∈ [X]≤ω; we will prove that Δφ(A) embeds cl(A) as a closed subspace in Δφ(A)(X). 
Observe that A ⊂ rA(X) implies cl(A) ⊂ rA(X), hence cl(A) is compact and so it is sufficient to verify that 
Δφ(A) �rA(X) is injective. Choose a pair of distinct points x, y ∈ rA(X). The equalities x = supF∈[A]<ω rF (x)
and y = supF∈[A]<ω rF (y) imply the existence of F ∈ [A]<ω such that rF (x) �= rF (y). It follows that there 
exists f ∈ MF ⊂ φ(A) such that f(x) �= f(y). This implies that Δφ(A)(x) �= Δφ(A)(y). Thus Δφ(A) �rA(X)
is injective.

Now assume that there exist an ω-monotone function φ : [X]≤ω → [Cp(X)]≤ω such that Δφ(A) embeds 
cl(A) as a closed subspace in Δφ(A)(X) for each A ∈ [X]≤ω. For each G ∈ [Cp(X)]<ω, since ΔG(X)
is separable, we can fix a set DG ∈ [X]≤ω such that ΔG(DG) is a dense subset of ΔG(X). Define ϕ :
[Cp(X)]≤ω → [X]≤ω as ϕ(B) =

⋃
G∈[B]<ω DG for each B ∈ [Cp(X)]≤ω and observe that this function is 

ω-monotone. Now, we can apply Lemma 2.3 to find an ω-monotone function δ : [X]≤ω → [X]≤ω such that 
A ⊂ δ(A) and ϕ(φ(δ(A))) ⊂ δ(A) for each A ∈ [X]≤ω. Choose A ∈ [X]≤ω. For every G ∈ [φ(δ(A))]<ω

we have that ΔG(DG) is dense in ΔG(X), and we know that DG ⊂ ϕ(φ(δ(A))) ⊂ δ(A), so we conclude 
that ΔG(δ(A)) is dense in ΔG(X). Since this happens for any G ∈ [φ(δ(A))]<ω, we can apply Lemma 2.5
to conclude that Δφ(δ(A))(δ(A)) is dense in Δφ(δ(A))(X). Our hypothesis implies that Δφ(δ(A))(cl(δ(A))) is 
closed in Δφ(δ(A))(X), so Δφ(δ(A))(cl(δ(A))) = Δφ(δ(A))(X). Therefore Δφ(δ(A)) �cl(δ(A)) is a homeomorphism 
and rA = (Δφ(δ(A)) �cl(δ(A)))−1 ◦ Δφ(δ(A)) : X → cl(δ(A)) is a retraction. We will verify that if Γ = [X]≤ω, 
then {rs}s∈Γ is a full r-skeleton in X with metrizable images.

(i) For each s ∈ Γ, rs(X) is homeomorphic to Δφ(δ(s))(X) and hence metrizable.
(ii) Note that if s ∈ Γ and x ∈ X then rs(x) = rs(y) if and only if Δφ(δ(s))(x) = Δφ(δ(s))(y). Choose 

t ∈ Γ with s ≤ t, it follows that δ(s) ⊂ δ(t). On the one hand rs(X) = cl(δ(s)) ⊂ cl(δ(t)) = rt(X)
which implies rt(rs(x)) = rs(x) for all x ∈ X, that is, rs = rt ◦ rs. On the other hand, for each 
x ∈ X the equality rt(x) = rt(rt(x)) implies Δφ(δ(t))(x) = Δφ(δ(t))(rt(x)), in particular Δφ(δ(s))(x) =
Δφ(δ(s))(rt(x)), and so rs(x) = rs(rt(x)). Therefore rs = rs ◦ rt.

(iii) Let {sn}n∈ω ⊂ Γ such that sn ≤ sn+1 for each n ∈ ω and let t = supn∈ω sn. Choose an arbitrary x ∈ X. 
Given f ∈ φ(δ(t)) =

⋃
n∈ω φ(δ(sn)) we can choose N ∈ ω such that f ∈ φ(δ(sn)) for all n ≥ N . If n ≥

N , the equality rsn(x) = rsn(rsn(x)) implies Δφ(δ(sn))(x) = Δφ(δ(sn))(rs(x)) and in particular f(x) =
f(rsn(x)). Then f(x) = limn→∞ f(rsn(x)) and since f ∈ φ(δ(t)) was chosen arbitrarily we conclude 
that Δφ(δ(t))(x) = limn→∞ Δφ(δ(t))(rsn(x)). Therefore rt(x) = limn→∞ rt(rsn(x)) = limn→∞ rsn(x).

(iv) X =
⋃

s∈Γ s ⊂
⋃

s∈Γ δ(s) ⊂
⋃

s∈Γ cl(δ(s)) ⊂
⋃

s∈Γ rs(X) ⊂ X.

This finishes the proof. �
Observe that the proof of the second implication in Theorem 3.2 does not require countable compactness 

of X, this suggests that the second condition in this theorem is stronger than the existence of a full r-skeleton 
in an arbitrary space X.
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We know that a compact space is Corson if and only if it admits a full r-skeleton [8, Theorem 3.11], if 
and only if it is proximal [7, Corollary 3.4]. Both notions are quite different, so it is natural to establish 
a general relation between spaces admitting r-skeletons and proximal spaces. Using the second condition 
in Theorem 3.2, we will show that every countably compact space admitting a full r-skeleton is proximal. 
Proximal spaces were introduced in [4], but we adopt the following equivalent definition obtained in [6].

Let X be a space and Δ = {〈x, x〉 : x ∈ X} ⊂ X2 its diagonal. An open neighborhood U of Δ in X2 is 
symmetric if U = {〈y, x〉 : 〈x, y〉 ∈ U}. Consider the family UΔ of all open symmetric neighborhoods U of Δ
in X2 such that there exists a sequence of neighborhoods {Un}n∈ω of Δ with U0 ⊂ U and Un+1 ◦Un+1 ⊂ Un

for each n ∈ ω. Observe that the family UΔ is closed under finite intersections. For each U ∈ UΔ and x ∈ X

we set U [x] = {y ∈ X : 〈x, y〉 ∈ U}.

Definition 3.3. A space X is proximal if in the following two-player game there is a winning strategy for 
player 1. In inning 0, player 1 chooses U0 ∈ UΔ and player 2 chooses x0 ∈ X. In inning n +1, player 1 chooses 
Un+1 ∈ UΔ and player 2 chooses xn+1 ∈ Un[xn]. Then player 1 wins the game if either 

⋂
n∈ω Un[xn] = ∅ or 

the sequence {xn}n∈ω converges.

If in the above definition player 1 must always ensure that {xn}n∈ω converges in X in order to win, then 
we say that X is absolutely proximal.

Theorem 3.4. If X admits an ω-monotone function φ : [X]≤ω → [Cp(X)]≤ω such that Δφ(A) embeds cl(A)
as a closed subspace in Δφ(A)(X) for each A ∈ [X]≤ω, then X is proximal.

Proof. Given f ∈ Cp(X) and n ∈ ω consider the set

U(f, n) = {〈x, y〉 ∈ X2 : |f(x) − f(y)| < 1/2n},

and note that U(f, n) ∈ UΔ. For each A ∈ [X]≤ω let {fA,n}n∈ω be an enumeration of φ(A). Let us play the 
proximal game on X.

• Inning 0. Make player 1 choose U0 = X.
• Inning n. Assume that before this inning, player 2 has chosen a finite sequence {xi}i<n ∈ X. For each 

i < n let Ai = {xj}j≤i. Consider the set Un =
⋂

i<n

⋂
j<n U(fAi,j , n) ∈ UΔ and make player 1 choose 

Un in this inning.

We shall prove that this defines a winning strategy for player 1. Once the play finishes, consider the sequence 
A = {xn}n∈ω generated by player 2. Assume that 

⋂
n∈ω Un[xn] = ∅ is not the case and fix a point x ∈

⋂
n∈ω Un[xn]. Given f ∈ φ(A) = φ(

⋃
n∈ω An) =

⋃
n∈ω φ(An), there exists i ∈ ω such that f ∈ φ(Ai) =

{fAi,j}j∈ω; we then can choose j ∈ ω such that f = fAi,j . For each n > max{i, j} the election of Un

implies that 〈xn, x〉 ∈ Un ⊂ U(f, n), and so |f(xn) − f(x)| < 1/2n. It follows that {f(xn)}n∈ω converges 
to f(x). Since f ∈ φ(A) is arbitrary, the sequence {Δφ(A)(xn)}n∈ω converges to Δφ(A)(x). We know that 
Δφ(A) embeds cl(A) as a closed subspace in Δφ(A)(X), therefore the sequence {xn}n∈ω must converge to 
(Δφ(A) �cl(A))−1(x). �

The following result is an immediate consequence of Theorems 3.2 and 3.4.

Corollary 3.5. Every countably compact space admitting a full r-skeleton is proximal.
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4. Spaces admitting a full c-skeleton

Now we will characterize full c-skeletons by an ω-monotone function weaker than the function used to 
characterize full r-skeletons in countably compact spaces. This clarifies the relation between full r-skeletons 
and c-skeletons.

Definition 4.1. Given a space X let {(Fs, Bs)}s∈Γ be a family such that Fs is a closed subset of X and Bs

is a countable collection of open subsets of X for each s ∈ Γ. We say that {(Fs, Bs)}s∈Γ is a full c-skeleton
in X if:

(i) for each s ∈ Γ the collection Bs is a base for a topology on X, and for the space Xs = X endowed 
with this topology there exist a Tychonoff space Zs and a continuous function gs : Xs → Zs such that 
gs �Fs

is injective;
(ii) if s, t ∈ Γ and s ≤ t, then Fs ⊂ Ft;
(iii) the assignment s �→ Bs is ω-monotone; and
(iv) X =

⋃
s∈Γ Fs.

Theorem 4.2. A space X admits a full c-skeleton if and only if there exist an ω-monotone function σ :
[X]≤ω → [Cp(X)]≤ω such that σ(A) separates the points of cl(A) for each A ∈ [X]≤ω.

Proof. Assume that {(Fs, Bs)}s∈Γ is a full c-skeleton in X and let B =
⋃

s∈Γ Bs. For each B, C ∈ B if there 
exists f ∈ Cp(X) such that f(B) ∩ f(C) = ∅, then fix fB,C ∈ Cp(X) satisfying this property; otherwise 
let fB,C ≡ 0. Define μ : Γ → [Cp(X)]≤ω by μ(s) = {fB,C : B, C ∈ Bs} for each s ∈ Γ. Observe that μ is 
an ω-monotone function. For each x ∈ X =

⋃
s∈Γ Fs we can fix sx ∈ Γ such that x ∈ Fsx . By applying 

Lemma 2.4 we can find an ω-monotone function γ : [X]≤ω → Γ such that γ({x}) ≥ sx for each x ∈ X. 
Define σ : [X]≤ω → [Cp(X)]≤ω by σ(A) =

⋃
G∈[A]<ω μ(γ(G)) for each A ∈ [X]≤ω. Note that this function 

also is ω-monotone. We will verify that σ satisfies the conditions of the theorem, i.e., given A ∈ [X]≤ω, 
we shall prove that σ(A) separates the points of cl(A). Choose x, y ∈ cl(A). For each z ∈ A we have that 
sz ≤ γ({z}) ≤ γ(A) which implies z ∈ Fsz ⊂ Fγ(A). It follows that A ⊂ Fγ(A) and, since Fs is closed in X, we 
deduce that x, y ∈ cl(A) ⊂ Fγ(A). By definition of a full c-skeleton there exists a Tychonoff space Zγ(A) and a 
continuous function gγ(A) : Xγ(A) → Zγ(A) such that gγ(A) �Fγ(A) is injective, and thus gγ(A)(x) �= gγ(A)(y). 
Fix h ∈ Cp(Zγ(A)) such that h(gγ(A)(x)) �= h(gγ(A)(y)). Let f = h ◦ gγ(A) ∈ Cp(Xγ(A)); since Bγ(A) is a 
base for Xγ(A) and f(x) �= f(y), we can find neighborhoods B, C ∈ Bγ(A) ⊂ B of x and y, respectively, 
such that f(B) ∩ f(C) = ∅. Note that a function fB,C with this property has already been fixed. Since γ
and the assignment s �→ Bs are ω-monotone, we have that Bγ(A) =

⋃
G∈[A]<ω Bγ(G), and so we can choose 

G ∈ [A]<ω such that B, C ∈ Bγ(G). It follows that fB,C ∈ μ(γ(G)) ⊂ σ(A) and fB,C(x) �= fB,C(y). This 
shows that σ(A) separates the points of cl(A).

Now, suppose that there exist an ω-monotone function σ : [X]≤ω → [Cp(X)]≤ω such that σ(A) separates 
the points of cl(A) for each A ∈ [X]≤ω. Let BR be a countable base for R and for each B ∈ [Cp(X)]≤ω

let UB the family of all sets of the form 
⋂

f∈G f−1(Uf ), where G ∈ [B]<ω is nonempty and Uf ∈ BR for 
each f ∈ G. Observe that the assignment B �→ UB is ω-monotone. Let Γ = [X]≤ω and for each s ∈ Γ let 
Fs = cl(s) and Bs = Uσ(s). We will prove that {(Fs, Bs)}s∈Γ is a full c-skeleton in X.

(i) For each s ∈ Γ, the family Bs is precisely the canonical base for the weak topology on X generated by 
the function gs = Δσ(s) : X → Rσ(s), which by the hypothesis separates the points of Fs.

(ii) If s, t ∈ Γ and s ≤ t, then Fs = cl(s) ⊂ cl(t) ⊂ Ft.
(iii) It is clear the assignment s �→ Bs is ω-monotone.
(iv) X =

⋃
s ⊂

⋃
Fs ⊂ X.
s∈Γ s∈Γ
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This finishes the proof. �
The following result solves Question 5.8 from [5].

Theorem 4.3. A countably compact space X admits a full c-skeleton if and only if admits a full r-skeleton.

Proof. Assume that X admits a full c-skeleton. By Theorem 4.2 there exists an ω-monotone function 
σ : [X]≤ω → [Cp(X)]≤ω such that Δσ(A) �cl(A) is injective for each A ∈ [X]≤ω. Given A ∈ [X]≤ω, the space 
cl(A) is countably compact and since every injective continuous function from a countably compact space 
onto a Fréchet-Urysohn space is a homeomorphism [18, Problem 140], then Δσ(A) �cl(A) is an embedding. 
Since Δσ(A)(cl(A)) is a metrizable countably compact space, it is compact and hence closed in Δσ(A)(X). 
Theorem 3.2 implies that X admits a full r-skeleton.

For the other implication, assume that X admits a full r-skeleton. By Theorem 3.2 there exists an ω-
monotone function φ : [X]≤ω → [Cp(X)]≤ω such that Δφ(A) embeds cl(A) as a closed subspace in Δφ(A)(X)
for each A ∈ [X]≤ω. In particular, φ(A) separates the points of cl(A), so by Theorem 4.2 the space X admits 
a full c-skeleton. �

In the following results we will use the characterization of c-skeletons from Theorem 4.2 to show that the 
class of spaces admitting full c-skeletons is closed under arbitrary subspaces, arbitrary disjoint topological 
sums, and Σ-products. The following result is stated in [11] without proof.

Theorem 4.4. If X admits a full c-skeleton, then any subspace of X admits a full c-skeleton.

Proof. Let Y be a subspace of X. We will prove that the natural restriction of a full c-skeleton in X is a full c-
skeleton in Y . Since X admits a full c-skeleton, there exist an ω-monotone function σX : [X]≤ω → [Cp(X)]≤ω

such that ΔσX(A) �clX(A) is injective for each A ∈ [X]≤ω. Consider the function σY : [Y ]≤ω → [Cp(Y )]≤ω

defined as σY (A) = πY (σX(A)) for each A ∈ [Cp(Y )]≤ω. It is clear that this function is ω-monotone. To 
verify that the function σY witnesses that Y admits a full c-skeleton fix A ∈ [Y ]≤ω, then A ∈ [X]≤ω

and, since σX(A) separates the points of clX(A), the function ΔσX(A) �clX(A) is injective. In particular 
ΔσX(A) �clY (A) is injective. The equality ΔσY (A) = ΔσX(A) �Y implies that ΔσY (A) �clY (A)= ΔσY (A) �clY (A)
is also injective. �
Theorem 4.5. If {Xα}α<κ is a family of spaces admitting a full c-skeleton, then the disjoint topological sum 
⊕

α<κ Xα admits full c-skeleton.

Proof. Let X =
⊕

α<κ Xα and choose α < κ. Since Xα admits a full c-skeleton, there exists an ω-monotone 
function σα : [Xα]≤ω → [Cp(Xα)]≤ω such that σα(Aα) separates the points of clXα

(Aα) for each Aα ∈
[Xα]≤ω. We can assume that σα(Aα) is nonempty for each Aα ∈ [Cp(Xα)]≤ω. Given A ∈ [X]≤ω set 
Aα = A ∩ Xα and define γ : [X]≤ω → [κ]≤ω by γ(A) = {α ∈ κ : Aα �= ∅}; note that this function 
is ω-monotone. Fix an homeomorphism h : R → (0, 1) and choose α < κ. For each fα ∈ Cp(Xα) let 
f̂α = (h ◦fα) ∪0α : X → R, where 0α is the function identically zero with domain X \Xα. Observe that the 
function σ̂α : [X]≤ω → [Cp(X)]≤ω defined as σ̂α = {f̂α : fα ∈ σα(Aα)} for each A ∈ [X]≤ω is ω-monotone. 
Finally consider the ω-monotone function σ : [X]≤ω → [Cp(X)]≤ω defined as σ(A) =

⋃
α∈γ(A) σ̂α(Aα) for 

each A ∈ [Xα]≤ω. We will prove that the function σ witnesses that X admits a full c-skeleton. For a given 
A ∈ [Cp(X)]≤ω, in order to verify that σ(A) separates the points of cl(A), choose x, y ∈ cl(A) and pick 
α, β < κ such that x ∈ Xα and y ∈ Xβ . Observe that x ∈ clXα

(Aα), y ∈ clXβ
(Aβ) and α, β ∈ γ(A). If 

α = β, then we can apply the fact that σα(Aα) separates the points of clXα
(Aα) to find fα ∈ σα(Aα) such 

that fα(x) �= fα(y). It follows that f̂α ∈ σ(A) and f̂α(x) = h(fα(x)) �= h(fα(y)) = f̂α(y). If α �= β, then 
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for any fα ∈ σα(Aα) we have that f̂α ∈ σ(A) and f̂α(x) = h(fα(x)) �= 0 = f̂α(y). This shows that σ(A)
separates the points of cl(A). �
Theorem 4.6. Every Σ-product of a family of spaces admitting a full c-skeleton admits a full c-skeleton.

Proof. Let {Xα}α<κ be a family of spaces admitting a full c-skeleton and X =
∏

α<κ Xα. Fix a point x ∈ X

and consider the Σ-product

Y = {y ∈ X : |{α ∈ κ : yα �= xα}| ≤ ω}

of the family {Xα}α<κ with center at the point x.
For each α < κ the space Xα admits a full c-skeleton, so there exists an ω-monotone function σα :

[Xα]≤ω → [Cp(Xα)]≤ω such that σα(Aα) separates the points of clXα
(Aα) for every Aα ∈ [Xα]≤ω. For each 

A ∈ [Y ]≤ω and α < κ let Aα = pα(A), where pα : X → Xα is the natural projection. Given S ∈ [κ]≤ω

let YS = (
∏

α∈S Xα) × {pκ\S(x)} ⊂ Y . For each y ∈ Y consider the set Sy = {α < κ : yα �= xα}; define 
γ : [Y ]≤ω → [κ]≤ω by γ(A) =

⋃
y∈A Sy for each A ∈ [Y ]≤ω and observe that this function is ω-monotone. 

Now consider the ω-monotone function σ : [Y ]≤ω → [Cp(Y )]≤ω defined by σ(A) =
⋃

α∈γ(A) q
∗
α(σα(Aα)) for 

each A ∈ [Y ]≤ω; where qα = pα �Y for each α < κ. To see that this function witnesses that Y admits a full 
c-skeleton, given A ∈ [Y ]≤ω, we shall prove that σ(A) separates the points of cl(A). Choose two distinct 
points y, z ∈ cl(A). Since cl(A) ⊂ Yγ(A), we can find α ∈ γ(A) such that yα �= xα. The family σα(Aα)
separates the points of clXα

(Aα), so we can find fα ∈ σα(Aα) such that fα(xα) �= fα(yα). It follows that 
fα ◦qα = q∗α(fα) ∈ σ(A) and fα ◦qα(x) �= fα ◦qα(y). This shows that σ(A) separates the points of cl(A). �

The following equivalences are known from the literature; we will give a proof using the results proved 
until now and the fact that proximal compact spaces are Corson.

Corollary 4.7. For X compact, the following conditions are equivalent:

(i) The space X is Corson.
(ii) The space X admits a full c-skeleton.
(iii) The space X admits a full r-skeleton.
(iv) The space X is proximal.

Proof. Since the real line admits a full c-skeleton, Theorems 4.6 and 4.4 imply that every Corson compact 
admits a full c-skeleton. Every compact space admitting a full c-skeleton admits a full r-skeleton because of 
Theorem 4.3. A compact space admitting a full r-skeleton is proximal because of Corollary 3.5. Finally, by 
[7, Corollary 3.4] every proximal compact space is Corson.

In relation with the previous result and Theorems 4.3 and 3.4, the following question arises naturally.

Question 4.8. Is there a countably compact absolutely proximal space which does not admit a full r-skeleton?

5. Spaces admitting a full q-skeleton

Now we will provide a characterization of full q-skeletons similar to the obtained for full r-skeletons and 
full c-skeletons, trough a ω-monotone function.

Definition 5.1. Given a space X, consider a family {(qs, Ds)}s∈Γ, where qs : X → Xs is an R-quotient 
function and Ds is a countable subset of X for each s ∈ Γ. We say that {(qs, Ds)}s∈Γ is a full q-skeleton in 
X if:
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(i) the set qs(Ds) is dense in Xs;
(ii) if s, t ∈ Γ and s ≤ t, then there exists a continuous onto map pt,s : Xt → Xs such that qs = pt,s ◦ qt;
(iii) the assignment s �→ Ds is ω-monotone; and
(iv) Cp(X) =

⋃
s∈Γ q∗s (Cp(Xs)).

Theorem 5.2. A space X admits a full q-skeleton if and only if there exist an ω-monotone function δ :
[Cp(X)]≤ω → [X]≤ω such that Δcl(A)(δ(A)) is a dense subspace of Δcl(A)(X) for each A ∈ [Cp(X)]≤ω.

Proof. Assume that {(qs, Ds) : s ∈ Γ} is full q-skeleton in X. Since Cp(X) =
⋃

s∈Γ q∗s (Cp(Xs)), for each 
f ∈ Cp(X) we can fix sf ∈ Γ such that f ∈ q∗sf (Cp(Xsf )). By applying Lemma 2.4 we can find an 
ω-monotone function γ : [Cp(X)]≤ω → Γ such that γ({f}) ≥ sf for each f ∈ Cp(X). Consider the ω-
monotone function δ : [Cp(X)]≤ω → [X]≤ω defined as δ(A) = Dγ(A) for each A ∈ [Cp(X)]≤ω. In order to 
verify the conditions in the theorem, choose A ∈ [Cp(X)]≤ω. Observe that if f ∈ A, then sf ≤ γ({f}) ≤ γ(A)
and so f ∈ q∗sf (Cp(Xsf )) = (pγ(A),sf ◦ qγ(A))∗(Cp(Xsf )) = q∗γ(A)(p∗γ(A),sf (Cp(Xsf ))) ⊂ q∗γ(A)(Cp(Xγ(A))). 
It follows that A ⊂ q∗γ(A)(Cp(Xγ(A))). Since qγ(A) is an R-quotient function, by [18, Problem 163 (iii)] the 
set q∗γ(A)(Cp(Xγ(A))) is closed in Cp(X) and so cl(A) ⊂ q∗γ(A)(Cp(Xγ(A))). Then for each f ∈ cl(A) we can 
choose gf ∈ Cp(Xγ(A)) such that f = q∗γ(A)(gf ) = gf ◦qγ(A). Let B = {gf}f∈cl(A) ⊂ Cp(Xγ(A)) and note that 
Δcl(A) = ΔB ◦ qγ(A). By hypothesis qγ(A)(Dγ(A)) = qγ(A)(δ(A)) is dense in Xγ(A) and hence in qγ(A)(X), 
thus the continuity of ΔB implies that ΔB(qγ(A)(δ(A))) is dense in ΔB(qγ(A)(X)). Therefore Δcl(A)(δ(A))
is dense in Δcl(A)(X).

Now, assume that δ : [Cp(X)]≤ω → [X]≤ω is an ω-monotone function such that Δcl(A)(δ(A)) is a dense 
subspace of Δcl(A)(X) for each A ∈ [Cp(X)]≤ω. We will construct an ω-monotone function φ : [Cp(X)]≤ω →
[Cp(X)]≤ω such that Δcl(φ(A)) is an R-quotient function for each A ∈ [Cp(X)]≤ω. Choose F ∈ [Cp(X)]<ω

and let XF = ΔF (X). Since d(Cp(XF )) ≤ nw(Cp(XF )) = nw(XF ) ≤ ω, and Δ∗
F : Cp(XF ) → Cp(X) is 

an embedding, we can fix a countable dense subset F ′ of Δ∗
F (Cp(XF )). Consider the ω-monotone function 

ϕ : [Cp(X)]≤ω → [Cp(X)]≤ω defined as ϕ(A) =
⋃
{F ′ : F ∈ [A]<ω} for each A ∈ [Cp(X)]≤ω. Given 

A ∈ [Cp(X)]≤ω it follows from Lemma 2.6 that ϕ(A) is a dense subset of Δ∗
A(Cp(XA)). Now, we can 

apply Lemma 2.3 to find an ω-monotone function φ : [Cp(X)]≤ω → [Cp(X)]≤ω such that A ⊂ φ(A) and 
ϕ(φ(A)) ⊂ φ(A) for each A ∈ [Cp(X)]≤ω. Given A ∈ [Cp(X)]≤ω, we know that ϕ(φ(A)) is a dense subset 
of Δ∗

φ(A)(Cp(Xφ(A))). Since ϕ(φ(A)) ⊂ φ(A), the set φ(A) also is a dense subset of Δ∗
φ(A)(Cp(Xφ(A))). We 

then can apply [11, Lemma 4.6] to see that Δcl(φ(A)) is an R-quotient function. Now let Γ = [Cp(X)]≤ω, 
and for each s ∈ Γ consider the R-quotient function qs = Δcl(φ(s)) : X → Δcl(φ(s))(X) and the countable 
set Ds = δ(φ(s)) ⊂ X. We will verify that {(qs, Ds)}s∈Γ is a full q-skeleton in X.

(i) By hypothesis qs(Ds) = Δcl(φ(s))(δ(φ(s))) is dense in Xs = Δcl(φ(s))(X).
(ii) If s, t ∈ Γ and s ≤ t, then the natural projection pt,s : Δcl(φ(t))(X) → Δcl(φ(s))(X) is a continuous onto 

map such that qs = pt,s ◦ qt.
(iii) The assignment s �→ Ds, being the composition of two ω-monotone functions, is ω-monotone.
(iv) Cp(X) ⊂

⋃
s∈Γ s ⊂

⋃
s∈Γ φ(s) ⊂

⋃
s∈Γ q∗s (Cp(Xs)) ⊂ Cp(X).

This finishes the proof of the theorem. �
The following result states the most important property of full q-skeletons, which can be obtained as an 

immediate consequence of Theorems 1.3, 4.4 and Corollary 4.7.

Theorem 5.3 ([11]). If X admits a full q-skeleton, then every compact subspace of Cp(X) is Corson.

It is clear that every separable space admits a full q-skeleton. As was stated in Theorem 1.5 (ii), this also 
happens to Lindelöf Σ-spaces. It was proved in [17, example 3.15] that there exists a Lindelöf P -space X
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such that Cp(X) contains a compact subspace which is not Corson. So, Theorem 5.3 implies that Lindelöf 
P -spaces need not admit full q-skeletons.

Now we will use the characterization obtained in Theorem 5.2 to show that the class of spaces admitting 
a full q-skeleton is closed under extensions, continuous images, and countable unions. We will also give an 
example to show that full q-skeletons are not preserved under the product of two spaces.

Theorem 5.4. If Y is dense in X and Y admits a full q-skeleton, then X admits a full q-skeleton.

Proof. Since Y admits a full q-skeleton, there exists an ω-monotone function δY : [Cp(Y )]≤ω → [Y ]≤ω such 
that Δcl(A)(δY (A)) is a dense subspace of Δcl(A)(Y ) for each A ∈ [Cp(Y )]≤ω. Define δX : [Cp(X)]≤ω →
[X]≤ω as δX(B) = δY (πY (B)) for each B ∈ [Cp(X)]≤ω and observe that this function is ω-monotone. We 
shall prove that this function witnesses that X admits a full q-skeleton. Fix B ∈ [Cp(X)]≤ω; the conti-
nuity of πY : Cp(X) → Cp(Y ) implies that πY (cl(B)) ⊂ cl(πY (B)). By hypothesis Δcl(πY (B))(δX(B)) =
Δcl(πY (B))(δY (πY (B))) is dense in Δcl(πY (B))(Y ). Since πY (cl(B)) ⊂ cl(πY (B)), the function ΔπY (cl(B))
factorizes trough Δcl(πY (B)), and so ΔπY (cl(B))(δX(B)) is dense in ΔπY (cl(B))(Y ). From the equality 
ΔπY (cl(B)) = Δcl(B) �Y we deduce that Δcl(B)(δX(B)) is dense in Δcl(B)(Y ). Finally the density of Y
in X implies that Δcl(B)(Y ) is dense in Δcl(B)(X) and therefore Δcl(B)(δX(B)) is dense in Δcl(B)(X). �

The following result solves Question 4.10 from [11].

Theorem 5.5. If X admits a full q-skeleton and Y is a continuous image of X, then Y admits a full q-
skeleton.

Proof. Let f : X → Y be a continuous onto function. Since X admits a full q-skeleton, there exists an 
ω-monotone function δX : [Cp(X)]≤ω → [X]≤ω such that Δcl(A)(δX(A)) is a dense subspace of Δcl(A)(X)
for each A ∈ [Cp(X)]≤ω. Define δY : [Cp(Y )]≤ω → [Y ]≤ω as δY (B) = f(δX(f∗(B))) for each B ∈ [Cp(Y )]≤ω

and note that this function is ω-monotone. We will verify that this function witnesses that Y admits a 
full q-skeleton. Fix B ∈ [Cp(Y )]≤ω, then the continuity of f∗ : Cp(Y ) → Cp(X) implies that f∗(cl(B)) ⊂
cl(f∗(B)). By hypothesis Δcl(f∗(B))(δX(f∗(B))) is dense in Δcl(f∗(B))(X). Since f∗(cl(B)) ⊂ cl(f∗(B)), 
the function Δf∗(cl(B)) factorizes trough Δcl(f∗(B)) and so Δf∗(cl(B))(δX(f∗(B))) is dense in Δf∗(cl(B))(X). 
From the equality Δf∗(cl(B)) = Δcl(B) ◦ f we deduce that Δf∗(cl(B))(δX(f∗(B))) = Δcl(B)(f(δX(f∗(B)))) =
Δcl(B)(δY (B)) and Δf∗(cl(B))(X) = Δcl(B)(f(X)) = Δcl(B)(Y ). Therefore Δcl(B)(δY (B)) is dense in 
Δcl(B)(Y ). �

The following result shows a case when full q-skeletons are inherited by a subspace; however we do not 
know a more satisfactory result in this direction.

Corollary 5.6. If X admits a full q-skeleton and Y is open and closed in X, then Y admits a full q-skeleton.

Let us consider the following construction. If {Xα}α<κ is a family of spaces, consider the disjoint topo-
logical sum 

⊕
α<κ Xα and the space 

⊕
α<κ Xα ∪{∞} obtained from the sum by adding the point ∞ which 

we can assume that does not belong to 
⊕

α<κ Xα and has for a basis the family of all sets of the form 
US = X \

⊕
α∈S Xα, where S ∈ [κ]≤ω.

Theorem 5.7. If {Xα}α<κ is a family of spaces admitting a full q-skeleton, then the space X =
⊕

α<κ Xα ∪
{∞} admits a full q-skeleton.

Proof. Given α < κ, since Xα admits a full q-skeleton, there exists an ω-monotone function δα :
[Cp(Xα)]≤ω → [Xα]≤ω such that Δcl(Aα)(δα(Aα)) is a dense subspace of Δcl(Aα)(X) for each Aα ∈
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[Cp(Xα)]≤ω. Observe that for every f ∈ Cp(X) there exists a set Sf ∈ [κ]≤ω such that f is constant 
on USf

. Consider the ω-monotone function σ : [Cp(X)]≤ω → [κ]≤ω defined as σ(A) =
⋃

f∈A Sf for each 
A ∈ [Cp(X)]≤ω. For every A ∈ [Cp(X)]≤ω let Aα = πXα

(A). Now consider the ω-monotone function 
δ : [Cp(X)]≤ω → [X]≤ω defined as δ(A) = {∞} ∪

⋃
α∈σ(A) δα(Aα) for each A ∈ [Cp(X)]≤ω. We will ver-

ify that this function witnesses that X admits a full q-skeleton. Fix a set A ∈ [Cp(X)]≤ω. Observe that 
each function f ∈ A is constant on Uσ(A) and, as a consequence, every function g ∈ cl(A) is constant on 
Uσ(A). So Δcl(A) is constant on Uσ(A). Since ∞ ∈ δ(A) ∩ Uσ(A), we conclude that Δcl(A)(δ(A)) is dense 
in Δcl(A)(Uσ(A)). Now fix α ∈ σ(A). We know that Δcl(Aα)(δα(Aα)) is a dense subspace of Δcl(Aα)(Xα). 
It follows from continuity that πXα

(cl(A)) ⊂ cl(Aα), and so ΔπXα (cl(A)) factorizes trough Δcl(Aα). Then 
ΔπXα (cl(A))(δα(Aα)) is a dense subspace of ΔπXα (cl(A))(Xα). The equality ΔπXα (cl(A)) = Δcl(A) �Xα

implies 
that Δcl(A)(δα(Aα)) is a dense subspace of Δcl(A)(Xα). Finally, from the above and the definition of δ(A), 
we conclude that Δcl(A)(δ(A)) is a dense subspace of Δcl(A)(Uσ(A)) ∪

⋃
α∈σ(A) Δcl(A)(Xα) = Δcl(A)(X). �

Corollary 5.8. If X =
⋃

n∈ω Xn and each Xn admits a full q-skeleton, then X admits a full q-skeleton.

Proof. By Theorem 5.7 the space 
⊕

n∈ω Xn ∪ {∞} admits a full q-skeleton. Since the disjoint topological 
sum 

⊕
n∈ω Xn is closed and open in 

⊕
n∈ω Xn ∪ {∞}, Corollary 5.6 implies that 

⊕
n∈ω Xn admits a 

full q-skeleton. The space X, being a continuous image of 
⊕

n∈ω Xn, admits a full q-skeleton because of 
Theorem 5.5. �
Proposition 5.9. If X contains an uncountable open and closed discrete subspace, then X does not admit a 
full q-skeleton.

Proof. By Corollary 5.6 it is sufficient to prove the case in which X is itself discrete and has cardinality 
ω1. In this case Cp(X) = RX contains a countable dense subspace A. It follows that cl(A) = RX and so 
the weak topology generated by cl(A) in X is the discrete topology. Since the discrete topology in X is 
not separable, there is no set D ∈ [X]≤ω such that Δcl(A)(D) is dense in Δcl(A)(X). Therefore X does not 
admit a full q-skeleton. �

There are pseudocompact spaces admitting uncountable closed discrete subspaces; since by Theorem 1.5
(ii) every pseudocompact space admits a full q-skeleton, Proposition 5.9 implies that full q-skeletons are 
not inherited by closed subspaces. Likewise, the following example shows that the product of two arbitrary 
spaces admitting a full q-skeleton not necessarily admits a full q-skeleton.

Example 5.10. There exists a space X admitting a full q-skeleton whose square does not admit a full q-
skeleton.

Proof. Consider the ordinal c with the discrete topology. Let {B1, B2} be a partition of c in sets of cardinality 
c and let b : B1 → B2 be a bijection. Put f = b ∪ b−1 : c → c and let g : βc → βc be the continuous 
extension of f . Note that f = f−1 and g = g−1. If b̂ : cl(B1) → cl(B2) is the continuous extension of 
b, then g = b̂ ∪ b̂−1, and this shows that g has no fixed point. Choose two enumerations {Aα}α∈B1 and 
{Aα}α∈B2 of all the countable infinite subsets of c, where each element appears c-many times. Define a 
sequence {xα}α<c ⊂ βc recursively as follows: assume that we have defined {xβ}β<α for some α < c; 
since every infinite closed subset of βc has cardinality at least 2c [12, Corollary 9.12], we can fix a point 
xα ∈ βc \ (c ∪ {g(xβ)}β<α ∪ {g−1(xβ)}β<α), such that xα ∈ cl(Aα) whenever α ∈ B1, and satisfying that 
xα ∈ cl({xβ}β∈Aα

) whenever α ∈ B2 and Aα ⊂ α. Once the construction have finished take X = c ∪{xα}α<c. 
We will verify that X satisfies the required properties.

We claim that X is countably compact. Indeed, choose a countable infinite subset A of X. To show that 
A contains an accumulation point in X, it is sufficient to consider the cases A ⊂ c and A ⊂ {xα}α<c. If 
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A ⊂ c then A = Aα for some α < c and so in step α the point xα ∈ X has been chosen as an accumulation 
point of A. If A ⊂ {xα}α<c then A = {xβ}β∈Aα

for c-many ordinals α < c and so we can fix α < c such that 
A = {xβ}β∈Aα

and Aα ⊂ α; it follows that in step α the point xα ∈ X has been chosen as an accumulation 
point of A. This shows that X is countably compact and in particular pseudocompact. Then [5, Corollary 
4.8] implies that X admits a full q-skeleton. On the other hand, observe that F = {(α, f(α))}α<c, the graph 
of f , is discrete, open and closed in X × X. Indeed, if G = {(x, g(x))}x∈βc is the graph of g, then the 
continuity of g implies that G is closed in βc × βc. It follows from the fact that g has no fixed point, the 
equality g = g−1, and the construction of X, that F = G ∩ (X×X). Hence F is closed in X×X. Moreover, 
the set F is discrete and open in X × X since the contention F ⊂ c × c implies that all points of f are 
isolated. Finally, since F is discrete, open and closed in X ×X, we can apply Proposition 5.9 to see that 
X ×X admits no full q-skeleton. �

Observe that the technique used in the above example can not be used in βω since the product of 
separable spaces is separable and every separable space admits a full q-skeleton.

6. Product of spaces admitting full q-skeletons

We will show now that under some additional conditions the product of two spaces admitting a full 
q-skeleton also admits a full q-skeleton; when the corresponding product is Lindelöf. Let us introduce some 
notation.

Given two spaces X and Y , and given f ∈ Cp(X × Y ), for each x ∈ X we will consider the continuous 
function fx ∈ Cp(Y ) defined as fx(y) = f(x, y) for each y ∈ Y , and for each y ∈ Y we will consider the 
continuous function fy ∈ Cp(X) defined as fy(x) = f(x, y) for each x ∈ X.

Lemma 6.1. If X × Y is Lindelöf and f ∈ Cp(X × Y ), then there exists a countable set D ⊂ X such that 
{fx}x∈X ⊂ cl({fx}x∈D).

Proof. For each n ∈ ω let Un be a cover of R consisting of open sets with diameter less that 1/2n. Let Vn

be a cover of X × Y consisting of nonempty basic open sets which refines f−1(Un). Since the space X × Y

is Lindelöf, there exists a countable subcover Bn of Vn. Observe that f(Bn) refines Un and so all elements 
of f(Bn) have diameter less that 1/2n. Let pX : X × Y → X be the projection onto the first coordinate 
and let Fn be the family of all nonempty finite intersections of members of pX(Bn). Choose a countable set 
Dn ⊂ X which intersects each member of Fn and let D =

⋃
n∈ω Dn. Given an arbitrary point x0 ∈ X, we 

shall prove that fx0 ∈ cl({fx}x∈D). Consider an arbitrary basic open neighborhood

U = {g ∈ Cp(Y ) : ∀(y ∈ F )(|fx0(y) − g(y)| < 1/2n)}

of fx0 , where F ⊂ Y is a nonempty finite set and n ∈ ω. For each y ∈ F , since Bn is a cover of X × Y , 
we can choose By ∈ Bn such that 〈x0, y〉 ∈ By. Note that x0 ∈

⋂
y∈F pX(By) and this implies that 

⋂
y∈F pX(By) ∈ Fn. By construction there exists a point x ∈ Dn ∩

⋂
y∈F pX(By); it is clear that x ∈ D. 

Given y ∈ F , note that 〈x0, y〉, 〈x, y〉 ∈ By and, since f(By) has diameter less that 1/2n, we have that 
|fx0(y) − fx(y)| = |f(〈x0, y〉) − f(〈x, y〉)| < 1/2n. It follows that fx ∈ U . Since x ∈ D and U is arbitrary, we 
conclude that fx0 ∈ cl({fx}x∈D). �
Theorem 6.2. Assume that both spaces X and Y admit a full q-skeleton; if X × Y is Lindelöf, then X × Y

admits a full q-skeleton.

Proof. Let Z = X × Y . Since both spaces X and Y admit a full q-skeleton, there exists an ω-monotone 
function δX : [Cp(X)]≤ω → [X]≤ω such that for each B ∈ [Cp(X)]≤ω the set δX(B) is a dense subspace 
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of X endowed with the weak topology generated by cl(B), and also there exists an ω-monotone function 
δY : [Cp(Y )]≤ω → [Y ]≤ω such that δY (C) is a dense subspace of Y endowed with the weak topology 
generated by cl(C) for each C ∈ [Cp(Y )]≤ω. Given f ∈ Cp(Z) by Lemma 6.1 there exist a set Df ∈
[X]≤ω such that {fx}x∈X ⊂ cl({fx}x∈Df

) and a set Ef ∈ [Y ]≤ω such that {fy}y∈X ⊂ cl({fy}y∈Ef
). 

Define the functions σX : [Cp(Z)]≤ω → [X]≤ω and σY : [Cp(Z)]≤ω → [Y ]≤ω as σX(A) =
⋃

f∈A Df and 
σY (A) =

⋃
f∈A Ef , for each A ∈ [Cp(Z)]≤ω, and note that these functions are ω-monotone. Consider the 

functions φX : [Cp(Z)]≤ω → [Cp(X)]≤ω and φY : [Cp(Z)]≤ω → [Cp(Y )]≤ω defined as φX(A) = {fy : y ∈
σY (A) and f ∈ A} and φY (A) = {fx : x ∈ σX(A) and f ∈ A} for each A ∈ [X]≤ω. Note that φX and φY

also are ω-monotone functions. Finally consider the ω-monotone function δZ : [Cp(Z)]≤ω → [Z]≤ω given by 
δZ(A) = δX(φX(A)) × δY (φY (A)) for each A ∈ [Cp(Z)]≤ω. We shall prove that this function witnesses that 
Z admits a full q-skeleton.

Choose A ∈ [Cp(Z)]≤ω. We will verify that δZ(A) is a dense subspace of Z endowed with the 
weak topology generated by cl(A). Fix a nonempty set U =

⋂
f∈F f−1(Uf ) of Z with the weak topol-

ogy generated by cl(A), where F ⊂ cl(A) is a nonempty finite set and Uf is open in R for each 
f ∈ F . Choose a point z0 = 〈x0, y0〉 ∈ U . Identifying X with the subspace X × {y0} of Z and us-
ing the fact that F ⊂ cl(A), we can see that the continuity of the restriction function implies that 
{fy0}f∈F ⊂ cl({fy0}f∈A). Note that {fy0}f∈A ⊂

⋃
f∈A cl({fy}y∈Ef

) ⊂ cl(
⋃

f∈A{fy}y∈Ef
)) ⊂ cl(φX(A))

which implies {fy0}f∈F ⊂ cl({fy0}f∈A) ⊂ cl(φX(A)). It follows that UX =
⋂

f∈F f−1
y0

(Uf ) is an open subset 
of X in the weak topology generated by cl(φX(A)). Note that UX is nonempty since x0 ∈ UX . We know 
that δX(φX(A)) is a dense subspace of X in the weak topology generated by cl(φX(A)), so we can fix a 
point x1 ∈ δX(φX(A)) ∩ UX . Observe that 〈x1, y0〉 ∈ U . Now we will apply a similar argument to find 
y1 ∈ Y such that 〈x1, y1〉 ∈ δZ(A) ∩ U . Since F ⊂ cl(A), and identifying Y with the subspace {x1} × Y

of Z, the continuity of the restriction function implies that {fx1}f∈F ⊂ cl({fx1}f∈A). The contention 
{fx1}f∈A ⊂

⋃
f∈A cl({fx}x∈Df

) ⊂ cl(
⋃

f∈A{fx}x∈Df
)) ⊂ cl(φY (A)) implies that {fx1}f∈F ⊂ cl(φY (A)). 

Hence UY =
⋂

f∈F f−1
x1

(Uf ) is an open subset of Y in the weak topology generated by cl(φY (A)). Note that 
UY is nonempty since y0 ∈ UY . We know that δY (φY (A)) is a dense subspace of Y in the weak topology 
generated by cl(φY (A)), so we can fix a point y1 ∈ δY (φY (A)) ∩ UY . Observe that 〈x1, y1〉 ∈ δZ(A) ∩ U . 
Therefore δZ(A) is a dense subspace of Z endowed with the weak topology generated by cl(A). �

In Question 5.20 from [1] Arhangel’skii asked whether the class of all spaces X satisfying that every 
compact subspace of Cp(X) is Corson is closed under products with compact spaces. In relation with this 
question and Theorem 6.2, the following questions seem to be interesting.

Question 6.3. Is it true that if X admits a full q-skeleton and K is compact, then X × K admits a full 
q-skeleton?

Question 6.4. Let K be the class of all spaces X such that every compact subspace of Cp(X) is Corson. 
Suppose that K is a compact space and X is a Lindelöf space such that X ∈ K. Is it true that X ×K ∈ K?

The following result shows that, unlike the general case, the property of admitting a full q-skeleton is 
preserved under arbitrary products in the class of Cp-spaces.

Theorem 6.5. If {Cp(Xα)}α<κ is a family of spaces admitting a full q-skeleton, then the space 
∏

α<κ Cp(Xα)
admits a full q-skeleton.

Proof. Choose α < κ. The fact that Cp(Xα) admits a full q-skeleton implies, because of Theorem 1.3, that 
Cp(Cp(Xα)) admits a full c-skeleton. Then Theorem 4.4 implies that Xα also admits a full c-skeleton. We 
then can apply Theorem 4.5 to see that the disjoint topological sum 

⊕
α<κ Xα admits a full c-skeleton. Now, 

an application of Theorem 1.4 implies that Cp(
⊕

Xα) admits a full q-skeleton. It is well known [18, 
α<κ
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Problem 114] that the spaces Cp(
⊕

α<κ Xα) and 
∏

α<κ Cp(Xα) are homeomorphic. Therefore the product 
∏

α<κ Cp(Xα) admits a full q-skeleton. �
The above theorem suggests that in some other cases spaces admitting a full q-skeleton have a chance to 

be productive; the following theorem shows one of these cases.

Theorem 6.6. Let {Xα}α<κ be a family of spaces such that 
∏

α∈F Xα is Lindelöf and admits a full q-skeleton 
for each finite set F ⊂ κ. If Y is a σ-product in X =

∏
α<κ Xα and each f ∈ Cp(Y ) can be factorized through 

pSf
�Y for some countable set Sf ⊂ κ, then Y admits a full q-skeleton.

Proof. Fix a point x ∈ X such that

Y = {y ∈ X : |{α ∈ κ : yα �= xα}| < ω}

is the σ-product of the family {Xα}α<κ with center at the point x. Choose F ∈ [κ]<ω and let YF =
(
∏

α∈F Xα) × {pκ\F (x)} ⊂ Y . The space YF is homeomorphic to XF and hence admits a full q-skeleton, 
that is, there exists an ω-monotone function δF : [Cp(YF )]≤ω → [YF ]≤ω such that, for each B ∈ [Cp(YF )]≤ω, 
the set δF (B) is a dense subspace of YF endowed with the weak topology generated by cl(B). Consider 
the function σ : [Cp(Y )]≤ω → [κ]≤ω defined by σ(A) =

⋃
f∈A Sf for each A ∈ [Cp(Y )]≤ω and note that 

this function is ω-monotone. Now consider the ω-monotone function δ : [Cp(Y )]≤ω → [Y ]≤ω defined by 
δ(A) =

⋃
F∈[σ(A)]≤ω δF (πYF

(A)) for each A ∈ [Cp(Y )]≤ω. We will verify that this function witnesses that Y
admits a full q-skeleton.

Given A ∈ [Cp(Y )]≤ω, we shall prove that δ(A) is a dense subspace of Y in the weak topology generated 
by cl(A). Let U =

⋂
f∈G f−1(Uf ) be a nonempty basic open subset of Y in the weak topology generated 

by cl(A), that is, where G is a nonempty finite subset of cl(A) and Uf is open in R for each f ∈ G. We 
know that each function f ∈ A factorizes through pSf

�Y , thus the contention Sf ⊂ σ(A) implies that 
each function f ∈ A factorizes through pσ(A) �Y . Since the function pσ(A) �Y is open and in particular 
R-quotient, we can apply [18, Problem 163 (iii)] to see that each function f ∈ cl(A) factorizes through 
pσ(A) �Y . Fix a point y ∈ U . Since each function f ∈ cl(A) factorizes through pσ(A) �Y , we can assume that 
F = {α ∈ κ : yα �= xα} ⊂ σ(A). Hence F ∈ [σ(A)]<ω and y ∈ YF . Since πYF

(cl(A)) ⊂ cl(πYF
(A)), then 

UF = U ∩ YF =
⋂

f∈G(f �YF
)−1(Uf ) is a nonempty open subset of YF in the weak topology generated by 

cl(πYF
(A)). The set δF (πYF

(A)) is a dense subspace of YF endowed with the weak topology generated by 
cl(πYF

(A)) and so there exists a point z ∈ δF (πYF
(A)) ∩UF ⊂ δ(A) ∩U . Therefore δ(A) is a dense subspace 

of Y endowed with the weak topology generated by cl(A). �
We can apply Theorem 6.6 in combination with Theorem 5.4 to obtain the following corollary.

Corollary 6.7. If {Xn}n∈ω is a family of spaces such that 
∏

i≤n Xi admits a full q-skeleton for each n ∈ ω, 
then 

∏
n∈ω Xn admits a full q-skeleton.

It was proved in Theorem 2.19 from [1] that if Y is any subspace of the product of a family of Lindelöf Σ-
spaces which contains a σ-product of this family, then any compact subspace of Cp(Y ) is Fréchet-Urysohn 
and ω-monolithic. Since Corson compact spaces are Fréchet-Urysohn and ω-monolithic, and because of 
Theorems 5.3 and 1.5 (ii), this result admits the following generalization.

Corollary 6.8. Let {Xα}α<κ be a family of spaces such that 
∏

α∈F Xα is Lindelöf and admits a full q-skeleton 
for each finite set F ⊂ κ. Let Z be a dense subspace of 

∏
α<κ Xα containing a σ-product, then the space Z

admits a full q-skeleton.
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Proof. Let Y be a σ-product in 
∏

α<κ Xα. We can apply [18, Problem 298] and [2, Corollary 1.6.45] to 
see that each f ∈ Cp(Y ) can be factorized trough pAf

�Y for some countable set Af ⊂ κ. It follows from 
Theorem 6.6 that Y admits a full q-skeleton. Finally, we can apply Theorem 5.4 to conclude that Z admits 
a full q-skeleton. �

In particular, any product of Lindelöf Σ-spaces and any product of separable spaces admit a full q-
skeleton.
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