
Topology and its Applications 154 (2007) 2081–2088

www.elsevier.com/locate/topol

Supremum vs. maximum: λ-sets
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Abstract

We show that, relative to the existence of an inaccessible cardinal, it is consistent that there is no λ-set of maximal size and that
in the absence of inaccessible cardinals there is a λ-set of maximal size.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

K. Kuratowski introduced rarefied or λ-sets in 1933. A set X ⊆ R is a λ-set if every countable subset of X is
relatively Gδ in X. N. Lusin showed that λ-sets of cardinality ℵ1 always exist and F. Rothberger improved Lusin’s
result by showing that ZFC suffices to show that there is a λ-set of cardinality b (see Theorem 2.4).

The motivation for this paper comes from Problem 291 in [8] which asks about pseudonormal Ψ -spaces. Recall
that a space is pseudonormal if every pair of disjoint closed sets can be separated by disjoint open sets, provided at
least one of them is countable. An almost disjoint family A is a family of infinite subsets of ω (or any other countable
set) such that A ∩ B is finite for distinct A,B ∈ A. The Ψ -space Ψ (A) associated to A is ω ∪A where the points of
ω are isolated and the basic neighbourhoods of A ∈ A are of the form {A} ∪ A \ F , where F ⊆ ω is finite. The space
Ψ (A) is always a first countable, separable, locally compact Moore space. It is known that if Ψ (A) is a pseudonormal
space, then A is a λ-set as subspace of P(ω), and if there is a λ-set of cardinality κ then there is an almost disjoint
family A of cardinality κ such that Ψ (A) is a pseudonormal space (see [4, Proposition 2.2]). F.B. Jones used λ-sets to
construct a pseudonormal Moore space which served as the inspiration for nonmetrizable normal Moore spaces based
on Q-sets. For more on λ-sets consult [6,7].

Problem 291 in [8] has two parts; in the first one P. Nyikos asked: Is there a pseudonormal Ψ -space of cardinality d?
The first part of Problem 291 is equivalent to asking whether there is a λ-set of size d. A.W. Miller [7, Theorem 22]
showed that in the Cohen model (in which b = ℵ1 and d = ℵ2), any λ-set of reals has size ℵ1. Thus in the Cohen
model the answer is “no”. Of course, in a model of b = d the answer is “yes”, see Theorem 2.4.

E-mail address: fernando@matmor.unam.mx.
1 The author gratefully acknowledges partial research support from PAPIIT Grant IN106705.
0166-8641/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.topol.2006.07.016



2082 F. Hernández-Hernández / Topology and its Applications 154 (2007) 2081–2088
Problem 291 has second part where Nyikos asked: More generally, what is the maximum cardinality of a pseudo-
normal Ψ -space? This note is meant to show that the second part of Problem 291 is in general ill-posed. The results
in this paper were announced in [4]. We show that: (1) In the absence of inaccessible cardinals, there is a λ-set of
maximal cardinality and (2) assuming the existence of a strongly inaccessible cardinal it is consistent that: c is a limit
cardinal and for every κ < c there is a λ-set of size κ , yet there is no λ-set of size c. That is, the maximum cardinality
of a λ-set may not be attained.

Our terminology is mostly standard: For functions f,g ∈ ωω we write f �∗ g to mean that there is some m ∈ ω

such that f (n) � g(n) for all n � m. The bounding number in ωω, b, is the least cardinal of an �∗-unbounded family
of functions. The dominating number in ωω, d, is the least cardinal of a �∗-cofinal family of functions. The set ωω

is equipped with the product topology, that is the topology with basic open sets of the form [s] = {f ∈ ωω: s ⊆ f },
where s ∈ ω<ω. See [5] for undefined set theoretical notions.

2. The results

The first result we are presenting shows that regarding the cardinalities of λ-sets, sup = max if there are no inac-
cessible cardinals below the continuum. In other words, the maximum of the cardinalities of λ-sets is attained, this
shows that the second part of Problem 291 makes sense in the absence of inaccessible cardinals.

Theorem 2.1. If κ is a singular cardinal and there is a λ-set of cardinality μ for every cardinal μ < κ , then there is a
λ-set of cardinality κ.

Proof. Let cf(κ) = μ and consider an increasing sequence 〈κα: α < μ〉 which is cofinal in κ . Choose a λ-set A ⊆ R

of cardinality μ and for each α < μ choose a λ-set Xα ⊆ R of cardinality κα . Enumerate A as {xα: α < μ}. We
claim that X = ⋃

α<μ{xα} × Xα is a λ-set of cardinality κ . That |X| = κ is clear. If Y ∈ [X]ℵ0 then there is some
A0 = {xαn : n ∈ ω} ⊆ A such that Y is contained in

⋃
n∈ω{xαn} × Xαn and moreover Yn = Y ∩ ({xαn} × Xαn) is at

most countable for every n ∈ ω. Since {xαn : n ∈ ω} is a Gδ subset of A, there are open sets Bm, for m ∈ ω, such that⋃
n∈ω{xαn} × Xαn = ⋂

m∈ωBm.
On the other hand, Ym is a Gδ subset of {xαm} × Xαm and {xαm} × Xαm is a Gδ subset of X as well, thus Ym is a

Gδ subset of X. Therefore we can fix open subsets Um,n of X such that

(1) Um,n+1 ⊆ Um,n for all n ∈ ω,
(2) Um,n ∩ ({xαk

} × Xαk
) = ∅ for all k < m, and

(3) Ym = ⋂
n∈ωUm,n.

Let Wn = (
⋃

m∈ωUm,n) ∩ Bn, for n ∈ ω. Then Wn is open subset of X and it can be easily verified that Y =⋂
n∈ωWn. �

Corollary 2.2. Let Λ = sup{|X|: X is a λ-set}. If Λ is not an inaccessible cardinal then there is a λ-set X with
|X| = Λ.

Now we turn to address the case where inaccessible cardinals exist. Here we see that it is consistent that the
maximum of the cardinalities of λ-sets is never attained. It will be easier to change the real numbers R by ωω and
show the result for subsets of ωω. Since every λ-set is zero-dimensional, there is no difference to consider λ-sets in
the real line or in the irrationals.

Theorem 2.3. If there is a strongly inaccessible cardinal κ then there is a model of ZFC in which there is a λ-set of
every cardinality below c, yet there is no λ-set of size c.

The main idea to prove the theorem is to make the continuum a limit cardinal and to add a λ-set of each cardinal
below c. The natural forcing to add a λ-set of cardinality μ is the finite support iteration Pμ of length μ of Hechler
forcing D. This is due to the fact that Pμ adds a well-ordered family of functions in ωω of size μ, the dominating
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(or Hechler) reals. Thus Pμ forces b � μ. Then the existence of a λ-set of cardinality μ follows from the following
theorem. For a proof of it see [7].

Theorem 2.4 (Rothberger). There exists a λ-set of cardinality b.

A second key ingredient of the idea is the following simple lemma. We give a proof for the sake of completeness.

Lemma 2.5 (Folklore). If X is a λ-set and P is a c.c.c. forcing notion then P preserves the fact that X is a λ-set.

Proof. Fix X and P as in the statement of the lemma. It is well known that the cardinality of X is preserved. If Ȧ is a
P-name for a countable subset of X, then there is a countable B ⊆ X in the ground model such that P � Ȧ ⊆ B . Since
X is assumed a λ-set in the ground model, there are open sets Un ⊆ X, n ∈ ω, such that Un = B . Then working in the
extension V[G], where G is a P-generic filter over V, we can fix an enumeration {bn: n ∈ ω} of B \ A and thus write
A = ⋂

n∈ωUn \ {bn}. Therefore A is a Gδ subset of X, in V[G]. �
Thus we can use iterations of Hechler forcing to add λ-sets of every cardinality below the new c and we can preserve

those λ-sets if we use a c.c.c. forcing notion which puts together (in an independent manner) all the iterations that
we are going to use. The forcing notion P that we will use is defined next. Before doing that, recall that conditions in
Hechler forcing D are of the form 〈s, f 〉 where s ∈ ω<ω and f ∈ ωω, and the ordering is 〈s, f 〉 � 〈t, g〉 if and only if

(1) s ⊇ t ,
(2) f � g and
(3) (∀n ∈ dom(s) \ dom(t)) (s(n) � g(n)).

Definition 2.6. Let κ be a strongly inaccessible cardinal and let {μα: α < κ} be a fix enumeration of all regular
cardinals below κ . Then define P by p ∈ P if and only if p ∈ ∏

α<κ Pμα and supp(p) is finite, where Pμα is a finite
support iteration of length μα of Hechler forcing D.

Proof of Theorem 2.3. We use the forcing P just described above. It is clear that P � c = κ . That P is a c.c.c. forcing
notion follows from the facts that finite support iteration of forcing notions with precaliber2 ℵ1 has precaliber ℵ1 and
that a finite support product of forcing notions with precaliber ℵ1 has precaliber ℵ1 (see [1, Chapter 1]).

On the other hand, to show that there is a λ-set of cardinality μ for every cardinal μ < κ , fix an arbitrary P-generic
filter G over V. As P is a product of forcing notions, G can be seen as the product of Gα’s where Gα is Pμα -generic
over V. Moreover, given any cardinal μ < κ , there is some α < κ such that μ < μα and

V[G] = V
[ ∏

α<κ

Gα

]
= V[Gα]

[ ∏
β∈κ\{α}

Gβ

]
.

Since Pα forces b = μα , by Theorem 2.4 it follows that there is a λ-set X of cardinality μα in V[Gμ] and since the
next part of the extension is given by a c.c.c. extension, Lemma 2.5 implies that X remains a λ-set in V[G]. Then that
there is a λ-set in V[G] of cardinality μ follows from the fact that subsets of λ-sets are λ-sets themselves.

It remains to show that there is no λ-set of cardinality c in the generic extension V[G]. This will follow by the next
lemma. �
Lemma 2.7. Let P be the forcing notion of Definition 2.6 and let Y = {ḟξ : ξ < κ} be a set of P-names for reals which
are forced by P to be pairwise distinct. If G is a P-generic filter over V, then {fξ : ξ < κ} is not a λ-set in V[G].

We will spend the next section to give a proof of this lemma in a detailed way. The idea for the proof is to take a
countable elementary submodel M of some big enough H(ϑ) such that P, Y ∈ M , then we shall show that whenever
Ẇ is a P-name for a Gδ subset of ωω, there are κ-many ξ ’s such that P � ḟξ ∈ Ẇ . In order to do this we will need

2 Recall that a forcing notion P has precaliber κ if for every subset A of size κ there is B ⊆ A of size κ such that B is centred.
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to introduce several notions among which a notion of similarity between names for functions in ωω will be crucial.
There the fact that Hechler forcing is definable will also be very important.

3. Proof the main lemma

In this concluding section we are going to use an isomorphism of names type argument to give a proof of the main
lemma and hence to complete the proof of Theorem 2.3. The use of arguments involving isomorphic names has been
around in the literature for quite a long time without been explicitly mention. See for example [3]. At the beginning of
Section 3 in [2] a particular argument of isomorphic names for Cohen forcing is explained in some detail. The main
result in [4] also uses this type of argument.

A nice P-name ḟ for a function in ωω will be a P-name of the form⋃
n∈ω

{〈
p,

〈
n, i

p
n

〉〉
: p ∈An & i

p
n ∈ ω

}
,

where

(1) An is a maximal antichain in P for every n ∈ ω, and
(2) 〈p, 〈n, i

p
n 〉〉 ∈ ḟ ⇒ p � ḟ (n) = i

p
n .

It is easy (see [5, 5.12]) to show that whenever P � ḟ ∈ ωω there is a nice name ḟ ′ such that P � ḟ = ḟ ′; that is,
every function in the generic extension has a nice P-name.

Now, let Pα be a finite support iteration of length α of Hechler forcing D. By induction on α � 1 we define when
p is a good condition in Pα . Firstly, for α = 1, every condition p in D is a good condition. Suppose we have already
defined good conditions in Pα . If p ∈ Pα ∗ Ḋ, then p is a good condition if p � α is a good condition in Pα and

p � α � p(α) = 〈s, ḟ 〉,
where s ∈ ω<ω and ḟ is a nice Pα-name for a function in ωω such that conditions p appearing in the nice Pα-name
ḟ are all good conditions in Pα . If α is a limit ordinal and we have defined good conditions in Pβ for all β < α, then
p ∈ Pα is a good condition if p � β is a good condition in Pβ , where β = max(supp(p)) + 1.

Lemma 3.1. For every α < κ , Pα has a dense subset of good conditions.

Proof. We can prove this lemma by induction on α. Since Pα is a finite support iteration, the limit steps of the
induction are easy. To show the successor steps, assume Pα has a dense subset of good conditions and let p be an
arbitrary condition in Pα ∗ Ḋ. Then p � α � p(α) = 〈ṡ, ḟ 〉 ∈ Ḋ and using the density of good conditions in Pα there
is a good condition p̃ � α � p � α and a nice Pα-name ḟ ′ such that p̃ � α � ṡ = s ∈ ω<ω, p̃ � α � ḟ = ḟ ′ and every
condition q ∈ Pα which appears in ḟ ′ is a good condition in Pα . Put p̃ = (p̃ � α) ∪ {〈α, 〈s, ḟ ′〉〉}. Then p̃ is a good
condition in Pα ∗ Ḋ and p̃ � p. �

Now we extend the definition of good conditions to conditions in the whole forcing P in the natural way: A con-
dition p ∈ P is a good condition if p(α) ∈ Pμα is a good condition for every α < κ . The next lemma follows directly
from Lemma 3.1.

Lemma 3.2. P has a dense subset of good conditions.

As P is a c.c.c. forcing notion, every function from ω into ω in a generic extension by P has a nice P-name formed
by countable antichains of good conditions. If ḟ is a P-name for an element of ωω, we say that ḟ is a good P-name
for a function in ωω if ḟ is a nice name and 〈p, 〈n, k〉〉 ∈ ḟ implies that p is a good condition in P.

Again by induction we define the transitive support of good conditions in Pα . For p ∈ D we define the transitive
support of p to be tr supp(p) = {0}. Suppose we have defined the transitive support for good conditions in Pα , then
for a good condition p ∈ Pα+1, the transitive support of p is tr supp(p) = tr supp(p � α) if p � α � p(α) = 1D, and

tr supp(p) = tr supp(p � α) ∪ {α} ∪ tr supp(ḟ )



F. Hernández-Hernández / Topology and its Applications 154 (2007) 2081–2088 2085
if p � α �� p(α) = 1D and p � α � p(α) = 〈s, ḟ 〉, where tr supp(ḟ ) = ⋃{tr supp(q): q ∈ An} with 〈An : n ∈ ω〉 being
the sequence of maximal antichains in Pα used to define the good Pα-name ḟ . If α is a limit ordinal and we have
defined the transitive support for good conditions in Pβ for all β < α, then for a good condition p ∈ Pα we define the
transitive support of p by

tr supp(p) = tr supp(p � β),

where β = max(supp(p)) + 1.
For technical reasons, we assume, without loss of generality, that the transitive support of every good condition

contains 0.
The motivation to introduce the transitive support for conditions is to define isomorphic good P-names for functions

in ωω. Before doing that, we need to extend the notion of transitive support for conditions in the whole forcing P. This
is easy as we can do it coordinatewise: If p ∈ P is a good condition then the transitive support of p is given by

tr supp(p) =
⋃{{μα} × tr supp

(
p(α)

)
: α ∈ supp(p)

}
.

It is worth observing that tr supp(p) is a countable subset of κ × κ and it is meant to give us a template of the parts
of our forcing used to form a good condition. The definition of the transitive support of a good P-name for a function
in ωω has implicitly been given and it might be thought as a template or guide in making that good P-name accurately
over the whole forcing P. If ḟ is a good P-name for a function in ωω, then the support of ḟ is defined by

supp(ḟ ) =
⋃{

supp(p): (∃n, k ∈ ω)
(〈
p, 〈n, k〉〉 ∈ ḟ

)}
.

The transitive support of ḟ is simply

tr supp(ḟ ) =
⋃{{μα} × tr supp

(
p(α)

)
: α ∈ supp(ḟ )

}
.

Again by c.c.c.-ness of P supp(ḟ ) is a countable subset of κ for every good P-name for a function from ω into ω and
tr supp(ḟ ) is a countable subset of κ × κ .

The definition of an equivalence relation between good P-names for functions will be given in terms of equivalence
between templates. First we detail the notion of isomorphic templates.3

Definition 3.3. (1) A simple template is a countable subset of κ which (for technical reasons) contains 0.
(2) Two simple templates A and B are isomorphic if there is an order preserving bijection ψ :A → B such that:

(2a) if β ∈ A and for some γ ∈ ω1, the next point of A is β + γ , then ψ(β + γ ) = ψ(β) + γ , and
(2b) if β ∈ A and the next point γ of A is such that β + ω1 � γ , then ψ(β) + ω1 � ψ(γ ).

(3) A template T is a subset of κ × κ of the form T = ⋃{{α} × Aα: α ∈ S} for an at most countable S ⊆ κ and Aα

being a simple template for every α ∈ S.

(4) Two templates T = ⋃{{α} × Aα: α ∈ S} and T ′ = ⋃{{α} × A′
α: α ∈ S′} are isomorphic if there exists a

bijection ϕ :S → S′ such that:

(4a) ϕ(α) = α for all α ∈ S ∩ S′,
(4b) for all α ∈ S, the simple templates Aα and Aϕ(α) are isomorphic witnessed by a bijection ψα :Aα → A′

ϕ(α), and
(4c) in case ϕ(α) = α, then Aα = Aϕ(α) and ψα is the identity function.

(5) An isomorphism Φ between templates T and T ′ is a bijection Φ :T → T ′ which induces bijections ϕ :S → S′
and ψα :Aα → Aϕ(α) which witness that T and T ′ are isomorphic templates. We denote Φ(α,β) = 〈ϕ(α),ψα(β)〉 for
〈α,β〉 ∈ T .

It is easy to see that this notion of isomorphism between templates defines an equivalence relation on the family of
templates and that every template is isomorphic to some template contained in ω × ω2 and, therefore, there are only

3 Here the word “template” has no relationship with the same word used in the theory of iterations along a template.
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ℵ2-many distinct types of templates. Now we will use isomorphism of templates to translate information between
names. Note that if ḟ is a good P-name for a function in ωω then tr supp(ḟ ) is a template. We need to make precise
what we understand by translating information between conditions.

Let ψ :A → B by an order-preserving function between simple templates A and B . For conditions p ∈ Pβ with
tr supp(p) ⊆ A, define a new condition ψ(p) by induction on β � 1. If p ∈ P1, then ψ(p)(0) = p(0). If we have
defined ψ for all good conditions in Pβ and p ∈ Pβ+1 is a good condition then:

(1) If β /∈ A, then ψ(p) = ψ(p � β), or
(2) if β ∈ A and p � β � p(β) = 〈s, ḟ 〉, then ψ(p) � ψ(β) = ψ(p � β) and ψ(p) � ψ(β) � ψ(p)(ψ(β)) = 〈s,ψ(ḟ )〉,

where

ψ(ḟ ) =
⋃

n∈ω

{〈
ψ(q),

〈
n, k

q
n

〉〉
: q ∈An & k

q
n ∈ ω

}
if ḟ = ⋃

n∈ω{〈q, 〈n, k
q
n〉〉: q ∈An & k

q
n ∈ ω}.

And if β ∈ A is a limit ordinal, we have defined ψ for all good conditions in Pγ , for all γ < β , and p ∈ Pβ is a good
condition with γ0 = max(supp(p)) ∈ A then

ψ(p) = ψ
(
p � ψ(γ0)

) ∪ {〈
γ,1

Ḋ

〉
: ψ(γ0) � γ < ψ(β)

}
.

It is not hard to check by induction that for every good condition p ∈ Pβ such that tr supp(p) ⊆ A the following
equality holds

ψ
[
tr supp(p)

] = tr supp
(
ψ(p)

)
.

Thus if p ∈ Pβ is a good condition and ψ is an isomorphism between tr supp(p) and some simple template A, then
A = tr supp(ψ(p)).

Definition 3.4. Let Φ :T → T be an isomorphism between templates T and T ′ where Φ(α,β) = (ϕ(α),ψα(β)) for all
〈α,β〉 ∈ T . Let p ∈ P be a good condition with tr supp(p) contained in T . The translated condition Φ(p) is defined by
Φ(p)(α) = ψα(p(α)) for all α < κ such that 〈α,0〉 ∈ T and Φ(p)(α) = 1Pμα

otherwise. Where ψα is defined before,
for every α.

The idea behind the previous definition is simple: Φ must translate p into Φ(p) using the templates as guides for
making that translation accurate changing only the corresponding coordinates of conditions in the iterations Pμα ’s
used to form the good P-condition p. The function Φ can be thought as an isomorphism between the suborders of P

induced by the respective templates T and T ′. The isomorphism Φ cannot be a regular embedding though. To avoid
too many indexes we will write ψα(p) instead of ψα(p(α)). Finally, the main definition of the section.

Definition 3.5. Let ḟ = ⋃
n∈ω{〈p, 〈n, i〉〉: p ∈An} and ġ = ⋃

n∈ω{〈q, 〈n, i〉〉: q ∈ Bn} be good P-names for functions
from ω into ω, we will say that they are isomorphic (ḟ ≈ ġ) if:

(1) The templates tr supp(ḟ ) and tr supp(ġ) are isomorphic witnessed by an isomorphism Φ : tr supp(ḟ ) → tr supp(ġ)

and
(2) if 〈p, 〈n, i〉〉 ∈ ḟ , 〈q, 〈n, j 〉〉 ∈ ġ and q = Φ(p), then i = j.

We are now ready to finish the proof of the main lemma.

Proof of Lemma 2.7. Suppose that {ḟξ : ξ < κ} are good P-names for κ-many distinct reals. We will show that if G

is a P-generic filter over V, then X = {fξ : ξ < κ} is not a λ-set in V[G]. Since subsets of λ-sets are λ-sets, to reach
our goal we can thin out the original set in order to find a subset which is not a λ-set.

Because κ is a regular cardinal and supp(ḟξ ) is a countable subset of κ , for every ξ < κ , the family all supp(ḟξ )

necessarily has cardinality κ ; otherwise,
⋃

ξ<κ supp(ḟξ ) would be a bounded set in κ and using that κ is strongly
inaccessible there are not enough countable subsets of a bounded subset of κ , therefore there are κ-many ξ ’s for which
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the supports of ḟξ coincide. However, P � A cannot code κ distinct functions for any countable A ⊆ κ . Henceforth,
we assume that supp(ḟξ ) are all distinct.

As κ is a regular cardinal, we can also apply the Δ-system lemma to the family of supports of those good P-names
ḟξ ’s. Thus we assume that {supp(ḟξ ): ξ < κ} forms Δ-system with root R. Moreover, due to R is at most countable,
there must be κ-many ξ ’s such that the P-names ḟξ are exactly the same name over R. Since there are only ℵ2-many
possible types for those ḟξ good P-names we can assume further that any two ḟξ and ḟη are isomorphic names for
ξ, η < κ .

Let M be a countable elementary submodel of H(ϑ) for some large enough regular cardinal ϑ such that P and
{ḟξ : ξ < κ} are elements of M . Let Ẇ be a P-name for a Gδ-subset of ωω such that P � X ∩ Ẇ ⊇ {ḟξ : ξ ∈ M ∩ κ}.
Fix P-names Ẇm for open subsets of ωω, m ∈ ω, such that P � Ẇ = ⋂

m∈ωẆm. Consider now another countable
elementary submodel N of H(ϑ) containing everything that is relevant for the proof and such that M ∈ N and the
P-names Ẇ , Ẇn are all elements of N . Inside N , we can fix an enumeration {ξn: n ∈ ω} of M ∩ κ.

Working inside N , for every m ∈ ω, we can find a P-name ġm ∈ N for a function from ω into ω such that

P �
[
ḟξn � ġm(n)

] ⊆ Ẇm,

for every n ∈ ω.
Fix P-names U̇ , U̇m ∈ N , for m ∈ ω, such that P � U̇m = ⋃

n∈ω[ḟξn � ġm(n)] and P � U̇ = ⋂
m∈ωU̇m. Then U is

forced to be a Gδ subset of W . To finish the proof we prove the following claim:

Claim 1. If ξ ∈ κ \ N and supp(ḟξ ) ∩ N = ∅, then P � ḟξ ∈ U̇ .

In order to establish the claim let ξ be any such ordinal outside N and fix m ∈ ω. It suffices to show that ḟξ is
forced by a dense set of conditions to be in U̇m. So, fix a condition r ∈ P. Without loss of generality, assume r is a
good P-condition.

Firstly, recall that ḟξ is a good P-name for a function in ωω, say

ḟξ =
⋃

i∈ω

{〈
p,

〈
i, j

p
i

〉〉
: p ∈ Ai & j

p
i ∈ ω

}
.

We are assuming that {supp(ḟξ ): ξ < κ} forms a Δ-system, by elementarity we can assume that its root R ∈ M ,
hence R ⊆ M . As supp(r) is finite there is an n ∈ ω such that

supp(r) ∩ (
supp(ḟξn) \ R

) = ∅.

Suppose that the good P-name ḟξn is
⋃

i∈ω{〈q, 〈i, jq
i 〉〉 :q ∈ A′

i & j
q
i ∈ ω}. Since we are assuming that ḟξ and ḟξn

are isomorphic names, there is a bijection Φ : tr supp(ḟξ ) → tr supp(ḟξn) witnessing that ḟξ ≈ ḟξn . By definition,
Φ induces bijective functions ψα from the column α of tr supp(ḟξ ) onto the column ϕ(α) of tr supp(ḟξn). For α ∈
supp(ḟξ ) ∩ supp(r), the function ψα can be extended to include tr supp(r(α)) in its domain preserving the ordering
between ordinals.4 Denote that extension of ψα again by ψα . Define a new condition r0 ∈ P by

r0(α
′) =

⎧⎪⎨
⎪⎩

r(α′) if α′ ∈ N \ (supp(ḟξn) \ R),

ψα(r) if α′ = ϕ(α) & α ∈ supp(ḟξ ) ∩ supp(r),

1Pμ
α′ otherwise,

for all α′ < κ . Then r0 � r � N . Now extend r0 to some condition r1 such that supp(r1) ⊆ N and

(1) r1 decides the value of ġm(n); that is, r1 � ġm(n) = k,

(2) r1 decides ḟξn � k; that is, r1 � fξn � k = t for some t : k → ω,
(3) r1 is a good condition.

4 It is here that clauses (2a) and (2b) of Definition 3.3 play their role in the definition of isomorphic names. Note that the extension of ψα may
not be an isomorphism of simple templates though.
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Once again, for each ϕ(α) ∈ supp(ḟξn) ∩ supp(r1), the function ψα can be extended in such a way that
tr supp(r1(ϕ(α))) is included in its range and the ordering between ordinals is still preserved. One more time, we
denote that extension again by ψα . Define another new condition r2 ∈ P by

r2(α) =

⎧⎪⎨
⎪⎩

r1(α) if α ∈ N,

ψ−1
α (r1) if ϕ(α) ∈ supp(ḟξn) ∩ supp(r1),

r(α) otherwise,

for all α < κ . Then the condition r2 has the following properties:

(1) r2 � r1 and r2 � r ,
(2) r2 � ḟξ � k = ḟξα � k, and
(3) r2 � ḟξ ∈ Um.

This completes the proof of Lemma 2.7 and hence it completes the proof of Theorem 2.3 as well. �
At first glance, the fact that κ is a strongly inaccessible cardinal does not seem to be important and one could

think that the method might work as well for a singular cardinal κ . Of course, we know that it cannot be true because
of Theorem 2.1. We can even give a simple P-name for a λ-set of maximal cardinality. Suppose that μ = cf(κ) and
consider a strictly increasing sequence 〈κα: α < μ〉 cofinal in κ and such that κα > μ for all α < μ. Let ḟα,β be a
P-name for the βth generic real added by Pα (β < α) and let ḣα,β,γ,δ be such that P � ḣα,β,γ,δ = max{ḟα,γ , ḟβ,δ},
for all α,γ < μ, κα < β < κα+1 and δ < κα+1. Then supp(ḣα,β,γ,δ) = {γ,β} and by genericity we are considering
c = (κ)V distinct functions. However, there is no Δ-system of κ-many distinct supports.
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