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A SMALL DOWKER SPACE FROM A
CLUB-GUESSING PRINCIPLE

F. HERNÁNDEZ-HERNÁNDEZ AND PAUL J. SZEPTYCKI

Abstract. We present the construction of a new Dowker
space from a special type of club-guessing ladder system.
These types of guessing principles have previously been used
to construct spaces consistent with MA+¬CH. Thus, this con-
struction may shed light on whether MA+¬CH is consistent
with the existence of a Dowker space of size ℵ1.

1. Introduction

C. H. Dowker proved that a product X × [0, 1] is normal if and
only if X is normal and countable paracompact [3]. Subsequently,
any normal space X that has non-normal product with the closed
unit interval has come to be called a Dowker space. Whether ZFC
implies there is a Dowker space of cardinality ω1 is a particular and
important instance of the general “small Dowker space question.”
Indeed, it is not known whether MA+¬CH or PFA implies there
are no Dowker spaces of size ℵ1 [7, Problem 10].

Although MA+¬CH decides a great deal about structures of size
ω1, there are a number of counterexamples to this general principle.
For example, the existence of either a first countable S-space [1] or
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perfectly normal not realcompact spaces of size ℵ1 [4], [5] is inde-
pendent of MA+¬CH. The latter result used a club-guessing ladder
system to construct a perfectly normal not realcompact space fol-
lowed by a consistency result to show that the club guessing prin-
ciple was consistent with MA+¬CH. The main motivation of this
paper was to try to use similar techniques to obtain a Dowker space
of size ℵ1 in a model where MA+¬CH holds. While we have not
been able to obtain such a space, we do present a construction of an
example using a club-guessing principle not previously seen in the
literature, and we conjecture that similar techniques should lead to
an example consistent with MA+¬CH or even PFA.

It should be remarked that it would even be interesting to show
that this example is consistent with some weak form of Martin’s
Axiom. Teruyuki Yorioka [8] has recently shown that generaliza-
tions of one of Rudin’s constructions cannot be Dowker assuming
K2(rec), and it would be interesting in general to understand what
kind of small Dowker spaces there are in the model for Katětov’s
problem (where K2(rec) holds) [6].

In section 2 we introduce the guessing principle, explain how to
construct our space, and introduce the properties of the guessing
sequence that imply the space is Dowker. In section 3 we present
the construction of the required guessing sequence assuming V = L.
In section 4 we show how to modify the space to make it locally
compact and first countable.

2. Building the space from the guessing sequence

A ladder system on ω1 is a sequence
−→
E = 〈Eα : α ∈ Lim (ω1)〉

such that each Eα ⊆ α is of order type ω and unbounded in α.
If
−→
E is a ladder system on ω1, then we define a topology τ on

ω1 associated with
−→
E by declaring final segments of its elements

Eα as weak neighborhoods of α; that is, a set U ⊆ ω1 is defined
to be τ -open if for each α ∈ U , there exists some β < α such that
Eα \ β ⊆ U . One can easily check that this is a topology, and that
with this topology, ω1 is a regular space. Of course, we cannot
expect to always get a normal topology. However, if

−→
E has good

guessing properties, then (ω1, τ) can be normal. In order to state
the necessary lemma, we need some definitions. We say that

−→
E is

strong club guessing if for every club C ⊆ ω1, there is a club K ⊆ ω1
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so that α ∈ K ⇒ (∃β < α) (Eα \ β ⊆ C), and
−→
E is 2-stationary

hitting if for every pair of stationary sets S, T ⊆ ω1, there is some
γ ∈ ω1 such that both Eγ ∩S and Eγ ∩T are cofinal in γ. It can be
proven than if

−→
E is 2-stationary hitting, then there are stationarily

many γ < ω1 witnessing that property for every pair of stationary
sets. This type of guessing principle was used in [5] to construct a
perfectly normal not realcompact space; please refer to this paper
for a proof of the following lemma.

Lemma 1. If
−→
E is strong club guessing and 2-stationary hitting,

then (ω1, τ) is normal.

Recall that Dowker proved in [3] that a normal space X is count-
ably paracompact if whenever {Dn}n∈ω is a decreasing family of
closed subsets of X whose intersection is empty, there exists a fam-
ily {Un}n∈ω of open sets which has empty intersection and, for each
n ∈ ω, Un ⊇ Dn. We start by considering a countable partition
of ω1 into stationary subsets {Sn : n ∈ ω}, and we will make the
union of the first n many stationary sets open. The complement
of that union will be the closed set Dn witnessing that countable
paracompactness fails. So, we need that the elements of the ladder
system

−→
E “look back”; that is, α ∈ Sn must give us Eα ⊆

⋃n
k=0 Sk.

Proposition 2. Suppose {Sn : n ∈ ω} is a partition of ω1 into sta-
tionary subsets and

−→
E is a strong club guessing ladder system such

that α ∈ Sn ⇒ Eα ⊆
⋃n

k=0 Sk. Moreover, assume that for each n
and for each pair of stationary sets A, B ⊆ ⋃

i<n Si, there is α ∈ Sn

such that Eα ∩ A and Eα ∩ B are infinite. Then, letting τ be the
topology associated with

−→
E , the space (ω1, τ) is a Dowker space.

Proof: It is easy to see that the hypotheses imply that the
ladder system is 2-stationary hitting, so by Lemma 1 the space
is normal. To see that the space is not countably paracompact,
let Dn = ω1 \

⋃
i<n Si. Then {Dn : n ∈ ω} is a decreasing se-

quence of closed sets with empty intersection. Now suppose that
〈Wn : n ∈ ω〉 is a sequence of τ -open subsets of ω1 such that for
each n ∈ ω, Wn ⊇ Dn. Suppose further that

⋂
n∈ω Wn = ∅. Then

(∀α ∈ ω1) (∃n ∈ ω) (α /∈ Wn), and thus, for some fixed m ∈ ω, there
is a stationary set X ⊆ ω1\Wm. As Wm is open, clτ (X) ⊆ ω1\Wm.
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However, there must be δ ∈ Sm+1 such that

δ ∈ clτ (X) ⊆ ω1 \Wm,

which contradicts that Sm+1 ⊆ Wm. Hence, the space is not count-
ably paracompact. ¤

Before we present the construction of a ladder system satisfying
the hypotheses of the previous proposition, we make a few observa-
tions about spaces constructed from ladder systems. Recall that a
space X is scattered if and only if every non-empty subset contains
an isolated point. One can also define X(0) = X, X(α+1) = (X(α))′

—the set of limit points, and X(α) =
⋂

β<α X(β) in case α is a limit
ordinal. Then X is a scattered space if and only if there is some
ordinal α such that X(α) = ∅. If such an α exists, then we say that
the scattered height of X is the least α for which X(α) = ∅.
Lemma 3. If

−→
E is a strong club guessing ladder system and τ is

the topology on ω1 described above, then (ω1, τ) has uncountable
scattered height.

Proof: To see that (ω1, τ) has uncountable scattered height, it
will suffice to show, by induction for every α < ω1, that (ω1)

(α)

contains a club subset of ω1.
Suppose α < ω1 is a limit ordinal. Choose βn ↗ α. Then

(ω1)
(α) =

⋂∞
n=0 (ω1)

(βn). Thus, we need only to make sure that for
successor stages at least a club of limit points is preserved. But
that is easy as

−→
E is a strong club guessing sequence. ¤

By a result in [5], we know that using ladder systems
−→
E we can-

not hope for an example consistent with MA+¬CH unless we use
“longer” ladders. That is, we will need that for at least a station-
ary set of α’s the Eα’s have order type α. We refer to this kind of
sequence as a guessing sequence. The following result established
the possibility of getting normal topologies with club guessing se-
quences even in the presence of Martin’s Axiom.

Theorem 4 ([4]). If ZFC is consistent, then it is also consistent
with ZFC that MA+¬CH holds and there exists a strong club guess-
ing and a 2-stationary hitting guessing sequence

−→
E . Moreover, the

resulting topology τ is normal.
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However, the guessing sequence given by this theorem is not
built around a required partition of ω1 into stationary sets. The
difficulty in obtaining a Dowker topology using a guessing sequence
is guaranteeing not only that the Eα ⊆

⋃n
k=0 Sk but also that the

τ -closure of Eα stays inside the first n-levels of the space,
⋃n

k=0 Sk.
This we were not able to obtain.

3. Construction of the guessing sequence

We construct a ladder system
−→
E = 〈Eγ : γ ∈ Lim (ω1)〉 with

enough properties. The method to construct this ladder system
is different from the one used in [5]. There, a forcing iteration of
non-proper posets was used; here, we use Gödel’s axiom of con-
structibility, V = L.

Proposition 5. Assume V = L. If {Sn : n ∈ ω} is a partition
of ω1 into stationary subsets, then there is a strong club guessing
ladder system

−→
E such that α ∈ Sn ⇒ Eα ⊆

⋃n
k=0 Sk, and moreover,−→

E has the following property: If A,B ⊆ ⋃n
k=0 Sk are stationary,

then there exists a stationary T ⊆ Sn+1 such that

γ ∈ T ⇒ sup (A ∩ Eγ) = γ = sup(B ∩ Eγ).

Proof: Fix the partition {Sn : n ∈ ω} of ω1 into stationary sets.
To aid in the notation, let f : ω1 → ω be such that Sn = f−1 ({n})
for each n ∈ ω. For each limit ordinal γ ∈ Lim (ω1), let Aγ be
defined by α ∈ Aγ if and only if

(i) Lα ² ZF− (i.e., ZF without the power set axiom),
(ii) γ = ωLα

1 , and
(iii) f ¹ γ ∈ Lα and Lα ² “f ¹ γ codes a partition into stationary

sets.”
Then |Aγ | ≤ ℵ0 for each γ ∈ Lim (ω1), since {ρ ∈ ω1 : Lρ ≺ Lω1}

is unbounded in ω1 and Lω1 ² γ < ω1. Note that {γ < ω1 : Aγ 6= ∅}
contains a club set. Now let

Gγ = {C ⊆ γ : C is club in γ & (∃α ∈ Aγ) (C ∈ Lα)} .

Then Gγ is countable and closed under finite intersections. Finally,
let Hγ be defined as

〈
A0, A1

〉 ∈ Hγ if and only if

(i) (∀i ∈ 2)
(
Ai ⊆ γ

)
,

(ii) (∃α ∈ Aγ) (∀i ∈ 2)
(
Ai ∈ Lα

)
,
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(iii) (∀C ∈ Gγ) (∀i ∈ 2)
(
C ∩Ai 6= ∅),

(iv) (∀i ∈ 2)
(∀ξ ∈ Ai

)
(f(ξ) < f (γ)).

Note that given
〈
A0, A1

〉 ∈ Hγ , we have that Lα ² “Ai is sta-
tionary in γ,” for a suitable α ∈ Aγ . Hγ is also countable.

We will use induction to construct each term of the guessing
ladder. For instance, the member Eγ will be constructed as follows.
Let us start by assuming γ ∈ Sm and enumerating Gγ as {Cn}n∈ω

and Hγ as
{〈

A0
n, A1

n

〉}
n∈ω

, where in the list of elements of Hγ , we
mention each element ℵ0 times; and, in case Aγ has no maximum
element, choose a cofinal sequence {αn : n ∈ ω} of Aγ so that for
all n ∈ ω,

〈
A0

m, A1
m

〉
, Cm ∈ Lαn , for all m ≤ n. If Aγ has maximum

α0, then let αn = α0 for all n ∈ ω.
Choose an increasing sequence 〈δn : n ∈ ω〉 cofinal in γ. We know

that for each i ∈ 2, Lα0 ² “Ai
0 ∩ C0 is stationary in γ”; working

inside Lα0 , we can choose γ0 ∈ A0
0 ∩ C0 \ δ0 and γ1 ∈ A1

0 ∩ C0 \ γ0;
then apply the same, now inside Lα1 , and so on. In general, we
select γ2n ∈ A0

n ∩
⋂

m≤n Cm \ max {δn, γ2n−1} and γ2n+1 ∈ A1
n ∩⋂

m≤n Cm \ γ2n. Finally, we let

Eγ = {γn : n ∈ ω} .

Clearly, Eγ defined this way will be a cofinal in γ, and for each〈
A0, A1

〉 ∈ Hγ , we have that sup
(
Eγ ∩Ai

)
= γ, for i ∈ 2. Observe

that if γ ∈ Sm, then Eγ ⊆
⋃m

k=0 Sk as Eγ contains only points from
the Ai

n forming the pairs elements of Hγ .

Claim 1. If C ⊆ ω1 is a club and
〈
A0, A1

〉
is a pair of stationary

subsets such that f(A0∪A1) ⊆ m+1, then there exist a stationary
T ⊆ Sm+1 and club K ⊆ ω1 such that

〈
A0 ∩ γ, A1 ∩ γ

〉 ∈ Hγ for
all γ ∈ T , and C ∩ γ ∈ Gγ for all γ ∈ K.

Proof of Claim 1: Let
〈
A0, A1

〉
and C be given as above; we

will find T and K. By recursion, define a sequence of elementary
submodels Mν ≺ Lω2 , ν < ω1, as follows:

: M0 is the smallest M ≺ Lω2 such that
〈
A0, A1

〉
, C ∈ M,

: Mν+1 is the smallest M ≺ Lω2 such that Mν ∪ {Mν} ⊆ M,
: Mξ =

⋃
ν<ξ Mν if ξ is a limit ordinal.

Since we are assuming V = L and Mν ≺ Lω2 , it follows that
Mν ∩ Lω1 is transitive. Let αν = Mν ∩ ω1. Then 〈αν : ν < ω1〉 is
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an increasing continuous sequence in ω1. Let

πν : Mν
∼= Lβν .

Clearly, then,

πν ¹ Lαν = id ¹ Lαν , πν (ω1) = αν ,

πν(C) = C ∩ αν , πν(
〈
A0, A1

〉
) =

〈
A0 ∩ αν , A

1 ∩ αν

〉
.

Consider K the set of all limit points of the set {αν : ν < ω1}.
Then K is club in ω1. Let γ ∈ K be given. For some limit ordinal
λ < ω1,

γ = sup
ν<λ

αν = sup
ν<λ

βν

and hence, γ = αλ. To see this, it suffices to prove that for all
ν < ω1, αν < βν < αν+1. Clearly αν < βν . But βν is definable
from Mν since Lβν is the transitive collapse of Mν , and moreover,
this definition relativises to Lω2 . So as Mν ∈ Mν+1 ≺ Lω2 , we have
βν ∈ Mν+1. Hence, βν ∈ αν+1, and the affirmation is confirmed.

Note that βλ ∈ Aγ , since we have that Lβλ
² “γ = ω1” and

Lβλ
² ZF−; hence, C∩γ = πλ(C) ∈ Lβλ

and, of course, Lβλ
² πλ(C)

is club set in γ. Thus, C ∩ γ ∈ Gγ .
Also,

〈
A0 ∩ γ,A1 ∩ γ

〉 ∈ Lβλ
. To obtain the rest of our Claim 1,

we need to find the stationary set T . For this, let µγ = supAγ for
each γ < ω1 such that Aγ 6= ∅. Let us define

E =
{

γ ∈ Sm+1 : (∀i ∈ 2) (Lµγ ² “Ai ∩ γ is stationary in γ = ω
Lµγ

1 ”)
}

.

Claim 2. The set E is stationary in ω1.

Proof of Claim 2: Let F be a club subset of ω1. To find an
ordinal in the intersection of F and E, let ξ < ω2 be the least
ordinal such that {Sk}k∈ω , F, A0, A1 ∈ Lξ, and for n < ω, let κn

be the (n + 1)-th ordinal greater than ξ such that Lκn ² ZF−.
For each n ∈ ω, define countable submodels Mn

ν ≺ Lκn for ν < ω1

as follows:
: Mn

0 is the smallest M ≺ Lκn such that {Sk}k∈ω , F, A0, A1 ∈
M,

: Mn
ν+1 is the smallest M ≺ Lκn such that Mn

ν ∪ {Mn
ν } ⊆ M ,

and
: Mn

ν =
⋃
ι<ν

Mn
ι , when ν is a limit ordinal.
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Now, set αn
ν = Mn

ν ∩ ω1. Then the sequence 〈αn
ν : ν < ω1〉 is

normal for every n ∈ ω. Put Gn = {ν < ω1 : ν = αn
ν} and let

G =
⋂ {Gn : n ∈ ω}. Then

ν ∈ G ⇒ ν = αn
ν ,

for all n ∈ ω.
Fix ν = min (G ∩ Sm+1), and consider transitive collapsing maps

πn : Mn
ν
∼= Lγn

ν
for n ∈ ω. Then πn ¹ ν = id ¹ ν, πn(ω1) =

ν, πn(Sk) = Sk ∩ ν for all k ∈ ω, πn(F ) = F ∩ ν, πn

(
Ai

)
= Ai ∩ ν,

and γn
ν ∈ Aν . Let γν = supn<ω γn

ν . Then Lγν ² “ν = ω1, ” Lγν ²
“Sk ∩ ν is stationary” for every k ∈ ω, Lγν ² “Ai ∩ ν is stationary”
for every i ∈ 2, and Lγν ² “F ∩ ν is cofinal in ν.”

For every µ ≥ γν , we want to prove µ /∈ Aν to have that µν = γν .
Suppose Lµ ² “ν = ω1.” Let ξν be the least ordinal such that

{Sk ∩ ν}k∈ω ,
{
Ai ∩ ν

}
i∈2

, F ∩ ν ∈ Lξν
.

Then we have πn (ξ) = ξν , for all n ∈ ω. It follows that for n > 0,

(πn)−1 (
γ0

ν

)
= κ0, (πn)−1 (

γ1
ν

)
= κ1, . . . , (πn)−1 (

γn−1
ν

)
= κn−1,

and γn
ν is the (n + 1)-th ordinal greater than ξν such that Lγn

ν
²

ZF−. Thus, 〈γn
ν : n ∈ ω〉 is definable in Lγν , and hence, Lγν cannot

be a model of ZF−, so γν /∈ Aν . If µ > γν , then 〈γn
ν : n ∈ ω〉 ∈ Lµ.

Working inside Lµ, we can define the Lµ-versions, Gn, of the club’s
Gn ⊆ ω1 defined earlier (with ξν in place of ξ, γn

ν in place of κn,
etc.). Then Gn = Gn ∩ ν for all n ∈ ω. Thus,

Lµ ² “
⋂
n∈ω

Gn ∩ ν is club in ν.”

Hence, if µ ∈ Aγ , then Lµ ²
(⋂

n∈ω Gn ∩ ν
)∩ (Sm+1∩ ν) 6= ∅. Nev-

ertheless, this is impossible since ν = min(G∩Sm+1). Therefore, µ
is not an element of Aγ , and hence, µν = γν . In summary,

Lγν ² “ν = ω1, ”

Lγν ² “Ai ∩ ν is stationary,” for every i ∈ 2, and
Lγν ² “F ∩ ν is cofinal in ν.”

The first two parts, together with the choice of ν, imply that ν ∈ E,
and the third one implies that ν ∈ F since F is closed. This
completes the proof of Claim 2.
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So, the set E is stationary and put T = E ∩K. For if γ ∈ T , let
λ so that γ = αλ. As we have seen, βλ ∈ Aγ , Lµγ ² “γ = ω1, ” and
Lµγ ² “Ai ∩ γ is stationary in γ” for every i ∈ 2, although Lµγ is
not a model of ZF−. However, if C ∈ Lβ is a club subset of γ for
some β ∈ Aγ , then C ∈ Lµγ and C is still a club since this notion
is absolute. Therefore, for all i ∈ 2, Lµγ ² C ∩ (Ai ∩ γ) 6= ∅ as we
needed to prove. So,

(
A0 ∩ γ, A1 ∩ γ

) ∈ Hγ .
And this completes the proof of the proposition. ¤
Take a ladder system

−→
E given by Proposition 5. Applying Propo-

sition 2 and considering the topology τ associated to
−→
E , we obtain

a Dowker topology on ω1.

4. A locally compact first countable
modification of the space

The space in the previous section is locally countable, but it is
neither first countable nor locally compact. We want to present a
modification of the construction obtaining a locally compact exam-
ple. In particular, we prove the following theorem.

Theorem 6. Assume V = L and let τ be the Dowker topology
obtained from the ladder system

−→
E constructed in the previous sec-

tion. There is another topology ρ on ω1 that is finer than the order
topology and coarser than τ such that (ω1, ρ) is first countable, lo-
cally compact, and a Dowker space.

Proof: Let
−→
E be the ladder system constructed in the previous

section. Instead of using final segments of its elements as weak
neighborhoods, we will choose suitable compact neighborhoods for
the points using the ladder system

−→
E in the usual way (e.g., see

[2]). The resulting topology will be coarser than the topology τ ,
but neighborhoods will still “look to the left.” Hence, the resulting
topology will again fail to be countably paracompact. To guarantee
that normality will not be destroyed, we need to build separations
for possible disjoint closed subsets. For this we need to assume ♦+.

We are going to use a ♦+ sequence that captures quintuples of
subsets of ω1. That is, we will assume

♦+ there is a sequence 〈Dα : α ∈ Lim (ω1)〉 so that for any sub-
sets A,B, C, and K of ω1, we have that there is a club
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D ⊆ ω1 such that

(∀γ ∈ D) (〈A ∩ γ,B ∩ γ, C ∩ γ, K ∩ γ, D ∩ γ〉 ∈ Dγ) .

For a quintuplet q = 〈A,B,C, K, D〉, we are going to denote
by q ¹ γ the quintuplet 〈A ∩ γ, B ∩ γ, C ∩ γ, K ∩ γ, D ∩ γ〉 . We are
also going to use club guessing sequence {Eα : α ∈ Lim (ω1)} con-
structed earlier.

We will define, by recursion on β ∈ ω1, topologies ρβ on [0, β).
Having defined ρβ, we will say that a quintuplet q = 〈A,B, C, K,D〉 ∈
Dβ is important if

(1) A and B are ρβ-closed,
(2) K ⊆ C and both are closed in β,
(3) Eα ⊆∗ C for all α ∈ K,
(4) (A ∪ C) ∩B = ∅,
(5) D is closed and for all α ∈ D, q ¹ α ∈ Dα.

Notice that if q = 〈A,B, C,K, D〉 ∈ Dβ is important, then so is
q ¹ α for every α ∈ D.

We then also define ρβ-open sets U0
q and U1

q for all important
quintuplets q ∈ Dβ. The topologies and pairs of open sets satisfy
the following inductive hypotheses:

(1) For each γ < β, ρβ is a “conservative extension” of ργ . That
is, the ρβ subspace topology on [0, γ) and ργ coincide.

(2) ρβ is a T1, zero-dimensional locally compact topology on
[0, β) that is finer than the order topology and coarser than
the τ subspace topology where τ is the topology associated
with the ladder system

−→
E .

(3) If β is a limit ordinal and q = 〈A, B,C, K, D〉 ∈ Dβ is
important, then
(a) U0

q and U1
q form an open separation for A ∪ C and B

in β with the topology ρβ,
(b) these open separations are coherent along K ∩D; that

is, U i
q¹γ = U i

q ∩ γ, for each i ∈ 2 and each γ ∈ K ∩D,
and

(c) if Eβ ⊆∗ C, then U0
q ∪ {β} is an open subset of [0, β]

in the topology ρβ+1.

We assume we have topologies ρβ defined on [0, β) for all β < α,
satisfying the above inductive hypotheses.
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Now, we consider the case where α is a limit. We need to de-
fine the topology ρα and all the separations U i

q for all important
quintuplets q ∈ Dα, then define ρα+1 so that (3)(c) is satisfied.

First, since α is a limit, by (1), we must define ρα =
⋃

β<α ρβ. It
follows from the definition that (1) and (2) are satisfied.

Now let q = 〈A,B, C, K,D〉 ∈ Dα be important.

Case 1: If K ∩ D is unbounded in α, by coherence, i.e., (3)(b),
we must define U i

q =
⋃

β∈K∩D U i
q¹β for each i ∈ 2.

Case 2: If K ∩D is bounded in α, let γ = max K ∩D < α. Then
U0

q¹γ and U1
q¹γ form an open separation of (A ∪ C) ∩ γ and B ∩ γ.

Since γ ∈ K, we have that γ ∈ C and Eγ ⊆∗ C, so it follows by
(3)(c) that U0

q¹γ ∪ {γ} is open. Since every countable regular space
is normal, we also know that there are ρα-open sets W0 and W1

which are an open separation for (A ∪ C) ∩ (γ, α) and B ∩ (γ, α).
Then we let

U0
q = U0

q¹γ ∪ {γ} ∪W0

and

U1
q = U1

q¹γ ∪W1.

It follows directly from the construction that the open separa-
tions satisfy (3)(a) and (3)(b). So we must now define the topology
ρα+1, taking care of (1), (2), and (3)(c). Enumerate as

{qn = 〈An, Bn, Cn,Kn, Dn〉 : n ∈ ω}
all important quintuplets q ∈ Dα with the property that Eα ⊆∗ C.
Let Eα = {βm : m ∈ ω}. Fix an increasing sequence {kn : n ∈
ω} ⊆ ω such that βm ∈ Cn for all n and all m > kn.

Finally, we define compact open neighborhoods around α in the
standard way as follows. First, ignore the first k0 elements of Eα.
Since {βi : k0 < i ≤ k1} ⊆ U0

q0
, we may fix a compact neighborhood

W0 ⊆ [0, βk1 ] of the set {βi : k0 < i ≤ k1} that lies inside U0
q0

. In
general, for n ≥ 1, we may fix a compact neighborhood Wn of
{βi : kn < i ≤ kn+1} that lies inside

⋂
k≤n U0

qk
\ (βkn , βkn+1 ]. Then

a neighborhood base at α is given by the sets

W (α, k) = {α} ∪
⋃

n≥k

Wn, k ∈ ω.
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We let ρα+1 be the topology generated by taking ρα∪{W (α, k) :
k ∈ ω} as a basis. It is straightforward to verify that (1) and (2) are
satisfied. And (3)(c) will follow since for all k, W (α, k) ⊆ U0

qk
∪{α}.

This completes the recursive construction for α a limit and for
α the successor of a limit. In the case that α = β + 1 and β is a
successor, we have defined the topology ρβ on [0, β) = [0, β−]. We
extend the topology to ρβ+1 by declaring {β} to be isolated. Then
hypotheses (1) and (2) are easily satisfied. And since Dα is only
defined in the case that α is a limit, hypotheses (3)(a), (3)(b) and
(3)(c) are vacuously satisfied, and we have completed the recursive
construction.

Finally, let ρ =
⋃

α∈ω1
ρα. Since ρ is a coarser topology than

τ , and the decreasing sequence of τ -closed sets witnessing the fail-
ure of countable paracompactness are also ρ-closed, the space is
not countably paracompact. We are left to show that the coarser
topology is still normal.

Lemma 7. The space (ω1, ρ) is normal.

Proof: Let A0 and A1 be stationary subsets of ω1. Then, since ρ is
coarser than τ , there must exist γ ∈ Lim (ω1) such that γ ∈ clρ(Ai)
for each i ∈ {0, 1} . Therefore, no two stationary sets have disjoint
closures. Thus, if we consider two disjoint ρ-closed subsets A ⊆ ω1

and B ⊆ ω1, without loss of generality, we may assume that B is not
stationary, and hence, there is a club C ⊆ ω1 such that C ∩B = ∅.
For C, we know there is a club K such that γ ∈ K ⇒ Eγ ⊆∗ C as−→
E is a strong club guessing ladder system. Using our ♦+-sequence,
we know that there is a club D ⊆ ω1 such that q ¹ γ ∈ Dγ for
γ ∈ D, where q = 〈A,B, C,K, D〉. And moreover, for γ ∈ D ∩K,
we have built ρ-open subsets U0

q¹γ and U1
q¹γ so that

(1) (A ∪ C) ∩ [0, γ) ⊆ U0
q¹γ ⊆ [0, γ] ,

(2) B ∩ [0, γ) ⊆ U1
q¹γ ⊆ [0, γ] ,

(3) ξ < η & ξ ∈ D ∩K ∩ η ⇒ U i
q¹ξ = U i

q¹η ∩ [0, ξ] , and
(4) U0

q¹γ ∩ U1
q¹γ = ∅.

Let U0
q =

⋃{
U0

q¹ξ : ξ ∈ D ∩K
}

and U1
q =

⋃{
U1

q¹ξ : ξ ∈ D ∩K
}

to obtain a separation for A and B.
And this completes the proof of Theorem 6. ¤
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