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Q-SETS AND NORMALITY OF Ψ-SPACES

FERNANDO HERNÁNDEZ-HERNÁNDEZ AND MICHAEL HRUŠÁK

Abstract. We tie up some loose ends in the relationship
between the normality of Ψ-spaces and the existence of Q-
sets.

1. Introduction

The starting point for our considerations is the following classical
theorem giving a definitive solution to the separable case of the
Normal Moore Space Problem.

Theorem 1.1 ([9]). The following are equivalent:
(a) There is a Q-set.
(b) There is an uncountable normal Ψ-space.
(c) There is a separable normal non-metrizable Moore space.

For the sake of completeness, we include a sketch of the proof
of the theorem later in the text. We would like to mention that
the implication (a) ⇒ (c) was originally proven by R. H. Bing in
[1] when he showed that the bubble space over a Q-set is a normal
space. On the other hand, R. W. Heath proved the implication (c)
⇒ (a) in [5].

An almost disjoint family A is a family of infinite subsets of ω
(or any other countable set) such that A ∩ B is finite for distinct
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A,B ∈ A. The Ψ-space Ψ(A) associated with A is ω∪A where the
points of ω are isolated and the basic neighborhoods of A ∈ A are
of the form {A} ∪A \F , where F ⊆ ω is finite. The space Ψ (A) is
a first countable, separable, locally compact Moore space.

An almost disjoint family A is said to be R-embeddable if there
exists a continuous f : Ψ (A) → R such that f is an injective
function and f (A) is an irrational number, while f (n) is a rational
one for all A ∈ A and all n ∈ ω. For an R-embeddable family A,
we keep the notation XA = {xA : A ∈ A}, where f (A) = xA and
f is a witness that A is R-embedded.

In a conversation with members of the Toronto Set Theory sem-
inar, the following question was raised:

Question 1. If A is an uncountable R-embeddable family, is Ψ (A)
normal if and only if XA is a Q-set?

There seemed to be some confusion between the question and an
analogous question for subfamilies of the Cantor tree (see Proposi-
tion 2.2). We will show that, consistently, neither of the implica-
tions is true. We first show that in a model of W. G. Fleissner and
A. W. Miller, there is an R-embeddable family A with Ψ (A) nor-
mal, but XA is not a Q-set [4]. Then we modify their method to
show that there is a model of ZFC where there is an R-embeddable
family A for which XA is a Q-set, yet Ψ (A) is not normal.

2. Preliminaries

Our terminology is mostly standard: A ⊆∗ B means that A is
almost contained in B; that is, A \ B is finite, A =∗ B means
A ⊆∗ B and B ⊆∗ A. For functions f, g ∈ ωω, we write f ≤∗ g
to mean that there is some m ∈ ω such that f (n) ≤ g (n) for all
n ≥ m. The bounding number in ωω, b, is the least cardinal of
an ≤∗-unbounded family of functions. The dominating number in
ωω, d, is the least cardinal of a ≤∗-cofinal family of functions. A
Q-set is an uncountable set X of reals such that every subset of
X is Fσ in X. A λ-set is an uncountable set X of reals such that
every countable subset of X is Gδ in X. ZFC suffices to construct
a λ-set of size b. We say that a subset A of R is concentrated on
a set C ⊆ R if A \ U is countable for every open set U containing
C. The set 2ω is equipped with the product topology, that is the
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topology with basic open sets of the form [s] = {x ∈ 2ω : s ⊆ x},
where s ∈ 2<ω. The topology of P (ω) is that obtained via the
identification of each subset of ω with its characteristic function.
Given a set E ⊆ 2ω, let Ê = {x ¹ n : x ∈ E, n ∈ ω } ⊆ 2<ω. See [3]
for undefined topological notions and [6] for set theoretical notions.

The following proposition is standard and easy to prove.

Proposition 2.1. Ψ(A) is a normal space if and only if for every
B ⊆ A there is a J ⊆ ω such that

B = {A ∈ A : A ⊆∗ J} and A \ B = {A ∈ A : A ∩ J =∗ ∅} .

The set J in the conclusion of this proposition is called partitioner
for B and A \ B. Notice that if B = {A ∈ A : A ⊆∗ J}, then

B =
⋃
n∈ω

⋂
m∈ω

{A ∈ A : m ∈ A \ n ⇒ m ∈ J} ;

that is, B is an Fσ-set of A as subspace of P (ω). Therefore, if
Ψ (A) is a normal space then A is a Q-set (as subspace of P (ω)).

For x ∈ 2ω, put Ax = {x ¹ n : n ∈ ω} and for a subset X of 2ω let
AX = {Ax : x ∈ X}. Then AX is an almost disjoint family of sub-
sets of 2<ω. Call this AX the almost disjoint family corresponding
to X.

Proposition 2.2 (Folklore). Let X ⊆ 2ω and AX be the almost
disjoint family corresponding to X. Then X is a Q-set if and only
if Ψ (AX) is a normal space.

Proof: Assume that X is a Q-set and B ⊆ A, and let B =
{x ∈ X : Ax ∈ B}. Since X is a Q-set there are closed subsets Fn

and Gn of X such that B =
⋃

n∈ω Fn and X \ B =
⋃

n∈ω Gn. De-
fine Jo = F̂0, K0 = Ĝ0 \ F̂0, and Jn = F̂n \

⋃
i<n Ĝi as well as

Kn = Ĝn \
⋃

i≤n F̂n for n > 0. Put J =
⋃

n∈ω Jn and observe
that J ∩ Km =∗ ∅ for every m ∈ ω. If Ax ∈ B, then there is
some n ∈ ω such that x ∈ Fn. Moreover, since each Gi is closed
in X and Gi ∩ B = ∅, for i < n, there is some k ∈ ω such that
[x ¹ k] ∩ ⋃

i<n Gi = ∅. This implies that Ax ⊆∗ Jn ⊆ J . Sim-
ilarly, if x ∈ X \ B there are k, m ∈ ω such that x ∈ Gm and
[x ¹ k] ∩ ⋃

i≤n Fi = ∅; this implies Ax ∩ J =∗ ∅. By Proposition
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2.1 this suffices to show that Ψ (A) is normal. The other direction
follows from the comments following Proposition 2.1. ¤

Proof of Theorem 1.1: The equivalence between (a) and (b) fol-
lows from Proposition 2.2. For (b) implies (c) we need only to
recall that Ψ (A) is always a separable Moore space which is non-
metrizable if A is uncountable. To show that (c) implies (b), first
observe that a separable normal Moore space which is not metriz-
able has an uncountable closed discrete subset. This is a conse-
quence of Bing’s theorem that a Moore space X is metrizable if
and only if X is collectionwise normal. So, let X be a separable
non-metrizable normal Moore space, let D be a countable dense
subset of X, and let F be a closed discrete uncountable subset of
X disjoint from D. Taking sequences of elements in D which con-
verge to the points in F , we obtain an uncountable almost disjoint
family A. The normality of X implies that of Ψ (A). ¤

Restricting ourselves to R-embeddable almost disjoint families
does not impose any restriction due to the following simple obser-
vation.

Proposition 2.3. Every almost disjoint family A such that Ψ (A)
is normal is R-embeddable.

Proof: If Ψ (A) is a normal space then we can take any injection
g : A → R \Q and use the Tietze extension theorem to find a
continuous extension g : Ψ (A) → R of g. Now g can be modified
to obtain a function f witnessing that A is R-embedded; simply let
f ¹ A = g ¹ A and, for n ∈ ω, f (n) ∈ Q\ {f (0) , . . . , f (n− 1)}
such that |f (n)− g (n)| < 1

n . The continuity of f follows from
that of g. ¤

3. Main results

In this section we describe how to construct models of ZFC where
either of the possible implications in Question 1 fails. With a little
bit of care one can actually construct a single model where both
implications fail.

Even though the belief in a positive answer for Question 1 was
not correct, it was partially supported by the next theorem.
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Theorem 3.1 (Folklore). MAσ-centered implies that for an R-embed-
dable almost disjoint family A, Ψ(A) is normal if and only if XA
is a Q-set.

Proof: For the forward implication just recall that by Jones’
Lemma, the cardinality of A must be less than c and by a result
of J. Silver (under MAσ-centered) every set of reals of size less than
c is a Q-set. The reverse implication follows directly from the next
lemma. ¤

Lemma 3.2. Suppose that A is an R-embeddable family such that
XA is a Q-set. If |A| < b, then Ψ(A) is a normal space.

Proof: For convenience we shall use the bubble space to show
that Ψ (A) is normal. It is an old result of Bing’s that the bubble
space over a Q-set is a normal space. See [10, p. 709].

Let ϕ : Ψ (A) → R witness that A is R-embedded, let XA =
{xA : A ∈ A}, and put qn = ϕ (n), for every n ∈ ω. By hypothesis
XA is a Q-set. In order to establish that Ψ (A) is normal, let
B ⊆ A. As the bubble space over XA is normal, there are basic
neighborhoods Bx, for x ∈ XA, such that UB =

⋃ {BxB : B ∈ B}
and WB =

⋃ {BxA : A ∈ A \ B} are disjoint.
It is clear that, for A ∈ A, there is a function fA : A → ω

satisfying
(1) fA is non-decreasing,
(2) fA is finite-to-one, and
(3) eventually

〈
qn, 1

fA(n)

〉
∈ BxA .

The idea is that the function fA can be used to lift the points in A
to the neighborhood BxA . Define gA : ω → ω by

gA (n) = max {a ∈ A : fA (a) ≤ n} .

Since |A| < b, there is an increasing function g : ω → ω such that
gA ≤∗ g for all A ∈ A. Let f : ω → ω be defined by

f (n) = max {k ∈ ω : g (k) ≤ n}
for every n ∈ ω. Then f ¹ A ≤∗ fA for every A ∈ A and f is finite
to one. This f can be used to do the lifting of the points qn in a
uniform way for every A ∈ A; i.e., for large n ∈ A,

〈
qn, 1

f(n)

〉
∈

BxA for every A ∈ A.
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Then the partitioner for B and A \ B will be

J =
{

n ∈ ω :
〈

qn,
1

f (n)

〉
∈ UB

}
.

It is clear that B ∈ B ⇒ B ⊆∗ J and A ∈ A \ B ⇒ A∩ J =∗ ∅. ¤
Now we show that there is a model in which the implication “if

Ψ (A) is an uncountable normal space then XA is Q-set in R” fails.

Theorem 3.3. It is consistent that there is an uncountable A
which is R-embeddable and Ψ (A) is normal but XA is not a Q-set.

Proof: In [4], a model is described where there is a Q-set X which
consists of the irrationals concentrated on some countable set F
of the irrationals disjoint from X. Partition Q into two disjoint
dense sets D0 and D1. By propositions 2.2 and 2.3, there is an
R-embedded almost disjoint family A0 of subsets of D0 such that
XA0 = X. Consider also the almost disjoint family A1 obtained by
taking convergent sequences of elements in D1 to the elements of
F . Since F is countable, Ψ (A1) is normal. Letting A = A0 ∪ A1,
Ψ (A) is normal as it is the topological sum of Ψ (A0) and Ψ (A1),
both of which are normal. However, as X is concentrated on F ,
XA = X ∪ F cannot be a Q-set.1 ¤
Theorem 3.4. It is consistent that there is an almost disjoint fam-
ily A that is R-embeddable, XA is a Q-set, yet Ψ(A) is not a normal
space.

Proof: We will use a finite support iteration
〈
Pα, Q̇α : α < ω2

〉

of c.c.c. forcings that will be described next. The idea is that
P0 generically adds an R-embeddable family A and the rest of the
iteration makes XA a Q-set without making Ψ (A) a normal space.

For technical reasons, fix families Wn, n ∈ ω, of open intervals
with irrational endpoints such that

• the length of each interval in Wn is at most 1
n , and

• Wn+1 refines Wn.

1From the referee’s report: “The example of a normal R-embedded Ψ(A)
such that XA is not a Q-set is a little unsatisfying, in that it is homeomorphic
to the topological sum of two Ψ(A)’s, each over a Q-set (one countable). I
wonder if every example must be like that. Surely there would at least have to
be an uncountable subset of XA which is a Q-set.”
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Then W =
⋃

n∈ω Wn is a base for the rationals with the property
that, given two elements of W, either one is contained in the other
or they are disjoint. In particular, for every q ∈ Q and n ∈ ω there
is a unique W = W (q, n) ∈ Wn such that q ∈ W .

Define P0 by p ∈ P0 if and only if p = (a, k) ∈ Fn (ω1 × ω,Q)×ω.
For p = (ap, kp) and q = (aq, kq) declare p ≤ q if and only if

(1) ap ⊇ aq and kp ≥ kq, and
(2) if aq (α, ) and ap (α, ) are the obvious functions and nα

q is
the largest element in the domain of aq (α, ) then

ap (α, n) ∈ W
(
aq(α, nα

q ), kq

)

for all n ∈ dom (ap (α, )) \ dom (aq (α, )). Moreover, this
holds for all α ∈ ω1 such that there is some n ∈ ω for which
(α, n) ∈ dom (aq).2

If G0 is a generic filter in P0, then G0 codes a family of sequences
aα : ω → Q given by aα (n) = ap (α, n) for some p ∈ G0. Thus, P0

actually adds ω1 Cohen reals—the limits of the Cauchy sequences
〈aα (n) : n ∈ ω〉. It is clear that letting Aα = {aα (n) : n ∈ ω}, we
have an R-embedded almost disjoint family A = {Aα : α < ω1} in
V [G0].

Let B = {Bn : n ∈ ω} be a base for the topology of R. For
Y ⊆ XA, let P (Y ) be the set of all r such that

(1) r is finite subset of ω × (B ∪ Y ) ;
(2) for B ∈ B and x ∈ Y , the set r satisfies 〈n,B〉 ∈ r, and

〈n, x〉 ∈ r implies x /∈ B.

The ordering on P (Y ) is just r ≤ r′ if and only if r ⊇ r′. This
forcing is defined in [4].

The forcing P (Y ) makes Y an Fσ subset of XA. Indeed, if G is
a generic filter in P (Y ) over a model V , then set for each n ∈ ω,

Un = {x ∈ XA : (∃r ∈ G) (∃B ∈ B) (〈n,B〉 ∈ r ∧ x ∈ B)} ,

and set K =
⋃ {X \ Un : n ∈ ω}. Then each Un is open relative to

XA and K is an Fσ relative to XA. To see that K = Y , proceed
as follows. For all x ∈ Y and r ∈ P (Y ), there are r′ ⊇ r and n ∈ ω
such that 〈n, x〉 ∈ r′. Then x ∈ X \Un ⊆ K. On the other hand, if
x ∈ XA \ Y, r ∈ P (Y ) and n ∈ ω, there are r′ ⊇ r and B ∈ B such
that 〈n,B〉 ∈ r′ and x ∈ B. Then x ∈ Un for all n ∈ ω.

2The point of choosing the families Wn is to make the order of P0 transitive.
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Assume the ground model V is a model of CH. Using the usual
bookkeeping techniques, we can take Qα to be such that Pα ° Q̇α =
P(Ẏα) where Ẏα is a Pα-name for a subset of XA and doing this in
such a way that every subset of XA eventually appears as some Yα.
Thus, Pω2 will force A to be an R-embedded almost disjoint family
and XA to be a Q-set. Fix a generic G ⊆ Pω2 over the ground
model V.

To show that Ψ (A) is not normal in V [G], it suffices to find a
C ⊆ A such that C and A \ C cannot be separated. Consider simply
C = {Aα : α ∈ ω1 is a limit ordinal}. Suppose J ⊆ Q is such that

C = {A ∈ A : A ⊆∗ J} and A \ C = {A ∈ A : A ∩ J =∗ ∅} .

By genericity, J is a dense and co-dense subset of the rationals.
The conclusion will then follow from the next lemma. ¤
Lemma 3.5. In V [G], the set {α ∈ ω1 : Aα ⊆∗ J} is at most count-
able for every dense and co-dense J ⊆ Q.

To prove the lemma we first show that Pω2 is “semi-Cohen” (see
[2]).

Lemma 3.6. If p ∈ Pω2 and M is a countable elementary submodel
of some big enough H (θ) such that Pω2 ∈ M , then there is a p ∈
Pω2 ∩M such that whenever r ∈ Pω2 ∩M is such that r ≤ p, r is
compatible with p.

Proof: For every p ∈ Pω2 there is some β < ω2 such that p ∈ Pβ;
thus, the proof can be done by induction on β ≤ ω2. For β = 0
and for β limit, the proof is easy so we only show the details for
successor steps.

Suppose the lemma holds for Pβ and p ∈ Pβ+1. There is a p′ ∈ Pβ

such that

p′ ° p (β) = {〈ni, Bi〉 : i < n0} ∪ {〈ni, ẋγi〉 : i < n2} ,

for some n0, n1, n2 ∈ ω with n1 ≤ n2, and such that {γi : i < n1} ⊆
M while {γi : n1 ≤ i < n2} ∩M = ∅.

By induction hypothesis there exists a p′ ∈ Pβ∩M satisfying the
conclusion for p′ instead of p. Find {γ′i : n1 ≤ i < n2} ⊆ M disjoint
from {γi : i < n2} and define p ∈ M as follows:

p (0) = p′ (0)∪{〈〈γ′i,m, qj〉 , n〉 : 〈〈γi,m, qj〉 , n〉 ∈ p′ (0) ∧ i < n2};
p (α) = p′ (α) for 0 < α < β; and
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p (β) = (p (β) ∩M) ∪
{〈

ni, ẋγ′i

〉
: i ∈ n2

}
.

Then p satisfies the requirements. Indeed, if r ∈ Pβ+1 ∩M and
r ≤ p, then r ¹ β is compatible with p ¹ β; thus, p and r can only
be incompatible if r forces ẋγi inside some B used in p (β), for some
i ∈ n2. However, r (and p) can only decide a finite initial part of Ȧγi

of which ẋγi is the limit. Then there must exist qm ∈ Q and k ∈ ω

such that the interval W (qm, k) is contained in B, r ° qm ∈ Ȧγi ,
and any mutual extension of p and r forces the new points of Ȧγi

to be in W (qm, k). Since the same initial part of Ȧγi that p uses
is also used by p to determine another point ẋγ′i , r would also
force qm inside Ȧγ′i and promise that the new points for Ȧγ′i are in
W (qm, k). In other words, r would force ẋγ′i inside B as well. This
is a contradiction as p ° ẋγ′i /∈ B. ¤

Now we are ready to give the proof of the main lemma.
Proof of Lemma 3.5: Fix J ⊆ Q as in the statement of the lemma

and let J̇ be a Pω2-name for J . Let M ≺ H (θ) be countable, with
θ being a large enough regular cardinal, J̇ ∈ M , and M containing
everything that is relevant for the proof of the lemma. We now
show that Pω2 ° Ȧδ 6⊆∗ J̇ for δ /∈ M.

Suppose not. Then there is some δ /∈ M and there is p ∈ Pω2 such
that, for some n ∈ ω, p ° Ȧδ \ J̇ ⊆ {q0, . . . , qn}. Let p ∈ M ∩ Pω2

be as in the conclusion of Lemma 3.6. Since p ° “Q \ J̇ is dense in
R”, p can be extended inside M to some r ∈ Pω2 ∩M such that,
for some k ∈ ω and large enough m ∈ ω,

• r ° qk /∈ J̇ ;
• qk is a fresh new rational, i.e., qk /∈ {q0, . . . , qn} , and qk is

not in the range of p (0) (δ, ); and
• qk ∈ W (qn, m).

Then r is compatible with p, so we can find a common extension
r′ such that r′ ° qk ∈ Ȧδ which contradicts that p ° qk /∈ Ȧδ. ¤

We conclude with some remarks on Problem 291 in [8] which has
already been implicitly solved. First, let us recall that a space is
pseudonormal if every pair of disjoint closed sets can be separated
by disjoint open sets, provided at least one of them is countable.
Peter Nyikos asks, Is there a pseudonormal Ψ-space of cardinality
d? This is equivalent to asking whether there is a λ-set of size d.
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For if Ψ (A) is a pseudonormal space, then A is a λ-set as subspace
of P (ω) , and if X ⊆ 2ω is a λ-set, then Ψ (AX) is a pseudonormal
space (the proof of this is analogous to the proof of Proposition
2.2). Miller [7, Theorem 22] showed that in the Cohen model (in
which b = ℵ1 and d = ℵ2), any λ-set has size ℵ1.

Problem 291 also has a second part where Nyikos asks, More
generally, what is the maximum cardinality of a pseudonormal Ψ-
space? To this we have two comments.

First, it is not true that the maximum can always be attained.
The maximum exists in the absence of inaccessible cardinals; how-
ever, assuming the existence of a strongly inaccessible cardinal, it
is possible to construct a model of ZFC where c is a limit cardinal,
and for every κ < c there is a λ-set of size κ, yet there is no λ-set
of size c. The proof of this will appear elsewhere.

The other comment is that there does not seem to be any rea-
sonable combinatorial upper bound. This is largely due to the fact
that λ-sets are preserved by c.c.c. forcing extensions. For example,
it is consistent that there is a λ-set of size c = ℵ2, yet all cardinal
invariants in the Cichoń diagram are equal to ℵ1.
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