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Abstract

We settle a conjecture due to R.L. Blair by proving that it is consistent with Martin’'s Axiom to
have a perfectly normal nosalcompact space of cardinallty .
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1. Introduction

Realcompact spaces were defined and igated by Hewitt and Nachbin. Hewitt
demonstrated the importance of these spaces by proving the isomorphism theorem: “If
X and Y are realcompact spaces, thénX) is isomorphic toC(Y) if and only if
X is homeomorphic toY”. He also derived many of the properties of realcompact
spaces, often shared in common with those enjoyed by compact spaces. There are several
characterizations of realcompact spaces, we will use: a Tychonoff spacealcompact
if every z-ultrafilter on X with the countable intersection property has non-empty total
intersection. Az-ultrafilter is a filter consisting of zero-sets, i.e., sets of the fgint(0),
for some real-valued continuous functiofi which is maximal among the-filters.

A comprehensive study of realcompact spaces is done in [10,20].
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On the other hand, perfectly normal spaces form a wide class of topological spaces; in
particular, any metric space is a perfeatigrmal space. Perfect normality is a property
closely related to metrization properties and it usually plays an important role in many
different proofs. A spac is saidperfectly normalf it is normal and every closed subset
of X is aG; (equivalently: every closed subset is a zero-set). In [4] Blair introduced the
class of weakly perfectly normal spaces to studgmbedded subsets. A subsets z-
embeddech X in case each zero-set 8is the restriction t& of a zero set oK. A spaceX
is weakly perfectly normaf every subset ok is z-embedded irX . Every perfectly normal
space is weakly perfectly normal and any wigaberfectly normal space is completely
normal. Blair asked whether there exists a perfectly normal space of cardinality less than
the first measurable that is not realcompact. Blair proposed it as an open problem as early
as 1962. It appears credited to him and Stephenson Jr in [11]. It also appears as a problem
about a consequene#A + —CH in [4], and more recently, it appears in [5] and later in
[18] in the form

Problem 1. Is there &FC example of a perfectly normal space that is not realcompact? Or
doesMA + —CH imply that every such space of cardinality less than the first measurable is
realcompact?

Blair conjectured an affirmative answer to the last questiorét¢atin [14] had showed
that a paracompact space is realcompact if and only ifX does not have discrete
subspaces of measurable cardinality. Tremeeeasy examples of countably paracompact
spaces that are not realcompact. If a norneairtably paracompact space has the property
that every ultrafilter of closed subsets with the countable intersection property is fixed,
then it is realcompact [15]. Perfect moality is a stronger property than countable
paracompactness is, though paracompactiess not imply perfect normality. There are
very few examples of perfectly normal nonreampact spaces (basically two until now).
The discrete space of measurable cardinality and the Ostaszewski’s classical construction
[17] from <> are examples of perfectly normal nonrealcompact spaces. On the other
direction, Weiss [21] showed thistA + —CH implies that every perfectly normal countably
compact space is compact. Blair and van Douwen showed [5] that Wder—CH every
perfectly normal spac& is nearly realcompagtthat is, X \ vX is dense in8X \ X.
Wherev X andB X are the realcompactification and the Stodeeh compactification of ,
respectively. Itis also easy to give realcomgagen compact) spaces that are not perfectly
normal.

We settle in the negative Blair's conjecture thv& + —CH implies that every perfectly
normal space of cardinality less than the first measurable is realcompact. Swardson
mentions that some partial results had been obtained; for instance, she proved in [19]
that MA + —CH implies that regular spaces of cardinality less than the first measurable
in which closed sets have countable character are realcompact. Now we also know that
normal spaces of small cardinality in which every subset@ssare realcompact. These
kinds of spaces are known @sset spaces; Balogh [2] showed they exists in ZFC.

Our topology is a mixture of the ideas behind the Ostaszewski’s line and those behind
the usual “ladder spaces” [16]. The main idgaur construction is to define a sequence of
subsets o1 which will serve as a weak neighbourhood base for a topology,aefining
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the usual order topology. Our first approach to the problem was by a certain combination
of two of Nyikos’ axioms. We knew the kind of guessing-meeting principle that would
give us a perfectly normal space that is not realcompact and that we could have preserved
after forcing with a ccc poset. Unfortunately that combination turned out to be inconsistent.
UnderV = L we were able to produce [12] a guessing principle close to what we needed
and we can construct a normal topology in which most closed setGsg@aad the space is

not realcompact, and this can be preserved by ccc posets ¢fsi¥ée think the principle

that allows us to do this is of some interest on its own.

Here we use a quite new forcing notion to obtain a model with a guessing sequence.
Further on, the forcing is made to take care of possible ccc forcing notions of small
size over the generic model. This will allow us to preserve the important properties of
our guessing sequence after a finite support iteration of ccc forcings to obtain a model
of MA + —CH. The forcing we are using is a modification of one used by Foreman and
Komjéth in [9]. See also [13].

2. Building the counterexample

Our terminology and notation follow the standards of contemporary set-theoretic
topology. The few special symbols we use are next. For4etad B of ordinal numbers
we write A C* B if A\ B is a bounded subset of syp say it in another way, if there
iS somex < supA such that(Vy > «)(y € A— y € B). For subsetsi and B of w1,
A =" B meansA C* B andB C* A. We often use interval notation; for example, 8]
is the set of ordinaly such thatx < y < 8. The set of all limit ordinals inw1 is denoted
by Lim(w1) and[X]* denotes the family of all subsets &fwith cardinality«; [ X]<* and
[X]S* have the obvious meanings. “Club” means closed and unbounded set. We reserve
the bar over a subset af; to denote its closure with respect to the order topology. Our
forcing posets are downward directed.df is a formula of the forcing language fdt,
when we writeP |- @ we mean that the s¢p € P: p |- @} is dense ifP. We usually take
the elements of the ground model as names for themselves but sometimes vgham
element of the ground model we indicate this by writmty @ (¢). Names are denoted by
placing a dot over the object namedUPlfis a forcing notion over a modd, andG is a
V-generic filter inlP, then we can havR is alP-name for a forcing notion over[G1; in
the extensiorV [G] we may have afR-name for a set of ordinals, then we denote by
the P-name for theR-name of the respective object in the generic extensiovi[af] by
forcing with R.

Definition 2. A sequencef = (Ey: o € Lim(w1)), where E, is a cofinal subset of
a € Lim(wy) is called a guessing sequence for a familyif for each X € A there is
a € Lim(wy) such thatt, C* X. If for eachX € A there are club many € w1 such that
E, C* X, then we say that the sequenTE)eis strong guessing for the familyt. If A is the
family C of all club subsets of; we simply say that the sequen_ﬁeis club guessing or
strong club guessing, respectively.
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There is a topology (Tf) on w; taking the elements of a guessing sequeﬁcas weak
neighbourhoods; that is, we define resiuely neighbourhoods at each pointaf: for zero
and successor ordinalswe stipulate{a} being open, and for limit ordinalg, assuming
we have defined neighbourhoods containeflirx] for each poin € [0, y), we define
the neighbourhoods of to be sets of the form

uJwe: e € E,\ B, €Y

whereg < Y, and W¢ is a neighbourhood 03‘ € E, \ B in the spacgO0, y). We call this
topologyr(E) the topology associated with. A similar topology was considered in [8].

Lemma 3. Let E (E,: vy € Lim(wy)) be a guessing sequence ande the topology
associated withE . ThenX is r-closed if and only if for every limit ordingl € w1 such
that E, N X is unboundediry, y € X.

Proof. The necessity is clear. Suppose that for every limit ordjnal wy, if E, N X is
unbounded iny, theny € X. We shall show thaX is r-closed. We inductively show
that for eachy € w1 \ X, there is ar-open neighbourhood gf disjoint from X. If y is
successor or 0, singe is isolated,{y} is r-open and disjoint fronX. Suppose thay is
limit and for every¢ € y \ X, there is ar-open neighbourhoo®; of £ disjoint from X.
By the assumption, we havg, N X is bounded iny. Let¢ =sup(E, N X) + 1. Then for
everyé € E, \ ¢, we havet € y \ X. By the inductive hypothesis, there exists-@pen
neighbourhoodV; of £ disjointfromX. LetW = {y}U(J{W:: £ € E, \ ¢}. ThenWis a
neighbourhood of disjointfromX. 0O

The basic open neighbourhoods)oin the topology just described are subsets of the
interval [0, y], it follows that for everys € w1, the interval[O, 8) is T-open. Applying
Lemma 3 we see that the intervdly «] are r-closed. Thus open intervalg, 8) aret-
open andz(f) is finer than the usual order topology. Hencel_f) is aTi-topology.

Definition 4. Let E = (Ey. vy € le(wl)) be a guessing sequence and¥et w1. We say
thaty € w1 is nice forX with respect toF if and only if both

() yeX=E,<*X,and
(i) y ¢ X = E, NX is boundediry.

If E is clear from the context, we may simply say thais nice forX.

Definition 5. Let E = (Ey: y € Lim(w1)) be a guessing sequence ane- r(f). E is
called a strong-guessing sequence if for everyclosed subsef of w1 there exists a club
subsetD of w; such that every € D is nice forF.

If Fis ar(f) closed subset ab1, theny € Lim(w1) is nice forF ifand only ify € F
is equivalent toE,, * F. Notice also that every strong-guessing sequence is a strong
club guessing sequence To see this Het (Ey: S Lim(w1)) be a strong-guessing
sequence and lef be a club subset ab;. Sincer(E) is finer than the order topology,
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every club subset ab; is r(f)—closed. In particularC is r(f)—closed. LetD be a club
subset ofw1 consisting of nice points fo€. Without loss of generalityp C C. Then for
everyy e D, sincey is nice forC andy € C, E, C* C. Conversely, ifE is strong club
guessing and every stationazryf)-closed subset contains a club subsebgfthenE is
strongr(f)-guessing.

Lemmasb. If E = (Eq: a € Lim(wy)) is a strongr-guessing sequence and the sBisare
closed in the order topology, ther(E) is a perfectly normal zero-dimensional topology.
Moreover, if any stationary(f)-closed set contains a club subsetaf then the club filter
generates a countable complete z-ultrafilter, and he(mger(f)) is not a realcompact
space.

Proof. The topologyr = t(E) is locally countable, thus if is normal it will be zero-
dimensional. To prove normality we first establish thas regular by induction. Suppose
we have tha([0, @), 7 | [0, «@)) is regular for alle < y, wheret | [0, «] is the subspace
topology on[0, «]. We need to show th&{0, y1, t [ [0, ¥]) is regular as well. The unique
non-trivial pair for which we must prove regularity is that in which we have a limit
ordinal y and ar-closed subsef of [0, y] such thaty ¢ F and we want to exhibit
disjoint neighbourhoods of" and y, respectively. First, there is a neighbourhodi

of y such thatF N W,, =¢@. We can assume tha¥, = {y} U [ J{W:: £ € E, \ B}. By
the inductive hypothesis we can deduce tftaty) is a normal space as it is countable
and regular. If we prove that the closure; @, \ g), of E, \ g with respect to the
new topology on[0, y] is disjoint from F, then using the normality of0, y) we can
choose disjoint-open setd/o andU; such thatF € Up andE,, \ 8 € Uz. Thus, taking
W}’, ={y}UlU{W: NU1: &£ € E, \ B} we would havelp N W)’, as we need it. And it is
certainly the case that Ncl.(E, \ ) =¥, forif o € F \ B, « cannot be a limit point
of E, \ g since otherwise, by our assumption ti#gt is closed under the order topology,
o would be a member oF, \ g contradicting thatW, N F = @. Thus we can find a
neighbourhood ofx with no points fromkE, \ g, as we wanted to show. Sinaeis a
conservative extension of[ [0, o], the regularity follows.

Let us now prove the normality. Let and H be two disjointz-closed subsets af;.
Then by the assumption, there exists a club subsef w1 such that every € D is nice
for F and H. We shall define by induction on the elementsidftwo disjoint T-open
subsetdJ andW of w1 suchthatF CU andH C W.

Let yo = min(D). Since the subspadé, yo] is regular and countable, hence normal,
there exist two disjoint-open subset#/,, and W,,, such thatF N [0, y] < U,, and
H N[0, yo] € W,,. DefineU N[0, yol = U,, and W N [0, yo] = W,,. Suppose now that
we have defined/ N [0, y] andW N[0, y] for somey € D. Let y* be the next element
of D, we need to defin& N (y, y ] and W N (y, y+]. Since the intervaly, y*] as a
subspace is regular and countable, it is also normal. Note(#hat'] is also clopen. So,
we can find disjoint/,+ and W,+ t-open subsets ofy, y*] such thatF N (y, y*] €
U,+ and H N (y,y*] € W,+. Then we define/ N [0,y*] = (U N[0, y]) U U,+ and
W0, yT1=WN[0,y)UW,+.

Finally supposey is a limit point of D and we have defined disjoirit N [0, £] and
W N[O, ], forallé e DNy. SinceF N H = ¢, we have three exclusive cases.
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Casel.y ¢ FUH.ThenletU N[0, y]1=UJ{UNI[0,£]: Ee DNy}andW N[O, y]=
U{WNIO,E1: e DNyl

Case2.y e F\ H. ThenletU N[0, y]1=U N[0, y)U{y}andWN[0,y]=WnN
[0, ¥). ClearlyU N[0, y] andW N [0, y] are disjoint and¥ N [0, y] is T-open. We claim
thatU N[O, y]is t-open. Sincd/ N[0, y) is T-open, it suffices to show that there exists a
neighbourhoodv of y such thatv € U N[0, y]. Sincey is nice forF, we haveE, C* F.
Let 8 <y be such that, \ g € F. Then for eaclf € E,, \ g, there is a neighbourhood
N: CUN[O,y). Let N ={y}UJ{Ne: & € E), \ B}. ThenN is a neighbourhood of
contained inU N [0, y]. ThusU N[0, y] is T-open.

Case3.y e H\ F.ThenletUN[0,y]=UNI[0,y)andWN [0, y]=(WN [0, y))U
{y}. By analogous argument as in the previous case they-apen and disjoint.

It is now trivial thatU and W arer-open and disjoint such th&& C U andH C W.
Therefore(ws, ) is normal.

Let us now prove thatws, 7) is perfect. We shall prove that anyclosed subset of
(w1, 1) is aGs-set. If H is at-closed set, there is a club s€tC w1 such that for all
y € C, y is nice for H, which implies thatE,, C* H in casey € H. We can perform
induction alongC definingz-open subset&e (n), for & € C, such that

(1) HN[O,&]1=({Ut(n): n € w};
(2) Ue(n) =Uy(n) N0, €], whenevek < 7.

For successor points af there is no problem given thaf N (£,£7] is Gs since
(£,£7] is T1 and countable. So supposeis a limit of ordinals inC and everything
has been done accordingly so far.&f¢ H, then we only need to take the union of
the sets previously defined. € H, then a neighbourhood of can be given by
neighbourhoods of points frorBe N H: for eachn € w, we can find a neighbourhood
We(n) C U, = J{Ux(n): A € CNEY. SoUg(n) = U, U {&} will be T-open containing
HNJO,&]. HenceH =, U(n), whereU (n) is the union of all théJs (n), § € C.

Lastly, let F be the family of allz-closed subsets ab1 which contain a club subset
of w1. Then F is a filter with the countable intersection property ghgF = @. The
hypothesis easily implies th&t is maximal. O

2.1. The forcing construction

Definition 7. Let P be a notion of forcing and leV be a countable elementary submodel
of someH (L) withP e N.

(1) We say that a conditiop € PP is totally (N, P)-generic if wheneveD is a dense open
subset off that is inNV, we can find a conditiop € N N D with g < p. Said in another
way, ¢ is a lower bound for som&'-generic filterG € N N P.

(2) We say thaf? is totally proper if, givenN as above, everp € N NP has a totally
(N, P)-generic extensiog € P.

It is not difficult to prove that a notion of forcing is totally proper if and only if it is
proper and the forcing adds no new reals. In thesspnce of properness, this is equivalent to
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the forcing adding no new-sequence of elements of the ground model. This was noticed
by Eisworth and Roitman [7Definition 7 was introduced by them; although many people
have used proper forcing adding no reals without naming it.

Proposition 8. Suppose tha?™o = &; and2%1 = X,. Then there exists a positsuch that
in VP, there exists a guessing sequeﬁb)euch that

® Cisa strong club guessing sequence, and
(i) if R is a ccc poset of size1 ando is anR-name such thaR IF“o is stationary and
r(Z'))-cIosed, thenR "o contains a club subset af;”.

Proof. P will be an iteration(P,, Q,g: a < w2; B < wp) of length wy with countable

support. We start our induction by adding a guessing sequ@nwh a forcing poset

Qo and we inductively construd, for each O< o < wy. In the course of induction, we
shall also prove that

(1) (a) Py is Rp-cc and totally proper,
(b) P, forces thaiQq| < N1,
(c) P, forces thatC is a club guessing sequence, and
(d) P, forces thatifR is a ccc poset of size 81 andé is anR-name for a stationary
r(@)—closed set, then

{y eLim(oy): RIFsugé NCy) =y}
is stationary.

Note that in (1d), without loss of genditg, we may assume that the domainkfis a
subset ofo;.
DefineQo by: p € Qo if and only if p is a function such that dogp) is a countable
subset of Liniw;) and p(y) is a closed unbounded subset)gffor all y € dom(p). If
G < Qo is generic, then for every,q € G andy € dom(p) Ndom(g), p(y) = q(y).
Let C, = p(y) for some (all)p € G with y € dom(p). It is easy to see that for every
y € Lim(w1), there exists @ € G with y € dom(p). Thus we get a guessing sequence
=(C,: y e Lim(wy)). Let C'J, be a name focC,,, for eachy € Lim(wy).
By (1a) and (1b) of the inductive hypotheses, it is easy to see that for every;,
P, forces 21 = &,. Thus, by a routine book-keeping argument, it is possible to consider
sequence&F,: 0 < o < wp andw is even of canonical names for club subsets@afwhich
appear invFs for someg < wy, and((Ra, 0y). o < w2 andea is odd of canonical names
for pairs(R, o) which appear ir’’# for someB < w; such thaR is a poset whose domain
is a subset ofv; ando is anR-name for a subset @$;. Moreover, we can arrange our
book-keeping so that every club and every such pair in the final extension occurs as some
term of one of our sequences. When we work in the extension, we denote the evaluation of
Fy, R, andé, by Fy, R, ando,, respectively.
First we shall explain how to defin@, for « > 0 assuming we have defin@b for all
B <a.LetG, C P, be generic and we shall define a pa8gtin V[G,]. We IetQa be a
name forQy,.
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Case o is even.Let Q, be the standard poset shooting a club throyghe
Lim(wy): C, C* Fu}; see [1] for a precise definition of it. By (1c) of the inductive
hypothesis, this definition makes sense.

Casec is odd.If R, is not a ccc poset dR, does not force that, is stationary, then
Qy is the trivial poset. Otherwise, |€), be the standard poset shooting a club through
{y e Lim(w1): Ry IF supCy Noy) = y}. By (1d) of the inductive hypothesis, it makes
sense.

In either case, if), is not trivial, let D, be the club subset af; added at therth stage
and D, its Qq-name. IfQ, is trivial, let D, = w1 and D, = 1. Note that for every even
B >0, Dg C Fg and for every odg, Rg I- Dg C op.

To see that we can carry out this induction, we need the following lemma.

Lemma 9. Suppose thatla)—(1d)are true for all g < « < wy. Letp € P, and letF, R,
ando be alP,-names such thak, forces that

(a) F isaclub subset aby,
(b) Ris accc poset, )
(c) o isaR-name such thaR I+ “ & is a stationaryr (3)—closed subset ab1”.

Let M be a countable elementary submodel of sath@), for some large enough
regular cardinal 8, such that{P,, p, E) (D/g B<a)F, R,6} € M. Lets = M N w1.
Then there exists @ < p such that

(i) gis totaIIy (M, Pq)- generic,
(i) ¢IFCs<* F,and
(i) ¢IF“RIFsupCs No)=36".

Suppose that the lemma and the inductive hypotheses are true fokall < wy. We
shall show the inductive hypotheses tor By a standard argument, éf < w», then we
can prove thal, has a dense subset of sigekq and hence it isR2-cc. If @« = w2, by a
A-system lemma argumer,,, is 82-cc. By the previous lemm&,, is totally proper and
hence it adds no new countable sequence of ordinals.

To see (1c), lep € P, be arbitrary and” be aP,-name such that I “ F is a club subset
of w1”. Let R be aP,-name for the trivial poset and aP,-name for aR-name forw; . Let
M be a countable elementary submodeHo®), for some large enough regular cardinal
as in the statement of Lemma 9 and &et M Nw1. Letg < p be as in the conclusion of
Lemma9. Thew I- Cs C* F.

For (1d), letp € P, be arbitrary and leD be aP,-name for a club subset af;. Also
let R ands be P,-names such that |- “R is a ccc poset whose domain is a subset of
w1 andR I 5 is a stationaryt (3)—closed subset ab;”. Let F be aP,-name forw;. Let
M be a countable elementary submodel as before antl-seé N w;. Letg < p be asin
the conclusion of the previous lemma. Theft- “R I sup(Cs N ¢) = ¢&". But also since
g is (M, P,)-genericg IF 8 € D. Thereforeg IF “{y € Lim(w1): RI- supCs N6) =8} is
stationary”. Thus we can continue the inductive definition.
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Let P =P,,. Let G € P be generic. Note that sinde is X>-cc, every subset ab;
appears inV[G N P,] for somea < w». First we shall show that i [G], Cisa strong
club guessing sequence. LEtbe a club subset ab1 in V[G]. Then there exists an even
B < w2 such thatF = Fg. Then for everyy € Dg, C,, C* Fg = F. Suppose thaR is
a ccc poset whose domain is a subsetpfando is a]R-name for a statlonary(ﬁ))
closed subset ab;. Then there exists an ogtl < w2 such thatRg, o) = (]R o). Then
Dg € {y eLim(w1): RIFsup(Cs N o) = §}. But sinceo is a name for a(C) -closed set,
RIFsupCs No) =6 impliesR |- § € o. Therefore we havR I- Dg C ¢. This concludes
the proof of Proposition 8. O

Proof of Lemma9. Let{B,: n < w} be an enumeration of all even ordinalsihN «. Let
(8n: n < w) be an increasing cofinal sequence iand{D,: n € w} an enumeration of all
open dense subsetsBf lying in M. DefineX, € M as aP,-name forF N (), _,(Dg, N
D,g +1). By induction, we shall construct a decreasing sequépgen < w) of elements
of P, and a sequendé:,,: n < w) of Py-names such that for every< w

2 @ pun,EneM,
(b) pu+1 € Dn, .
(¢) pn+1!F"E, is a countable subset &f, \ §,", and
(d) ppr1lF“RIF6 NE, #0"

Let po = p. Suppose that we have defingd and E,, for all m < n. Since p, and
D, are in M, there exists ®n+1 < P such thatp,+1 € M N D,. Sincep,+1, X, eM
andpn+1 I “X, is club andR I & is statlonary there existsB,-name for ariR-name
¥ € M such thatpn+1 IF“RIF& €6 N (X, \ 8,)". Since ppt1 IF “R is a ccc poset”,
pni1lF AE € [X, \ 8,] NfJ)(]R % € ENG). Let E, € M be aP,-name forE. Then
clearly pyy1IF* R -6 NE, +@"

Now letc(8) ={y <é: @n <) (palFy € Upew E.»)} and notice that() is an
unbounded subset éfsincep,41 I+ 8, N E, =¥ and

En = {q ePy: (g Lp)or@y ewl)(q - “RIFy edﬂEn")}

is open dense iff, and&, € M, so it is one of theD,,'s we consider before and hence,
for somem > n, p, decides at least one element Bf aboves,. Defineg € P, by:
suppg) =M Na and

g0 8= P00,

n<w

q(0)(8) = c(6),
q1BIFq(B)=|J{pa(B): n € wandp e supgp,)} U8}, if B esuppg).
Claim 10. g € P, .
By induction, we shall show that | 8 € Pg for all 8 < «. Clearlyq [ 1 € IP1. Suppose

thatg is a limit ordinal and; [ £ € P; forall £ < 8. Since supfy [ ) € supfg) =M Na
is countable, we have [ 8 € Pg. Suppose thaj [ g € Pg for 0 < 8 < «. We shall show
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thatg | (8 + 1) € Pg,1. It suffices to show thag | B 1- ¢(8) € Q. If B ¢ M, thenitis
trivial. Hence without loss of generality, we can assume ghatM. Then there exists an
m < w such thai € {Bu, Bm + 1}. Sincep,11 I (Yn < m)(E, is countable), there exist a
¢ <8 and am < o such thatp, I+ |, ,, Ei € ¢. Note thatg | BIF C5 = g(0)(5).

Caseg is evenlt suffices to show thag | 8 I+ C5 C* Fﬁ. Let& € ¢(8) \ ¢. Then there
exists am’ < w such thawn < n’ and p,y IF & € Ej; for someii < w. By the definition of
¢, we haveii > m and hencep,11 |- X; C Dg. By the definition ofE;, if max{n’, i} <
k <o, thenpy IF & € E; € X; € Dg C Fg. Therefore we proved | 81 c(8) \ ¢ C Fg; it
follows thatg [ B IF Cs \ ¢ C Fp.

Caseg is odd.It suffices to showthat [ 8 IF “]R,g I- sup(Cs Nog) =8". Let§ e c(9)\¢.
Then there exists an’ < w such that: < »n’ and p, I+ & € Ej; for somei. Then |f
max(n’, i} < k < o, thenp; I+ & € E; € X;; € Dg. SincePpq I ‘Rg I+ Dg € 657,
follows thatpy I+ “Rﬂ IF& e 6g”. Thuswe havey [ B IF*“Rg I c¢(8) &* 65", which clearly
impliesq | BIF “Rg IF sup(Cs N ) = 8”. Thus the claim is proven.

Sinceg < p, forall n < w, ¢ is totally (M, P,)-generic; actually; belongs to all open
dense subsets @, lying in M. By definition, we clearly have I- Cs C F. To show (iii),
let ¢ < & be arbitrary. Then there exists an< » such thaty < §,. By the definition of
En, Pns1lF" ‘RIF6 NE, #@". But g I “E, CCs andE, N§, = #". Hence we have I+
“RIF supCs N &) = 8". Thereforeg witnesses the conclusion of the lemmaz

Note that (iii) of the Lemma 9 implies that ii¥, every stationary (3)—closed subset
of w1 contains a club subset @f;. By Lemma 6, (w1, r(@)) is a perfectly normal
nonrealcompact space.

Now we are ready to prove our main theorem.

Theorem 11. It is consistent withMA + —CH that there exists a perfectly normal
nonrealcompact space of cardinali®y .

Proof. Let P be the poset described in Proposition 8. KetC P be generic and work
in V[G]. Let C be defined as in Proposition 8 and tetdenote the topology(@). Let
R = (Rg, S,g: a < w2; B < wz) be a standard finite support iteration to obtain a model
of MA 4+ —CH, i.e., (S¢: @ < wy) is an enumeration of all ccc posets of sizeéd; which
appears in som&®# . It is well known thafR is a ccc poset. Since every club subsebof
added by ccc forcing contains a club subsewgflying in the ground modelC is still a
strong club guessing sequenceVifG]. Let F be a stationary-closed set. Sinc® is a
ccc iteration of lengthw, with finite support,F appears inV[G N R, ] for somea < w>.
ThusF is a stationaryt-closed set added 4§, , which is a ccc poset of size;. By the
property ofP, there exists a club subsét of w1 such thatD is contained inF. Hence
every stationary -closed set contains a club subset.af and it follows thatC is a strong
r-guessing sequence I *R and thereforgws, 1) is perfectly normal there.

Since everyt-closed set either is non-stationary or contains a club subset, the club filter
restricted to zero-sets is a non-principal countably completérafilter. Therefordws, )
is not realcompact. O
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Hidden in the proof of Lemma 9 is a feature of the ter@)sof the guessing sequence
C: they cannot be alb-sequences. This is the main topic of the next section.

3. Destroying a strong z-guessing sequence

The space built in the last section is a etfy normal nonrealcompact space; this space
has nor-closed discrete stationary subspace, fof i t-closed and stationary, then there
is ay € X which is nice forX and therefore it is not an isolated point &f The aim of
this section is to show that there is a ccc pddethich destroyf as strongr-guessing
sequence if we assume that the order type of theSgis noty, for a club set ofy < w;.

Lemma 12. Let (E,: y € Lim(w1)) be a guessing sequence such that there exists an
unbounded subséf of w; such thabtp(E, N§) <& forall min(E,) <& <y € X. Let

Po={(p.a): p €lw1]™° & a e [X]"0}

with the ordering(p, a) < (g, b) ifand onlyifp D g,a 2 band(p\g)NJ{E,: y €b} =
@. ThenPy is ccc.

Proof. Let A be a subset oPg of cardinality 81. We will show thatA cannot be an
antichain. Firstly, we may assume that thenily of first co-ordirates of elements fromd
as well as the set of second-oadinates of elements frotd form A-systems with rootg
anda, respectively. Secondly, we can also assume that fowany, we can find(g, b) €
A such thate < min((g \ p) U (b \ a)). Suppose otherwise. Then either there exisjs a
such that{b: (g, b) € A}| = R1 or there exists & such that{q: (g, b) € A}| = R1. In the
first case, if we take two distinét b’ so that bothg, b) and{q, ') are inA, then these are
compatible and we are done. In the second case, it is easy to see that there exist two distinct
g andq’ such that botHg, b) and{q’, b) are in.A and maxb) < min(g \ p), min(g’\ p).
Then{(q, b) and{(q’, b) are compatible and we are done.

We shall construct inductively a sequen@®,, aq)}a<w, Of conditions from.A such
that for alla, 8 we have

max(py U ae) < min((pg \ p) U (ap \ a)), )
whenever < 8. By our second assumption there is no problem to choose successor terms

of this sequence taking care that (2) holds. For lign#ssuming p., a,) have been chosen
foralla < B, we puto (B) = sup,.(p« U aq) and choosépg, ag) € A such that

o (B) <min((pg\ p) U (ap \ @)).

Theno is an increasing continuous function from L@ ) into w1. As indecomposable
ordinals (i.e., those such that if¢, ¢ < y, thené + ¢ < y) form a club subset of limit
ordinals inws, there exists an indecomposable ordifiad Lim(w1) such thats (8) = 8.
Notice that otp(Uyeaﬂ E,)Np) < B. Sinces (B) = B, we have makp, U a,) < g for
all @ < B. Thus there exists al < 8 such that((p, \ p) U (aq \ @)) N Uyeaﬂ E,=0.1t
implies that(py, a.) and(pg, bg) are compatible. O
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Proposition 13. AssumeMA + —CH and let E = (Ey: y € Lim(w1)) be a guessing
sequence. Suppose that there exists a gl)ub subs#tw; such that ify € D, theny is
a limit ordinal andotp(E, ) < y. Then(ws, E) is o-discrete, and hence realcompact.

Proof. For eachy € D, let EJ’, = E, \ (otp(E,) + 1). Then for every O< & < y,
Otp(E}, N&) <&.If y e Lim(w1) \ D, SetE), = E,. Sincek,, is an end-segment df,, for
all y e D, r((E/y: y € Lim(wy))) is the same topology as((E,: y € Lim(w1))). Thus
Withouiloss of generality, we may assume(@p N&) < & forevery O<£ <y € D. Let
T =1(FE).

Let P be a finite-support iteration of length of the posets defined as in Lemma 12
with X = D. SinceP is a finite-support iteration of ccc posetB,is ccc. LetD; =
{(Pn, an)necw: & € pn for somen € w} for everyé < w; andgm,y = {(pn, n)new' vV € am}
for everym < w and y € D. Clearly they are dense. By applying MA, there exists
a{Ds: & <wi}U{&Eny: m < w and y e D}-generic filter G in P. Define S, =
U{pm: (Dn> An)new € G}.

For everyé < wy, sinceDg N G # @, there exists am < w such that < S,,. Hence
U <w Sm = w1. We claim that for everyn < w, any pointy € D is not ar-limit point
of S,,. Fixm < w andy € D. By the genericity o5, there exists &p,,, an)new € GNEn,y.
Let ¢ = max(p,, Ny) + 1. Sincey € a, by the definition, it is clear that for every
(qn, bn)new € G, (gm N Ey) \ ¢ =0. Thusy is not ar-limit point of §,,,.

For eachm < w, let{T), «: k < w} be a partition ofS,,, such that ify < § are successive
points of D, then|[y, §) N T), x| < 1 for everyk < w. Then by the definition of, for every
m, k < w, any point € w1 \ D is not at-limit point of 7, x. But since we know that any
point in D is not az-limit point of S, it implies that there is na-limit point of 7, &,
which means thal;, ; is discrete. Thereforév1, 7) is o-discrete. O

From this propositiondllows that theC obtainedin Proposition 8 satisfies the_c)ondition
of having its termsC,, of order typey, for at least a stationary set of< w;. If E is a
guessing sequence with all its terms of order typeur proposition is an easy consequence
of a result of Devlin and Shelah [6].
4. Open questions

Part of Blair’s original question remains open:
Problem 14. Is there a perfectly normal nonrealcompact space in ZFC?

We think that a stronger axiom might settle this. So we ask:

Problem 15. DoesPFA imply that every perfectly normal space of cardinality less than the
first measurable is realcompact? Does it do for spaces oRgize

Itis known thatVA +—CH implies that perfectly normal locally compact collectionwise
Hausdorff spaces are paracompact, and Balogh and Junnila [3] showed thai



F. Hernandez-Hernandez, T. Ishiu / Topgy and its Applications 143 (2004) 175-188 187

implies that normal locally compact space® aollectionwise Hausdorff. If, in ZFC,
X is a perfectly normal locally compaspace which is not paracompact théma +
—CH implies that X is not collectionwise Hausdorff buv¥ = L implies that X is
collectionwise Hausdorff. Ostaszewskspace is perfectly normal locally compact and
it is not realcompact. Our space is not locally compact. We ask:

Problem 16. Is there, in ZFC, a perfectly normhéocally compact space that is not
realcompact? DoadA + —CH imply such spaces do not exist?

The answer to the second question is affirmative if we add either locally connected or
locally countable and cardinality less thalf? 2 to the required properties of the space. It
is also natural to ask

Problem 17. Is there, in ZFC, a perfectly normal first countable space that is not
realcompact? What can it be said und&y + —CH?

Another question due to Blair that we do not solve is the following. Let us note that
Blair proved that the existence of a weakly perfectly normal nonrealcompact space implies
the existence of a weakly perfectly normal space that is not perfectly normal [4, 4.4]. Thus
under<> and consistently witlA + —CH those classes of normal spaces are distinct.

Problem 18. Is there, in ZFC, a weakly perfectly normal space of cardinality less than the
first measurable that is not perfectly normal?

As we noted in the introduction, und& = L we do not know how to obtain guessing
sequences to produce a perfectly normal topology w1 refining the order topology and
such thafws, t) is not realcompact.

Problem 19. DoesV = L imply there is a club guessing sequence in which the closure of
each stationary set contains a club?

Finally, we would like to know:

Problem 20. Which topological properties in addition to being perfectly normal imply
realcompactness?
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