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Abstract

We settle a conjecture due to R.L. Blair by proving that it is consistent with Martin’s Axiom
have a perfectly normal nonrealcompact space of cardinalityℵ1.
 2004 Elsevier B.V. All rights reserved.

MSC:primary 54D15, 54D60, 54D80; secondary 03E35, 54G20

Keywords:Perfectly normal; Realcompact; Martin’s Axiom; Guessing principles

1. Introduction

Realcompact spaces were defined and investigated by Hewitt and Nachbin. Hewi
demonstrated the importance of these spaces by proving the isomorphism theor
X and Y are realcompact spaces, thenC(X) is isomorphic toC(Y ) if and only if
X is homeomorphic toY ”. He also derived many of the properties of realcomp
spaces, often shared in common with those enjoyed by compact spaces. There are
characterizations of realcompact spaces, we will use: a Tychonoff spaceX is realcompact
if every z-ultrafilter on X with the countable intersection property has non-empty t
intersection. Az-ultrafilter is a filter consisting of zero-sets, i.e., sets of the formf −1(0),
for some real-valued continuous functionf , which is maximal among thez-filters.
A comprehensive study of realcompact spaces is done in [10,20].
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On the other hand, perfectly normal spaces form a wide class of topological spaces; in
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particular, any metric space is a perfectlynormal space. Perfect normality is a prope
closely related to metrization properties and it usually plays an important role in
different proofs. A spaceX is saidperfectly normalif it is normal and every closed subs
of X is aGδ (equivalently: every closed subset is a zero-set). In [4] Blair introduced
class of weakly perfectly normal spaces to studyz-embedded subsets. A subsetS is z-
embeddedin X in case each zero-set ofS is the restriction toS of a zero set ofX. A spaceX
is weakly perfectly normalif every subset ofX is z-embedded inX. Every perfectly norma
space is weakly perfectly normal and any weakly perfectly normal space is complete
normal. Blair asked whether there exists a perfectly normal space of cardinality les
the first measurable that is not realcompact. Blair proposed it as an open problem a
as 1962. It appears credited to him and Stephenson Jr in [11]. It also appears as a p
about a consequenceMA + ¬CH in [4], and more recently, it appears in [5] and later
[18] in the form

Problem 1. Is there aZFC example of a perfectly normal space that is not realcompac
doesMA + ¬CH imply that every such space of cardinality less than the first measura
realcompact?

Blair conjectured an affirmative answer to the last question. Katětov in [14] had showed
that a paracompact spaceX is realcompact if and only ifX does not have discret
subspaces of measurable cardinality. Thereare easy examples of countably paracomp
spaces that are not realcompact. If a normal countably paracompact space has the prop
that every ultrafilter of closed subsets with the countable intersection property is
then it is realcompact [15]. Perfect normality is a stronger property than countab
paracompactness is, though paracompactnessdoes not imply perfect normality. There a
very few examples of perfectly normal nonrealcompact spaces (basically two until now
The discrete space of measurable cardinality and the Ostaszewski’s classical cons
[17] from ♦ are examples of perfectly normal nonrealcompact spaces. On the
direction, Weiss [21] showed thatMA+¬CH implies that every perfectly normal countab
compact space is compact. Blair and van Douwen showed [5] that underMA + ¬CH every
perfectly normal spaceX is nearly realcompact; that is,βX \ υX is dense inβX \ X.
WhereυX andβX are the realcompactification and the Stone–Čech compactification ofX,
respectively. It is also easy to give realcompact(even compact) spaces that are not perfe
normal.

We settle in the negative Blair’s conjecture thatMA + ¬CH implies that every perfectl
normal space of cardinality less than the first measurable is realcompact. Sw
mentions that some partial results had been obtained; for instance, she proved
that MA + ¬CH implies that regular spaces of cardinality less than the first measu
in which closed sets have countable character are realcompact. Now we also kno
normal spaces of small cardinality in which every subset is aGδ are realcompact. Thes
kinds of spaces are known asQ-set spaces; Balogh [2] showed they exists in ZFC.

Our topology is a mixture of the ideas behind the Ostaszewski’s line and those b
the usual “ladder spaces” [16]. The main ideaof our construction is to define a sequence
subsets ofω1 which will serve as a weak neighbourhood base for a topology onω1 refining
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the usual order topology. Our first approach to the problem was by a certain combination
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of two of Nyikos’ axioms. We knew the kind of guessing-meeting principle that wo
give us a perfectly normal space that is not realcompact and that we could have pre
after forcing with a ccc poset. Unfortunately that combination turned out to be incons
UnderV = L we were able to produce [12] a guessing principle close to what we ne
and we can construct a normal topology in which most closed sets areGδ and the space i
not realcompact, and this can be preserved by ccc posets of sizeℵ1. We think the principle
that allows us to do this is of some interest on its own.

Here we use a quite new forcing notion to obtain a model with a guessing sequ
Further on, the forcing is made to take care of possible ccc forcing notions of
size over the generic model. This will allow us to preserve the important propert
our guessing sequence after a finite support iteration of ccc forcings to obtain a
of MA + ¬CH. The forcing we are using is a modification of one used by Foreman
Komjáth in [9]. See also [13].

2. Building the counterexample

Our terminology and notation follow the standards of contemporary set-the
topology. The few special symbols we use are next. For setsA andB of ordinal numbers
we write A ⊆∗ B if A \ B is a bounded subset of supA; say it in another way, if ther
is someα < supA such that(∀γ > α)(γ ∈ A �⇒ γ ∈ B). For subsetsA andB of ω1,

A =∗ B meansA ⊆∗ B andB ⊆∗ A. We often use interval notation; for example,(α,β]
is the set of ordinalsγ such thatα < γ � β . The set of all limit ordinals inω1 is denoted
by Lim(ω1) and[X]κ denotes the family of all subsets ofX with cardinalityκ ; [X]<κ and
[X]�κ have the obvious meanings. “Club” means closed and unbounded set. We r
the bar over a subset ofω1 to denote its closure with respect to the order topology.
forcing posets are downward directed. IfΦ is a formula of the forcing language forP,
when we writeP � Φ we mean that the set{p ∈ P: p � Φ} is dense inP. We usually take
the elements of the ground model as names for themselves but sometimes whena is an
element of the ground model we indicate this by writingp � Φ(ǎ). Names are denoted b
placing a dot over the object named. IfP is a forcing notion over a modelV , andG is a
V -generic filter inP, then we can havėR is aP-name for a forcing notion overV [G]; in
the extensionV [G] we may have anR-name for a set of ordinalsσ , then we denote bẏσ
the P-name for theṘ-name of the respective object in the generic extension ofV [G] by
forcing with R.

Definition 2. A sequence
−→
E = 〈Eα : α ∈ Lim(ω1)〉, whereEα is a cofinal subset o

α ∈ Lim(ω1) is called a guessing sequence for a familyA if for each X ∈ A there is
α ∈ Lim(ω1) such thatEα ⊆∗ X. If for eachX ∈ A there are club manyα ∈ ω1 such that
Eα ⊆∗ X, then we say that the sequence

−→
E is strong guessing for the familyA. If A is the

family C of all club subsets ofω1 we simply say that the sequence
−→
E is club guessing o

strong club guessing, respectively.
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There is a topologyτ (
−→
E) onω1 taking the elements of a guessing sequence

−→
E as weak
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neighbourhoods; that is, we define recursively neighbourhoods at each point ofω1: for zero
and successor ordinalsα we stipulate{α} being open, and for limit ordinalsγ, assuming
we have defined neighbourhoods contained in[0, α] for each pointα ∈ [0, γ ), we define
the neighbourhoods ofγ to be sets of the form

{γ } ∪
⋃

{Wξ : ξ ∈ Eγ \ β}, (1)

whereβ < γ andWξ is a neighbourhood ofξ ∈ Eγ \ β in the space[0, γ ). We call this
topologyτ (

−→
E) the topology associated with

−→
E . A similar topology was considered in [8

Lemma 3. Let
−→
E = 〈Eγ : γ ∈ Lim(ω1)〉 be a guessing sequence andτ be the topology

associated with
−→
E . ThenX is τ -closed if and only if for every limit ordinalγ ∈ ω1 such

thatEγ ∩ X is unbounded inγ , γ ∈ X.

Proof. The necessity is clear. Suppose that for every limit ordinalγ ∈ ω1, if Eγ ∩ X is
unbounded inγ , thenγ ∈ X. We shall show thatX is τ -closed. We inductively show
that for eachγ ∈ ω1 \ X, there is aτ -open neighbourhood ofγ disjoint fromX. If γ is
successor or 0, sinceγ is isolated,{γ } is τ -open and disjoint fromX. Suppose thatγ is
limit and for everyξ ∈ γ \ X, there is aτ -open neighbourhoodWξ of ξ disjoint fromX.
By the assumption, we haveEγ ∩ X is bounded inγ . Let ζ = sup(Eγ ∩ X) + 1. Then for
everyξ ∈ Eγ \ ζ , we haveξ ∈ γ \ X. By the inductive hypothesis, there exists aτ -open
neighbourhoodWξ of ξ disjoint fromX. Let W = {γ } ∪ ⋃{Wξ : ξ ∈ Eγ \ ζ }. ThenW is a
neighbourhood ofγ disjoint fromX. �

The basic open neighbourhoods ofγ in the topology just described are subsets of
interval [0, γ ], it follows that for everyβ ∈ ω1, the interval[0, β) is τ -open. Applying
Lemma 3 we see that the intervals[0, α] areτ -closed. Thus open intervals(α,β) areτ -
open andτ (

−→
E) is finer than the usual order topology. Hence,τ (

−→
E) is aT1-topology.

Definition 4. Let
−→
E = 〈Eγ : γ ∈ Lim(ω1)〉 be a guessing sequence and letX ⊆ ω1. We say

thatγ ∈ ω1 is nice forX with respect to
−→
E if and only if both

(i) γ ∈ X �⇒ Eγ ⊆∗ X, and
(ii) γ /∈ X �⇒ Eγ ∩ X is bounded inγ .

If
−→
E is clear from the context, we may simply say thatγ is nice forX.

Definition 5. Let
−→
E = 〈Eγ : γ ∈ Lim(ω1)〉 be a guessing sequence andτ = τ (

−→
E).

−→
E is

called a strongτ -guessing sequence if for everyτ -closed subsetF of ω1 there exists a club
subsetD of ω1 such that everyγ ∈ D is nice forF .

If F is aτ (
−→
E)-closed subset ofω1, thenγ ∈ Lim(ω1) is nice forF if and only if γ ∈ F

is equivalent toEγ ⊆∗ F . Notice also that every strongτ -guessing sequence is a stro
club guessing sequence. To see this, let

−→
E = 〈Eγ : γ ∈ Lim(ω1)〉 be a strongτ -guessing

sequence and letC be a club subset ofω1. Sinceτ (
−→
E) is finer than the order topolog
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every club subset ofω1 is τ (
−→
E)-closed. In particular,C is τ (

−→
E)-closed. LetD be a club
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subset ofω1 consisting of nice points forC. Without loss of generality,D ⊆ C. Then for
everyγ ∈ D, sinceγ is nice forC andγ ∈ C, Eγ ⊆∗ C. Conversely, if

−→
E is strong club

guessing and every stationaryτ (
−→
E)-closed subset contains a club subset ofω1, then

−→
E is

strongτ (
−→
E)-guessing.

Lemma 6. If
−→
E = 〈Eα : α ∈ Lim(ω1)〉 is a strongτ -guessing sequence and the setsEα are

closed in the order topology, thenτ (
−→
E) is a perfectly normal zero-dimensional topolog

Moreover, if any stationaryτ (
−→
E)-closed set contains a club subset ofω1, then the club filter

generates a countable complete z-ultrafilter, and hence(ω1, τ (
−→
E)) is not a realcompac

space.

Proof. The topologyτ = τ (
−→
E) is locally countable, thus ifτ is normal it will be zero-

dimensional. To prove normality we first establish thatτ is regular by induction. Suppos
we have that([0, α), τ � [0, α)) is regular for allα � γ , whereτ � [0, α] is the subspac
topology on[0, α]. We need to show that([0, γ ], τ � [0, γ ]) is regular as well. The uniqu
non-trivial pair for which we must prove regularity is that in which we have a li
ordinal γ and aτ -closed subsetF of [0, γ ] such thatγ /∈ F and we want to exhibi
disjoint neighbourhoods ofF and γ , respectively. First, there is a neighbourhoodWγ

of γ such thatF ∩ Wγ = ∅. We can assume thatWγ = {γ } ∪ ⋃{Wξ : ξ ∈ Eγ \ β}. By
the inductive hypothesis we can deduce that[0, γ ) is a normal space as it is countab
and regular. If we prove that the closure, clτ (Eγ \ β), of Eγ \ β with respect to the
new topology on[0, γ ] is disjoint from F , then using the normality of[0, γ ) we can
choose disjointτ -open setsU0 andU1 such thatF ⊆ U0 andEγ \ β ⊆ U1. Thus, taking
W ′

γ = {γ } ∪ ⋃{Wξ ∩ U1: ξ ∈ Eγ \ β} we would haveU0 ∩ W ′
γ as we need it. And it is

certainly the case thatF ∩ clτ (Eγ \ β) = ∅; for if α ∈ F \ β , α cannot be a limit poin
of Eγ \ β since otherwise, by our assumption thatEγ is closed under the order topolog
α would be a member ofEγ \ β contradicting thatWγ ∩ F = ∅. Thus we can find a
neighbourhood ofα with no points fromEγ \ β , as we wanted to show. Sinceτ is a
conservative extension ofτ � [0, α], the regularity follows.

Let us now prove the normality. LetF andH be two disjointτ -closed subsets ofω1.
Then by the assumption, there exists a club subsetD of ω1 such that everyγ ∈ D is nice
for F andH . We shall define by induction on the elements ofD two disjoint τ -open
subsetsU andW of ω1 such thatF ⊆ U andH ⊆ W .

Let γ0 = min(D). Since the subspace[0, γ0] is regular and countable, hence norm
there exist two disjointτ -open subsetsUγ0 and Wγ0 such thatF ∩ [0, γ0] ⊆ Uγ0 and
H ∩ [0, γ0] ⊆ Wγ0. DefineU ∩ [0, γ0] = Uγ0 andW ∩ [0, γ0] = Wγ0. Suppose now tha
we have definedU ∩ [0, γ ] andW ∩ [0, γ ] for someγ ∈ D. Let γ + be the next elemen
of D, we need to defineU ∩ (γ, γ +] andW ∩ (γ, γ +]. Since the interval(γ, γ +] as a
subspace is regular and countable, it is also normal. Note that(γ, γ +] is also clopen. So
we can find disjointUγ + andWγ + τ -open subsets of(γ, γ +] such thatF ∩ (γ, γ +] ⊆
Uγ + and H ∩ (γ, γ +] ⊆ Wγ + . Then we defineU ∩ [0, γ +] = (U ∩ [0, γ ]) ∪ Uγ + and
W ∩ [0, γ +] = (W ∩ [0, γ ]) ∪ Wγ + .

Finally supposeγ is a limit point of D and we have defined disjointU ∩ [0, ξ ] and
W ∩ [0, ξ ], for all ξ ∈ D ∩ γ . SinceF ∩ H = ∅, we have three exclusive cases.
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Case1. γ /∈ F ∪ H . Then letU ∩ [0, γ ] = ⋃{U ∩ [0, ξ ]: ξ ∈ D ∩ γ } andW ∩ [0, γ ] =
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⋃{W ∩ [0, ξ ]: ξ ∈ D ∩ γ }.
Case2. γ ∈ F \ H . Then letU ∩ [0, γ ] = (U ∩ [0, γ )) ∪ {γ } andW ∩ [0, γ ] = W ∩

[0, γ ). ClearlyU ∩ [0, γ ] andW ∩ [0, γ ] are disjoint andW ∩ [0, γ ] is τ -open. We claim
thatU ∩ [0, γ ] is τ -open. SinceU ∩ [0, γ ) is τ -open, it suffices to show that there exist
neighbourhoodN of γ such thatN ⊆ U ∩ [0, γ ]. Sinceγ is nice forF , we haveEγ ⊆∗ F .
Let β < γ be such thatEγ \ β ⊆ F . Then for eachξ ∈ Eγ \ β, there is a neighbourhoo
Nξ ⊆ U ∩ [0, γ ). Let N = {γ } ∪ ⋃{Nξ : ξ ∈ Eγ \ β}. ThenN is a neighbourhood ofγ
contained inU ∩ [0, γ ]. ThusU ∩ [0, γ ] is τ -open.

Case3. γ ∈ H \ F . Then letU ∩ [0, γ ] = U ∩ [0, γ ) andW ∩ [0, γ ] = (W ∩ [0, γ )) ∪
{γ }. By analogous argument as in the previous case they areτ -open and disjoint.

It is now trivial thatU andW areτ -open and disjoint such thatF ⊆ U andH ⊆ W .
Therefore(ω1, τ ) is normal.

Let us now prove that(ω1, τ ) is perfect. We shall prove that anyτ -closed subset o
(ω1, τ ) is a Gδ-set. If H is a τ -closed set, there is a club setC ⊆ ω1 such that for all
γ ∈ C, γ is nice for H , which implies thatEγ ⊆∗ H in caseγ ∈ H . We can perform
induction alongC definingτ -open subsetsUξ (n), for ξ ∈ C, such that

(1) H ∩ [0, ξ ] = ⋂{Uξ(n): n ∈ ω};
(2) Uξ (n) = Uη(n) ∩ [0, ξ ], wheneverξ � η.

For successor points ofC there is no problem given thatH ∩ (ξ, ξ+] is Gδ since
(ξ, ξ+] is T1 and countable. So supposeξ is a limit of ordinals inC and everything
has been done accordingly so far. Ifξ /∈ H , then we only need to take the union
the sets previously defined. Ifξ ∈ H , then a neighbourhood ofξ can be given by
neighbourhoods of points fromEξ ∩ H : for eachn ∈ ω, we can find a neighbourhoo
Wξ(n) ⊆ Un = ⋃{Uλ(n): λ ∈ C ∩ ξ}. So Uξ (n) = Un ∪ {ξ} will be τ -open containing
H ∩ [0, ξ ]. HenceH = ⋂

n∈ω U(n), whereU(n) is the union of all theUξ (n), ξ ∈ C.
Lastly, letF be the family of allτ -closed subsets ofω1 which contain a club subse

of ω1. ThenF is a filter with the countable intersection property and
⋂

F = ∅. The
hypothesis easily implies thatF is maximal. �
2.1. The forcing construction

Definition 7. Let P be a notion of forcing and letN be a countable elementary submo
of someH(λ) with P ∈ N .

(1) We say that a conditionq ∈ P is totally (N,P)-generic if wheneverD is a dense ope
subset ofP that is inN , we can find a conditionp ∈ N ∩D with q � p. Said in anothe
way,q is a lower bound for someN -generic filterG ⊆ N ∩ P.

(2) We say thatP is totally proper if, givenN as above, everyp ∈ N ∩ P has a totally
(N,P)-generic extensionq ∈ P.

It is not difficult to prove that a notion of forcing is totally proper if and only if it
proper and the forcing adds no new reals. In the presence of properness, this is equivalen
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the forcing adding no newω-sequence of elements of the ground model. This was noticed
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by Eisworth and Roitman [7]; Definition 7 was introduced by them; although many peo
have used proper forcing adding no reals without naming it.

Proposition 8. Suppose that2ℵ0 = ℵ1 and2ℵ1 = ℵ2. Then there exists a posetP such that
in V P, there exists a guessing sequence

−→
C such that

(i)
−→
C is a strong club guessing sequence, and

(ii) if R is a ccc poset of sizeℵ1 andσ is anR-name such thatR � “σ is stationary and
τ (

−→
C)-closed” , thenR � “σ contains a club subset ofω1” .

Proof. P will be an iteration〈Pα, Q̇β : α � ω2; β < ω2〉 of length ω2 with countable
support. We start our induction by adding a guessing sequence

−→
C with a forcing poset

Q0 and we inductively construcṫQα for each 0< α < ω2. In the course of induction, w
shall also prove that

(1) (a) Pα is ℵ2-cc and totally proper,
(b) Pα forces that|Q̇α| � ℵ1,

(c) Pα forces that
−→
C is a club guessing sequence, and

(d) Pα forces that ifṘ is a ccc poset of size� ℵ1 andσ̇ is anṘ-name for a stationar
τ (

−→
C)-closed set, then

{
γ ∈ Lim(ω1): Ṙ � sup

(
σ̇ ∩ Ċγ

) = γ
}

is stationary.

Note that in (1d), without loss of generality, we may assume that the domain ofR is a
subset ofω1.

DefineQ0 by: p ∈ Q0 if and only if p is a function such that dom(p) is a countable
subset of Lim(ω1) andp(γ ) is a closed unbounded subset ofγ , for all γ ∈ dom(p). If
G ⊆ Q0 is generic, then for everyp,q ∈ G and γ ∈ dom(p) ∩ dom(q), p(γ ) = q(γ ).
Let Cγ = p(γ ) for some (all)p ∈ G with γ ∈ dom(p). It is easy to see that for eve
γ ∈ Lim(ω1), there exists ap ∈ G with γ ∈ dom(p). Thus we get a guessing sequen−→
C = 〈Cγ : γ ∈ Lim(ω1)〉. Let Ċγ be a name forCγ , for eachγ ∈ Lim(ω1).

By (1a) and (1b) of the inductive hypotheses, it is easy to see that for everyα < ω2,
Pα forces 2ℵ1 = ℵ2. Thus, by a routine book-keeping argument, it is possible to con
sequences〈Ḟα : 0 < α < ω2 andα is even〉 of canonical names for club subsets ofω1 which
appear inV Pβ for someβ < ω2, and〈(Ṙα, σ̇α): α < ω2 andα is odd〉 of canonical name
for pairs(R, σ ) which appear inV Pβ for someβ < ω2 such thatR is a poset whose doma
is a subset ofω1 andσ is anR-name for a subset ofω1. Moreover, we can arrange o
book-keeping so that every club and every such pair in the final extension occurs a
term of one of our sequences. When we work in the extension, we denote the evalua
Ḟα , Ṙα andσ̇α by Fα , Rα andσα , respectively.

First we shall explain how to definėQα for α > 0 assuming we have definedQ̇β for all
β < α. Let Gα ⊆ Pα be generic and we shall define a posetQα in V [Gα]. We letQ̇α be a
name forQα .
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Case α is even. Let Qα be the standard poset shooting a club through{γ ∈
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Lim(ω1): Cγ ⊆∗ Fα}; see [1] for a precise definition of it. By (1c) of the inducti
hypothesis, this definition makes sense.

Caseα is odd.If Rα is not a ccc poset orRα does not force thatσα is stationary, then
Qα is the trivial poset. Otherwise, letQα be the standard poset shooting a club thro
{γ ∈ Lim(ω1): Rα � sup(Cγ ∩ σα) = γ }. By (1d) of the inductive hypothesis, it mak
sense.

In either case, ifQα is not trivial, letDα be the club subset ofω1 added at theαth stage
andḊα its Q̇α-name. IfQα is trivial, let Dα = ω1 andḊα = ω̌1. Note that for every eve
β > 0, Dβ ⊆ Fβ and for every oddβ , Rβ � Dβ ⊆ σβ .

To see that we can carry out this induction, we need the following lemma.

Lemma 9. Suppose that(1a)–(1d)are true for allβ < α � ω2. Letp ∈ Pα and letḞ , Ṙ,
andσ̇ be aṖα-names such thatPα forces that

(a) Ḟ is a club subset ofω1,
(b) Ṙ is a ccc poset,
(c) σ̇ is a Ṙ-name such thaṫR � “ σ̇ is a stationaryτ (

−→
C)-closed subset ofω1”.

Let M be a countable elementary submodel of someH(θ), for some large enoug
regular cardinal θ , such that{Pα,p,

−→
C, 〈Ḋβ : β < α〉, Ḟ , Ṙ, σ̇ } ∈ M. Let δ = M ∩ ω1.

Then there exists aq � p such that

(i) q is totally (M,Pα)-generic,
(ii) q � Ċδ ⊆∗ Ḟ , and
(iii) q � “ Ṙ � sup(Ċδ ∩ σ̇ ) = δ”.

Suppose that the lemma and the inductive hypotheses are true for allβ < α � ω2. We
shall show the inductive hypotheses forα. By a standard argument, ifα < ω2, then we
can prove thatPα has a dense subset of size� ℵ1 and hence it isℵ2-cc. If α = ω2, by a
∆-system lemma argument,Pω2 is ℵ2-cc. By the previous lemma,Pα is totally proper and
hence it adds no new countable sequence of ordinals.

To see (1c), letp ∈ Pα be arbitrary anḋF be aPα-name such thatp � “ Ḟ is a club subse
of ω1”. Let Ṙ be aPα-name for the trivial poset anḋσ aPα-name for aṘ-name forω1. Let
M be a countable elementary submodel ofH(θ), for some large enough regular cardinaθ

as in the statement of Lemma 9 and setδ = M ∩ ω1. Let q � p be as in the conclusion o
Lemma 9. Thenq � Ċδ ⊆∗ Ḟ .

For (1d), letp ∈ Pα be arbitrary and leṫD be aPα-name for a club subset ofω1. Also
let Ṙ and σ̇ be Pα-names such thatp � “ Ṙ is a ccc poset whose domain is a subse
ω1 andṘ � σ̇ is a stationaryτ (

−→
C)-closed subset ofω1”. Let Ḟ be aPα-name forω1. Let

M be a countable elementary submodel as before and setδ = M ∩ ω1. Let q � p be as in
the conclusion of the previous lemma. Thenq � “ Ṙ � sup(Ċδ ∩ σ̇ ) = δ”. But also since
q is (M,Pα)-generic,q � δ ∈ Ḋ. Thereforeq � “ {γ ∈ Lim(ω1): Ṙ � sup(Ċδ ∩ σ̇ ) = δ} is
stationary”. Thus we can continue the inductive definition.
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Let P = Pω2. Let G ⊆ P be generic. Note that sinceP is ℵ2-cc, every subset ofω1

n

,

l

,

e,
appears inV [G ∩ Pα] for someα < ω2. First we shall show that inV [G], −→
C is a strong

club guessing sequence. LetF be a club subset ofω1 in V [G]. Then there exists an eve
β < ω2 such thatF = Fβ . Then for everyγ ∈ Dβ , Cγ ⊆∗ Fβ = F . Suppose thatR is
a ccc poset whose domain is a subset ofω1 andσ is a R-name for a stationaryτ (

−→
C )-

closed subset ofω1. Then there exists an oddβ < ω2 such that(Rβ, σβ) = (R, σ ). Then
Dβ ⊆ {γ ∈ Lim(ω1): R � sup(Cδ ∩ σ) = δ}. But sinceσ is a name for aτ (

−→
C)-closed set

R � sup(Cδ ∩ σ) = δ impliesR � δ ∈ σ . Therefore we haveR � Dβ ⊆ σ̇ . This concludes
the proof of Proposition 8. �
Proof of Lemma 9. Let {βn: n < ω} be an enumeration of all even ordinals inM ∩α. Let
〈δn: n < ω〉 be an increasing cofinal sequence inδ and{Dn: n ∈ ω} an enumeration of al
open dense subsets ofPα lying in M. DefineẊn ∈ M as aPα-name forḞ ∩ ⋂

i<n(Ḋβi ∩
Ḋβi+1). By induction, we shall construct a decreasing sequence〈pn: n < ω〉 of elements
of Pα and a sequence〈Ėn: n < ω〉 of Pα-names such that for everyn < ω

(2) (a) pn, Ėn ∈ M,
(b) pn+1 ∈Dn,
(c) pn+1 � “ Ėn is a countable subset oḟXn \ δn”, and
(d) pn+1 � “ Ṙ � σ̇ ∩ Ėn �= ∅”.

Let p0 = p. Suppose that we have definedpn and Ėm for all m < n. Sincepn and
Dn are inM, there exists apn+1 � pn such thatpn+1 ∈ M ∩ Dn. Sincepn+1, Ẋn ∈ M

andpn+1 � “ Ẋn is club andṘ � σ̇ is stationary”, there exists aPα-name for anṘ-name
ϑ̇ ∈ M such thatpn+1 � “ Ṙ � ϑ̇ ∈ σ̇ ∩ (Ẋn \ δn)”. Since pn+1 � “ Ṙ is a ccc poset”
pn+1 � (∃E ∈ [Ẋn \ δn]ℵ0)(Ṙ � ϑ̇ ∈ E ∩ σ̇ ). Let Ėn ∈ M be aPα-name forE. Then
clearlypn+1 � “ Ṙ � σ̇ ∩ Ėn �= ∅”.

Now let c(δ) = {γ < δ: (∃n < ω)(pn � γ ∈ ⋃
m<ω Ėm)} and notice thatc(δ) is an

unbounded subset ofδ sincepn+1 � δn ∩ Ėn = ∅ and

En = {
q ∈ Pα : (q ⊥ p) or (∃γ ∈ ω1)

(
q � “ Ṙ � γ ∈ σ̇ ∩ Ėn”

)}

is open dense inPα andEn ∈ M, so it is one of theDm’s we consider before and henc
for somem � n, pm decides at least one element ofĖn aboveδn. Defineq ∈ Pα by:
supp(q) = M ∩ α and

q(0) � δ =
⋃

n<ω

pn(0),

q(0)(δ) = c(δ),

q � β � q(β) =
⋃{

pn(β): n ∈ ω andβ ∈ supp(pn)
} ∪ {δ}, if β ∈ supp(q).

Claim 10. q ∈ Pα .

By induction, we shall show thatq � β ∈ Pβ for all β � α. Clearlyq � 1 ∈ P1. Suppose
thatβ is a limit ordinal andq � ξ ∈ Pξ for all ξ < β . Since supp(q � β) ⊆ supp(q) = M ∩α

is countable, we haveq � β ∈ Pβ . Suppose thatq � β ∈ Pβ for 0 < β < α. We shall show
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thatq � (β + 1) ∈ Pβ+1. It suffices to show thatq � β � q(β) ∈ Q̇β . If β /∈ M, then it is
n
a

t
l

al

del

filter
trivial. Hence without loss of generality, we can assume thatβ ∈ M. Then there exists a
m < ω such thatβ ∈ {βm,βm + 1}. Sincepm+1 � (∀n � m)(Ėn is countable), there exist
ζ < δ and ann < ω such thatpn �

⋃
i�m Ėi ⊆ ζ . Note thatq � β � Ċδ = q(0)(δ).

Caseβ is even.It suffices to show thatq � β � Ċδ ⊆∗ Ḟβ . Let ξ ∈ c(δ) \ ζ . Then there
exists ann′ < ω such thatn � n′ andpn′ � ξ ∈ Ėñ for someñ < ω. By the definition of
ζ , we haveñ > m and hencepn+1 � Ẋñ ⊆ Ḋβ . By the definition ofĖñ, if max{n′, ñ} <

k < ω, thenpk � ξ ∈ Ėñ ⊆ Ẋñ ⊆ Ḋβ ⊆ Ḟβ . Therefore we provedq � β � c(δ) \ ζ ⊆ Ḟβ ; it
follows thatq � β � Ċδ \ ζ ⊆ Ḟβ .

Caseβ is odd.It suffices to show thatq � β � “ Ṙβ � sup(Ċδ ∩σ̇β ) = δ”. Let ξ ∈ c(δ)\ζ .
Then there exists ann′ < ω such thatn � n′ and pn′ � ξ ∈ Ėñ for some ñ. Then if
max{n′, ñ} < k < ω, thenpk � ξ ∈ Ėñ ⊆ Ẋñ ⊆ Ḋβ . SincePβ+1 � “ Ṙβ � Ḋβ ⊆ σ̇β ”, it
follows thatpk � “ Ṙβ � ξ ∈ σ̇β ”. Thus we haveq � β � “ Ṙβ � c(δ) ⊆∗ σ̇β ”, which clearly
impliesq � β � “ Ṙβ � sup(Ċδ ∩ σ̇β ) = δ”. Thus the claim is proven.

Sinceq � pn for all n < ω, q is totally (M,Pα)-generic; actuallyq belongs to all open
dense subsets ofPα lying in M. By definition, we clearly haveq � Ċδ ⊆ Ḟ . To show (iii),
let ζ < δ be arbitrary. Then there exists ann < ω such thatζ < δn. By the definition of
Ėn, pn+1 � “ Ṙ � σ̇ ∩ Ėn �= ∅”. But q � “ Ėn ⊆ Ċδ andĖn ∩ δn = ∅”. Hence we haveq �
“ Ṙ � sup(Ċδ ∩ σ̇ ) = δ”. Thereforeq witnesses the conclusion of the lemma.�

Note that (iii) of the Lemma 9 implies that inV P, every stationaryτ (
−→
C)-closed subse

of ω1 contains a club subset ofω1. By Lemma 6,(ω1, τ (
−→
C)) is a perfectly norma

nonrealcompact space.
Now we are ready to prove our main theorem.

Theorem 11. It is consistent withMA + ¬CH that there exists a perfectly norm
nonrealcompact space of cardinalityℵ1.

Proof. Let P be the poset described in Proposition 8. LetG ⊆ P be generic and work
in V [G]. Let

−→
C be defined as in Proposition 8 and letτ denote the topologyτ (

−→
C). Let

R = 〈Rα, Ṡβ : α � ω2; β < ω2〉 be a standard finite support iteration to obtain a mo
of MA + ¬CH, i.e., 〈Ṡα : α < ω2〉 is an enumeration of all ccc posets of size� ℵ1 which
appears in someV Rβ . It is well known thatR is a ccc poset. Since every club subset ofω1

added by ccc forcing contains a club subset ofω1 lying in the ground model,
−→
C is still a

strong club guessing sequence inV [G]. Let F be a stationaryτ -closed set. SinceR is a
ccc iteration of lengthω2 with finite support,F appears inV [G ∩ Rα] for someα < ω2.
ThusF is a stationaryτ -closed set added byRα , which is a ccc poset of sizeℵ1. By the
property ofP, there exists a club subsetD of ω1 such thatD is contained inF . Hence
every stationaryτ -closed set contains a club subset ofω1, and it follows that

−→
C is a strong

τ -guessing sequence inV P∗R and therefore(ω1, τ ) is perfectly normal there.
Since everyτ -closed set either is non-stationary or contains a club subset, the club

restricted to zero-sets is a non-principal countably completez-ultrafilter. Therefore(ω1, τ )

is not realcompact. �



F. Hernández-Hernández, T. Ishiu / Topology and its Applications 143 (2004) 175–188 185

Hidden in the proof of Lemma 9 is a feature of the termsCγ of the guessing sequence

ace
re

s an

a

e
distinct

terms
n

e
t

−→
C : they cannot be allω-sequences. This is the main topic of the next section.

3. Destroying a strong τ -guessing sequence

The space built in the last section is a perfectly normal nonrealcompact space; this sp
has noτ -closed discrete stationary subspace, for ifX is τ -closed and stationary, then the
is aγ ∈ X which is nice forX and therefore it is not an isolated point ofX. The aim of
this section is to show that there is a ccc posetP which destroys

−→
C as strongτ -guessing

sequence if we assume that the order type of the setsCγ is notγ , for a club set ofγ < ω1.

Lemma 12. Let 〈Eγ : γ ∈ Lim(ω1)〉 be a guessing sequence such that there exist
unbounded subsetX of ω1 such thatotp(Eγ ∩ ξ) < ξ for all min(Eγ ) < ξ � γ ∈ X. Let

P0 = {〈p,a〉: p ∈ [ω1]<ℵ0 & a ∈ [X]<ℵ0
}

with the ordering〈p,a〉 � 〈q, b〉 if and only ifp ⊇ q , a ⊇ b and(p \q)∩⋃{Eγ : γ ∈ b} =
∅. ThenP0 is ccc.

Proof. Let A be a subset ofP0 of cardinality ℵ1. We will show thatA cannot be an
antichain. Firstly, we may assume that the family of first co-ordinates of elements fromA
as well as the set of second co-ordinates of elements fromA form ∆-systems with rootsp
anda, respectively. Secondly, we can also assume that for anyα ∈ ω1 we can find〈q, b〉 ∈
A such thatα < min((q \ p) ∪ (b \ a)). Suppose otherwise. Then either there existsq
such that|{b: 〈q, b〉 ∈A}| = ℵ1 or there exists ab such that|{q: 〈q, b〉 ∈ A}| = ℵ1. In the
first case, if we take two distinctb, b′ so that both〈q, b〉 and〈q, b′〉 are inA, then these ar
compatible and we are done. In the second case, it is easy to see that there exist two
q andq ′ such that both〈q, b〉 and〈q ′, b〉 are inA and max(b) < min(q \ p),min(q ′ \ p).
Then〈q, b〉 and〈q ′, b〉 are compatible and we are done.

We shall construct inductively a sequence{〈pα,aα〉}α<ω1 of conditions fromA such
that for allα,β we have

max(pα ∪ aα) < min
(
(pβ \ p) ∪ (aβ \ a)

)
, (2)

wheneverα < β . By our second assumption there is no problem to choose successor
of this sequence taking care that (2) holds. For limitβ assuming〈pα,aα〉 have been chose
for all α < β , we putσ(β) = supα<β(pα ∪ aα) and choose〈pβ,aβ〉 ∈A such that

σ(β) < min
(
(pβ \ p) ∪ (aβ \ a)

)
.

Thenσ is an increasing continuous function from Lim(ω1) into ω1. As indecomposabl
ordinals (i.e., thoseγ such that ifξ, ζ < γ , thenξ + ζ < γ ) form a club subset of limi
ordinals inω1, there exists an indecomposable ordinalβ ∈ Lim(ω1) such thatσ(β) = β .
Notice that otp((

⋃
γ∈aβ

Eγ ) ∩ β) < β . Sinceσ(β) = β , we have max(pα ∪ aα) � β for
all α < β . Thus there exists anα < β such that((pα \ p) ∪ (aα \ a)) ∩ ⋃

γ∈aβ
Eγ = ∅. It

implies that〈pα,aα〉 and〈pβ,bβ〉 are compatible. �
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Proposition 13. AssumeMA + ¬CH and let
−→
E = 〈Eγ : γ ∈ Lim(ω1)〉 be a guessing

12

sts

y

e

y

ion

ce

the

ise
sequence. Suppose that there exists a club subsetD of ω1 such that ifγ ∈ D, thenγ is
a limit ordinal andotp(Eγ ) < γ . Then(ω1,

−→
E) is σ -discrete, and hence realcompact.

Proof. For eachγ ∈ D, let E′
γ = Eγ \ (otp(Eγ ) + 1). Then for every 0< ξ � γ ,

otp(E′
γ ∩ ξ) < ξ . If γ ∈ Lim(ω1) \D, setE′

γ = Eγ . SinceE′
γ is an end-segment ofEγ for

all γ ∈ D, τ (〈E′
γ : γ ∈ Lim(ω1)〉) is the same topology asτ (〈Eγ : γ ∈ Lim(ω1)〉). Thus

without loss of generality, we may assume otp(Eγ ∩ ξ) < ξ for every 0< ξ � γ ∈ D. Let
τ = τ (

−→
E).

Let P be a finite-support iteration of lengthω of the posets defined as in Lemma
with X = D. SinceP is a finite-support iteration of ccc posets,P is ccc. LetDξ =
{〈pn, an〉n∈ω: ξ ∈ pn for somen ∈ ω} for everyξ < ω1 andEm,γ = {〈pn, an〉n∈ω: γ ∈ am}
for every m < ω and γ ∈ D. Clearly they are dense. By applying MA, there exi
a {Dξ : ξ < ω1} ∪ {Em,γ : m < ω and γ ∈ D}-generic filter G in P. Define Sm =⋃{pm: 〈pn, an〉n∈ω ∈ G}.

For everyξ < ω1, sinceDξ ∩ G �= ∅, there exists anm < ω such thatξ ∈ Sm. Hence⋃
m<ω Sm = ω1. We claim that for everym < ω, any pointγ ∈ D is not aτ -limit point

of Sm. Fix m < ω andγ ∈ D. By the genericity ofG, there exists a〈pn, an〉n∈ω ∈ G∩Em,γ .
Let ζ = max(pm ∩ γ ) + 1. Sinceγ ∈ am by the definition, it is clear that for ever
〈qn, bn〉n∈ω ∈ G, (qm ∩ Eγ ) \ ζ = ∅. Thusγ is not aτ -limit point of Sm.

For eachm < ω, let {Tm,k: k < ω} be a partition ofSm such that ifγ < δ are successiv
points ofD, then|[γ, δ)∩Tm,k| � 1 for everyk < ω. Then by the definition ofτ , for every
m,k < ω, any pointξ ∈ ω1 \ D is not aτ -limit point of Tm,k. But since we know that an
point in D is not aτ -limit point of Sm, it implies that there is noτ -limit point of Tm,k ,
which means thatTm,k is discrete. Therefore(ω1, τ ) is σ -discrete. �

From this proposition follows that the
−→
C obtained in Proposition 8 satisfies the condit

of having its termsCγ of order typeγ , for at least a stationary set ofγ < ω1. If
−→
E is a

guessing sequence with all its terms of order typeω, our proposition is an easy consequen
of a result of Devlin and Shelah [6].

4. Open questions

Part of Blair’s original question remains open:

Problem 14. Is there a perfectly normal nonrealcompact space in ZFC?

We think that a stronger axiom might settle this. So we ask:

Problem 15. DoesPFA imply that every perfectly normal space of cardinality less than
first measurable is realcompact? Does it do for spaces of sizeℵ1?

It is known thatMA+¬CH implies that perfectly normal locally compact collectionw
Hausdorff spaces are paracompact, and Balogh and Junnila [3] showed thatV = L
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implies that normal locally compact spaces are collectionwise Hausdorff. If, in ZFC,

nd

ot

ted or
. It

not

that
plies

Thus

n the

g
d

re of

ply

41

.

X is a perfectly normal locally compactspace which is not paracompact then:MA +
¬CH implies that X is not collectionwise Hausdorff butV = L implies that X is
collectionwise Hausdorff. Ostaszewski’sspace is perfectly normal locally compact a
it is not realcompact. Our space is not locally compact. We ask:

Problem 16. Is there, in ZFC, a perfectly normal locally compact space that is n
realcompact? DoesMA + ¬CH imply such spaces do not exist?

The answer to the second question is affirmative if we add either locally connec
locally countable and cardinality less than 2ℵ0 a to the required properties of the space
is also natural to ask

Problem 17. Is there, in ZFC, a perfectly normal first countable space that is
realcompact? What can it be said underMA + ¬CH?

Another question due to Blair that we do not solve is the following. Let us note
Blair proved that the existence of a weakly perfectly normal nonrealcompact space im
the existence of a weakly perfectly normal space that is not perfectly normal [4, 4.4].
under♦ and consistently withMA + ¬CH those classes of normal spaces are distinct.

Problem 18. Is there, in ZFC, a weakly perfectly normal space of cardinality less tha
first measurable that is not perfectly normal?

As we noted in the introduction, underV = L we do not know how to obtain guessin
sequences to produce a perfectly normal topologyτ onω1 refining the order topology an
such that(ω1, τ ) is not realcompact.

Problem 19. DoesV = L imply there is a club guessing sequence in which the closu
each stationary set contains a club?

Finally, we would like to know:

Problem 20. Which topological properties in addition to being perfectly normal im
realcompactness?
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