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58089 Morelia, Michoacán, México.
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8.1. Introduction to Mrówka-Isbell spaces

An infinite family A of infinite subsets of the natural numbers, !, is almost
disjoint (AD) if the intersection of any two distinct elements of A is finite. It is
maximal almost disjoint (MAD) if given an infinite X ⇢ ! there is an A 2 A such
that |A \ X| = !, in other words, if the family A is not included in any larger
almost disjoint family.

Given an almost disjoint family A , the  -space or the Mrówka-Isbell space
associated to A (denoted by  (A )) has ! [A as the underlying set, the points of
! being isolated, while the basic open neighborhoods of A 2 A are of the form

{A} [ (A \ F ),

where F ranges over all finite subsets of !.

There are few immediate properties of the Mrówka-Isbell spaces: they are
Hausdor↵ spaces due to the assumption that the families are almost disjoint, since
we are using subsets of a countable set and finite subsets of them, it follows that
 (A ) is a separable, first countable space. Another easy observation is that each
point has a neighborhood base consisting of compact open subsets and hence  (A )
is a locally compact zero dimensional space. In fact, any subspace of  (A ) is
locally compact as one can easily verify. Kannan and Rajagopalan [55] noted that
separable spaces with all of their subspaces locally compact are, in fact, exactly the
Mrówka-Isbell spaces (including degenerate situations). In the space  (A ), the
subspace A is infinite closed discrete and hence the Mrówka-Isbell spaces are not
countably compact whenever the corresponding AD family A is infinite, and they
are metrizable if and only if A is countable.

The first documented space of Mrówka-Isbell type was described by Alexandro↵
and Urysohn in [2, 1, Chapter V, 1.3] in 1925. It was later rediscovered indepen-
dently by Mrówka in [70], and Gillman and Jerrison in [41] (there attributed to
Isbell, hence the name), where the term  -space probably appeared first, in order to
give an example of a pseudocompact space that is not countably compact. Indeed,
 (A ) is pseudocompact if and only if A is a MAD family as we shall show next. If
A is not maximal, there is an infinite set J ⇢ ! almost disjoint from each element
of A . This set J is closed discrete and locally finite subset of  (A ), therefore any
(unbounded) function from J to R can be continuously extended to  (A ). This
shows that  (A ) is not pseudocompact. On the other hand, if f :  (A ) ! R+

is continuous and unbounded, then any infinite set {kn : n 2 !} ⇢ ! such that
|f(kn+1)| > max{|f(ki)| : i  n} is almost disjoint from every element of the family.

Over the years  -spaces associated with almost disjoint families have evolved
into extremely useful and versatile tools. Their applications range from the study
of Fréchet and sequential spaces, compactifications, continuous selections, spaces
of continuous functions both endowed with the topology of pointwise convergence,
and as Banach spaces or Banach algebras, to connections with the normal Moore
space problem.

The purpose of this chapter is to provide a selective survey on Mrówka-Isbell
spaces, with the intention of providing the reader with a good sample of results and
techniques to allow him/her to appreciate the depth, breadth, beauty and flexibility
of their applications.

We conclude this section by mentioning a simple application of Mrówka-Isbell
spaces over maximal almost disjoint families used by Arhangel’skii and Buzyakova
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in [5], as presented at https://dantopology.wordpress.com/tag/maximal-almost-
disjoint-family/ by Dan Ma. Recall that a space X is said to have G�-diagonal
if the diagonal � = {(x, x) : x 2 X} ⇢ X ⇥ X is G� in X ⇥ X. Of course, any
metrizable space has G�-diagonal. A countably compact space with G�-diagonal
must be metrizable, by a theorem of Chaber [22].

A space (X, ⌧) is said to be submetrizable if there is a topology ⌧⇤ weaker than
⌧ such that (X, ⌧⇤) is metrizable. Every submetrizable space has a G�-diagonal
since the diagonal � is a G�-set in the metric square X ⇥ X, and hence also in
the square in the original topology. We shall see that the property of having a
G�-diagonal is strictly weaker than that of being submetrizable.

Given a MAD family A , we already know that  (A ) is a pseudocompact space,
and it is easy to observe that it has G�-diagonal. The set A is an uncountable closed
discrete subset of the space, thus  (A ) is not Lindelöf but is separable, hence not
metrizable. However, every pseudocompact submetrizable space is metrizable. To
see this it su�ces to show that any closed set in the original topology ⌧ is also
closed in the weaker topology ⌧⇤. If C is closed in the original topology, then

C =
\

{cl⌧ (U) : U is open and C ⇢ U}.

This is so because the space is regular. Now, note that the sets cl⌧ (U) are pseu-
docompact with respect to the topology ⌧ , thus they are also pseudocompact with
respect to ⌧⇤ as this is a weaker topology. However, this is a metric topology, hence
the sets cl⌧ (U) are compact with respect to ⌧⇤ and it follows that C is also closed
with respect to ⌧⇤.

8.2. Basic combinatorics of almost disjoint families

There are almost disjoint families of size continuum. There are two standard
ways to construct them. One (used in the above mentioned paper by Alexandro↵
and Urysohn) is to fix for each real number r 2 R, an infinite sequence of rationals
Sr ⇢ Q convergent to r. It is obvious that the family {Sr : r 2 R} is almost disjoint
and identifying Q with ! one gets an almost disjoint family of subsets of ! of size
c.

Another way to construct an AD family of size c is to identify ! with the
binary tree 2<!. The key observation is that two di↵erent branches through 2<!

are almost disjoint subsets of nodes, thus given an X ⇢ 2!, the family

AX = {Bx : x 2 X},

where Bx = {x � n : n 2 !}, for x 2 X, is an almost disjoint family of size |X|.
This approach has the advantage that the almost disjoint family AX may reflect in
some way the topological properties of X, see e.g. Proposition 8.3.3.

A standard application of Zorn’s Lemma gives a simple yet crucial fact that
every almost disjoint family can be extended to a maximal one.

Another standard fact is that there are no countably infinite MAD families.
This follows by an application of Cantor’s diagonalization method. Indeed, if A =
{An : n 2 !} is an almost disjoint family then one can choose x0 2 A0 and
xn+1 2 An+1 \ (

S

in Ai [ {xi : i  n}), for n 2 !. Of course, this is possible since
An+1 is assumed to be infinite and it shares only finitely many elements with each
of the Ai, for i  n. Therefore the set {xn : n 2 !} is almost disjoint from each
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of the sets in A . Thus, the size of a MAD family ranges between @1 and c. The
minimal size of a MAD family is denoted by

a = min{|A | : A is a MAD family}.

It is well known that there are models of set theory in which all possibilities of the
inequalities @1  a  c hold. The interested reader can consult [10, 23] or [18] for
information relevant to this a�rmation and many other facts about the cardinal a
and other combinatorial characteristics of the continuum.

Recall that I  P(X) is an ideal on a set X if it is non-empty, closed under
taking subsets and finite unions of its elements. Given any almost disjoint family
A , the ideal generated by A is

IA =
n

I ⇢ ! : (9H 2 [A ]<!)(|I \
[

H| < !)
o

.

The collection of IA -positive sets, that is, the subsets of ! that are not elements
of IA is denoted by I +

A .
A very useful combinatorial property of almost disjoint families is the following

due to J. Dočkálková.

Lemma 8.2.1. [8] If A is an almost disjoint family and {Xn : n 2 !} ⇢ I +
A

with Xn+1 ⇢ Xn, for each n 2 !, then there is X 2 I +
A which is almost contained

in each of the sets Xn, for every n 2 !.

Proof. Assume that A is MAD for if not A can be extended to a MAD
family in such a way that each of the Xn remain positive. Recursively, pick for
each n 2 ! a set An 2 A \ {Am : m < n} such that Xn \ An is infinite. Choose,
for n 2 !, an infinite pseudointersection Yn ⇢ An of {Xn : n 2 !}. Finally set
X =

S

Yn and observe that X is the set we were looking for. ⇤

A useful equivalent of Lemma 8.2.1 is that for every partition of !, {Yn : n 2 !},
either there is n 2 ! such that Yn 2 I +

A or there is I 2 I +
A such that I \ Yn is

finite for all n 2 !. Another basic property is:

Lemma 8.2.2. [61] Let A be an almost disjoint family. Then any colouring
' : [!]2 ! 2 is constant on the pairs of an IA -positive set; that is, there is an
IA -positive homogeneous set for the colouring.

Proof. We first prove a preliminary fact: For every partition of ! into finite
pieces {Fn : n 2 !} there is I 2 I +

A such that |I \ Fn|  1 for all n 2 !.
Choose an infinite {An : n 2 !} ⇢ A , and then construct {an : n 2 !} such

that an 2 Fn and (8k 2 !)(91n 2 !)(an 2 Ak). Then the set {an : n 2 !} hits in
an infinite set An, for all n 2 !, hence it is in I +

A .
Now we claim that if {Yn : n 2 !} is a partition of ! such that Yn /2 I +

A for all
n 2 !, then there is Z 2 I +

A such that |Z \ Yn|  1 for all n 2 !. Indeed, by the
remark before this lemma there is X 2 I +

A which meets every Yn in a finite set.
Let {yn : n 2 !} be an enumeration of ! \X. Consider now the partition given by
Fn = (X \ Yn) [ {yn} for n 2 !. The preliminary fact then implies that there is
Z 2 I +

A such that |Z \ Fn| = 1. This set Z works.
We are now ready for the proof. Observe that given an infinite G ⇢ !, either

G 2 I +
A or ! \G 2 I +

A , otherwise ! 2 IA . For each n 2 !, define

Xn = {k > n : '({k, n}) = 1}.
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Since ! = {n 2 ! : Xn 2 I +
A } [ {n 2 ! : ! \ Xn 2 I +

A }, without loss of gen-

erality, assume Y = {n 2 ! : Xn 2 I +
A } 2 I +

A . Set, for n 2 !, X
0

n =
T

{Xi :
i 2 Y \ n+ 1} 2 I +

A . By Lemma 8.2.1, there is W 2 I +
A which is almost con-

tained in each X 0
n. It is easy to construct an increasing sequence {kn : n 2 !}

such that W \ kn+1 ⇢ X 0
kn
, for all n 2 !. Then either

S

n2![k2n, k2n+1) 2

I +
A or

S

n2![k2n+1, k2n+2) 2 I +
A . Assume the latter and take X = Y \ W \

S

n2![k2n+1, k2n+2) 2 I +
A . By the preliminary fact, we may assume that X con-

tains at most one point from each interval. For every n 2 ! we have X \ k2n =
X \ k2n+1 ⇢ X 0

k2n
and if a, b 2 X are such that k2m+1  a < k2m+2 < k2n+1 

b < k2n+2, then b 2 X \ k2n = X \ k2n+1 ⇢ X 0
k2n

=
T

{Xi : i 2 Y \ (k2n + 1}; in
particular b 2 Xa and therefore '({a, b}) = 1. ⇤

8.3. Mrówka-Isbell spaces as Moore spaces

Almost disjoint families and the corresponding  -spaces played their role in
the solution to the normal Moore space problem [82]. Recall that a space X is a
Moore space if it is a developable regular space; that is, there is a sequence of open
covers of the space such that for any closed set C and any point p 2 X \ C there
exists a cover in the collection such that every neighborhood of p in that cover is
disjoint from C. Note that every  -space is a Moore space. Tall in his thesis [82]
gave a solution to the normal Moore space problem for separable spaces as follows

Theorem 8.3.1. [82] The following are equivalent

(1) There is a separable normal non-metrizable Moore space,
(2) There is an uncountable normal  -space,
(3) There is an uncountable Q-set. 1

Proof. A consequence of Bing’s Theorem [33, p. 329] (that a normal Moore
space is metrizable if and only if it is collectionwise normal) is that a separable
normal but non-metrizable Moore space has an uncountable closed discrete subset.
So, if X is a separable normal non-metrizable Moore space, N ⇢ X is a countable
dense set and A ⇢ X \N is an uncountable closed discrete set, by taking sequences
from N which converge to the points of A, an uncountable almost disjoint family
A is obtained. Normality of X implies that of  (A ). This shows that (1) implies
(2). We just mentioned that (2) implies (1) since  -spaces are Moore spaces.

The proof that (2) and (3) are equivalent is the Proposition 8.3.3 below. ⇤

Note that, in particular, (as observed previously by F. B. Jones [33, p. 60])
assuming the Continuum Hypothesis, every separable normal Moore space is metriz-
able.  (A ) is not a normal space whenever A is a MAD family. If A is countable,
the space  (A ) is normal, in fact metrizable. The following proposition is standard
and easy to prove; it characterizes when the space  (A ) is normal.

Proposition 8.3.2.  (A ) is a normal space if and only if for every B ⇢ A
there is a J ⇢ ! such that

B = {A 2 A : A ⇢⇤ J} and A \ B = {A 2 A : A \ J =⇤
;} .

1Recall that a separable metrizable space X is called a Q-set if every subset of X is G� in
X.
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The set J in the conclusion of the proposition is called partitioner for B and
A \ B. Notice that if B = {A 2 A : A ⇢⇤ J}, then

B =
[

n2!

\

m2!
{A 2 A : m 2 A \ n) m 2 J} ;

that is, B is an F�-set of A as subspace of P (!). Therefore, if  (A ) is a normal
space then A is a Q-set (as a subspace of P (!)).

Silver [82] proved that it is consistent that a Q-set exists, thus the existence of
a non-metrizable separable normal Moore space is consistent with ZFC.

On the other hand, recall that to any X ⇢ 2! corresponds an almost disjoint
family AX consisting of the branches Bx, for x 2 X. We have also the following.

Proposition 8.3.3. [82] Let X ⇢ 2! and AX be the almost disjoint family
corresponding to X. Then X is a Q-set if and only if  (AX) is a normal space.

Proof. Assume X is a Q-set, B ⇢ A , and let B = {x 2 X : Ax 2 B}. Since
X is a Q-set there are closed subsets Fn and Gn of X such that B =

S

n2! Fn and

X \ B =
S

n2! Gn. Define J0 = bF0, K0 = bG0 \
bF0 and Jn = bFn \

S

i<n
bGi as well

as Kn = bGn \

S

in
bFn for n > 0. Put J =

S

n2! Jn and observe that J \Km =⇤
;

for every m 2 !. If Ax 2 B, then there is some n 2 ! such that x 2 Fn. Moreover,
since each Gi is closed in X and Gi \ B = ;, for i < n, there is some k 2 ! such
that [x � k]\Si<n Gi = ;. This implies that Ax ⇢

⇤ Jn ⇢ J . Similarly if x 2 X \B
there are k,m 2 ! such that x 2 Gm and [x � k] \ S

in Fi = ;; this implies
Ax \J =⇤

;. By Proposition 8.3.2 this su�ces to show that  (A ) is normal. The
other direction follows from the comments after Proposition 8.3.2. ⇤

To finish this section we are going back to the problem of determining the
normality of the space  (A ). A direct application of Jones’ Lemma shows that in
order for  (A ) to be normal, it is necessary that |A | < c. With the aid of Martin’s
Axiom one can characterize the normality of  (A ). This result appeared in [45].

An example of a non-normal  -space was given by Luzin:

Theorem 8.3.4. [59] There is an uncountable almost disjoint family such that
no two uncountable subfamilies can be separated.

Proof. Recursively choose A↵ in the following way. Start by taking a partition
of ! into infinite sets {An : n 2 !}. Then if all A� have been chosen for � < ↵,
enumerate them as {Bn : n 2 !} and choose an ⇢ Bn \

S

k<n Bk of size n and let
A↵ =

S

n2! an.
The family just constructed has the following property:

(8↵ < !1)(8n 2 !)({� < ↵ : A� \A↵ ⇢ n} is finite).

Families like this are called Luzin gaps.
If B, C ⇢ A are uncountable and they can be separated, then there is m 2 !

and uncountable subfamilies B0
⇢ B and C 0

⇢ C such that
S

B0
\

S

C 0
⇢ m, and

given that these families are both uncountable there is A↵ 2 B0 such that A� 2 C 0

for infinitely many � < ↵. Nevertheless, A↵ \ A� * m for some of those � < ↵;
which is a contradiction. ⇤

The notion of an n-Luzin gap is a weakening of a notion recently introduced
in [85, 34] which is in turn weaker than the familiar notion of a Luzin gap defined
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above. Let n 2 ! and Bi =
�

Bi
↵ | ↵ 2 !1

 

be disjoint subfamilies of an AD family
A for i < n. We call hBi| i < ni an n-Luzin gap if there is m 2 ! such that

(1) Bi
↵ \Bj

↵ ⇢ m for all i 6= j, ↵ < !1, and
(2)

S

i 6=j(B
i
↵ \Bj

�) 6⇢ m for all ↵ 6= � < !1.

We say that A contains an n-Luzin gap if there is an n-Luzin gap hBi|i < ni
where each Bi is a subfamily of A . For more on Luzin gaps and related properties
see [1, 73, 50].

Theorem 8.3.5. Assume MA. Let A be an AD family. Then  (A ) is normal
if and only if |A | < c and A does not contain n-Luzin gaps for any n 2 !.

8.4. Extensions of continuous functions

For a normal  -space  (A ) any function f : A ! R has a full continuous

extension bf :  (A ) ! R, a fact that charactarizes normality of  (A ). So, in
particular, any function defined on a countable A has a full extension. On the
other hand:

Proposition 8.4.1. [60] There is a  -space of size @1 such that every function
f : A ! R with at least two di↵erent uncountable fibers has no full extension.

Proof. Follows easily from Theorem 8.3.4. ⇤
In [60], Malykhin and Tamariz-Mascarúa introduced the notion of an essential

extension bf : N [A ! R of a given function f : A ! R as one that is continuous,
and such that A ⇢ cl (A )(N). The main results concerning this notion can be
summarized as follows.

Theorem 8.4.2 (see [60] and [3]). (1) Every  -space of size c admits a
function f : A ! 2 with no essential extension.

(2) (Assuming 2! < 2!1) There is a function f : A ! 2 without an essential
extension for any uncountable AD family.

(3) There is a function f : A ! 2 without an essential extension for any
MAD family.

(4) (Assuming MA) Every function f : A ! R defined on an AD family of
size less than c has an essential extension.

Proof. (1) and (2) follow directly from the observation that if A is an AD
family such that 2|A | > c (in particular if |A | = c), then there is a function
f : A ! 2 which has no essential extension: To see this note that there are 2|A |-
many functions on A , while there are only c-many possible essential extensions, as
these are uniquely determined by their value on an infinite set N .

For (3), assume that B = {An : n 2 !} is a countable subset of a MAD family

A , and f : A ! 2 is such that, say, B = f�1(1), and assume that bf : N[(A )! R
is an essential extension of f . Let C = f�1(( 12 ,1)), and note that by continuity
A ⇢⇤ C for every A 2 B, while A \C is finite for every A 2 A \ B. In particular,
C 2 I +

A .
Now, recursively pick kn 2 C \ An \

S

m<n Am, and let D = {kn : n 2 !}.
Note that D is almost disjoint from all elements of A \B being a subset of C, and
by the construction, it is also almost disjoint from all elements of A , having only
finite intersection with each of the An; contradicting maximality of A .

For the proof of (4) consult [60]. ⇤
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Note that, in particular, it is consistent with ZFC (follows from MA) that there
is an AD family A which admits essential but not necessarily full extensions for
functions f : A ! R. Similar issues were delt with by Kulesza and Levy in [57]
where they constructed assuming MA a MAD family A such that every countable
subset of A is C⇤-embedded in  (A ) but no infinite subset of A is 2-embedded
in  (A ), i.e. for every countable B ⇢ A there is a function f : B ! 2 which does

not have a continuous extension bf :  (A )! 2.
Fibers of continuous real-valued functions on -spaces were studied by Vaughan,

and Payne in [86].

The study of groups of homeomorphisms of  -spaces was initiated by Garćıa-
Ferreira in [37]. This is, of course, equivalent to asking under which conditions a
permutation ⇡ : ! ! ! extends to a homeomorphism b⇡ :  (A ) !  (A ). The
simplest possible case being that the almost disjoint family A is invariant under
⇡, i.e., ⇡[A] 2 A for all A 2 A . Following [37] we associate to each AD family
A the subgroup Inv(A ) of Sym(!) which consists of those permutations ⇡ which
are invariant under A , and Inv⇤(A ) = {f 2 Sym(!) : (8A 2 A )(9A0

2 A )(A0 =⇤

f [A])}. We consider Sym(!) as a topological group with the subspace topology of
the product !!. Garcia-Ferreira in [37] showed that:

Theorem 8.4.3. [37] Let G be a countable subgroup of Sym(!). Then there is
a MAD family A such that G ⇢ Inv(A ).

On the other hand, we have the following.

Proposition 8.4.4. [4] There is a MAD family A such that Inv(A ) = {Id}.

Proof. Before embarking on the proof let us make two trivial observations.

(1) If A and B are MAD families such that, for any A 2 A there is a B 2 B
so that A =⇤ B, then Inv⇤(A ) = Inv⇤(B).

(2) Let A be a MAD family, g 2 Inv⇤(A ), and B ⇢ A with |B| < |A |.
There are X,Y 2 A \ B such that Y =⇤ g[X].

In order to construct the MAD family A , let C be any MAD family of cardi-
nality c, and let {f↵ : ↵ < c} be an enumeration of the set Inv⇤(C )\{Id}. Applying
the above observation recursively, one can chose {Bi

� : i < 2,� < c} ⇢ C so that,
for every ↵ < c,

(1) {B0
↵, B

1
↵} \ {Bi

� : i < 2,� < ↵} = ;, and

(2) B1
↵ =⇤ f↵[B0

↵].

For each ↵ < c, then pick n↵,m↵ 2 ! so that n↵ 6= m↵ and f↵(m↵) = n↵. Let
A0
↵ = B0

↵ [ {m↵} and A1
↵ = B1

↵ \ {n↵}, and define

A = (C \ {Bi
↵ : i 2 2,↵ < }) [ {Ai

↵ : i 2 2,↵ < }.

A is then a MAD family, and Inv⇤(A ) = Inv⇤(C ).
Aiming for a contradiction, assume that f 2 Inv(A ) \ {Id}. Then there is an

↵ < c such that f = f↵. By the construction,

f↵[A
0
↵] = f↵[B

0
↵ [ {m↵}] =

⇤ B1
↵ =⇤ A1

↵

but also f↵[A0
↵] 6= A1

↵, which contradicts the fact that f 2 Inv(A ). ⇤
Another result of [4] shows that Inv(A ) can also be dense in Sym(!). It seems

to be an interesting problem to characterize those subgroups of Sym(!) which are
of the form Inv(A ), Inv⇤(A ), and {h � ! : h 2 Hom( (A ))}.
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8.5. Fréchet and sequential spaces

There is an extremely close relationship between almost disjoint families and
Fréchet spaces. The topology of any such space is uniquely determined by taking
for each point a maximal almost disjoint family of sequences converging to this
point. It is therefore no surprise that Mrówka-Isbell spaces play a central role in
this part of topology.

Given an almost disjoint family A , the Franklin compactum F (A ) =  (A )[
{1} is the one point compactification of the  -space  (A ). It is easy to observe
that F (A ) is a Fréchet space if and only if for every X /2 IA , the restriction of
A to X, that is {A \X : A 2 A }, is not MAD on X. Moreover, if A = A 0 [A1

is is an almost disjoint family with A0 \A1 = ;, then the product F (A0)⇥F (A1)
is not Fréchet if A is somewhere MAD, which means that the restriction of A is
MAD on some element of I +

A . Note that if A0 [A1 � X is maximal, then h1,1i
is in the closure of {hn, ni : n 2 X} but no subsequence converges to h1,1i.

Theorem 8.5.1. [77] There is a MAD family A = A 0 [A1 such that F (Ai)
is a Fréchet space for i 2 2, yet F (A0)⇥F (A1) is not.

Proof. By the comments before the statement of this theorem, all we need is
to show some MAD family A which can be written as a disjoint union A0 [A1 of
nowhere MAD families.

Proceed towards a contradiction assuming that for each MAD family A on a
countably infinite set and for each partition A = A 0 [A1 there is i 2 2 and a set
Xi 2 I +

A such that the restriction of Ai to Xi is MAD. We shall write below I (A )
instead of IA if there are subindexes adorning A .

Let A be a MAD family of size continuum enumerated as {Af : f 2 2!}.
Put An,i = {Af : f(n) = i} for n 2 ! and i 2 2. Of course, for each n 2 !,
A = A n,0 [An,1 and An,0 \An,1 = ;.

Use induction on n to get a decreasing sequence X0 ◆ X1 ◆ X2 ◆ · · · and a
sequence hin : n 2 !i 2 2! such that Xn 2 I +(A n,in

) and the restriction of An,in

is MAD on Xn. By Lemma 8.2.1, there is Y 2 I +
A which is almost contained in

every Xn, n 2 !. Since Y /2 IA , |Y \Ag| = @0 for infinitely many g 2 2!. Choose
g 2 2! \ {hin : n 2 !i} and fix n such that g(n) 6= in.

Since Y \ Xn is finite and Y \ Ag is infinite, it follows that Xn \ Ag is also
infinite. Now Ag /2 An,in , hence Ag \A is finite for each A 2 An,in and Xn \Ag is
infinite, yet the restriction of An,in to Xn is MAD; a contradiction. ⇤

The proof of the theorem can be strengthened to show that given any MAD
family A there is an IA -positive set X such that A can be partitioned into two
nowhere maximal families. It was unclear for a long time whether the restriction in
the result was necessary. Dow in [27] showed that it is. He constructed a consistent
example of a MAD family A of size !2 such that for any subfamily B ⇢ A of size
!2 there is an IA -positive set X such that B � X is maximal.

Recall that a subset A of a topological space X is sequentially closed if every
convergent sequence of points in A has its limit point in A. A space X is sequential
if every sequentially closed subset of X is closed. Given a subset A of X the
sequential closure of A is defined as

seqcl(A) = {x 2 X : (9(an)n2! ⇢ A)(an ! x)}.
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Iterating the procedure one defines seqcl0(A) = A,

seqcl↵+1(A) = seqcl(seqcl↵(A))

for ↵ < !1, and seqcl↵(A) =
S

�<↵ seqcl
�(A) in case ↵  !1 is a limit ordinal. The

sequential order of a topological space X, denoted by so(X), is the minimal ↵  !1

such that for every A ⇢ X the set seqcl↵(A) is sequentially closed.
The one point compactification of the Mrówka-Isbell space of a MAD family

is a compact sequential space of sequential order 2. It is unknown if there is a
compact sequential space of sequential order bigger than 2 in ZFC alone. In 1974,
Bashkirov [11] proved that, under CH, there are compact sequential spaces of any
sequential order  !1. We prove Bashkirov’s result next and take this opportunity
to extend the concept of almost disjointness and show its usefulness. The proof
presented here follows closely the argument given in [39]. If I is an ideal over !
and A,B ⇢ ! we say that they are I -almost disjoint whenever A \ B 2 I . We
will use the following two facts.

Lemma 8.5.2. Suppose that there is a family {X↵ : ↵ < !1} of compact
scattered sequential spaces such that each X↵ has so(X↵) < !1. If the fam-
ily {so(X↵) : ↵ < !1} is cofinal in !1, then the one point compactification of
L

↵<!1
X↵ is a compact scattered space of sequential order !1.

Lemma 8.5.3 (Folklore). Let X be a compact scattered space of countable scat-
tered height. Then X is sequential.

Thus, to define the space of sequential order !1 it is enough to define, for each
ordinal ⌘ < !1, a compact sequential scattered space of sequential order ⌘+1. The
key of our construction is the following.

Definition 8.5.4. Let ⌘ be an infinite countable ordinal. A family of subsets
of ! will be called ⌘-layered if A =

S

⇠⌘ L⇠(A ), where

(1) L0(A ) = {{n} : n 2 !}, L⇠(A ) is a countable family of proper infinite
subsets of ! for 0 < ⇠ < ⌘ and L⌘(A ) = {!},

(2) for each ⇠ < ⌘ and A,B 2 L⇠(A ), A \ B 2 I⇠, where I⇠ denotes the
ideal generated by the family

S

�<⇠ L�(A ),
(3) for every ⇠ < ⇣ < ⌘, A 2 L⇠(A ) and B 2 L⇣(A ), either A \ B 2 I⇠ or

A \B 2 I⇠.

Given A 2 A , we say that A is on the level ⇠ in A and write L(A) = ⇠ if
A 2 L⇠(A ). Say that an ⌘-layered family A ⇢ P(!) is a canonical ⌘-layered
family if given A,B 2 A , either A ⇢ B or A \ B = ;. We also write A ⇢I B
to mean that A \ B belongs to the ideal I and we say that A is contained in B
mod I . We also consider the notion of equivalence of ⌘-layered families. Layered
families A and B are equivalent if:

• they generate the same Boolean subalgebra of P(!),
• I⇠(A ) = I⇠(B) = I⇠ for every ⇠ < ⌘, and
• there is a bijective function ' : A ! B which preserves layers such that
A⇠4'(A⇠) 2 I⇠ for every ⇠ < ⌘.

Note that, in particular, Am
� 4'(A

m
� ) belongs to the Boolean algebra generated by

the layered families.

Lemma 8.5.5. Each countable ⌘-layered family A is equivalent to a canonical
⌘-layered family B.
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Given an ⌘-layered family B, call an infinite Y ⇢ B slim if there is a ⇠  ⌘
such that hL(y) : y 2 Y i increasingly converges to ⇠, if ⇠ is limit, or Y ⇢ L⇣(A ), if
⇠ = ⇣ + 1, and there is a C 2 B such that

• (81y 2 Y )(y ⇢IL(y)
C),

• {y 2 Y : y ⇢IL(y)
D} is finite for every D 2 A such that L(D) < L(C).

Note that such a C 2 A is uniquely determined by Y .

Theorem 8.5.6. [11] The Continuum Hypothesis, CH, implies that for each
⌘ < !1 there is a compact scattered space of sequential order ⌘ + 1.

Proof. Let ⌘ < !1. Suppose that there is an ⌘-layered family A such that
for every slim Y 2 [A ]! there is a C 2 A such that

(1) (81y 2 Y )(y ⇢IL(y)
C),

(2) |{y 2 Y : y ⇢IL(y)
D}| < ! for every D 2 A with L(D) < L(C), and

(3) L(C) = sup{L(y) + 1 : y 2 Y }.

Let BA ⇢ P(!) be the Boolean algebra generated by A . Observe that every
A 2 A produces an ultrafilter xA on BA defined by

xA = {B 2 BA : A ⇢IL(A)
B}.

Let X = St(BA ) = {xA : A 2 A } be the Stone space of BA . A slim subset Y of
the ⌘-layered family A , corresponds to a convergent sequence in X and, if C 2 A
is the witness to Y being slim in A , then the sequence {xy : y 2 Y } converges to
xC . Also observe that the scattered levels, X(�), of the space X correspond to the
levels of the ⌘-layered family A . Thus X is a compact scattered space of height
⌘ + 1 and, by Lemma 8.5.3, X is also sequential.

To prove that X is of sequential order ⌘ + 1, consider the level 0 of our space.
By the properties of the ⌘-layered family A asserted above, if {yn : n 2 !} is
contained in

S

⇠<� L⇠(A ), then every slim subset of {yn : n 2 !} is witnessed
by some element of

S

⇠<�+1 L⇠(A ). That is, every convergent subsequence of a

sequence contained in X(�), the first � levels of X, has its limit in X(�+1). This
shows that seqcl↵(X(0)) ⇢

S

�↵X
(�) for all ↵ < ⌘. So, we are left to show that

the family A can be constructed if CH is assumed.
Fix an enumeration {Y↵ : ↵ < !1} of all countable infinite subsets of P(!) in

such a way that each one of them appears cofinally many times. Let A0 be an arbi-
trary canonical countable ⌘-layered family, and suppose A↵ has been constructed,
for some ↵ < !1. Applying Lemma 8.5.5, assume that A↵ is canonical. Either Y↵ is
not a slim subset of A↵ or Y↵ is slim witnessed by CY↵ 2 A↵ and L(CY↵) = ⇠  ⌘,
according to the definition of slim, then A↵+1 = A↵. Otherwise, we shall construct
a set D(CY↵ , ⇠).

To define D(CY↵ , ⇠) enumerate as {Cn : n 2 !} the family

{A 2 A↵ : L(A) < ⇠ & A ⇢ CY↵},

and define k↵(0) = 0 and

k↵(n+ 1) = min{k 2 ! : k > n+ k↵(n) & (9y 2 Y↵)(y ⇢ Ck)}.

Let

D(CY↵ , ⇠) =
[

n2!

⇣

[

{Ci : i < k↵(n+ 1) & L(Ci) < ⇠} \
[

{Cj : j < k↵(n)}
⌘

.
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Then let L⇠(A↵+1) = L⇠(A↵) [ {D(CY↵ , ⇠)}. Clearly A↵+1 is a ⌘-layered family.
For ↵  !1, a limit ordinal, if A� is defined for all � < ↵, define A↵ =

S

�<↵ A� .
It only remains to show that the ⌘-layered family A!1 has the required pro-

perties. Let Y be a slim subset of A!1 , choose ↵ such that Y = Y↵ ⇢ A↵. After
applying Lemma 8.5.5 we may assume that A↵ is a canonical ⌘-layered family. Let
CY 2 A↵ and ⇠ < ⌘ be the witness of Y being slim with respect to A↵. Then either
L(CY ) = ⇠ and we are done, or each element A 2 A� below CY contains only
finitely many elements of Y . The definition of D(CY , ⇠) ensures that it contains
infinitely many elements of Y in case L(CY ) > ⇠. This concludes the proof. ⇤

It should be noted here that what we constructed was a special compactification
of a Mrówka-Isbell space. In [26], Dow extended Bashkirov’s result by constructing
a compact space of sequential order 4 assuming b = c. He pointed out that his
method cannot be generalized to get larger sequential order, and in [28] he proved
that, under PFA, the sequential order of any compact sequential scattered space
for which the sequential order and the Cantor-Bendixson rank coincide cannot be
greater than !. In the process he showed that under the same hypothesis, every
MAD family contains a Luzin gap. The original question (due to Arhangel’skĭı and
Franklin [6]) whether there is, in ZFC, a compact sequential space of sequential
order larger than 3 remains open.

8.6. Compactifications of  -spaces

A very interesting construction of a MAD family was given by Mrówka in [71]
where he presented an almost compact  -space. Recall that a Tychono↵ space
is almost compact if its Čech-Stone compactification coincides with its one-point
compactification. A MAD family A such that |� (A ) \  (A )| = 1 is called a
Mrówka family . As we shall see later, it is one of the most useful constructions of
AD families for applications in various branches of topology.

Theorem 8.6.1. [71] There is a Mrówka MAD family A .

Proof. We shall construct a Mrówka family on 2<!. For each f 2 2!, let
Af = {f � n : n 2 !} and set B0 be a MAD family containing {Af : f 2 2!}. Use
a X ⇢ 2! to enumerate B0 \ {Af : f 2 2!} as {Bg : g 2 X}. Modify B0 as

B1 = {Af : f 2 2! \X} [ {Ag [Bg : g 2 X}.

Recall that P ⇢ 2<! is a partitioner of B1 if for every B 2 B1 either P \ B is
finite or B \ P is finite. Observe that for a non-trivial2 partitioner P the set

{f 2 2! : Af ⇢
⇤ P} = {f 2 2! : (9n 2 !)(8m � n)(f � m 2 P )}

is an F� set and hence of size c since it is not countable as B1 � P is a MAD family.
Therefore every non-trivial partitioner of B1 almost contains c elements of B1.

Let {P↵ : ↵ < } be all the non-trivial partitioners of B1, for some   c.
Define a sequence hA↵, B↵ : ↵ < i in such a way that A↵ ⇢⇤ P↵ and B↵\P↵ =⇤

;.
This is easy because there are plenty of elements from B1 to be chosen due to the
claim in the last paragraph.

Modify now the family B1 to the family

B2 = {A↵ [B↵ : ↵ < } [ (B1 \ {A↵, B↵ : ↵ < }).

2A partitioner P is trivial if P 2 IA or ! \ P 2 IA .
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Note that B2 has no non-trivial partitioner. Now enumerate R! as {f↵ : ↵ < c}
and recursively choose elements A↵, B↵ of B2 so that in case f↵ extends to a
non-trivial function f↵ :  (B2)! R, then f↵(A↵) 6= f↵(B↵). Then set

A = {A↵ [B↵ : ↵ < c} [ (B2 \ {A↵, B↵ : ↵ < c}).

It is easy to verify that A is a MAD family. Assume towards a contradiction that
A is not a Mrówka family. As a first step, �( (A )) \ (A ) is connected for if C
is a non-trivial clopen subset then there are open subsets U and V of  (A ) which
separate C from �( (A )) \ C. Then U [ V covers �( (A )) \  (A ) and hence
F = A \ �( (A )) \ (U [ V ) must be finite. Thus P = (U \ 2<!) \

S

F would be
a non-trivial partitioner of A , which is impossible.

On the other hand, �( (A ))\ (A ) is also a zero dimensional space. Otherwise
there would be a surjective continuous function from �( (A ))\ (A ) to [0, 1], and
as �( (A )) \  (A ) is closed in �( (A )) there exists of a surjective continuous
function f :  (A ) ! [0, 1]. But the restriction f � ! was enumerated as f↵ and
by the last modification of the family B2 the function f cannot be continuous at
A↵ [B↵ 2 A . ⇤

This novel method of constructing special MAD families has appeared in several
sources, see for example [12, 13, 47, 46]. Terasawa (one of Mrówka’s students)
extended Mrówka’s result and his method by showing:

Theorem 8.6.2. [84] For every compact metric space X without isolated points
there is a MAD family A such that �( (A )) \ (A ) is homeomorphic to X.

Terasawa credited Mrówka with the result that there is a MAD family A such
that �( (A ))\ (A ) is homeomorphic to !1+1. Dow and Vaughan [31] improved
this result by Mrówka. Recall that the tower number t is the minimum size of a
tower in [!]!, that is, the minimum size of a family T ⇢ [!]! which is well-ordered
by ◆⇤ and has no infinite pseudointersection.

Theorem 8.6.3. [31] For every ordinal � < t+ there is a MAD family A such
that the Čech-Stone remainder of  (A ) is homeomorphic to � + 1 with the order
topology.

Dow and Vaughan pointed out that this theorem is the best possible in ZFC
since it is consistent that t+ + 1 is not the Čech-Stone remainder of any  -space.

As noted by Kulesza and Levy in [57] the methods of Baumgartner and Weese
[14] show that assuming CH every continuous image of �! is homeomorphic to the
remainder of a  -space. On the other hand, Dow [25] has shown that this fails in
general, as in the Cohen model every remainder of a  -space has size at most c.
The following question by Dow seems to be still open:

Question 8.6.4. [24] Is every compact space of weight !1 homeomorphic to
the remainder of a  -space?

8.7. Spaces of continuous functions on  -spaces

Given spaces X and Y , the space of continuous functions from X to Y with
the pointwise convergence topology is denoted by Cp(X,Y ), with Cp(X,R) written
simply as Cp(X). One of the major problems in the area deals with the Lindelöf
property. It is well known that Cp(X) is rarely Lindelöf. Buzyakova [20] showed
that for a class of  -like spaces Cp(X) is Lindelöf: Given an ordinal ↵ she considered
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the space X of successor ordinals and ordinals of countable cofinality below ↵. This
result led Dow and Simon [29], and Hrušák, Szeptycki and Tamariz-Mascarúa [52],
independently, to study spaces of continuous functions over  (A ).

Theorem 8.7.1. [29] The space Cp( (A )) is not Lindelöf for any MAD family
A .

Proof. Given a MAD family A , and A 2 A , let

UA = {f 2 Cp( (A )) : f(A) 6= 0},

and given k < m 2 ! let

Uk,m =
�

f 2 Cp( (A )) : f(m) < 1/k+1 & (8n 2 [k,m))(f(n) < 1/2)
 

.

We claim that U = {UA : A 2 A } [ {Uk,m : k < m 2 !} is an open cover of
Cp( (A )) without a countable subcover.

Obviously all sets in U are open. To see that U is cover, note that by maximality
of A

f 2 Cp( (A )) \
[

A2A

UA if and only if lim
n!1

f(n) = 0,

in which case there are k < m 2 ! such that f 2 Uk,m.
To see that U does not have a countable subcover, consider countable V ⇢ U.

As A is uncountable, there is an A 2 A such that UA 62 V. Define g :  (A )! R
by putting g(x) = 1 if x 2 A [ {A}, g(B) = 0 if B 2 A \ {A} and g(n) = 1

|A\n|+1

for n 2 ! \ A. It should be obvious that g 2 Cp( (A )), and also that g 62 UB

when B 2 A \ {A}. To see that g is not covered by V it therefore su�ces to verify
that g 62 Uk,m for any k < m 2 !. For this there are two cases: if A \ [k,m] 6= ;
then either there is an n 2 [k,m) such that g(n) = 1 or g(m) = 1, hence g 62 Uk,m.
If A \ [k,m] = ; then A \ n ⇢ k and consequently g(m) = 1

|A\n|+1 �
1

1+k . Thus
g 62 Uk,m. ⇤

The situation changes if one restricts to the subspace of two-valued continuous
functions, i.e. the space Cp( (A ), 2).

Theorem 8.7.2. (1) [29] b > !1 implies that the space Cp( (A ), 2) is
not Lindelöf for any MAD family A .

(2) (See [29] and [52]) It is consistent that there is a Mrówka MAD family
A0 such that Cp( (A0), 2) is Lindelöf.

(3) There is a Mrówka MAD family A1 such that Cp( (A1), 2) is not Lindelöf.

The second and third clause nicely illustrates the complexity of the Lindelöf
property on function spaces. Consistently there are two spaces which are virtually
identical, both are  -spaces with unique compactifications, yet one has the space
of continuous functions Lindelöf while the other does not.

We restrict our attention to MAD families with no non-trivial partitioners only
(in particular, Mrówka MAD families are such), because they have very simple
spaces of continuous functions, and we can nicely characterize when Cp( (A , 2))
is Lindelöf. Note that for a Mrówka MAD family A

Cp( (A ), 2) =
[

n2!,i22

�i
n(A ),

where
�i
n(A ) = {f 2 Cp( (A , 2)) : |f�1(i) \A |  n},
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for every n 2 ! and i 2 2, is a closed subspace of Cp( (A ), 2).

We say that an AD family A is concentrated on [!]<! if for every open set
U ⇢ P(!) containing [!]<! there is a countable B ⇢ A such that

S

H 2 U for
all H 2 [A \ B]<!. Here we consider P(!) as a compact metric space endowed
with the product topology of 2! via characteristic functions. Consistent examples
of MAD families with similar combinatorial properties were constructed by Brendle
and Piper in [19] and Miller in [66].

Proposition 8.7.3. Let A be a Mrówka MAD family. Then Cp( (A ), 2) is
Lindelöf if and only if A is concentrated on [!]<!.

Proof. To start with, note that Cp( (A ), 2) is Lindelöf if and only if �i
n(A )

is Lindelöf for every n 2 ! and i 2 2. Since �0
n(A ) and �1

n(A ) are naturally
homeomorphic, we can only consider one of them, say �1

n(A ) which we denote
from now on as �n(A ).

Assume first that A is concentrated on [!]<!. We shall show by induction
on n that all �n(A ) are Lindelöf. To begin with note that �0(A) consists only of
characteristic functions of finite subsets of !, hence is countable, therefore Lindelöf.

For the inductive step assume that �n�1(A ) is Lindelöf, and let U be an open
cover of �n(A ) by basic open sets in Cp( (A ), 2). By inductive hypothesis there
is a countable subfamily V of U which covers �n�1(A ). Now for each x 2 [A ]n let

Fx = {f 2 �n(A ) : f�1(1) \A = x}.

As each Fx is homeomorphic to a subset of 2!, it is covered by a countable subfamily
Ux of U. Thus it su�ces to prove that

Claim. The set D = {x 2 [A ]n : Fx is not covered by V} is countable.

If the set D is uncountable, it contains an uncountable �-system {x↵ : ↵ < !1}

with root r and for each ↵ a function f↵ 2 Fx↵ \

S

V. By possibly going to a subset
of the �-system we may assume that there is a finite set a ⇢ ! such that each
f↵ � ! is the characteristic function of a4

S

x↵. As |r|  n � 1, Fr is covered by
V. Let

W = {f � ! : (9V 2 V)(V \ Fr 6= ; & f 2 V )},

and let

Wr =
n

Z4
⇣

a4
[

r
⌘

: �Z 2W
o

.

Wr is then an open set in P(!) containing [!]<!. It is obviously open, to see that
it covers [!]<! note that given a finite b ⇢ !, the function g 2 Cp( (A ), 2) defined
by g(x) = 1 if and only if x 2 b4(a4

S

r) [ r is an element of Fr, and as V covers
Fr, there is a V 2 V such that g 2 V . That is g � ! = �b4(a4

S
r) 2Wr and hence

b = (b4(a4
S

r))4(a4
S

r) 2Wr.
As the family A is concentrated on [!]<!, there is an ↵ < !1 such that

S

(x� \
r) 2 Wr and hence f� � ! = �a4

S
x�
2 W for all � > ↵. If � > ↵ is large enough

so that the supports of all v 2 V are contained in �, we get that f� is covered by V
which is a contradiction.

For the reverse, assume that A is not concentrated on [!]<! as witnessed by
an open set U . Then, we can recursively choose disjoint finite x↵ ⇢ A , ↵ < !1,
such that

S

X↵ 62 U . Define for each ↵ < !1 an f↵ 2 Cp( (A ), 2) by

f↵(x) = 1 if and only if x 2 A \ {A} for some A 2 x↵.
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Note that, as the family {x↵ : ↵ < !1} is pairwise disjoint, any of its accumulation
point is in �0(A ). On the other hand, [!]<! ⇢ U which implies that for each
f 2 �0(A ) there is an m 2 ! and sf : m! 2 such that

(1) f � m = sf , and
(2) {A 2P(!) : A \m = s�1

f (1)} ⇢ U .

Now, note that for f , the set {g 2 Cp( (A ), 2) : sf ⇢ g} defines an open neighbor-
hood of f in Cp( (A ), 2) disjoint from the set {f↵ : ↵ < !1}, which is therefore
closed and discrete, hence Cp( (A ), 2) is not Lindelöf. ⇤

Using this proposition we can now prove Theorem 8.7.2.

Proof. (1) Assume b > !1, and let A be any MAD family. We shall see
that Cp( (A ), 2) is not Lindelöf. To this end choose {A↵ : ↵ < !1} distinct
elements of A . As b > !1 there is an increasing function g : ! ! ! such that
A↵ \ [g(n), g(n+ 1)) 6= ; for every ↵ < !1 and all but finitely many n 2 !.3 Given
A 2 A let

UA = {f 2 Cp( (A ), 2) : f(A) = 1}.

Now, let J = min{j : (8� < !1)(9↵ > �)(8n � j)(A↵\[g(n), g(n+1)) 6= ;)}. Given
a finite set F ⇢ !, let m(F ) = J+1 if F ⇢ J+1, otherwise, let m(F ) = max(F )+1
(note that in either case m(F ) � J), and define

VF = {f 2 Cp( (A ), 2) : (8n < g(m(F )))(f(n) = 1 if and only if n 2 F )}.

It is easy to see that U = {UA : A 2 A } [ {VF : F 2 [!]<!} is an open cover
of Cp( (A ), 2), as for every f 2 Cp( (A ), 2) either there is an A 2 A such that
f(A) = 1, and hence f 2 UA, or, by maximality of A , the set F = f�1(1) is a
finite subset of !, and then f 2 VF .

Now, if V is a countable subset of U, then there is ↵ < !1 such that

• A↵ \ [g(n), g(n+ 1)) 6= ; for all n � J , and
• UA↵ 62 V.

The function h 2 Cp( (A ), 2) defined by h(x) = 1 if and only if x 2 A↵ [ {A↵} is
then not covered by V, as it does not belong to any of the UB 2 V, and also not to
any VF , as h(n) = 1 for some n 2 [g(m(F )� 1), g(m(F ))).

Part (2) was proved in [29] using }, and in [52] using CH. Here we choose
to prove that the existence of a Lindelöf Cp( (A ), 2) is also consistent with the
negation of CH. Also, the usual construction of a Mrówka family produces one of
size c. Here we show that a Mrówka family can also have size strictly less than c.
This is the only explicit forcing argument we decided to put in the text.

Claim. There is a Mrówka MAD family concentrated on [!]<! of size !1 in
any model obtained by adding uncountably many Cohen reals.

To see this we recall the standard construction of a MAD family of size !1

added by the forcing P = Fn(!1,!) for adding !1-many Cohen reals (see [78]).
The forcing generically adds a function f =

S

G : !1 ! !, where G is a filter
generic for P. Fix for each infinite ↵ < !1 a bijection e↵ : ! ! ↵ and let:

An = {i 2 ! : f(i) = n}

3To see this let f be a function dominating all increasing enumerations e↵ of the sets A↵ and
let g(0) = f(0) and g(n+ 1) = f(g(n) + 1).
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and then recursively, for infinite ↵ < !1, let first

B↵
0 = Ae↵(0) and B↵

n = Ae↵(n) \

[

m<n

Ae↵(m), for n > 0.

and then let

A↵ = {n 2 ! : (9k 2 !)(n 2 B↵
k & n < f(↵ · ! + k)}.

We claim that the family A = {A↵ : ↵ < !1} is the family we are looking for. First
note that by genericity each of the sets A↵ is infinite, and it is then clear from the
definition that the family A is AD. The arguments that it is maximal, Mrówka,
and concentrated on [!]<! are all very similar.

To see that A is maximal, let X 2 V [G] be an infinite subset of !. Then there
is an infinite ↵ such that X 2 V [G↵] = V [f � ↵ · !]. Now if A� \ X is finite for
every � < ↵ then, by genericity A↵ \X is infinite, since the set

Dn = {p 2 P↵ : p ` “(9k > n)(k 2 X \ Ȧ↵)”}

is dense in P↵ = Fn([↵ · !,↵ · ! + !),!) for every n 2 !.
To see that A is concentrated on [!]<!, let U 2 V [G] be an open set containing

[!]<!. Again, there is an infinite ↵ such that U 2 V [G↵] = V [f � ↵ · !]. It su�ces
to see that for any finite F ⇢ !1 \ ↵ the set

EF = {p 2 Fn(!1 \ ↵ · !,!) : p � “
\

�2F

Ȧ� 2 U”}

is dense in Fn(!1 \ ↵ · !, ,!). To see this let p 2 Fn(!1 \ ↵ · !,!) and let

a = {n 2 ! : p � “n 2
\

�2F

Ȧ�”}.

The set a is finite, hence there is an m 2 ! and s : m! 2 such that

(1) a = s�1(1), and
(2) {X 2P(!) : X \m = a} ⇢ U.

One can then extend p to a condition q 2 Fn(!1 \ ↵ · !, ,!) such that

q ` “
\

�2F

Ȧ� \m = a”

and hence
q ` “

\

�2F

Ȧ� 2 U”,

which completes the proof of density of EF .
The fact that A is Mrówka is proved analogously: A candidate for a continuous

function F :  (A ) ! R is trapped at some stage ↵ < !1, meaning that f = F �
! 2 V [G↵], and assuming that f is not constant outside of a set in IA , genericity
argument shows that f cannot be continuously extended to A↵.

For (3) , let B0 ⇢ [!]! be a perfect AD family (in particular, closed in P(!)
and of size c). Extend B0 to a MAD family B1. Then run the construction of a
Mrówka family A1 just as in Theorem 8.6.1 with the extra hypothesis that in the
glueing process c-many elements of B0 are not used, which is easy to do. That is A1

is a Mrówka MAD family such that |B0 \A1| = c. Now, note that U = P(!) \B0

is an open set in P(!) containing [!]<! which does not contain uncountably many
elements of A1 (all elements of B0\A1), hence it is not concentrated on [!]<! and
consequently Cp( (A1), 2) is not Lindelöf. ⇤
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An extension of these methods to properties stronger than Lindelöf have been
studied by Bernal-Santos in [15, 16], and Bernal-Santos and Tamariz-Mascarúa
in [17]. Spaces of continuous functions on  -spaces were also studied by Just,
Sipacheva and Szeptycki in [54], where a non-normal  -space of countable extent
is consistently constructed.

Banach spaces of continuous functions over Franklin compacta (or equivalently
over  -spaces for maximal AD families), equipped with the supremum norm, are
frequently used in functional analysis (see e.g. [35, 36, 56, 40, 62]). For much the
same reason as above (the simple structure of the space of continuous functions)
the research focuses mostly on Mrówka MAD families. The main observation is

Proposition 8.7.4. [40] Let A be a Mrówka MAD family. Then the corres-
ponding Banach space (or even C⇤-algebra) of continuous functions satisfies the
following short exact sequence:

0! c0 ! c0( (A ))! c0(2
!)! 0.

Proof. Let J be the ideal on c0( (A )) consisting of all the continuous func-
tions which are constant 0 on A , i.e. the set of continuous extensions of functions
in c0. Now, if f 2 c0( (A )), then f � A 2 c0(A ), while (1) any function g 2 c0(A )
can be obtained as such a restriction, and (2) all continuous extensions of f � A to
 (A ) are equivalent to F modulo J . ⇤

In the same paper Koszmider and Ghasemi show that there is a non-commutative
variation on a Mrówka MAD family:

Theorem 8.7.5. [40] There is a C⇤-algebra B which satisfies the following
short exact sequence:

0! K (`2)! B ! K (`2(2
!))! 0.

Here K (X) denotes the the algebra/ideal of compact operators on the corres-
ponding Hilbert space.

8.8. Pseudompactness of hyperspaces and products

Given a space X, 2X denotes the collection of all nonempty closed subsets of
X endowed with the Vietoris topology , ⌧V , which has as a subbase all subsets of
2X of the forms

U� = {A 2 2X : A \ U 6= ;}

and
V + = {A 2 2X : A ⇢ V },

where U and V are open subsets of X. One of the fundamental problems in the
theory of hyperspaces is to decide how a topological property ofX can be transferred
to 2X and vice versa. For instance, the famous Vietoris-Michael Theorem [64]
asserts that a space X is compact if and only if 2X is compact. It is natural to
wonder what kind of results one can have for other types of compactness properties
such as countable compactness or pseudocompactness. Since any finite product of
X is embedded as a closed subset of 2X , if 2X is countable compact then Xn is for
all n 2 !. Nevertheless, neither countable compactness nor pseudocompactness is
(finitely) productive in the realm of Tychono↵ spaces as Novák [72] and Terasaka
[83] showed independently. Ginsburg realized that it was not a simple task to study
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the relationship between the countable compactness or pseudocompactness (feeble
compactness) of the hyperspace 2X and that of the finite powers of X. However,
he was able to show, [42], the following: 4

(1) If all powers of a space X are countably compact, then its hyperspace 2X

is countably compact;
(2) If the hyperspace 2X of a space X is countably compact, then all finite

powers of X are countably compact.

He asked: Is there any relation between the pseudocompactness (countable compact-
ness) of X! and that of 2X? Cao, Nogura and Tomita studied Ginsburg’s question
and showed:

Theorem 8.8.1. [21]

(1) Let X be a regular homogeneous space. If 2X is countably compact, then
X! is countably compact.

(2) Let X be a Tychono↵ homogeneous space. If 2X is feebly compact, then
X is pseudocompact for any cardinal .

Once again Mrówka-Isbell spaces were useful here too. The first related result
is the following.5

Proposition 8.8.2. [48]  (A )! is pseudocompact for every MAD family A .

Proof. Since A is MAD, every infinite subset of ! has an accumulation point
in  (A ). One can mimic the proof that shows that countable product of sequen-
tially compact spaces is sequentially compact, to obtain that any infinite subset of
!! has an accumulation point in  (A )!. This implies that any continuous func-
tion f :  (A )! ! R must be bounded; otherwise !! would contain an infinite set
closed discrete in  (A )!. ⇤

Ginsburg’s question in the context of Mrówka-Isbell spaces also had some sur-
prises. While it is consistent that for every MAD family A the hyperspace 2 (A )

is feebly compact, it is also consistent that there is a MAD family for which it is
not.

Recall that D ⇢ [!]! is dense if for every B 2 [!]! there is D 2 D such that
D ⇢⇤ B. The distributivity number h of [!]! is defined as the minimal size of a
collection of dense downward closed subsets of [!]! whose intersection is empty.
The following is the Base Tree Theorem of Balcar, Pelant and Simon.

Theorem 8.8.3. [9] There is a family T ⇢ [!]! such that

(1) T is a tree (ordered by ◆⇤) of height h.
(2) Each level of T is a maximal antichain in [!]! (a MAD family).
(3) Each D 2 T has c-many immediate successors.
(4) T is a dense subset of [!]! .

We are going to use the theorem to prove the existence of a MAD family A
for which 2 (A ) is not pseudocompact if we assume that the distributivity number
is less than c; which is a well known consistent fact.

4It is known that 2X is completely regular if and only if it is normal if and only if it is
compact; hence we use the feeble compactness concept in the realm of the hyperspaces.

5In fact, a more general result is valid, see Theorem 1.4.10.
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Theorem 8.8.4. [48] If h < c, then there is a MAD family A such that 2 (A )

is not feebly compact.

Proof. Fix a base tree T of height h as in Theorem 8.8.3. For A ⇢ 2<!, let
⇡A = {n 2 ! : A \ 2n 6= ;}. Use Zorn’s Lemma to get a MAD family A ⇢ [2<!]!

such that

(1) A is a MAD family (of subsets of 2<!),
(2) every A 2 A is either a chain or an antichain in 2<!,
(3) ⇡A 2 T for all A 2 A ,
(4) A,B 2 A and A 6= B implies ⇡A 6= ⇡B .

Let Y = {Fm : m 2 !}, where Fm = 2m, the set of all binary sequences of
length m. We will show that Y has no accumulation point in 2 (A ). From this,
2 (A ) will have a infinite family of discrete open subsets and hence it will not be
pseudocompact. Notice that an accumulation point F of Y , if there is any, must
be contained in A , for if s 2 F \ 2<!, then {s}� is a neighborhood of F for which
|U \ Y |  1. To see that there are no accumulation points, let F ⇢ A .

If, |F | < c, there is an f 2 2! such that Bf = {f � n : n 2 !} has finite
intersection with all members A of F . Then

U = ( (A ) \ cl (A ) (Bf ))
+

is a neighborhood of F, which contains no Fn.
If on the contrary, |F | = c > h, by (3) and (4), the set {⇡A : A 2 F} ⇢ T is

not a branch of the base tree T . So, there are A,B 2 F such that ⇡A\⇡B ⇢ k for
some k 2 !. Then W = (A\k)� \ (B\k)� is a neighborhood of F , yet W \ Y = ;.
So, F is not an accumulation point of Y . ⇤

In the rest of this section we prove that it is consistent that for every MAD
family A the hyperspace 2 (A ) is feebly compact.

Lemma 8.8.5. Let X have a dense set D of isolated points. Then the following
are equivalent:

(1) X is pseudocompact.
(2) D is relatively countably compact 6 in X.

Let Fin denote the set of all non-empty finite subsets of !. The following lemma
is easy to prove.

Lemma 8.8.6. If X is a topological space such that ! is the dense set of isolated
points of X, then Fin is a dense set of isolated points in 2X .

Recall also that a family F ⇢ [!]! is centered if the intersection of any finite
subset of F is infinite. The pseudo-intersection number p is defined as the minimal
size of a centered family F ⇢ [!]! without an infinite pseudo-intersection; i.e. the
minimal size of a centered family F ⇢ [!]! such that for every A 2 [!]! there is
an F 2 F such that A \ F is infinite.

Given a one-to-one sequence Y = hFn : n 2 !i ⇢ Fin and A ⇢ !, let

• IA = {n 2 ! : A \ Fn 6= ;} ,
• MA = {n 2 ! : Fn ⇢ A}.

We also define for F 2 2 (A )

6A subset A of a topological space X is relatively countably compact in X if every E 2 [A]!

has an accumulation point in X.
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• FF =
�

IA\k : A 2 F \A , k 2 !
 

[ {I{n} : n 2 F \ !}.

Lemma 8.8.7. Let Y = hFn : n 2 !i ⇢ Fin be a one-to-one sequence of finite
sets. Then a closed set F ⇢  (A ) is an accumulation point of Y in the hyperspace
2 (A ) if and only if the family FF [ {MP } is centered, for every P ⇢ ! such that
F \ ! ⇢ P and (8A 2 F \A ) (A ⇢⇤ P ).

Proof. Assume that F is an accumulation point of Y and P ⇢ ! is as in the
statement of the lemma. To see that FF [ {MP } is centered consider the open set
V = P [ (F \A ) ⇢  (A ) which is a neighborhood of F . Let

Q =
�

IA0\k0
, . . . , IAm\km

 

[

�

I{a0}, . . . , I{al}
 

[ {MP } ⇢ FF [ {MP } ,

where Ai 2 F \A , ki 2 ! for all i  m and ai 2 F \ ! for all i  l. Then

U = hV ; {A0} [A0 \ k0, . . . , {Am} [Am \ km, {a0} , . . . , {al}i

is a neighborhood of F in 2 (A ) and therefore Y \U is infinite. There is an I 2 [!]!

such that (Aj \ kj) \ Fi 6= ; and {ak} \ Fi 6= ; for all i 2 I and all j  m, k  l.
This means that FF [{MP } is centered.

On the other hand, assume FF [ {MP } is centered and consider the neigh-
bourhood

U = hV ; {A0} [A0 \ k0, . . . , {Am} [Am \ km, {a0} , . . . , {al}i

of F . Since F \ ! ⇢ V \ !, A ⇢⇤ V \ ! for all A 2 F \A and
\

�

IAi\ki
: i  m

 

\

\

�

I{ai} : i  l
 

\ {MV \!}

is infinite. Hence so is U \Y which shows that F is an accumulation point of Y . ⇤
Theorem 8.8.8. p = c implies that the hyperspace 2 (A ) is feebly compact for

every MAD family A .

Proof. By Lemma 8.8.6 and Lemma 8.8.5, it su�ces to show that if

Y = hFn : n 2 !i ⇢ Fin

is a one-to-one sequence, then it has an accumulation point in 2 (A ).
Let {P↵ : ↵ < c} be an enumeration of [!]!, where each element is listed c-many

times and P0 = !. Construct a family {E↵ : ↵ < c} with the following properties,
for every ↵ < c:

(1) E↵ ⇢  (A ) ,
(2) |E↵|  |↵|+ !,
(3) ↵  � implies E↵ ⇢ E� ,
(4) F↵ =

�

IA\k : A 2 E↵ \A , k 2 !
 

[

�

I{n} : n 2 E↵ \ !
 

is centered, and
(5) one of the following occurs:

(a) (E↵ \ !) \ P↵ 6= ;,
(b) there is an A 2 E↵ \A such that A *⇤ P↵, or
(c) F↵ [ {MP↵} is centered.

Since A is a MAD family, there is A 2 A such that A \
S

Y is infinite. Let
E0 = {A}. As P0 = !, (1) - (5) hold.

Assume that 0 < ↵ < c and that E� has been constructed for all � < ↵. Then
F =

S

�<↵ F� is centered. If F[ {MP↵} is also centered, then E↵ =
S

�<↵E�
works. If F[ {MP↵} is not centered, then as F is centered and |F | < p, there is
a J 2 [!]! almost contained in all elements of F such that J \MP↵ = ;.
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Now either {n 2 ! : m 2 Fn} is finite for all m 2 !\P↵ or there is an m 2 !\P↵
such that {n 2 J : m 2 Fn} is infinite. If the latter occurs, then let E↵ =

S

�<↵E�[
{m}. All clauses but (4) are evidently true. To see that the fourth clause also holds
for E↵, take

G = {IA0\k0
, . . . , IAs\ks

, I{a0}, . . . , I{at}, I{m}} ⇢ F [ {I{m}}.

Since {n 2 J : m 2 Fn} = I{m} \ J is infinite and J ⇢⇤ F for all F 2 F , then

{n 2 J : m 2 Fn} ⇢
⇤
\

is

IAi\ki
\

\

it

I{ai} \ I{m},

thus
T

G is infinite and therefore F↵ is centered.
If {n 2 ! : m 2 Fn} is finite for all m 2 ! \ P↵, it follows that

S

n2! Fn \ P↵ is
infinite and hence there is A 2 A such that A \

�

S

n2! Fn

�

\ P↵ is infinite. In this
case let E↵ =

S

�<↵E� [ {A}. To check clause (4), take

G =
�

IA0\k0
, . . . , IAs\ks

, I{a0}, . . . , I{at}, IA\k
 

⇢ F .

As the set
S

n2! Fn \ P↵ is infinite, so is the set {n 2 J : A \ Fn 6= ;}. Moreover,

{n 2 J : A \ Fn 6= ;} ⇢ J ⇢⇤ F

for all F 2 F . Thus, {n 2 J : A \ Fn 6= ;} ⇢
T

G and therefore F↵ is centered.
Let E be the closure of

S

↵<c E↵ ⇢  (A ). We shall show that E is an accu-

mulation point of Y in 2 (A ). By Lemma 8.8.7, it su�ces to show that for every
P ⇢ ! one of the following holds:

(1) (E \ !) \ P 6= ;,
(2) there is A 2 E \A such that |A \ P | = @0, or
(3) FE [ {MP↵} is centered.

Before doing that, we first show that FE is centered. Clearly F =
S

↵<c F↵ is
centered and E \

S

↵<c E↵ ⇢ A , since all elements of ! are isolated. We also have
that (A \ k) \

S

↵<c E↵ 6= ; for each A 2 E \

S

↵<c E↵ and each k 2 !. Observe
that if m 2 (A \ k) \

S

↵<c E↵ we have that I{m} ⇢ IA\k. This implies that for all
F 2 FE there is an G 2 F such that G ⇢ F . As F is centered, so is FE .

Finally, consider P ⇢ !. If FE [ {MP } is not centered, there are A0, . . . , An 2

E \A , k0, . . . , kn 2 ! and m0, . . . ,mk 2 E \ ! such that
\

in

IAi\ki
\

\

ik

I{mi} \MP

is finite. For each i  n such that Ai 2 E \

S

↵<c E↵ there is ↵i < c and there
is mi 2 E↵i such that I{mi} ⇢ IAi\ki

, as we saw before. Choose � < c such that
Aj 2 E� whenever Aj 2

S

↵<c E↵ or mj 2
S

↵<c E↵, and j  n,. Let ↵ < c
be such that P = P↵ and ↵ > �. Now it is easy to see that F↵ [ {MP } is not
centered either. Therefore, (E↵ \ !) \ P 6= ; or there is A 2 E↵ ⇢ E such that
|A \ P | = @0. ⇤

Inspired by this theorem the authors answered Ginsburg’s question by con-
structing a subspace X of �! such that X! is pseudocompact yet 2X is not feebly
compact in ZFC. One question left open in [48] asks:

Question 8.8.9. Is there, in ZFC, a MAD family A such that 2 (A ) is pseu-
docompact?
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8.9.  -spaces and selections

Given a set F ⇢ 2X , a function ' : F ! X is a selection on F if '(F ) 2 F
for all F 2 F . A selection on [X]2 is called a weak selection, and when F = 2X ,
' is referred simply as a selection. A selection ' on F is a continuous selection if
it is continuous with respect to the Vietoris topology inherited from 2X to F .

The study of continuous selections was initiated by Ernest Michael in his 1951
paper [64]. There he showed, in particular, that a su�cient condition for a space X
to admit a continuous weak selection is that it admit a weaker topology generated
by a linear order; i.e. it is weakly orderable. The question whether the converse
holds, implicit in Michael’s paper, was asked explicitly by van Mill and Wattel in
[65] and became known as the van Mill-Wattel selection problem. Michael showed
that every connected compact space which admits a continuous weak selection is
orderable, van Mill and Wattel showed that connectedness was not necessary.

In [53] the authors started the study of continuous (weak) selections on Mrówka-
Isbell spaces. Among other things they showed the following

Theorem 8.9.1. [53] The space  (A ) does not have a continuous weak selec-
tion for any MAD family A .

Proof. Aiming towards a contradiction assume that f is a continuous weak
selection on  (A ) for a MAD family A and let c({m,n}) = 0 if f({m,n}) =
min{m,n}, and c({m,n}) = 1 otherwise. By Lemma 8.2.2 there is an I (A )-
positive set X homogeneous for c. As A is maximal, there are A0, A1 distinct
elements of A which both intersect X on an infinite set. Now, assume that
f(A0, A1) = A0. By continuity of F this means that f(n,m) = n for all but
finitely many n 2 A0, m 2 A1; i.e for all n,m larger than some number N . Now,
let N < n0 < m < n1 be such that n0, n1 2 A0 \ X and m 2 A1 \ X. Then
c({n0,m}) 6= c({n1,m}), which contradicts homogeneity of X. ⇤

A stronger result, an extension of the van Mill-Wattel result, was obtained by
Garćıa-Ferreira and Sanchis in [38] building on results of Artico, Marconi, Pelant,
Rotter and Tkachenko [7].

Theorem 8.9.2. [38] A pseudocompact space admits a continuous weak selec-
tion if and only if it is weakly-orderable.

Proof. The right to left implication follows from the above mentioned result
by Michael. For the left to right direction it su�ces to show that any continuous
weak selection on a pseudocompact space X can be extended to a continuous weak
selection on �X, as by the van Mill-Wattel Theorem �X is then orderable, hence,
X is suborderable and in particular weakly orderable.

Now, a continuous weak selection f on a pseudocompact spaceX can be treated
as a continuous f : X ⇥X ! X such that (1) f(x, y) 2 {x, y}, and (2) f(x, y) =
f(y, x). It is immediate from the density of the space X in �X that any continuous
extension of f to �X is itself a weak selection on �X. Hence to prove the theorem
one only needs to note that X ⇥ X is pseudocompact, and Glicksberg’s Theorem
[43] provides the required extension (see 4.4.7).

To that end, let X be a pseudocompact space X admitting a continuous weak
selection f .
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Claim. Given a sequence {Vn : n 2 !} of non-empty pairwise disjoint open
subsets of X there is a strictly increasing sequence {ni : i 2 !} of integers, a
sequence {Wi : i 2 !} of non-empty open sets in X and a point x 2 X such that

(1) Wi ⇢ Vni for every i 2 !, and
(2) the sequence {Wi : i 2 !} converges to x; i.e. every neighborhood of X

contains all but finitely many elements of {Wi : i 2 !}.

We shall refer to the conclusion saying that the sequence {Vn : n 2 !} has
a convergent shrinking subsequence. Note that once the claim is proved it easily
follows that X ⇥ X is pseudocompact, since the property that every sequence of
pairwise disjoint non-empty open sets has a convergent shrinking subsequence it is
easily seen to be finitely productive and stronger than pseudocompactness.

We shall prove the claim by contradiction. Note first that in a pseudocompact
space a sequence of open sets converges if and only if it has a unique accumulation
point. Assuming that the sequence {Vn : n 2 !} does not have a convergent
shrinking subsequence, one can recursively construct non-empty open sets Pn, Qn

such that for all n 2 !

(1) Pn \Qn = ;,
(2) f [Pn, Qn] ⇢ Pn,
(3) Pn+1 [Qn+1 ⇢ Qn, and
(4) both An = {i 2 ! : Pn \ Vi 6= ;} and Bn = {i 2 ! : Qn \ Vi 6= ;} are

infinite.

Having done this we pick an increasing sequence {ni : i 2 !} so that ni 2 Ai

and let Wi = Pi \ Vni for each i 2 !. Note that then f [Wi,Wj ] ⇢ Wi for any
i < j 2 !. By pseudocompactness, {Wi : i 2 !} has an accumulation point x.
We claim that x is the unique accumulation point, i.e. the sequence {Wi : i 2 !}
converges to x. If not, that is if there is an accumulation point y di↵erent from x,
then there are disjoint non-empty open sets U and V , each containing one of x and
y such that f [V, U ] ⇢ V . Pick i < j 2 ! such that Wi\V 6= ; and Wj \U 6= ;, and
choose xi 2Wi\U and xj 2Wi\V . Then, on the one hand f(xi, xj) = xi because
f [Wi,Wj ] ⇢ Wi, but on the other hand f(xi, xj) = xj as f [V, U ] ⇢ V , which is a
contradiction. ⇤

The van Mill-Wattel selection problem was eventually solved using Mrówka-
Isbell spaces:

Theorem 8.9.3. [49] There is an almost disjoint family A such that the space
 (A ) admits a continuous weak selection but it is not weakly orderable.

Proof. We shall prove the theorem by a sequence of lemmata starting with
the following simple fact7:

7For the rest of this section we shall fix the following notation concerning weak selections.
Given sets X and Y , and  : [X]2 ! X and ' : [Y ]2 ! Y weak selections, we will say that  and
' are isomorphic,  ⇡ ', if there is a bijection ⇢ : X ! Y such that  ({a, b}) = '({⇢(a), ⇢(b)})
for every a, b 2 X. We will also say that  is embedded in ' if  ⇡ ' � [A]2 for some A ⇢ X.
Let ' be a weak selection on a set X and let x, y 2 X. We will denote by x !' y the condition
'(x, y) = y. If A,B ⇢ X, we will say that B dominates A with respect to ', denoted by A ◆' B,
if for every a 2 A and b 2 B, a !' b. We will also say that A and B are aligned with respect to '
and denote by A||'B, if A ◆' B or B ◆' A. Given A,B 2 [!]! and  a weak selection on !, we
will say that B almost dominates A with respect to  (or simply that B almost dominates A if  
is clear from the context) and denote by A ◆⇤

 B, if there is a k 2 ! such that A\k ◆ B \k. We
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Lemma 8.9.4. Let ' be a weak selection on ! and let A be an almost disjoint
family. Then ' extends (uniquely) to a continuous weak selection on  (A ) if and
only if

(1) A||

⇤
'B for all A 6= B 2 A and

(2) {n}||⇤'A for all n 2 ! and A 2 A .

Our plan for constructing the space is first to find a suitable weak selection
on ! and then to carefully construct an AD family to which the selection extends.
This selection can be viewed as an “oriented” version of Rado’s Random Graph.

Lemma 8.9.5. There is a weak selection ' : [!]2 ! ! such that for every
disjoint F,G 2 [!]<!, there is an n 2 ! \ (F [G) such that F ◆' {n} ◆' G.

Proof. Let I = {In : n 2 !} ⇢ [!]! be an independent family8 such that
n 2 Im if and only if m 62 In, for every n,m 2 !.9 Let ' : [!]2 ! ! be defined by
'({n,m}) = n if and only if n 2 Im.

Now, if F,G 2 [!]<! are disjoint then F ◆' {k} ◆' G for any k 2 (
T

n2F In)\
(
T

m2G(! \ Im). ⇤

The selection ' will be referred to as the universal weak selection. We denote
by

R = {A ⇢ ! : ' � [A]2 ⇡ '}

the set of copies of ' in itself. The selection has the following basic properties (the
corresponding properties are known to hold for the Random Graph):

(a) Every weak selection  on ! can be embedded in '.
(b) Given any partition {P0, P1} of !, there is an i 2 2 such that Pi 2 R.
(c) If F,G 2 [!]<! are disjoint, then the set

{k 2 ! \ (F [G) : F ◆' {k} ◆' G} 2 R.

The item (a) is easily proved by the back-and-forth argument.
For (b), suppose the contrary and let {P0, P1} be a partition of ! such that

neither P0 nor P1 is in R. Then we can find Fi, Gi 2 [Pi]<! disjoint such that every
n 2 Pi does not dominate Fi or is not dominated by Gi, so there is an m 2 ! so
that F0 [ F1 ◆ {m} ◆ G0 [G1. However m 2 P0 or m 2 P1, which in either case
is a contradiction.

For (c), suppose that for a couple F,G of finite disjoint subsets of !, the set
A = {k 2 ! \ (F [ G) : F ◆ {k} ◆ G} 62 R. It follows by (c) that ! \ A is in R

will also say that A and B are almost aligned with respect to  , denoted by A||⇤ B, if A ◆⇤
 B

or B ◆⇤
 A. If n 2 ! then we will say that A is almost dominated by {n}, which will be denoted

by A ◆⇤
 {n}, whenever A \ k ◆ {n} for some k 2 !. In a similar way, we define {n} ◆⇤

 A and

{n}||⇤ A. When the selection is clear from the context, we suppress the use of the subscript. Given

a weak selection ', a triple {a, b, c} is called a 3-cycle if either a ! b ! c ! a or c ! b ! a ! c.
8Recall that a family I ⇢ [!]! is independent if

T
F \

S
F 0 is infinite for every F ,F 0 finite

disjoint subsets of I .
9To obtain such an independent family, start with an arbitrary independent family J =

{Jn : n 2 !} ⇢ [!]! and recursively define a family I = {In : n 2 !} as follows:

• I0 = J0;
• In+1 = (Jn+1 \ {k  n : n+ 1 2 Ik}) [ {k  n : n+ 1 /2 Ik}.

For every n 2 !, the set In 2 I is obtained by finite changes of Jn, guaranteeing that I is also
an independent family such that, n 2 Im if and only if m 62 In, for every n,m 2 !.
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and so there is an n 2 ! \ A that dominates F and is dominated by G, but this n
must also be in A, which is a contradiction.

Let  be a linear order on a set X and let Y ⇢ X be infinite. We will say
that a set Y is monotone, if either there is a downward closed set S ⇢ X such that
Y ⇢ S and for every s 2 S, Y \ ( , s) is finite, or there is an upward closed set
T ⇢ X such that Y ⇢ T and for every t 2 T , Y \ (t,!) is finite.

Lemma 8.9.6. Let ' be the universal selection and let 4 be a linear order on
!. If X ⇢ ! belongs to R, then there are X0, X1 2 [X]! such that

(1) X0 \X1 = ;,
(2) X0 ◆ X1,
(3) X0 [X1 is monotone.

Proof. If X \ ( , 0)4 2 R, then define M0 = X \ ( , 0)4 and let M0 =
X \ [0,!)4 otherwise. As X 2 R, in either case it occurs that M0 2 R by
(c) above. Choose distinct a0, b0, c0 2 M0 so that {a0, b0, c0} is a 3-cycle in M0.
Choose now x0, y0 2 {a0, b0, c0} such that x0 � y0 and x0 ! y0 and define the set
D1 = {n 2 M0 : x0 ! n ! y0} \ {x0, y0} which, by (c) above, is in R. As before,
let M1 = D1 \ ( , 1)4 if D1 \ ( , 1)4 2 R and let M1 = D1 \ [1,!)4 in the
other case. Choose a1, b1, c1 2 M1 so that {a1, b1, c1} is a 3-cycle in M1 and pick
x1, y1 2 {a1, b1, c1} such that x1 ! y1 and y1 � x1. Notice that {x0, x1} ◆ {y0, y1}.

Following this procedure, we can recursively form {Mn : n 2 !} ⇢ R and
disjoint subsets W0 = {xn : n 2 !}, W1 = {yn : n 2 !} 2 [X]! such that for every
n 2 !, Mn+1 ⇢ Mn, {x0, x1, ..., xn} ◆ {y0, y1, ..., yn}, xn � yn whenever n is even
and yn � xn if n is odd. Moreover, the set S = {n 2 ! : Mn ⇢ (n, rightarrow)4},
if infinite, is 4-downward closed and the set T = {n 2 ! : Mn ⇢ ( , n)4} is 4-
upward closed, if it is infinite. Notice also that for every k 2 S, (W0[W1)\( , k)4
is finite, as well as for every k 2 T , (W0 [W1) \ (k,!)4 is finite.

To conclude the proof, notice that either W0 \ S and W1 \ S are infinite or
W0\T and W1\T are. To see this, suppose e.g., that W0\S is finite. As S[T = !,
there is some k 2 ! such that for all n � k, xn 2 T . Whenever m � k is even, then
xm � ym and T is 4-upward closed, so ym 2 T , too. If both sets W0 \ S,W1 \ S
are infinite, define X0 = W0 \ S and X1 = W1 \ S; if not, let X0 = W0 \ T and
X1 = W1 \ T . The recursion guarantees that whenever k � n, then xk, yk 2 Mn,
consequently, the set X0 [X1 is monotone. ⇤

The following is the first approximation to the AD family we need:

Lemma 8.9.7. There is an AD family A ⇢ [!]! such that:

(1) |A | = c,
(2) A ⇢ R and
(3) A||

⇤B for every A 6= B 2 A .

Proof. Consider the complete binary tree 2<! and for every f 2 2! consider
the branch determined by f , Af = {f � n : n 2 !}. For f, g 2 2<!, we will
write f?g if there is an n 2 ! so that f(n) 6= g(n) and f 6? g whenever either
f ⇢ g or g ⇢ f . Define the weak selection  on 2<! by  ({f, g}) = g if and
only if either f 6? g and '({|f |, |g|}) = |g| or f ? g and f(f M g) = 0, where
f M g = min{k 2 ! : f(k) 6= g(k)}.
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By the universality of ', we can suppose, without loss of generality, that  is
embedded in '. It is easy to see that Af 2 R for every f 2 2!. Moreover, it holds
that (Af \ f M g) ◆ (Ag \ f M g) if f(f M g) = 0 and (Ag \ f M g) ◆ (Af \ f M g)
otherwise, which implies that Af ||

⇤Ag. Therefore A = {Af : f 2 2!} is the
required family. ⇤

Next we will show how to refine A to “kill” all potential linear orders on !. To
that end enumerate A as {A↵ : ↵ < c} and all linear orders on ! as {↵: ↵ < c}.

Lemma 8.9.8. For every ↵ < c, there are X↵
0 , X

↵
1 2 [A↵]! such that

(1) X↵
0 \X↵

1 =⇤
;,

(2) X↵
0 ||

⇤X↵
1 ,

(3) for every n 2 ! and i 2 2, X↵
i ||

⇤
{n} and

(4) X↵
0 [X↵

1 is ↵-monotone.

Proof. Fix ↵ < c. By Lemma 8.9.7, A↵ 2 R and by Proposition 8.9.6 we
can find X0, X1 2 [A↵]! such that X0 ◆ X1 and X0 [X1 is ↵-monotone. Since
for every x 2 X0, either x ! 0 or 0 ! x, there is an infinite C0 ⇢ X0 such that
C0||{0}. Proceeding recursively, construct a family C = {Cn : n 2 !} of infinite
subsets of X0 in such a way that for every n 2 !, Cn+1 ⇢ Cn and Cn||{n}. Let
X↵

0 be a pseudointersection of C , i.e. X↵
0 2 [X0]! is such that Cn \ X↵

0 is finite
for every n 2 !. Analogously, construct a family E = {En : n 2 !} of infinite
subsets of X1 such that En+1 ⇢ En and En||{n} for every n 2 !. Therefore, if X↵

1

is a pseudointersection of E , then X↵
0 , X

↵
1 satisfy (a), (b), (c) by the construction

and (d) follows by the fact that both sets are infinite subsets of X0 and X1, which
satisfy 8.9.6, (3). ⇤

We are ready now to prove the main result of this section. Let B = {X↵
0 , X

↵
1 :

↵ < c}, where X↵
i is as in the Lemma 8.9.8 for i 2 2, and consider X =  (B), the

Mrówka-Isbell space associated to B.
By Lemmata 8.9.7 and 8.9.8, ' satisfies the conditions of Lemma 8.9.4, hence

there is a (unique) continuous weak selection ' on  (B) extending the universal
weak selection '.

To conclude the proof, it is enough to verify that X is not weakly orderable.
Aiming towards a contradiction, suppose that there exists a linear order v on X
whose induced topology is coarser than the topology on X. Let ↵ < c be such
that v� [!]2 =↵ and suppose, without loss of generality, that for the points
X↵

0 , X
↵
1 2  (B) the inequality X↵

0 v X↵
1 holds. By Lemma 8.9.8, the infinite set

X↵
0 [X

↵
1 is ↵-monotone. Assume that S ⇢ ! is a witness: The set S is downward

closed, contains X↵
0 [X↵

1 and for every s 2 S, ( , s)↵ \ (X↵
0 [X↵

1 ) is finite. If
there is an s 2 S, with X↵

0 v s, then ( , s)v is an v-open interval containing the
point X↵

0 , which meets the set X↵
0 in finitely many points. However this contradicts

the assumption that the @-order topology on X is coarser that the original one.
However, if S ⇢ ( , X↵

0 )v, then the interval (X↵
0 ,!)v contains the point X↵

1 and
is disjoint from the set X↵

1 , which leads to the same contradiction. The case when
X↵

0 [X↵
1 is contained in an upward directed set T is treated analogously.

We have proved that the topology determined by the order v cannot be coarser
than that of X and therefore X is not weakly orderable. ⇤

The authors of [49] showed that the space  (A ) constructed in the previous
theorem is not weakly orderable yet it admits a continuous selection for all compact
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sets, and in particular, for all finite sets. In fact, they showed that any separable
space admitting a continuous weak selection allows a continuous weak selection on
n-tuples for any finite n. It is an open problem due to Gutev and Nogura [44]
whether the existence of a continuous weak selection on a space X guarantees the
existence of a continuous selection for triples on X.

Next theorem shows that even for separable spaces the existence of a continuous
selection for triples does not guarantee the existence of a continuous selection for
pairs.

Theorem 8.9.9. [49] There is an almost disjoint family A such that the space
 (A ) admits a continuous weak selection for triples but no continuous weak selec-
tion.

Proof. Identify ! with 2<!. For every f 2 2! let Af = {f � n : n 2 !}
be the branch determined by f and let A = {Af : f 2 2!}. Enumerate the AD
family A by {A↵ : ↵ < c}. Enumerate also the set of all weak selections on 2<! by
{f↵ : ↵ < c}

For every ↵ < c define g↵ : [A↵]2 ! 2 as follows:

g↵({f � m, f � n}) =
(

0 if f↵(f � m, f � n) = f � min{m,n}

1 if f↵(f � m, f � n) = f � max{m,n}
,

where f 2 2! and A↵ = Af .
By Ramsey’s Theorem, there is a g↵-homogeneous set B↵ 2 [A↵]! so that

g00↵[B↵]
2 = {i} for some i 2 2. Let {B0

↵, B
1
↵} be a partition of B↵ such that |Bi

↵| = !
for i 2 2 and consider the AD family B = {B0

↵, B
1
↵ : ↵ < c}. Let X =  (B), the

Mrówka-Isbell space associated to B.

We define a relation  on X in the following way:

x  y if and only if

8

>

<

>

:

x = y or

x, y 2 2<! and x ⇢ y or

x = f � n 2 2<! and y = Bi
f for some i 2 2.

It is clear that  is reflexive, antisymmetric and transitive.

If x ⇥ y and y ⇥ x, we will write x?y. Now, for every pair of elements x, y 2 X
with x?y, we can associate an element �x,y of ! [ {!} as follows:

�x,y =

8

>

>

>

<

>

>

>

:

min{n : x(n) 6= y(n)} if x, y 2 2<!,

min{n : x(n) 6= f(n)} if x 2 2<! and y = Bi
f for some i 2 2,

min{n : f(n) 6= g(n)} if x = Bi
f , y = Bj

g with i, j 2 2 and f 6= g,

! if {x, y} = {B0
f , B

1
f} for some f 2 S.

Notice that if x?y and y  z then x?z and �x,y = �x,z.

We define the function ⇢ : [X]3 ! X by ⇢({x, y, z}) = x, if either x  y and
x  z or x?y, x?z and �x,y = �x,z.

Let us first prove that ⇢ is well defined. Let F = {x, y, z} 2 [X]3. Notice
that F has at most one element comparable with all its elements. In this case, the
function is well defined by construction. So we can suppose that x?y and x?z. If
y  z then �x,y = �x,z and, since y and z are comparable, then ⇢({x, y, z}) = x.
In the same way, if x?z and z  y then ⇢({x, y, z}) = x. Therefore, we can suppose
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that x?y, x?z and y?z. If �x,y = �x,z then �y,z > �x,y and so ⇢({x, y, z}) = x.
Otherwise, if �x,y < �x,z then �y,z = �x,y and then ⇢({x, y, z}) = y. Finally, if
�x,y > �x,z then �y,z = �x,z and ⇢({x, y, z}) = z.

To prove that ⇢ is continuous, let {x, y, z} 2 [X]3 ⇢({x, y, z}) = x.

Case 1: x  y and x  z.
Since x 2 2<!, there are f 2 S and n 2 ! such that x = f � n. If y = f � m

for some m > n, then let Uy = {f � m}. Otherwise, if y = Bi
f for some i 2 2, let

Uy = {y}[(Bi
f \{f � k : k  n}). In a similar way, we can consider a neighborhood

Uz for z. It is not di�cult to verify that U = h{x}, Uy, Uzi is a neighborhood of
{x, y, z} with ⇢[U ] = {x}.

Case 2: x?y, x?z and �x,y = �x,z.
Let us suppose first that x 2 2<! and let Ux = {x}. Let Uy = {y} if y 2 2<!

and Uy = {y} [ (Bj
g \ {g � k : k  �x,y}) if y = Bj

g for g 2 S and j 2 2. Define Uz

in the same form. Finally, consider the neighborhood U = hUx, Uy, Uzi of {x, y, z}.
Notice that for every y0 2 Uy and z0 2 Uz, x?y0, x?z0 and �x,y0 = �x,z0 = �x,y.
Therefore, ⇢[U ] = {x}.

On the other hand, let us suppose that x = Bi
f for some f 2 S and i 2 2 and

let U be a neighborhood of x. We can find n 2 ! so that {x} [ (Bi
f \ {f � k : k 

n}) ⇢ U . Let m = max{n,�x,y} and let Ux = {x} [ (Bi
f \ {f � k : k  m}). If

y 2 2<!, consider the neighborhood Uy = {y}. If otherwise, y = Bj
g for some g 2 S

and j 2 2, let Uy = {y} [ (Bj
g \ {g � k : k  m}). In a similar way, we can find a

neighborhood Uz for z. As before, if U = hUx, Uy, Uzi, it is not hard to verify that
⇢[U ] ⇢ Ux ⇢ U and we can conclude with this that ⇢ is continuous on {x, y, z}.

Finally, to prove that the space X does not admit a continuous weak selection,
let h be any weak selection on X. Then h � 2<! = f↵ for some ↵ < c. Let f 2 2!

so that A↵ = Af and assume, without loss of generality, that h({B0
↵, B

1
↵}) = B0

↵.
Let U be a basic neighborhood of (B0

↵, B
1
↵). We can find a k 2 ! in such a way

that (B0
↵ \ {f � l : l < k}) \ (B1

↵ \ {f � l : l < k}) = ; and h{B0
↵} [ (B0

↵ \ {f � l :
l < k}), {B1

↵} [ (B1
↵ \ {f � l : l < k})i ⇢ U . If f↵({f � m, f � n}) = f � min{m,n}

for every f � n, f � m 2 B↵, choose n,m 2 !, with n > m and such that f � n 2
B0
↵ \ {f � l : l < k} and f � m 2 B1

↵ \ {f � l : l < k}. Then (f � n, f � m) 2 U
and h({f � n, f � m}) = f � m /2 B0

↵. In the other case, if g00↵[B↵]
2 = {1}, choose

n,m 2 !, with n < m, such that f � n 2 B0
↵ \ {f � l : l < k} and f � m 2 B1

↵ \ {f �
l : l < k}. Then (f � n, f � m) 2 U and h({f � n, f � m}) = m /2 B1

↵. We conclude
that h is not continuous at (B0

↵, B
1
↵). ⇤

8.10. Concluding remarks

This survey has a non-zero overlap but also a substantial symmetric di↵erence
with a similar survey [46] written recently by the second author. As mentioned in
the introduction the survey presented here was not meant to be exhaustive as such
a task would require a book of its own. So, several interesting topics were left o↵
or only lightly touched.
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One of these topics is the study of weak covering properties in  -spaces.
Matveev in [63] introduced the notion of property (a)10 motivated by the fact
that a space is absolutely countably compact if and only if it is countably compact
and has property (a): hence the name. The study of property (a) in  -spaces was
undertaken by Szeptycki and Vaughan in [79, 80], where they showed, in parti-
cular, that  (A ) has property (a) if and only if for every f : A ! ! there is
a set Y intersecting each A \ f(A) in a finite non-empty set. The relationship
of property (a) and other covering properties of  -spaces with the parametrized
}-principles introduced in [67] was studied by Morgan and da Silva in a series of
articles [69, 74, 75, 68, 76].

There are natural variants of  -spaces on uncountable cardinals, both for al-
most disjoint families of countable sets and for (strongly) almost disjoint families of
uncountable sets. Some of these were studied by Szeptycki in [81], Hrušák, Raphael
and Woods in [51], Dow and Vaughan in [32] and Vaughan and Payne in [86]. In
particular, several variants on a Mrówka family were constructed.

Finally, with one exception, we have avoided forcing arguments in the text as
they do not fall within the scope of this book.

10A space X is said to have property (a) provided for every open cover U of X and every
dense subset D ⇢ X there is a set F closed discrete in X contained in D such that st(F,U) = X,
where st(F,U) =

S
{U 2 U : U \ F 6= ;}.
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Mrówka spaces. Top. Appl. 148 (2005) 239-252.
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85. S. Todorčević. Analytic gaps. Fund. Math. 150 (1996) 55-66.

86. J. E. Vaughan, C. Payne. Fibers of continuous real-valued functions on  -spaces. Topology
Appl. 195 (2015), 256-264.


