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Abstract. We explore different generalizations of the classical concept of in-

dependent families on ω following the study initiated by Kunen, Fischer, Eskew
and Montoya. We show that under (Dℓ)∗

κ
we can get strongly κ-independent

families of size 2κ and present an equivalence of GCH in terms of strongly

independent families. We merge the two natural ways of generalizing indepen-
dent families through a filter or an ideal and we focus on the C -independent
families, where C is the club filter. Also we show a relationship between the
existence of J -independent families and the saturation of the ideal J .

Introduction3

Independent families are objects with strong combinatorial properties. Since4

their appearance in [2] and [6], these families have been related to many other5

objects, such as almost disjoint families, ultrafilters and ideals. See for example [4].6

Independent families are naturally defined over the set of non-negative integers7

ω; however, it is not clear what their natural generalization to larger cardinals8

should be. An independent family on ω is a family I ⊆ P(ω) such that if S, T ⊆ I9

are finite and disjoint subfamilies then
⋂
S \

⋃
T is infinite (we call this set a finite10

Boolean combination from I). In other words, on ω, a family is independent if all its11

finite Boolean combinations are infinite. When we move to the case of an arbitrary12

cardinal κ the notion of independence could be generalized in at least two different13

ways: the first would be by allowing larger Boolean combinations, that is, not only14

finite Boolean combinations but also the ones of length less than or equal to λ for15

some given λ and the second way would be to ask that finite Boolean combinations16

not only have infinite cardinality (or cardinality κ) but that they fulfill some notion17

of largeness.18

The first of these generalizations that we are aware of was studied by Kenneth19

Kunen [11]. He called it σ-independence, since he allowed Boolean combinations of20

at most countable length. He focused on the existence of maximal σ-independent21

families of subsets of some cardinal ϑ > ω1 and he proved that the existence of22

such families is equiconsistent with the existence of a measurable cardinal. His23

monumental paper shows ad hoc methods for his purposes. A more recent study24

of this kind of generalizations was started by Vera Fischer and Diana Montoya in25

[3] and then continued by Monroe Eskew and Vera Fischer in [1]. In this last re-26

ferred work, the authors study higher analogous of the classical notion of maximal27

independent family on ω. As in some other works, they point out that the Axiom28
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of Choice does imply maximal independent families exists as long as the Boolean1

combinations under consideration are finite; however, the panorama is totally dif-2

ferent if we consider longer Boolean combinations. For instance, they show, in3

addition to other very remarkable results, that if P is a nontrivial forcing either4

of size less than κ or satisfying the ν-cc for some ν < κ, then P forces that there5

are no maximal strongly κ-independent families (see Definition 1.3). On the other6

hand, if κ is a supercompact cardinal, then there is a forcing extension in which for7

all κ-directed-closed posets P that force 2κ < κ+ω, P forces that there are maximal8

strongly κ-independent families.9

In the first section we define strongly κ-independent families, we justify the10

reason for considering Boolean combinations of length less than κ and we give a11

characterization of the Continuum Hypothesis in terms of the existence of one of12

these families for κ = ω1, even more, we show that 2κ = κ+ is equivalent to the13

existence of a certain strongly κ+-independent family (see Theorem 1.8).14

Perhaps the most important result of section one is the fact that the existence15

of a (Dℓ)∗κ-sequence implies the existence of a strongly κ-independent family of16

maximum size. With the help of Shelah’s principle (Dℓ)∗κ we can offer a wide17

variety of cardinals for which the existence of a strongly κ-independent family was18

unknown.19

In this section we also show a relationship between the existence of some of these20

families and the existence of a strongly inaccessible cardinal.21

In the second section, we study a second generalization of independent fami-22

lies, what we have called F -independent or J -independent families, depending on23

whether F is a filter or J is an ideal on a given cardinal κ. We say that a family is24

F -independent (or J -independent) if every finite Boolean combination is in F+
25

(or in J + respectively). For a filter F some conditions on it are shown so that26

there are F -independent families; in this same direction we show that strongly F -27

independent families can also exist, i.e., a generalization in two senses of classical28

independent families. Later we will focus on the club filter, closed and unbounded29

sets, and show some similarities between this new notion of independence and the30

classical one. Finally, for an ideal J ⊆ P(κ), we show that exists a relation-31

ship between the existence (or non-existence) of J -independent families and the32

saturation of J , therefore with some properties of the cardinal κ.33

Throughout the article we talk about families with a certain property of inde-34

pendence and we also talk about ideals, we will use the font I and J to denote35

independent families (or so) and the font I or J to denote ideals.36

1. Strongly independent families37

For a cardinal κ and A ⊆ κ, we will use the usual notation, introduced by S.38

Shelah in [15], A0 denotes A and A1 denotes κ \A. If X and Y are sets and s is a39

function, we will use the notation s;X → Y to express that s is a partial function140

from X to Y , i.e., dom(s) ⊆ X and s takes its values in Y . For a given set I and41

a cardinal λ, we will denote the collection of partial functions from I to 2 = {0, 1}42

of size less that λ, {s; I → 2 : |s| < λ}, by FF<λ(I).43

The rest of the terminology is canonical and it is the one followed by modern44

literature in set theory.45

1Note the semicolon instead of the colon.
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Definition 1.1. If I is a family of subsets of a cardinal κ and h; I → 2, then1

Ih =
⋂

I∈dom(h) I
h(I) is the Boolean combination of I determined by h. If h is2

finite then we say that Ih is a finite Boolean combination. If h has cardinality λ3

we say that Ih is a Boolean combination of length λ.4

Note that if I is a family of sets and h; I → 2, then to compute Ih, it is necessary5

to know where to take the complement of elements of dom(h), i.e., it is necessary6

to know the cardinal κ on which the family I is considered. For example, a family7

I ⊆ P(ω) can also be viewed as a subfamily of P(ω1), but the Boolean combinations8

of I differ depending on whether the complements are taken in ω or in ω1. This way,9

if we write I ⊆ P(κ), we are implicitly indicating where to take the complements10

of elements of I. Although this subtlety does not seem to make a big difference,11

it is important to highlight it as it will help to understand the subtle differences12

between what is done in this article and the monumental work previously done by13

Kunen.14

Given a cardinal λ, the set whose elements are all Boolean combinations from I15

of length less that λ is the λ-envelope of I and we denote it by ENV<λ(I).16

Definition 1.2. A family I ⊆ P(κ) is κ-independent if every finite Boolean com-17

bination of I has cardinality κ.18

We generalize κ-independent families allowing larger Boolean combinations.19

Definition 1.3. A family I ⊆ P(κ) is strongly κ-independent if every Boolean20

combination of length less than κ of elements of I has size κ.21

Note that the fact that I is κ-independent is just the assertion that ENV<ω(I) ⊆22

[κ]κ while being strongly κ-independent means that ENV<κ(I) ⊆ [κ]κ. Then, as23

I ⊆ ENV<ω(I), being κ-independent in particular implies that I ⊆ [κ]κ. This is24

a significance difference with the terminology adopted by Kunen in [11], where he25

call a θ-independent family any family I ⊆ P(χ), for some cardinal χ, such that26

every Boolean combination of I of length less than θ has size at least θ, where27

the complements are taken in χ. That is, for us the fact that I is κ-independent28

(respectively strongly κ-independent) means that:29

(1) I ⊆ P(κ), i.e., the complements are taken in κ and30

(2) ENV<ω(I) ⊆ [κ]κ (respectively ENV<κ(I) ⊆ [κ]κ).31

For Kunen, that a family J is θ-independent means that:32

(1) J ⊆ P(χ) for some cardinal χ ≥ θ and33

(2) The Boolean combinations of J (with complements taken in χ) of length34

less that θ are non-empty.35

Note that there are differences between the notion studied by Kunen and the36

two presented here in both conditions, (1) and (2). Therefore, in general, the37

objects of study differ, except in some cases. For instance, every family J ⊆ P(ω1)38

that is ω1-independent in the sense of Kunen is strongly ω1-independent in our39

terminology. However, a family J ⊆ P(ω2) (i.e., the complements are taken in40

ω2) that is ω1-independent in the sense of Kunen is not necessarily ω1-independent41

(since it possibly contains not only subsets of ω1) nor ω2-independent (since the42

finite Boolean combinations of I may not necessarily have size ω2). In particular,43

J need not be either strongly ω1-independent nor strongly ω2-independent.44

The terminology of Kunen is convenient for his work in the sense that he studied45

the existence of maximal families with countable Boolean combinations non-empty46
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on cardinals such as 2ω1 and he showed that the existence of these families is1

equiconsistent with the existence of a large cardinal (Theorem 1.20). To avoid2

any potential confusion, from this point forward, when we discuss κ-independent3

families, we are referring to what is specified in Definition 1.2.4

Observe that according to Definition 1.2, what we have called in the introduction5

an independent family turns out to be an ω-independent family.6

Normally, after definitions, examples come; instead we now present a typical7

example of the classical case of an ω-independent family. Latter we shall use it to8

give examples of the generalizations just introduced.9

Example 1.4. Let pn be the n-th prime number and Cn = {mpn : m ∈ ω}. The10

family I = {Cn : n ∈ ω} ⊆ [ω]ω is ω-independent.11

The family in the previous example is a ω-independent family such that Ih =12

∅ for any infinite Boolean combination h;ω → 2 such that h−1[{0}] is infinite.13

Nevertheless, this does not mean that this family is not strongly ω-independent,14

since in the case of κ = ω, κ-independence and strongly κ-independence agree (it15

also is the unique cardinal κ where they do). It is easy to observe that for any16

infinite ω-independent family I there exists h; I → 2 infinite such that Ih = ∅. In17

general, in Definition 1.3 we restrict ourselves to Boolean combinations of length18

less than κ because if I is a κ-independent family of cardinality at least κ, there is19

h; I → 2, with |h| = κ, such that Ih = ∅.20

The question naturally arises: For which cardinals κ does there exist (or may21

exist) a strongly κ-independent family, and for which ones do there exist large22

strongly κ-independent families, that is, of cardinality 2κ? Fischer and Montoya23

in [3] provided a partial answer to this question, which has inspired us to use a24

guessing principle to construct strongly κ-independent families.25

Definition 1.5. [14] Let κ be a cardinal. We say that a sequence 〈Sα : α ∈ κ〉 is26

a (Dℓ)∗κ-sequence if:27

(1) For every α ∈ κ, we have that Sα ⊆ P(α) and |Sα| < κ.28

(2) For every X ⊆ κ, the set {α ∈ κ : X ∩ α ∈ Sα} is club in κ.29

The existence of a (Dℓ)∗κ-sequence will be denoted simply as (Dℓ)∗κ.30

Since the principle (Dℓ)∗ is not very well known, we decide to include the proof31

of the next proposition, even though it is essentially a modification of the classical32

result ♦ implies CH.33

Proposition 1.6. Let κ and λ be cardinals such that λ < κ and κ is regular. Then34

(Dℓ)∗κ implies 2λ ≤ κ.35

Proof. Note that ifX ⊆ λ and α > λ, thenX∩α = X, thus, as {α ∈ κ : X∩α ∈ Sα}36

is club, CX = {α ∈ κ : X ∈ Sα} is too, in particular CX 6= ∅. Now note that:37 ∣∣∣∣∣
⋃

λ<α<κ

Sα

∣∣∣∣∣ =
∑

λ<α<κ

|Sα| = κ,38

but by the previous, every X ⊆ λ satisfies that X ∈
⋃

λ<α<κ Sα, hence P(λ) ⊆39 ⋃
λ<α<κ Sα and consequently 2λ ≤ κ. ❒40

With the help of the principle (Dℓ)∗κ we show the possibility of having κ-strongly41

independent families. As we remark in the introduction, this may provide a wider42

variety of cardinals where κ-strongly independent families exist.43
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Proposition 1.7. Let κ be an uncountable regular cardinal. Then (Dℓ)∗κ implies1

the existence of a strongly κ-independent family of cardinality 2κ.2

Proof. Let 〈Sα : α ∈ κ〉 be a (Dℓ)∗κ sequence and let C be defined as follows:3

C = {〈γ,A〉 : γ ∈ κ ∧A ⊆ Sγ}.4

Since |Sα| < κ for every α ∈ κ, by Proposition 1.6,5

|C| =
∑

α∈κ

2|Sα| ≤
∑

α∈κ

κ = κ6

and it is also clear that κ ≤ |C|, we conclude that |C| = κ. Thus constructing7

a strongly κ-independent family can be done with subsets of C (with Boolean8

combinations computed in C).9

For every X ⊆ κ let YX be defined as follows:10

YX = {(γ,A) ∈ C : X ∩ γ ∈ A}.11

Aiming to prove that I = {YX : X ⊆ κ} is strongly κ-independent, set {Xi : i ∈12

I0}, {Zj : j ∈ I1} ⊆ P(κ) two disjoint collections, with |I0|, |I1| < κ.13

For every pair i, i′ ∈ I0 with i 6= i′ let γi,i′ ∈ κ be such that14

Xi ∩ γi,i′ 6= Xi′ ∩ γi,i′ .15

Observe that if γ ≥ γi,i′ then Xi ∩ γ 6= Xi′ ∩ γ; analogously for j, j′ ∈ I1, with16

j 6= j′ let αj,j′ be such that17

Zj ∩ αj,j′ 6= Zj′ ∩ αj,j′ .18

Finally if i ∈ I0 and j ∈ I1, let βi,j ∈ κ be such that19

Xi ∩ βi,j 6= Zj ∩ βi,j .20

If we define B ⊆ κ as:21

B = {γi,i′ : i, i
′ ∈ I0 ∧ i 6= i′} ∪ {γj,j′ : j, j

′ ∈ I1 ∧ j 6= j′} ∪ {γi,j : i ∈ I0 ∧ j ∈ I1},22

it is clear that |B| < κ and, as κ is regular, there exists γ0 ∈ κ such that B is23

bounded by γ0. Now, if γ ∈ κ is larger that γ0, then this one satisfies the following:24

(1) Xi ∩ γ 6= Xi′ ∩ γ if i, i′ ∈ I0 with i 6= i′.25

(2) Zj ∩ γ 6= Zj′ ∩ γ if j, j′ ∈ I1 with j 6= j′.26

(3) Xi ∩ γ 6= Zj ∩ γ if i ∈ I0 with j ∈ I1.27

For every i ∈ I0, consider Di = {γ ∈ κ : Xi ∩ γ ∈ Sγ}, which is a club, now put28

D =
⋂

i∈I0
Di and let γ ∈ D such that γ > γ0.29

Let Aγ ⊆ Sγ be defined as:30

Aγ = {Xi ∩ γ : i ∈ I0}.31

So we have that (γ,Aγ) ∈ YXi
for every i ∈ I0 and (γ,Aγ) 6∈ YZj

for every j ∈ I1.32

This proves that:33

(γ,Aγ) ∈
⋂

i∈I0

YXi
\
⋃

j∈I1

YZj
34

and as this happens for every γ ∈ D such that γ > γ0, then:35

∣∣ ⋂

i∈I0

YXi
\
⋃

j∈I1

YZj

∣∣ = κ,36

which finishes the proof. ❒37
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If κ is strongly inaccessible then 〈P(α) : α ∈ κ〉 turns out to be a (Dℓ)∗κ-sequence,1

hence the previous theorem in particular implies that for every strongly inaccessible2

cardinal κ there is a large strongly κ-independent family, which is a result obtained3

by Fischer and Montoya in [3] and which proof is in turn inspired by Hausdorff’s4

original proof that there are ω-independent families of size c [6].5

In a former version of this paper, in order to obtain previous proposition, we6

used the well known ♦∗(κ). By a famous theorem of Jensen [8], under V = L,7

the principle ♦∗(κ) holds on every successor cardinal. We thank Assaf Rinot for8

pointing us Shelah’s paper [14], so we realized we actually offer a slightly wider9

spectrum of cardinals for which there are consistently strongly independent (large)10

families on them without rallying on a very strong hypothesis as V = L. For11

instance, in [13], H. Mildenberger and S. Shelah, in their Fact 2.9, proved that12

♦∗(κ) is equivalent to (Dℓ)∗κ for successor cardinals. However, R. Jensen and K.13

Kunen show in [9] that for limit cardinals, they are not equivalent. This is because14

if κ is ineffable (in particular, if κ is measurable), then ♦∗(κ) fails, while (Dℓ)∗κ15

holds due to κ being strongly inaccessible.16

On the other hand, the existence of strongly κ-independent families, where κ is a17

successor cardinal, is also closely related to the Generalized Continuum Hypothesis.18

Theorem 1.8. Let κ be an infinite cardinal. The following two conditions are19

equivalent.20

(1) There is a strongly κ+-independent family of cardinality κ.21

(2) The equality 2κ = κ+ is true.22

Proof. (1) ⇒ (2). Let I = {Xα : α ∈ κ} a strongly κ+-independent family. For23

all h ∈ 2κ we have that Ih has cardinality κ+ and it is clear that if h, g ∈ 2κ are24

different then Ih and Ig are disjoint. For every h ∈ 2κ, let xh ∈ Ih; then the set25

{xh : h ∈ 2κ} is a subset of κ+ and has cardinality 2κ, so 2κ ≤ κ+ and therefore26

2κ = κ+.27

(2) ⇒ (1). Let f : κ+ → 2κ × κ+ be a bijection (considering 2κ as the set of all28

functions from κ to 2). For every h ∈ 2κ, let Xh = f−1({h} × κ+) and for every29

α ∈ κ let Iα be defined as follows:30

Iα =
⋃{

Xh : h ∈ 2κ \ {1} ∧ h(α) = 0
}
,31

where 1 denotes the function f : κ → 2 with constant value 1.32

Let I = {Iα : α ∈ κ}. It is clear that if h ∈ 2κ \ {1} then Ih ⊇ Xh and, as33

|Xh| = κ+, we have that |Ih| = κ+, which proves that I is strongly κ+-independent.34

❒35

The following results are simple corollaries of Theorem 1.8.36

Corollary 1.9. There exists an infinite strongly ω1-independent family if and only37

if CH is satisfied, thus, the existence of an infinite strongly ω1-independent family38

is independent from ZFC.39

Corollary 1.10. Let κ be an inaccessible cardinal (limit and regular) such that for40

every infinite cardinal λ < κ it exists a strongly λ+-independent family of cardinality41

λ, then κ is strongly inaccessible.42

Proof. We only need to verify that κ is a strong limit cardinal. Let λ ∈ κ; as κ is43

limit it follows that λ+ < κ. On the other hand, since there exists a λ+-strongly44
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independent family of size λ, by Theorem 1.8, 2λ = λ+ and so 2λ < κ, which1

finishes the proof. ❒2

Corollary 1.11. If κ is inaccessible and for every λ < κ there is a strongly λ-3

independent family of cardinality λ, then κ is strongly inaccessible.4

Although we already know some sufficient conditions on κ for the existence5

of strongly κ-independent families, an interesting property of these is that the6

collection of all such families do not satisfy the conditions to apply Zorn’s Lemma7

(unlike the classical independent families), which is the standard way to prove that8

maximal objects with some property exist. It is therefore of great interest to know:9

Question 1.12. For which cardinals κ are there strongly κ-independent maximal10

families?11

Definition 1.13. A strongly κ-independent family I is maximal if there is no other12

strongly κ-independent family that properly extends it.13

As we pointed out in the introduction, the existence of maximal strongly κ-14

independent is an issue that has not been explored enough since there are no nec-15

essary or sufficient conditions on the cardinals κ so that they exist. However, there16

has been recent progress on that as the next result by Eskew and Fischer shows.17

Theorem 1.14. [1] Let κ be a supercompact cardinal.18

(1) There is a forcing extension in which for all κ-directed closed posets P that19

force 2κ < κ+ω, they force that there are strongly κ-independent families.20

(2) Suppose GCH and κ1 > κ is measurable. Then there are generic extensions21

in which there are two maximal strongly κ-independent families of different22

cardinalities.23

Thus Question 1.12 remains as one of the big open problems in the topic. We24

think that the existence of a strongly κ-independent family would imply a largeness25

condition on κ. We would like to know if that condition is one already considered26

in some other context or it generates a brand new condition.27

Proposition 1.15. For every infinite cardinal κ > ω there exists a κ-independent28

family that is not strongly κ-independent.29

Proof. We know that there exists a bijection between κ and ω× κ, so we are going30

to construct the desired family on κ × ω. For every n ∈ ω let In = κ × Cn, where31

the Cn are as in the Example 1.4, and let I = {In : n ∈ ω}.32

Clearly if h;ω → 2 is finite, then for every α ∈ κ we have that ({α} × ω) ∩ Ih is33

infinite, in particular Ih has size κ. On the other hand, if h : ω → 2 is such that34

h−1[{0}] is infinite, then for every α ∈ κ we have that ({α} × ω) ∩ Ih = ∅, which35

implies that Ih = ∅, thus I is as we wanted. ❒36

It is natural to ask if consistently there is a cardinal κ with nice reflection proper-37

ties or some sort of compactness principle for which the fact that the finite Boolean38

combinations are unbounded implies that every Boolean combination of length less39

than κ is also unbounded, however Proposition 1.15 answers this in the negative40

since in particular it implies that on every cardinal κ there is a family I such that41

every finite Boolean combination is unbounded but plenty of its countable Boolean42

combinations are empty. Moreover, the family constructed in the proof of Proposi-43

tion 1.15 can be extended to a maximal κ-independent family J , and since I ⊆ J ,44

then J is not strongly κ-independent either, thus we have the next corollary.45
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Corollary 1.16. For every infinite cardinal κ > ω there exists a maximal κ-1

independent family that is not strongly κ-independent.2

As in the classical case of κ-independent families, a standard diagonalization3

argument shows that strongly κ-independent families small in cardinality are not4

maximal, we add here a proof for completeness.5

Proposition 1.17. If I is a strongly κ-independent family such that |I| < κ, then6

then there exists a strongly κ-independent family J such that I ( J , i.e., I is not7

maximal as a strongly κ-independent family.8

Proof. Let I = {Iα : α ∈ λ} with λ < κ and for each h : λ → 2 let Xh = Ih. Now9

each set Xh is of cardinality κ and if h, g ∈ 2λ are different then Xh ∩Xg = ∅, this10

implies that 2λ ≤ κ. Let 〈Yα : α ∈ κ〉 be an enumeration of {Xh : h ∈ 2λ} such11

that every Xh appears κ times. Let a0, b0 ∈ Y0 be such that a0 < b0 and suppose12

that aβ and bβ have been already defined for all β < α. Since Yα has cardinality13

κ there are aα, bα ∈ Yα such that for all β ∈ α it holds that aβ , bβ < aα and also14

aα < bα. Now let Z = {aα : α ∈ κ}. By the construction of Z we have that Z ∩Xh15

and (κ \ Z) ∩ Xh have cardinality κ for all h ∈ 2λ, that is, I ∪ {Z} is a strongly16

κ-independent family. ❒17

Note that the above proof is not applicable to strongly κ-independent families18

of cardinality κ. Besides that, what is established by Proposition 1.16 does not19

follow from the fact that every κ-independent family I of size smaller than κ can20

be properly extended to another κ-independent family J , since, in principle, there21

is nothing to guarantee that the κ-independent family J is indeed strongly κ-22

independent.23

The following shows, in the same direction of Proposition 1.17, that another24

class of strongly independent families are not maximal neither.25

Definition 1.18. Let κ be an infinite cardinal.26

(1) Let F ⊆ P(κ) and X ⊆ κ, we say that X splits F if Y ∩ X and Y \ X have27

size κ for all Y ∈ F .28

(2) A family R ⊆ P(κ) is unsplittable (or reaping) if there is not X ⊆ κ that splits29

R.30

(3) r(κ) is the smallest cardinality of a unsplittable family on κ.31

Theorem 1.19. [3] Let κ be an infinite regular cardinal. If I is a strongly κ-32

independent family such that |{Ih : h; I → 2 ∧ |h| < κ}| < r(κ) then I is not33

maximal.34

In [11], K. Kunen studied maximal σ-independent families on uncountable car-35

dinals; that is, maximal families of subsets of some uncountable cardinal κ which36

are independent with respect to Boolean combinations of countable length. One of37

his main contributions is the following.38

Theorem 1.20. [11] The existence of maximal σ-independent family on some car-39

dinal κ is equiconsistent with existence of a measurable cardinal.240

His methods are ad hoc and it does not seem possible to generalized them to41

answer Question 1.12; however, this gives an idea of the consistency strength one42

2Here we use Kunen’s “σ–” notation to avoid confusion with our objects which would be

“something like ω1-independent on some cardinal κ ≥ ω1”.
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has to face to answer Question 1.12. Kunen’s paper also shows all the complexity of1

the property of maximality for independent families on uncountable cardinals. As2

we said earlier, we were unable to present properties that guarantee maximality for3

strongly κ-independent families. In the next section we take a different approach4

to generalized the classical case. Again the property of being maximal for those5

is perhaps even harder. For example, we were unable to prove that a countable6

C -independent family cannot be maximal. See Theorem 2.10.7

2. F -independent families8

Let F be a filter on κ. A subset X ⊆ κ is F -positive if X ∩ Y 6= ∅ for every9

Y ∈ F ; we denote the family of F -positive subsets by F+. If J ⊆ P(κ) is an10

ideal then J + = {X ⊆ κ : X 6∈ J }.11

If F a filter on a cardinal κ, we denote by F ∗ its dual ideal, i.e., the ideal12

{X ⊆ κ : κ \X ∈ F}.13

Definition 2.1. A family I ⊆ P(κ) is F -independent if every finite Boolean14

combination of I is in F+. Similarly if J is an ideal then I is J -independent if15

every finite Boolean combination of I is in J +.16

Note that once we fix a filter F , we know the cardinal κ it is on since
⋃

F = κ;17

in this way, the most natural is to define a F -independent family as a subfamily18

of P(κ). However, the case of ideals is a little more subtle since an ideal itself does19

not remember the cardinal it is on. For example, if J ⊆ P(ω) is an ideal, then in20

particular J ⊆ P(ω1), so in this case when talking about a J -independent family,21

there is certain ambiguity regarding which cardinal the family should be on and in22

particular how the Boolean combinations are taken. To avoid this ambiguity, and23

as we did in Section 1, when we talk about a J -independent family I and indicate24

that I ⊆ P(κ) we will implicitly assume that the Boolean combinations are taken25

in κ.26

A similar issue arises when J is an ideal and we want to talk about its dual27

filter as we need to know the cardinal κ on which the complements of elements of28

J are taken. To solve this, when we indicate that J ⊆ P(κ) is an ideal and we29

talk about its dual filter, we will assume that this filter is defined on κ.30

Note that a family is F -independent if and only if it is F ∗-independent. On the31

other hand, if Fr is the Fréchet filter (on ω), then a family is Fr-independent if32

and only if it is ω-independent. It is also clear that if I is a F -independent family33

and X ∈ I, then X is F -double positive, that is, X,κ \X ∈ F+, consequently if34

F is an ultrafilter, there are no F -independent families. The natural question is35

to know for which filters (or ideals) F ⊆ P(κ) (in addition to the Fréchet’s one)36

there is a F -independent family.37

Proposition 2.2. Let F be a principal filter, i.e., F = {A ⊆ κ : B ⊆ A} for some38

B ⊆ κ. Then:39

(1) If B is finite then there are not F -independent infinite families. Furthermore,40

if |B| = n, there are not F -independent families of cardinality n.41

(2) If |B| = λ ≥ ω, then there exists an F -independent family I of cardinality42

2λ. On the other hand, if J ⊆ P(κ) with |J | ≥ (2λ)+, then J is not F -43

independent.44

Proof. (1) Note that F+ = {X ⊆ κ : X ∩ B 6= ∅}. Let B = {x0, . . . , xn−1}45

and suppose that X0, . . . , Xn−1 ∈ I are all distinct, where I is an F -independent46
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family. For each i ∈ n, if xi ∈ Xi let h(i) = 1 and h(i) = 0 otherwise; so we have1

that xi 6∈ X
h(i)
i . Then for every x ∈ B we have that:2

x 6∈
⋂

i∈n

X
h(i)
i = Ih,3

so Ih ∩ B = ∅ and therefore Ih 6∈ F+, which contradicts the fact that I is F -4

independent.5

(2) Again note that F+ = {X ⊆ κ : X ∩B 6= ∅}. Now let I = {Xα : α ∈ 2λ} be6

an independent family of subsets of B and for each α ∈ 2λ let Yα = Xα ∪ (κ \ B)7

and let Î = {Yα : α ∈ 2λ}. Clearly if h; 2λ → 2 is finite then Ih ⊆ Îh and as I is8

independent on B we have that:9

∅ 6= B ∩ Ih = B ∩ Îh,10

which proves that Îh ∈ F+, therefore Î is F -independent.11

If J ⊆ P(κ) has cardinality at least (2λ)+, as |B| = λ, there exist X,Y ∈ J12

distinct such that X ∩ B = Y ∩ B, but then (X \ Y ) ∩ B = ∅, which proves that13

X \ Y 6∈ F+, thus J is not F -independent. ❒14

As anticipated, the two generalizations of independence studied in this work are15

compatible with each other, that is, we can merge the two notions in order to obtain16

families with more combinatorial properties.17

Definition 2.3. Let F ⊆ P(κ) be a filter (respectively J ⊆ P(κ) an ideal). A18

family I ⊆ P(κ) is strongly F -independent (respectively strongly J -independent)19

if every Boolean combination of length less than κ of I is in F+ (respectively in20

J +).21

We will study a little more of these families below.22

2.1. C -independent families. For each regular cardinal κ let Cκ ⊆ P(κ) be the23

club filter, that is, the filter generated by closed and unbounded sets (when the24

context is clear we will call Cκ simply as C ). Cω1
is a very important filter in the25

study of the combinatorics of ω1, therefore a couple of questions arise naturally: Are26

there Cω1
-independent families? Is every maximal C -independent family strongly27

C -independent? Answers to these questions can be found in Proposition 2.6 and28

Corollary 2.7, respectively.29

First of all, let us note that as for every filter F , the union of a chain of F -30

independent families is again an F -independent family. Therefore, if there exist31

F -independent families, then there are maximal ones (by Zorn’s Lemma).32

Remember that C -positive sets are called stationary sets; one of the most im-33

portant results about stationary sets is the following:34

Lemma 2.4 ([16], [10]). For each uncountable regular cardinal κ we have that κ is35

the union of as many as κ disjoint stationary sets.36

Corollary 2.5. For each uncountable regular cardinal κ and each λ ≤ κ we have37

that κ is the union of λ disjoint stationary sets.38

The following two results are consequences of this last corollary; their proofs39

follow the scheme of the proof of Proposition 1.15.40

Proposition 2.6. For every uncountable regular cardinal κ there exists a countable41

C -independent family.42
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Proof. By Corollary 2.5 there is a countable collection {Xs : s ∈ 2<ω} of disjoint1

stationary subsets whose union is κ, say indexed by the set 2<ω.2

Now, for every n ∈ ω, let In ⊆ κ be defined as follows:3

In =
⋃

{Xs : s ∈ 2<ω ∧ n ∈ dom(s) ∧ s(n) = 0}.4

It turns out that I = {In : n ∈ ω} is a C -independent family, since every finite5

Boolean combination of I contains some combination of the form6 ⋂
{Is(n)n : n ∈ dom(s)}7

for some s ∈ 2<ω and also:8

Xs ⊆
⋂

{Is(n)n : n ∈ dom(s)},9

which proves that every finite Boolean combination of I contains a stationary set,10

therefore is stationary. ❒11

Corollary 2.7. For any cardinal κ ≥ ω1 it exists a C -independent maximal family12

on κ that is not strongly C -independent.13

Proof. Let {Xm : m ∈ ω} be a partition of κ into stationary sets. Now for every14

n ∈ ω let Yn =
⋃
{Xm : m ∈ Cn}, where the Cn are as in the Example 1.4. Consider15

I = {Yn : n ∈ ω}; then it is easy that I is C -independent but for h;ω → 2 such16

that h−1[{0}] is infinite we have that Ih = ∅, which proves that I is not strongly17

C -independent. Extending I to a maximal C -independent family the result is18

obtained3. ❒19

Theorem 2.8. The following statements are equivalent for a cardinal κ:20

(1) 2κ = κ+.21

(2) There exists a strongly independent family on κ+ of size κ.22

(3) There exists a strongly C -independent family on κ+ of size at least κ.23

Proof. We only prove (1)⇒(3). Let {Xf : f ∈ 2κ} be a partition of κ+ into24

stationary sets and for every α ∈ κ let Iα be defined by25

Iα =
⋃

{Xf : f ∈ 2ω ∧ (f(α) = 0)} .26

Let I = {Iα : α ∈ κ}. It is clear that if f ;κ → 2 then If ⊇ Xh for some h ∈ 2κ27

and, as Xh is stationary, If is stationary too, which proves that I is strongly28

C -independent. ❒29

We now know that there are countable C -independent families on ω1. Are there30

uncountable C -independent families on ω1? Furthermore, are there C -independent31

families of cardinality 2ω1? This is answered positively in the following.32

Theorem 2.9. Let κ and λ be cardinals such that ω ≤ λ ≤ 2κ and κ is regular.33

Then, on κ, there is a C -independent family of cardinality λ.34

Proof. Let {Xβ : β ∈ κ} be a partition of κ into stationary sets. Now let I = {Iα :35

α ∈ λ} be an independent family of cardinality λ on κ. For every α ∈ λ, let Îα ⊆ κ36

be defined as follows:37

Îα =
⋃

{Xβ : β ∈ Iα}.38

3As mentioned earlier, this can be accomplished by applying Zorn’s Lemma.
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Now let Î = {Îα : α ∈ λ}. Clearly Î has size λ, then the only thing left to prove is1

that it is a C -independent family. Let s;λ → 2 be finite, we want to see that Îs is2

stationary. Since I is independent there is β ∈ Is, but this means that if s(α) = 03

then Xβ ⊆ Îα and if s(α) = 1 then Xβ ∩ Îα = ∅, that is, Xβ ⊆ Îs, and since Xβ is4

stationary Îs is also stationary. ❒5

As in the classical case of independent families, one would expect that the coun-6

table Cω1
-independent families are not maximal; however, it seems complicated to7

establish that. Our ideas about generalizing the classical proof, doing a disjoint8

refinement of the envelope or using a ♦♯-sequence have failed. The following is a9

modification of the main construction from [7].10

Theorem 2.10. If V = L, then every countable Cω1
-independent family can not11

be maximal.12

Proof. Let I be a countable C -independent family, and let {En : n ∈ ω} be an13

enumeration of its ω-envelope. For each limit ordinal γ < ω1 set14

Aγ = {α < ω1 : L(α) |= ZF
− ∧ γ = ω

L(α)
1 }.15

Since {̺ < ω1 : L(̺) ≺ L(ω1)} is unbounded in ω1, it follows that Aγ is at most16

countable for each limit γ < ω1. It is also known that {γ < ω1 : Aγ 6= ∅} contains17

a club. Let18

Gγ = {C ⊆ γ : C is club in γ ∧ (∃α ∈ Aγ)(C ∈ L(α))}.19

Then Gγ is countable and since ZF− suffices to prove that the intersection of a finite20

collection of club subsets is a club subset, it follows that Gγ is closed under finite21

intersections.22

Consider as well23

Sγ = {S ⊆ γ : (∃α ∈ Aγ)(S ∈ L(α)) ∧ (∀C ∈ Gγ)(C ∩ S 6= ∅)}.24

Once again Sγ is countable; fix an enumeration {Sn : n ∈ ω} of Sγ in which each25

element appears infinitely often and some simple enumeration {Cn : n ∈ ω} of Gγ .26

Now consider a cofinal sequence 〈αn : n ∈ ω〉 in Aγ such that27

Sn ∈ L(αn) ∧ (∀m ≤ n)(Cm ∈ L(αn)).28

Since L(α0) |= “S0 is stationary in γ” pick29

ξ0 ∈ S0 ∩ C0 and η0 ∈ S0 ∩ C0 \ (ξ0 + 1),30

and recursively31

ξn+1 ∈ (Sn+1 ∩
⋂

k≤n+1

Ck) \ (ηn + 1) and ηn+1 ∈ (Sn+1 ∩
⋂

k≤n

Ck) \ (ξn+1 + 1),32

for all n ∈ ω. This way we have built two disjoint subsets Gγ = {ξn : n ∈ ω} and33

Hγ = {ηn : n ∈ ω}.34

Put G =
⋃
{Gγ : γ ∈ Lim(ω1)} and H =

⋃
{Hγ : γ ∈ Lim(ω1)}.35

Claim: (∀k ∈ ω)(Ek ∩G is stationary).36

Fix a club subset C ⊆ ω1. Define recursively a sequence of elementary submodels37

Mν ≺ L(ω2) for ν < ω2 as follows:38

• M0 is the smallest M ≺ L(ω2) such that {En : n ∈ ω}, C ∈ M ,39

• Mν+1 is the smallest M ≺ L(ω2) such that Mν ∪ {Mν} ⊆ M ,40
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• Mξ =
⋃

ν<ξ Mν whenever ξ is a limit ordinal.1

By the Condensation Lemma, Mν ∩L(ω1) is transitive, set αν = Mν ∩ω1. Then2

〈αν : ν < ω1〉 is a normal sequence in ω1. Use Mostowski’s Collapse πν : Mν
∼=3

L(βν) to get4

• πν ↾ L(αν) = id ↾ L(αν),5

• πν(ω1) = αν ,6

• πν(C) = C ∩ αν ,7

• (∀n ∈ ω)(πν(En) = En ∩ αν).8

Consider the set K of limit points of 〈αν : ν < ω1〉. Obviously K is a club in ω1, if9

γ ∈ K, then10

γ = sup
ν<ζ

αν = sup
ν<ζ

βν ,11

for some ordinal ζ < ω1, and hence γ = αζ . To see this, it is enough to show12

αν < βν < αν+1. Clearly αν < βν . Since βν is definable from Mν as L(βν) is the13

transitive collapse of Mν and that definition relativizes to L(ω2). Thus βν ∈ Mν+114

as Mν ∈ Mν+1 ≺ L(ω2). Henceforth βν ∈ αν+1.15

Note that βζ ∈ Aγ since L(βζ) |= γ = ω1 and L(βζ) |= ZF
−. Thus C ∩ γ =16

πζ(C) ∈ L(βζ) and of course L(βζ) models that πζ(C) is a club in γ. This implies17

C ∩ γ ∈ Gγ . It is also true that Ek ∩ γ ∈ L(βζ), then Ek ∩ γ = Sn ∈ Sγ , for18

infinitely many n ∈ ω. Since Gγ \ (C ∩ γ) is finite and Gγ is built in such a way19

that Gγ ∩ (Ek ∩ γ) is infinite, this shows that Ek ∩G is stationary in ω1.20

Analogously Ek ∩H is stationary in ω1 for all k ∈ ω. It follows that I ∪ {A} is21

also C -independent. ❒22

Observe, in the last proof, that it is easily possible that G ∩H 6= ∅; however, it23

is not hard to show that G \H and H \G are stationary as well.24

Maximal C -independent families have many properties analogous to those of25

maximal independent ones in the classical case. For example, it is easy to prove26

that if I is C -independent and finite then it is not maximal. Indeed, let us say27

that I = {Ii : i ∈ n} for some n ∈ ω and note that for each s : n → 2, the set28

Is =
⋂

i∈n I
s(i) is stationary; furthermore, if s, t : n → 2 are different, Is and It

29

are disjoint. For each s : n → 2 let As and Bs be a partition of Is into two disjoint30

stationary sets and let A =
⋃
{As : s ∈ 2n} . It is clear that A 6∈ I and I ∪ {A} is31

C -independent.32

Note that, since we can always split a stationary set into two stationary subsets,33

the above guarantees that we can recursively construct C -independent families34

of cardinality n ∈ ω and thus obtain a countable C -independent family. The35

advantage of this method is that it only requires the fact that a stationary set can36

be split into two stationary sets and not into infinite ones.37

It must be clear that our method from the last paragraph is too far from working38

in the infinite case. Although V = L is a reasonable hypothesis, we conjecture39

that the assertion in our last theorem may be establish without further hypothesis40

beyond the usual. A model where there is a countable maximal Cω1
-independent41

would be a very interesting one.42

Question 2.11. Is it true in ZFC that every countable Cω1
-independent family is43

not maximal?44
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In analogy to the classical case, we may introduce iCω1
as the minimum size of1

a maximal Cω1
-independent family. So with this terminology the former question2

becomes: Is it true in ZFC that iCω1
≥ ω1?3

2.1.1. Dense C -independent families. All the properties shown next for C -inde-4

pendent families were proved for the classic independence by Goldstern and Shelah5

in [5], this proves that C -independent families on ω1 behave similarly as the ω-6

independent ones.7

Definition 2.12. If I is a C -independent family then we define the ideal associated8

to I as:9

JI = {A ⊆ ω1 : (∀f ∈ FF<ω(I))(∃g ∈ FF<ω(I))(g ⊇ f∧Ig∩A is not stationary)}.10

Clearly JI is an ideal that contains the ideal of the non-stationary sets.11

Definition 2.13. (1) If X,Y ⊆ ω1, we say that X is NS-almost contained in12

Y if X \ Y is not a stationary set and we denote this by X ⊆ns Y .13

(2) For a family X of subsets of ω1 and Y ⊆ ω1, we say that Y is NS-14

pseudointersetion of X if Y ⊆ns X for every X ∈ X .15

In this definition we focus in the ideal of non-stationary sets in ω1; however, it16

is straightforward defining the relation X ⊆J Y , for any other ideal J17

Definition 2.14. A C -independent maximal family is dense if for every A ∈ JI
+

18

it exists g ∈ FF<ω(I) such that Ig ⊆ns A.19

This can be interpreted as follows: a C -independent family is dense if the enve-20

lope of I is a base of JI
+; let us also note that for all f ∈ FF<ω(I) we have that21

If ∈ JI
+, since f itself is a witness of this.22

Next we use the following standard notation, if A ⊆ P(X) and Y ⊆ X, then23

A ↾ Y is the family {A ∩ Y : A ∈ A}.24

Proposition 2.15. If I is a maximal C -independent family, there exists f ∈25

FF<ω(I) such that for every g ∈ FF<ω(I) with g ⊇ f , I ↾ Ig is maximal.26

Proof. Let {fn : n ∈ ω} be a maximal family with the following properties:27

(1) If n 6= m, fn and fm are incompatible.28

(2) I ↾ Ifn is not maximal for every n ∈ ω.29

Note that by condition (1) and since FF<ω(I) is ccc, this collection is at most30

countable (in principle it could be finite but assume without loss of generality that31

it is countable).32

Now, for every n ∈ ω let An ⊆ Ifn be such that I ↾ Ifn ∪{An} is C -independent33

on Ifn and let A =
⋃

n∈ω An. Since I is maximal it exists f ∈ FF<ω(I) such that34

If ∩ A or If \ A is not stationary. Let us suppose without loss of generality that35

If ∩ A is not stationary. We claim that f is incompatible with every fn; to see36

this, suppose that f and fn are compatible, i.e., suppose that f ∪ fn is a function.37

Thus If∪fn ∈ ENV<ω(I ↾ Ifn), in particular we have that:38

If ∩A ⊇ If∪fn ∩A ⊇ If∪fn ∩An,39

but this is impossible, since in that case If∪fn ∩An is stationary as If ∩A is not.40

Since f is incompatible with every fn then so is every g ∈ FF<ω(I) such that41

g ⊆ f , therefore I ↾ Ig is maximal, otherwise the maximality of {fn : n ∈ ω} would42

be contradicted. ❒43
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Lemma 2.16. If I is a C -independent maximal family such that for every f ∈1

FF<ω(I) the family I ↾ If is maximal, then I is dense.2

Proof. Let A ∈ JI
+, this means that there exists f ∈ FF<ω(I) such that for every3

g ∈ FF<ω(I) that extends to f we have that Ig ∩ A is stationary. As I ↾ If is4

maximal, it exists g ∈ FF<ω(I), g ⊇ f such that either Ig ∩ A or Ig \ A is not5

stationary, but we know that Ig ∩ A is stationary, then necessarily Ig \ A is not,6

i.e., Ig ⊆ns A, which is what we wanted. ❒7

Proposition 2.17. If I is a maximal C -independent family which is dense, then8

P(ω1)/JI
is ccc.9

Proof. By contradiction. Suppose that {Xα : α ∈ ω1} ⊆ JI
+ is such that if10

α 6= β then Xα ∩ Xβ ∈ JI . Since I is a dense family, for every α ∈ ω1 it11

exists fα ∈ FF<ω(I) such that Ifα ⊆ns Xα. Now if α 6= β then fα and fβ12

are incompatible, otherwise Ifα∪fβ = Ifα ∩ Ifβ ⊆ns Xα ∩ Xβ ∈ JI . But now13

Ifα∪fβ ∈ JI (as JI contains the non-stationary sets), and this is a contradiction14

as ENV<ω(I) ⊆ JI
+.15

Thus the family {fα : α ∈ ω1} is an antichain in FF<ω(I), but this contradicts16

the fact that FF<ω(I) is ccc. ❒17

Proposition 2.17 appears in [5] for the case of classical independent families.18

There it is employed as a small part in the proof of the consistency of s = d =19

r = ℵ1 < ℵ2 = u = i = c. This raises a natural question: can that entire proof,20

or certain parts of it, be naturally adapted for the invariants that correspond to21

subfamilies of P(ω1) taking modulo non-stationary? In particular, if we let rCω1
:=22

min{|R| | R ⊆ P(ω1)(R is Cω1
-reaping)} where a family R ⊆ P(ω1) is considered23

Cω1
-reaping if for all stationary X ⊆ ω1 there is R ∈ R such that R ⊆NS X or24

R∩X =NS ∅, then it is easy to see that rCω1
≤ iCω1

. This way it is very natural to25

ask:26

Question 2.18. It is consistent that rCω1
= ℵ2 < ℵ3 = iCω1

= 2ω1?27

2.1.2. Strongly C -independent families.28

Lemma 2.19. Let E = {En : n ∈ ω} be a nested collection of stationary sets, i.e.,29

En+1 ⊆ En for all n ∈ ω. The following conditions are equivalent:30

(1) E admits a stationary NS-pseudointersection, that is, there is a stationary set31

X such that, X \ En is not stationary, for all n ∈ ω.32

(2)
⋂

n∈ω

En is stationary.33

Proof. (1) ⇒ (2) Note that34

X = (X ∩
⋂

n∈ω

En) ∪ (X ∩ (ω1 \
⋂

n∈ω

En))35

and one of the two sets forming the union must be stationary. On the other hand:36

X ∩ (ω1 \
⋂

n∈ω

En) = X ∩ (
⋃

n∈ω

ω1 \ En) =
⋃

n∈ω

X ∩ (ω1 \ En) =
⋃

n∈ω

X \ En,37

and as every X \En is not stationary, then neither is
⋃

n∈ω X \En, i.e., X ∩ (ω1 \38 ⋂
n∈ω En) is not stationary. NecessarilyX∩

⋂
n∈ω En is stationary and consequently39 ⋂

n∈ω En also is stationary.40
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(2) ⇒ (1) In this case it is enough to take X =
⋂

n∈ω En. ❒1

Corollary 2.20. Let I ⊆ P(ω1) be a C -independent family. The following condi-2

tions are equivalent:3

(1) I is strongly C -independent.4

(2) For every f ; I → 2 with f countable, the collection {If↾n : n ∈ ω} admits a5

stationary NS-pseudointersection4.6

Proposition 2.21. Let I a countable strongly C -independent family. Then there7

is J ⊆ P(ω1) such that I ( J and J is strongly C -independent, i.e., I is not a8

maximal strongly C -independent family.9

Proof. Let I = {In : n ∈ ω} be a strongly C -independent family. For each f ∈ 2ω10

consider Xf = If . If f 6= g then Xf ∩Xg = ∅. Now let {Af , Bf} be a partition of11

Xf into stationary sets and define A by:12

A =
⋃

f∈2ω

Af .13

Let us see that J =: I ∪ {A} is strongly C -independent. For this it is enough to14

see that for all f ∈ 2ω, the sets Xf ∩ A and Xf \ A are both stationary, however15

Xf ∩A = Af and Xf \A = Bf are stationary sets. ❒16

Note that, as every strongly C -independent family is C -independent, the family17

J constructed in the previous proof is C -independent, then, we get the following.18

Corollary 2.22. Let I a countable strongly C -independent family (in particular19

I is C -independent). Then there is J ⊆ P(ω1) such that I ( J and J is C -20

independent.21

Note that Corollary 2.22 is a partial answer to Question 2.11, since it implies22

that if I is a countable maximal C -independent family, then I cannot be strongly23

C -independent.24

As we have seen, under CH there are countable C -independent families that25

are strongly C -independent, on the other hand (without extra hypothesis further26

than ZFC) there are also countable C -independent families that are very far from27

being strong. This means that there exists I = {In : n ∈ ω} ⊆ P(ω1) which28

is C -independent but that for every h ∈ 2ω such that |h−1({0})| = ω we have29

that Ih = ∅; for example, to construct one of these families it is enough to take30

{Xn : n ∈ ω} a partition of ω1 into stationary sets and define In as:31

In =
⋃

m∈Cn

Xm,32

where the Cn are as in Example 1.4, in this way, the family {In : n ∈ ω} fulfills33

this property.34

4For f ↾ n to make sense, it is enough to enumerate the domain of f and so f can be interpreted

as a function in 2ω .
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3. Saturated ideals and J -independent families1

Saturation of ideals has been closely related to the study of large cardinals, there-2

fore it constitutes, as we will see in this section, a bridge between these cardinals3

and the existence of J -independent families on them.4

Definition 3.1. Let J be an ideal on a cardinal κ. Then:5

(1) J is λ-saturated if for every collection {Xα : α ∈ λ} ⊆ J + there exist6

β < γ < λ such that Xβ ∩Xγ ∈ J +.7

(2) sat(J ) is the smallest λ such that J is λ-saturated.8

Lemma 3.2. Let J be an ideal on a cardinal κ such that sat(J ) > λ for some9

cardinal λ. Then there exists a J -independent family on κ of cardinality 2λ.10

Proof. Since J is not λ-saturated, it exists a collection {Xβ : β ∈ λ} ⊆ J + such11

that Xβ ∩Xγ ∈ J , if β 6= γ. Let I = {Iα : α ∈ 2λ} be a λ-independent family of12

cardinality 2λ.5 For each α ∈ 2λ, let Îα ⊆ κ be defined as follows:13

Îα =
⋃

{Xβ : β ∈ Iα}.14

Now set Î = {Îα : α ∈ κ}. Clearly Î has cardinality 2λ, then the only thing left to15

prove is that it is an J -independent family.16

Fix s; 2λ → 2, with |s| < ω. We want to see that Îs ∈ J +. As I is independent,17

Is 6= ∅ and moreover β ∈ Is implies that Xβ ⊆ Îα for all α such that s(α) = 0 and18

Xβ ∩ Îα ∈ J for all α such that s(α) = 1, i.e., Xβ ⊆J Îs and, since Xβ ∈ J +,19

it follows that Îs ∈ J +. ❒20

Next we will point out some relationships between the non-existence of strongly21

J -independent families and the existence of large cardinals.22

Definition 3.3. If J is an ideal on κ, we say that J is κ-complete if
⋃

H ∈ J ,23

for every subfamily H ⊆ J such that |H| < κ.24

Theorem 3.4. [10] Suppose that J is a κ-complete ideal on κ.25

(1) (Tarski [17]) If J is λ-saturated with 2<λ < κ, then κ is measurable.26

(2) (Levy-Silver [10]) If J is κ-saturated and κ is weakly compact, then κ es27

measurable.28

(3) (Kurepa [12]) If J is λ-saturated with λ < κ, then κ has the tree property.29

Corollary 3.5. Suppose that J is a κ-complete ideal on κ.30

(1) If λ < κ, 2<λ < κ and it does not exists a J -independent family of cardi-31

nality 2λ, then κ es measurable.32

(2) If there is no J -independent family of cardinality 2κ and κ es weakly com-33

pact, then κ es measurable.34

(3) If λ < κ and there is no J -independent family of cardinality 2λ, then κ35

has the tree property.36

Proof. We will only prove the first part, the other two parts are analogous.37

Since there is no J -independent family of cardinality 2λ, then, by Lemma 3.2,38

we have that sat(J ) ≤ λ, i.e., J is λ-saturated, then by the first part of Theorem39

3.4 we have the desired result. ❒40

5Such a family exists in ZFC, i.e., it is not necessary to assume any large cardinal hypotheses

about λ. This can be consulted in [4] (Theorem 4.2)
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Saturation of the ideal J is related to the existence of strongly J -independent1

families.2

Proposition 3.6. Let J be an ideal on κ and suppose that there exists a strongly3

J -independent family of cardinality κ. Then sat(J ) ≥ κ. Furthermore, if κ is4

regular then κ is strongly inaccessible.5

Proof. Let I be a strongly J -independent family of cardinality κ, λ < κ and6

Iλ ⊆ I such that |Iλ| = λ. Then for every h : λ → 2, we have that Ih
λ ∈ J + and7

if h 6= g then Ih
λ ∩Iλ

g = ∅, which proves that sat(J ) > 2λ > λ, and it finishes the8

proof. ❒9

The method in the previous proof has the advantage that it illustrates the fact10

that κ is a strong limit cardinal, however the existence of a strongly J -independent11

family of cardinality κ says even more about the saturation of J : If J is an ideal12

on κ and there is a strongly J -independent family I with cardinality κ, then13

sat(J ) > κ. Indeed, suppose that I = {Xα : α ∈ κ} and for every β ∈ κ let14

Yβ = Xβ \
⋃

α∈β Xα. Note that, since I is strongly J -independent, Yβ ∈ J +,15

and if β < γ < κ then Yβ ∩ Yγ = ∅. This proves that J is not κ-saturated (since16

{Yβ : β ∈ κ} is a witness of that).17
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Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México, México10
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