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We show that there are c many AD families of the same (uncountable) size whose 
Ψ-spaces are pairwise non-homeomorphic and they can be Luzin families or branch 
families of 2ω.
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1. Introduction

An almost disjoint family of subsets of the natural numbers ω (or any other countable set) is a family 
of infinite subsets of ω so that any two different elements of the family have finite intersection. If A is an 
almost disjoint family (AD family, for short) on ω, define the topological space Ψ(A) = (ω∪A, τ) as follows: 
ω is a discrete subset of Ψ(A); basic neighborhoods of a point x ∈ A are of the form {x} ∪ (x \ F ), where 
F ⊆ ω is finite.

Ψ-spaces have been well studied throughout the years because they are candidates to give examples or 
counterexamples of many topological concepts. There are nice properties Ψ-spaces satisfy: they are Haus-
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dorff, separable, first countable, locally compact and zero dimensional. For topological and combinatorial 
aspects of Ψ-spaces see [1] and [2], respectively.

Daniel Bernal-Santos and Salvador García-Ferreira wondered if Cp(Ψ(A)) and Cp(Ψ(B)) are homeomor-
phic whenever A and B are homeomorphic as subspaces (considered as sets of characteristic functions) of 
the Cantor set 2ω with the usual topology. To understand the space Cp(Ψ(A)) better, in personal commu-
nications they asked us for a more elementary question:

Question 1 (Bernal-Santos, García-Ferreira). If X, Y ⊆ 2ω are homeomorphic, are Ψ(AX) and Ψ(AY )
homeomorphic?

Here, AX := {{x � n : n ∈ ω} : x ∈ X} is the almost disjoint family of branches determined by the 
elements of X. It is well known that under MA + ¬CH, every set X ⊆ 2ω of size less than the continuum 
is a Q-set (recall that a separable metrizable space X is a Q-set if every subset of X is Gδ in X), and 
thus, Ψ(AX) is normal. Like this, there are many topological properties of X ⊆ 2ω that have an effect on 
the Ψ-space Ψ(AX). One might think that MA + ¬CH is a good ingredient to conjecture that the answer 
is affirmative. However, we answer Question 1 negatively since Theorem 14 shows that in ZFC there are 
different types of spaces Ψ(AX), Ψ(AY ) even when X and Y are homeomorphic.

Recall that an AD family A is Luzin if it can be enumerated as

A = 〈Aα : α < ω1〉

in such way that ∀α < ω1 ∀n ∈ ω (|{β < α : Aα ∩ Aβ ⊆ n}| < ω). Branch and Luzin families are in some 
sense “orthogonal”, precisely because the normality of their Ψ-spaces might hold in the former and breaks 
down badly in the latter. We show in Theorem 13 that in ZFC there are different types of Ψ-spaces for 
Luzin families.

Focusing on AD families of size ω1, Michael Hrušák formulated the following question in a local seminar:

Question 2 (Hrušák). Is it consistent that there is an uncountable almost disjoint family A such that Ψ(A) 	
Ψ(B), whenever B ⊆ A and |A| = |B| ?

Observe that 2ω < 2ω1 (in particular CH) implies that the answer to Question 2 is negative by the simple 
fact that given an AD family A of size ω1, there are only c many subspaces Ψ(B) for which Ψ(A) 	 Ψ(B)
(there are only c permutations of ω), and there are 2ω1 many subsets of A of size ω1. We believe that it is 
a very interesting question; we conjecture that the answer is no, but our methods do not work to solve it.

2. Basic facts

Our notation is standard and follows closely [1] and [2]. Similarly, we use f(A) to denote the evaluation of 
the function f at the point A in its domain while f [A] denotes the image of the set A under the function f . 
For sets A and B, we say that A ⊆∗ B, in words that A is almost contained in B, if A \ B is a finite set. 
Likewise, A =∗ B if and only if A ⊆∗ B and B ⊆∗ A. For a set Z and a cardinal κ, denote by [Z]κ, [Z]<κ

and [Z]≤κ the families of all subsets of Z of size κ, less than κ and less than or equal to κ, respectively. If 
x ∈ 2ω, we denote

x̂ ↓ n = {x � k ∈ 2<ω : n ≤ k} and x̂ := x̂ ↓ 0.

The families AX defined above, where X ⊆ 2ω, are canonical AD families on 2<ω, and there are of any size 
below the continuum. Under a bijection between ω and 2<ω we can consider Ψ(AX). Perhaps the families 
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AX were first studied by F. Tall [3] when he showed that if X ⊆ 2ω, then X is a Q-set if and only if Ψ(AX)
is normal.

The following lemma shows how a homeomorphism between Ψ-spaces looks like.

Lemma 3. Let A, B be almost disjoint families on ω and H : Ψ(A) → Ψ(B) be bijective. Then, H is a 
homeomorphism if and only if H[ω] = ω and for every x ∈ A, H[x] and H(x), as subsets of ω, are almost 
equal.

Proof. ⇒) Since H is bijective and must send isolated points to isolated points, it is clear that H[ω] = ω, 
that is, H is a permutation on ω. Now, let x ∈ A and {H(x)} ∪ (H(x) \ F ) be a neighborhood of H(x), 
where F ∈ [ω]<ω. By continuity, there is F ′ ∈ [ω]<ω such that H[{x} ∪ (x \ F ′)] ⊆ {H(x)} ∪ (H(x) \ F ). 
Notice that the former set H[{x} ∪ (x \F ′)] is the set {H(x)} ∪H[x \F ′]. Then H[x \F ′] ⊆ H(x) \F , and 
thus, H[x] ⊆∗ H(x). Use the fact that H is open and similar arguments to get H[x] ⊇∗ H(x).

⇐) We will see that H is continuous; to see that H is open use similar arguments as above. Let x ∈ A and 
{H(x)} ∪ (H(x) \F ) be a neighborhood of H(x), where F ∈ [ω]<ω. Since H[x] =∗ H(x), there is F ′ ∈ [ω]<ω

such that H[x] \H[F ′] ⊆ H(x) \ F . Since H is a permutation on ω, we have H[x \ F ′] = H[x] \H[F ′], and 
then, H[{x} ∪ (x \ F ′)] ⊆ {H(x)} ∪ (H(x) \ F ). �

For s ∈ 2<ω, let 〈s〉 = {t ∈ 2<ω : s ⊆ t} and [〈s〉] = {x ∈ 2ω : s ⊆ x}.

Lemma 4. Let X ⊆ 2ω be a set of size κ, cf(κ) > ω. Then there are infinitely many n ∈ ω for which there 
are different elements s, t ∈ 2n such that |[〈s〉] ∩X| = κ = |[〈t〉] ∩X|.

Proof. Suppose for a contradiction that for every n ∈ ω there is a unique sn ∈ 2n such that Xn := [〈sn〉] ∩X

has size κ. Let Yn = X \Xn. Notice that |Yn| < κ, and since cf(κ) > ω, Y =
⋃

n∈ω Yn has size less than κ. 
This is a contradiction because X \ Y =

⋂
n∈ω Xn has size κ and it is contained in the set 

⋂
n∈ω[〈sn〉] that 

has at most one element. �
Notice that by the previous Lemma, one can actually get infinitely many n ∈ ω for which there is s ∈ 2n

such that |[〈s�0〉] ∩X| = κ = |[〈s�1〉] ∩X|. For an AD family A on ω, we obtain the next observation by 
considering {χA : A ∈ A} ⊆ 2ω, where χA is the characteristic function of A.

Remark 5. Let A be an AD family of size κ with cf(κ) > ω. Then

∀n ∈ ω ∃m > n(|{x ∈ A : m ∈ x}| = |{x ∈ A : m /∈ x}| = κ).

Lemma 6. Let A, B be AD families of size κ with cf(κ) > ω and h : A → B be a bijection. Then for all 
n ∈ ω there are x, y, z ∈ A such that

1. max{x ∩ y} > n ∧ x ∩ y � x ∩ z; and
2. max{h(x) ∩ h(y)} > n ∧ h(x) ∩ h(y) � h(x) ∩ h(z).

Proof. Fix n ∈ ω. By Remark 5, choose m > n and A0 ∈ [A]κ such that for every x ∈ A0, m ∈ x and 
m ∈ h(x). Now, fix y ∈ A0 and apply Pigeonhole principle to the set {x ∩ y : x ∈ A0 ∧ x �= y}. There are 
F0 ∈ [ω]<ω and A1 ∈ [A0]κ such that for all x ∈ A1, x ∩y = F0. There are also G0 ∈ [ω]<ω and B1 ∈ [h[A1]]κ
such that for all w ∈ B1, w ∩ h(y) = G0. Let A2 = h−1[B1].

At this point we have that for any {x, z} ∈ [A2]2, F0 = x ∩ y = z ∩ y and G0 = h(x) ∩h(y) = h(z) ∩h(y), 
simultaneously. This already implies that x ∩ y ⊆ x ∩ z and h(x) ∩ h(y) ⊆ h(x) ∩ h(z). To find elements so 
that the inclusions are strictly proper, since |A2| = κ, use again Remark 5 to get m′ > max F0 ∪G0 ∪ {m}
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and A3 ∈ [A2]κ such that for any x ∈ A3, m′ ∈ x and m′ ∈ h(x). Now, if {x, z} ∈ [A3]2, then x ∩ y = F0 �
F0 ∪ {m′} ⊆ x ∩ z and h(x) ∩ h(y) = G0 � G0 ∪ {m′} ⊆ h(x) ∩ h(z). �
Definition 7. Let A, B be AD families on ω of size κ and h : A → B be bijective. We say that h is of dense 
oscillation if for each A′ ∈ [A]κ there are x, y, z ∈ A′ such that |x ∩ z \ x ∩ y| �= |h(x) ∩ h(z) \ h(x) ∩ h(y)|.

Proposition 8. Let A, B be AD families of size κ with cf(κ) > ω and h : A → B be of dense oscillation. 
Then, there is no homeomorphism from Ψ(A) to Ψ(B) that extends h.

Proof. Suppose for a contradiction that H : Ψ(A) → Ψ(B) is a homeomorphism extending h. By Lemma 3, 
for every A ∈ A, H[A] =∗ H(A). So, for A ∈ A, consider the finite sets FA = {n ∈ A : H(n) /∈ H(A)} and 
GA = {n ∈ H(A) : H−1(n) /∈ A}.

There are A′ ∈ [A]κ and F, G ∈ [ω]<ω such that for all A ∈ A′, F = FA and G = GA. If x, y, z ∈ A′ are 
different, then

(x ∩ z \ x ∩ y) ∩ F = ∅ and
(

(H(x) ∩H(z)) \ (H(x) ∩H(y))
)
∩G = ∅.

Moreover, m ∈ x \F implies H(m) ∈ H(x), and H(m) ∈ H(x) \G implies m ∈ x. From this, one can deduce 
that

|x ∩ z \ x ∩ y| = |H(x) ∩H(z) \H(x) ∩H(y)|,

contradicting the dense oscillation property of H � A = h. �
Definition 9. Let A, B ⊆ ω.

• A and B are oscillating if

∀{x, y} ∈ [A]2 ∀{w, z} ∈ [B]2 (|y − x| �= |z − w|).

• A and B are almost oscillating if there is n ∈ ω such that A \ n and B \ n are oscillating.

Proposition 10. There are c many infinite subsets of ω pairwise almost oscillating.

Proof. From ω, we first construct two oscillating sets A =
⋃

n∈ω An, B =
⋃

n∈ω Bn. Fix A0 = {0}, B0 = {1}. 
Suppose constructed An = {a0, . . . , an}, Bn = {b0, . . . , bn} oscillating. Let an+1 ∈ ω such that an+1 − an >

bn−b0 and bn+1 ∈ ω such that bn+1−bn > an+1−a0. Observe that An+1 = An∪{an+1}, Bn+1 = Bn∪{bn+1}
are oscillating as well as will be A and B.

Notice that the construction is hereditary. That is, for any X ∈ [ω]ω, there are A, B ∈ [X]ω oscillating. 
This allows to define a Cantor tree induced by these partitions. Each branch of the Cantor set, f ∈ 2ω, 
represents a decreasing sequence 〈Af�n : n ∈ ω〉 of infinite sets of ω such that for any other branch g ∈ 2ω, 
we have that Af�k, Ag�l are oscillating whenever k, l > Δ(f, g). Now, for every sequence 〈Af�n : n ∈ ω〉, 
consider a pseudointersection Pf of {Af�n : n ∈ ω}. Observe that for any two sequences 〈Af�n : n ∈ ω〉, 
〈Ag�n : n ∈ ω〉, their pseudointersections Pf , Pg are almost oscillating. �
Corollary 11. Let A, B be AD families of size κ, with cf(κ) > ω, and h : A → B be a bijection. If A =
{|x ∩ y| : {x, y} ∈ [A]2} and B = {|x ∩ y| : {x, y} ∈ [B]2} are almost oscillating, then there is A′ ∈ [A]κ
such that h � A′ is of dense oscillation.



H.A. Barriga-Acosta, F. Hernández-Hernández / Topology and its Applications 253 (2019) 1–6 5
Proof. Let n ∈ ω such that A \ n and B \ n are oscillating. Iterating n + 1-many steps Remark 5, we can 
find a subfamily A0 ∈ [A]κ such that for any {x, y} ∈ [A0]2, |x ∩ y| ≥ n + 1. In the same way, we can find 
a subfamily B1 ∈ [h[A0]]κ such that for any {w, z} ∈ [B1]2, |w ∩ z| ≥ n + 1. Then, A1 := h−1[B1] ∈ [A0]κ. 
Notice that for any {x, y} ∈ [A1]2,

n + 1 ≤ min{|x ∩ y|, |h(x) ∩ h(y)|}. (1)

We do this to avoid the possibility to obtain an intersection of size at most n in order to reach “an oscillation”.
To see that A′ := A1 is the desired family, choose A′′ ∈ [A′]κ. Apply Lemma 6 to n and h � A′′ : A′′ →

h[A′′], and get x, y, z ∈ A′′ such that x ∩ y � x ∩ z, h(x) ∩ h(y) � h(x) ∩ h(z) and n < min{max{x ∩
y}, max{h(x) ∩h(y)}} (observe that this last inequality was implied by (1)). Thus, there are {a0, a1} ∈ [A \n]2
and {b0, b1} ∈ [B \ n]2 such that |x ∩ z \ x ∩ y| = a0 − a1 �= b0 − b1 = |h(x) ∩ h(z) \ h(x) ∩ h(y)|. �
Corollary 12. Let A, B be AD families of size κ, with cf(κ) > ω, and h : A → B be a bijection. If {|x ∩ y| :
{x, y} ∈ [A]2} and {|x ∩ y| : {x, y} ∈ [B]2} are almost oscillating, there is no homeomorphism from Ψ(A)
to Ψ(B) that extends h.

Proof. If H : Ψ(A) → Ψ(B) is such homeomorphism, by Corollary 11 there is A′ ∈ [A]κ such that H � A′ :
A′ → H[A′] is of dense oscillation. If W =

⋃
A∈A′ A, then Z = A′ ∪W is a subspace of Ψ(A) and H � Z is 

a homeomorphism contradicting Proposition 8. �
3. c many types of Ψ-spaces

Next we construct c many AD families of the same size whose Ψ-spaces are pairwise non-homeomorphic 
for each of the classes of Luzin families and branch families of 2ω.

Theorem 13. There are c different Luzin families (of size ω1) with non-homeomorphic Ψ-spaces.

Proof. Given L = {kn : n ∈ ω} ⊆ ω such that kn >
∑

i<n ki, construct a Luzin family AL as follows: Choose 
a partition {An : n ∈ ω} of ω into infinite sets. Suppose constructed Aβ, β < α, with α an infinite countable 
ordinal. Let {Bn : n ∈ ω} be an enumeration with no repetitions of {Aβ : β < α} and for each n ∈ ω, pick 
an ⊆ Bn \

⋃
i<n Bi such that |(

⋃
i≤n ai) ∩Bn| = kn. Let Aα =

⋃
n∈ω an and AL = {Aα : ω < α < ω1}. It is 

easy to see that AL is a Luzin family. Observe that

∀ω < α, β < ω1 ∃n ∈ ω (|Aα ∩Aβ | = kn). (2)

This is how we construct a Luzin family AL from a given set of natural numbers L. All the Luzin families 
considered in the next are constructed from a fixed partition {An : n ∈ ω} of ω.

By Proposition 10, let {Pα : α < c} be a pairwise almost oscillating family of sets of ω. For every α < c, let 
Qα = {qαn : n ∈ ω} ⊆ Pα such that for every n ∈ ω, qαn >

∑
i<n q

α
i . Notice that {Qα : α < c} is also a pairwise 

almost oscillating family of sets of ω. It follows from (2) that for any α < c, {|x ∩y| : {x, y} ∈ [AQα
]2} ⊆ Qα. 

Since “almost oscillating” is a hereditary property, for any ω < β, α < c, the sets {|x ∩ y| : {x, y} ∈ [AQα
]2}, 

{|x ∩ y| : {x, y} ∈ [AQβ
]2} are almost oscillating. By Corollary 12, {AQα

: α < c} is the desired collection 
of Luzin families. �
Theorem 14. Given a cardinal κ ≤ c of uncountable cofinality, there are c different homeomorphic subsets 
of 2ω of size κ with non-homeomorphic Ψ-spaces.
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Proof. Given A ∈ [ω]ω, consider the tree SA ⊆ 2<ω defined by ∅ ∈ SA and

s ∈ Levn(SA) =⇒ (s�1 ∈ SA) ∧ (s�0 ∈ SA ⇐⇒ n ∈ A).

Let X be any subset of size κ of the set of branches [SA] ⊆ 2ω. Notice that

∀x, y ∈ X (Δ(x, y) = |x̂ ∩ ŷ| ∈ A). (3)

Again, by Proposition 10, let {Pα : α < c} be a pairwise almost oscillating family of sets of ω. Note that 
if A, B ∈ [ω]ω, then [SA] 	 [SB ] 	 2ω, and A ∩B =∗ ∅ implies that |[SA] ∩ [SB ]| < ω. Hence, we can choose 
Xα ∈ [[SPα

]]κ such that the Xα’s are all different, but Xα 	 Xβ , whenever α, β < c. It follows from (3) that 
{|x̂∩ ŷ| : {x, y} ∈ [Xα]2} ⊆ Pα, for α < c and so, the sets {|x̂∩ ŷ| : {x, y} ∈ [Xα]2}, {|x̂∩ ŷ| : {x, y} ∈ [Xβ ]2}
are almost oscillating, for β, α < c. By Corollary 12, {Xα : α < c} is the desired collection of subsets of 
2ω. �
Corollary 15. Let A be an AD family of size κ. If there are A0, A1 ∈ [A]κ such that {|x ∩ y| : x, y ∈ A0}
and {|x ∩ y| : x, y ∈ A1} are almost oscillating, then Ψ(A) �	 Ψ(A0).

Proof. If h : A0 → A is a bijection, use Corollary 11 to find A′
0 ∈ [h−1[A1]]κ such that h �A′

0
: A′

0 → h[A′
0]

is of dense oscillation. Now, it follows from Proposition 8 that there can not be a homeomorphism between 
Ψ(A′

0) and Ψ(h[A′
0]) that extends h �A′

0
. This implies that it can not be a homeomorphism between Ψ(A0)

and Ψ(A) which extends h. �
Motivated by Corollary 15, we ask the following. A positive answer to it gives raise a negative answer to 

Question 2. However, we do not even know if CH answers:

Question 16. Let A be an AD family on ω of size ω1. Are there A0, A1 ∈ [A]ω1 such that {|x ∩ y| : {x, y} ∈
[A0]2} and {|x ∩ y| : {x, y} ∈ [A1]2} are almost oscillating?

The arguments under CH below Question 2 say that if A is an AD family of size ω1, then there is 
A0 ∈ [A]ω1 such that Ψ(A) �	 Ψ(A0). However, the sets {|x ∩y| : {x, y} ∈ [A0]2} and {|x ∩y| : {x, y} ∈ [A]2}
are far from being almost oscillating (the first is contained in the second).
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