Contents lists available at ScienceDirect
Topology and its Applications

\mathfrak{c}-Many types of a Ψ-space

Hector Alonzo Barriga-Acosta ${ }^{\text {a,*,1 }}$, Fernando Hernández-Hernández ${ }^{\text {b,2 }}$
${ }^{\text {a }}$ Posgrado Conjunto en Ciencias Matemáticas UNAM-UMSNH, Mexico
b Universidad Michoacana de San Nicolás de Hidalgo, Mexico

A R T I C L E I N F O

Article history:

Received 2 June 2018
Received in revised form 10 October 2018
Accepted 21 November 2018
Available online 29 November 2018

MSC:

54-00
54 A 05
54A20
54A25
03E05

Keywords:
Almost disjoint family
Ψ-space
Luzin family
Branch family

Abstract

We show that there are \mathfrak{c} many AD families of the same (uncountable) size whose Ψ-spaces are pairwise non-homeomorphic and they can be Luzin families or branch families of 2^{ω}.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

An almost disjoint family of subsets of the natural numbers ω (or any other countable set) is a family of infinite subsets of ω so that any two different elements of the family have finite intersection. If \mathcal{A} is an almost disjoint family (AD family, for short) on ω, define the topological space $\Psi(\mathcal{A})=(\omega \cup \mathcal{A}, \tau)$ as follows: ω is a discrete subset of $\Psi(\mathcal{A})$; basic neighborhoods of a point $x \in \mathcal{A}$ are of the form $\{x\} \cup(x \backslash F)$, where $F \subseteq \omega$ is finite.
Ψ-spaces have been well studied throughout the years because they are candidates to give examples or counterexamples of many topological concepts. There are nice properties Ψ-spaces satisfy: they are Haus-

[^0]dorff, separable, first countable, locally compact and zero dimensional. For topological and combinatorial aspects of Ψ-spaces see [1] and [2], respectively.

Daniel Bernal-Santos and Salvador García-Ferreira wondered if $C_{p}(\Psi(\mathcal{A}))$ and $C_{p}(\Psi(\mathcal{B}))$ are homeomorphic whenever \mathcal{A} and \mathcal{B} are homeomorphic as subspaces (considered as sets of characteristic functions) of the Cantor set 2^{ω} with the usual topology. To understand the space $C_{p}(\Psi(\mathcal{A}))$ better, in personal communications they asked us for a more elementary question:

Question 1 (Bernal-Santos, García-Ferreira). If $X, Y \subseteq 2^{\omega}$ are homeomorphic, are $\Psi\left(\mathcal{A}_{X}\right)$ and $\Psi\left(\mathcal{A}_{Y}\right)$ homeomorphic?

Here, $\mathcal{A}_{X}:=\{\{x \upharpoonright n: n \in \omega\}: x \in X\}$ is the almost disjoint family of branches determined by the elements of X. It is well known that under MA $+\neg \mathrm{CH}$, every set $X \subseteq 2^{\omega}$ of size less than the continuum is a Q-set (recall that a separable metrizable space X is a Q-set if every subset of X is G_{δ} in X), and thus, $\Psi\left(\mathcal{A}_{X}\right)$ is normal. Like this, there are many topological properties of $X \subseteq 2^{\omega}$ that have an effect on the Ψ-space $\Psi\left(\mathcal{A}_{X}\right)$. One might think that MA $+\neg \mathrm{CH}$ is a good ingredient to conjecture that the answer is affirmative. However, we answer Question 1 negatively since Theorem 14 shows that in ZFC there are different types of spaces $\Psi\left(\mathcal{A}_{X}\right), \Psi\left(\mathcal{A}_{Y}\right)$ even when X and Y are homeomorphic.

Recall that an AD family \mathcal{A} is Luzin if it can be enumerated as

$$
\mathcal{A}=\left\langle A_{\alpha}: \alpha<\omega_{1}\right\rangle
$$

in such way that $\forall \alpha<\omega_{1} \forall n \in \omega\left(\left|\left\{\beta<\alpha: A_{\alpha} \cap A_{\beta} \subseteq n\right\}\right|<\omega\right)$. Branch and Luzin families are in some sense "orthogonal", precisely because the normality of their Ψ-spaces might hold in the former and breaks down badly in the latter. We show in Theorem 13 that in ZFC there are different types of Ψ-spaces for Luzin families.

Focusing on AD families of size ω_{1}, Michael Hrušák formulated the following question in a local seminar:
Question 2 (Hrušák). Is it consistent that there is an uncountable almost disjoint family \mathcal{A} such that $\Psi(\mathcal{A}) \simeq$ $\Psi(\mathcal{B})$, whenever $\mathcal{B} \subseteq \mathcal{A}$ and $|\mathcal{A}|=|\mathcal{B}|$?

Observe that $2^{\omega}<2^{\omega_{1}}$ (in particular CH) implies that the answer to Question 2 is negative by the simple fact that given an AD family \mathcal{A} of size ω_{1}, there are only \mathfrak{c} many subspaces $\Psi(\mathcal{B})$ for which $\Psi(\mathcal{A}) \simeq \Psi(\mathcal{B})$ (there are only \mathfrak{c} permutations of ω), and there are $2^{\omega_{1}}$ many subsets of \mathcal{A} of size ω_{1}. We believe that it is a very interesting question; we conjecture that the answer is no, but our methods do not work to solve it.

2. Basic facts

Our notation is standard and follows closely [1] and [2]. Similarly, we use $f(A)$ to denote the evaluation of the function f at the point A in its domain while $f[A]$ denotes the image of the set A under the function f. For sets A and B, we say that $A \subseteq^{*} B$, in words that A is almost contained in B, if $A \backslash B$ is a finite set. Likewise, $A=^{*} B$ if and only if $A \subseteq^{*} B$ and $B \subseteq^{*} A$. For a set Z and a cardinal κ, denote by $[Z]^{\kappa},[Z]^{<\kappa}$ and $[Z]^{\leq \kappa}$ the families of all subsets of Z of size κ, less than κ and less than or equal to κ, respectively. If $x \in 2^{\omega}$, we denote

$$
\widehat{x \downarrow n}=\left\{x \upharpoonright k \in 2^{<\omega}: n \leq k\right\} \quad \text { and } \quad \widehat{x}:=\widehat{x \downarrow 0} .
$$

The families \mathcal{A}_{X} defined above, where $X \subseteq 2^{\omega}$, are canonical AD families on $2^{<\omega}$, and there are of any size below the continuum. Under a bijection between ω and $2^{<\omega}$ we can consider $\Psi\left(\mathcal{A}_{X}\right)$. Perhaps the families
\mathcal{A}_{X} were first studied by F. Tall [3] when he showed that if $X \subseteq 2^{\omega}$, then X is a Q-set if and only if $\Psi\left(\mathcal{A}_{X}\right)$ is normal.

The following lemma shows how a homeomorphism between Ψ-spaces looks like.
Lemma 3. Let \mathcal{A}, \mathcal{B} be almost disjoint families on ω and $H: \Psi(\mathcal{A}) \rightarrow \Psi(\mathcal{B})$ be bijective. Then, H is a homeomorphism if and only if $H[\omega]=\omega$ and for every $x \in \mathcal{A}, H[x]$ and $H(x)$, as subsets of ω, are almost equal.

Proof. $\Rightarrow)$ Since H is bijective and must send isolated points to isolated points, it is clear that $H[\omega]=\omega$, that is, H is a permutation on ω. Now, let $x \in \mathcal{A}$ and $\{H(x)\} \cup(H(x) \backslash F)$ be a neighborhood of $H(x)$, where $F \in[\omega]^{<\omega}$. By continuity, there is $F^{\prime} \in[\omega]^{<\omega}$ such that $H\left[\{x\} \cup\left(x \backslash F^{\prime}\right)\right] \subseteq\{H(x)\} \cup(H(x) \backslash F)$. Notice that the former set $H\left[\{x\} \cup\left(x \backslash F^{\prime}\right)\right]$ is the set $\{H(x)\} \cup H\left[x \backslash F^{\prime}\right]$. Then $H\left[x \backslash F^{\prime}\right] \subseteq H(x) \backslash F$, and thus, $H[x] \subseteq^{*} H(x)$. Use the fact that H is open and similar arguments to get $H[x] \supseteq^{*} H(x)$.
$\Leftarrow)$ We will see that H is continuous; to see that H is open use similar arguments as above. Let $x \in \mathcal{A}$ and $\{H(x)\} \cup(H(x) \backslash F)$ be a neighborhood of $H(x)$, where $F \in[\omega]^{<\omega}$. Since $H[x]=^{*} H(x)$, there is $F^{\prime} \in[\omega]^{<\omega}$ such that $H[x] \backslash H\left[F^{\prime}\right] \subseteq H(x) \backslash F$. Since H is a permutation on ω, we have $H\left[x \backslash F^{\prime}\right]=H[x] \backslash H\left[F^{\prime}\right]$, and then, $H\left[\{x\} \cup\left(x \backslash F^{\prime}\right)\right] \subseteq\{H(x)\} \cup(H(x) \backslash F)$.

For $s \in 2^{<\omega}$, let $\langle s\rangle=\left\{t \in 2^{<\omega}: s \subseteq t\right\}$ and $[\langle s\rangle]=\left\{x \in 2^{\omega}: s \subseteq x\right\}$.
Lemma 4. Let $X \subseteq 2^{\omega}$ be a set of size $\kappa, c f(\kappa)>\omega$. Then there are infinitely many $n \in \omega$ for which there are different elements $s, t \in 2^{n}$ such that $|[\langle s\rangle] \cap X|=\kappa=|[\langle t\rangle] \cap X|$.

Proof. Suppose for a contradiction that for every $n \in \omega$ there is a unique $s_{n} \in 2^{n}$ such that $X_{n}:=\left[\left\langle s_{n}\right\rangle\right] \cap X$ has size κ. Let $Y_{n}=X \backslash X_{n}$. Notice that $\left|Y_{n}\right|<\kappa$, and since $c f(\kappa)>\omega, Y=\bigcup_{n \in \omega} Y_{n}$ has size less than κ. This is a contradiction because $X \backslash Y=\bigcap_{n \in \omega} X_{n}$ has size κ and it is contained in the set $\bigcap_{n \in \omega}\left[\left\langle s_{n}\right\rangle\right]$ that has at most one element.

Notice that by the previous Lemma, one can actually get infinitely many $n \in \omega$ for which there is $s \in 2^{n}$ such that $\left|\left[\left\langle s^{\frown} 0\right\rangle\right] \cap X\right|=\kappa=\left|\left[\left\langle s^{\frown} 1\right\rangle\right] \cap X\right|$. For an AD family \mathcal{A} on ω, we obtain the next observation by considering $\left\{\chi_{A}: A \in \mathcal{A}\right\} \subseteq 2^{\omega}$, where χ_{A} is the characteristic function of A.

Remark 5. Let \mathcal{A} be an $A D$ family of size κ with $c f(\kappa)>\omega$. Then

$$
\forall n \in \omega \exists m>n(|\{x \in \mathcal{A}: m \in x\}|=|\{x \in \mathcal{A}: m \notin x\}|=\kappa) .
$$

Lemma 6. Let \mathcal{A}, \mathcal{B} be $A D$ families of size κ with $c f(\kappa)>\omega$ and $h: \mathcal{A} \rightarrow \mathcal{B}$ be a bijection. Then for all $n \in \omega$ there are $x, y, z \in \mathcal{A}$ such that

1. $\max \{x \cap y\}>n \wedge x \cap y \subsetneq x \cap z ;$ and
2. $\max \{h(x) \cap h(y)\}>n \wedge h(x) \cap h(y) \subsetneq h(x) \cap h(z)$.

Proof. Fix $n \in \omega$. By Remark 5, choose $m>n$ and $\mathcal{A}_{0} \in[\mathcal{A}]^{\kappa}$ such that for every $x \in \mathcal{A}_{0}, m \in x$ and $m \in h(x)$. Now, fix $y \in \mathcal{A}_{0}$ and apply Pigeonhole principle to the set $\left\{x \cap y: x \in \mathcal{A}_{0} \wedge x \neq y\right\}$. There are $F_{0} \in[\omega]^{<\omega}$ and $\mathcal{A}_{1} \in\left[\mathcal{A}_{0}\right]^{\kappa}$ such that for all $x \in \mathcal{A}_{1}, x \cap y=F_{0}$. There are also $G_{0} \in[\omega]^{<\omega}$ and $\mathcal{B}_{1} \in\left[h\left[\mathcal{A}_{1}\right]\right]^{\kappa}$ such that for all $w \in \mathcal{B}_{1}, w \cap h(y)=G_{0}$. Let $\mathcal{A}_{2}=h^{-1}\left[\mathcal{B}_{1}\right]$.

At this point we have that for any $\{x, z\} \in\left[\mathcal{A}_{2}\right]^{2}, F_{0}=x \cap y=z \cap y$ and $G_{0}=h(x) \cap h(y)=h(z) \cap h(y)$, simultaneously. This already implies that $x \cap y \subseteq x \cap z$ and $h(x) \cap h(y) \subseteq h(x) \cap h(z)$. To find elements so that the inclusions are strictly proper, since $\left|\mathcal{A}_{2}\right|=\kappa$, use again Remark 5 to get $m^{\prime}>\max F_{0} \cup G_{0} \cup\{m\}$
and $\mathcal{A}_{3} \in\left[\mathcal{A}_{2}\right]^{\kappa}$ such that for any $x \in \mathcal{A}_{3}, m^{\prime} \in x$ and $m^{\prime} \in h(x)$. Now, if $\{x, z\} \in\left[\mathcal{A}_{3}\right]^{2}$, then $x \cap y=F_{0} \subsetneq$ $F_{0} \cup\left\{m^{\prime}\right\} \subseteq x \cap z$ and $h(x) \cap h(y)=G_{0} \subsetneq G_{0} \cup\left\{m^{\prime}\right\} \subseteq h(x) \cap h(z)$.

Definition 7. Let \mathcal{A}, \mathcal{B} be AD families on ω of size κ and $h: \mathcal{A} \rightarrow \mathcal{B}$ be bijective. We say that h is of dense oscillation if for each $\mathcal{A}^{\prime} \in[\mathcal{A}]^{\kappa}$ there are $x, y, z \in \mathcal{A}^{\prime}$ such that $|x \cap z \backslash x \cap y| \neq|h(x) \cap h(z) \backslash h(x) \cap h(y)|$.

Proposition 8. Let \mathcal{A}, \mathcal{B} be $A D$ families of size κ with $c f(\kappa)>\omega$ and $h: \mathcal{A} \rightarrow \mathcal{B}$ be of dense oscillation. Then, there is no homeomorphism from $\Psi(\mathcal{A})$ to $\Psi(\mathcal{B})$ that extends h.

Proof. Suppose for a contradiction that $H: \Psi(\mathcal{A}) \rightarrow \Psi(\mathcal{B})$ is a homeomorphism extending h. By Lemma 3, for every $A \in \mathcal{A}, H[A]=^{*} H(A)$. So, for $A \in \mathcal{A}$, consider the finite sets $F_{A}=\{n \in A: H(n) \notin H(A)\}$ and $G_{A}=\left\{n \in H(A): H^{-1}(n) \notin A\right\}$.

There are $\mathcal{A}^{\prime} \in[\mathcal{A}]^{\kappa}$ and $F, G \in[\omega]^{<\omega}$ such that for all $A \in \mathcal{A}^{\prime}, F=F_{A}$ and $G=G_{A}$. If $x, y, z \in \mathcal{A}^{\prime}$ are different, then

$$
(x \cap z \backslash x \cap y) \cap F=\emptyset \quad \text { and } \quad((H(x) \cap H(z)) \backslash(H(x) \cap H(y))) \cap G=\emptyset
$$

Moreover, $m \in x \backslash F$ implies $H(m) \in H(x)$, and $H(m) \in H(x) \backslash G$ implies $m \in x$. From this, one can deduce that

$$
|x \cap z \backslash x \cap y|=|H(x) \cap H(z) \backslash H(x) \cap H(y)|,
$$

contradicting the dense oscillation property of $H \upharpoonright \mathcal{A}=h$.
Definition 9. Let $A, B \subseteq \omega$.

- A and B are oscillating if

$$
\forall\{x, y\} \in[A]^{2} \forall\{w, z\} \in[B]^{2}(|y-x| \neq|z-w|) .
$$

- A and B are almost oscillating if there is $n \in \omega$ such that $A \backslash n$ and $B \backslash n$ are oscillating.

Proposition 10. There are \mathfrak{c} many infinite subsets of ω pairwise almost oscillating.
Proof. From ω, we first construct two oscillating sets $A=\bigcup_{n \in \omega} A_{n}, B=\bigcup_{n \in \omega} B_{n}$. Fix $A_{0}=\{0\}, B_{0}=\{1\}$. Suppose constructed $A_{n}=\left\{a_{0}, \ldots, a_{n}\right\}, B_{n}=\left\{b_{0}, \ldots, b_{n}\right\}$ oscillating. Let $a_{n+1} \in \omega$ such that $a_{n+1}-a_{n}>$ $b_{n}-b_{0}$ and $b_{n+1} \in \omega$ such that $b_{n+1}-b_{n}>a_{n+1}-a_{0}$. Observe that $A_{n+1}=A_{n} \cup\left\{a_{n+1}\right\}, B_{n+1}=B_{n} \cup\left\{b_{n+1}\right\}$ are oscillating as well as will be A and B.

Notice that the construction is hereditary. That is, for any $X \in[\omega]^{\omega}$, there are $A, B \in[X]^{\omega}$ oscillating. This allows to define a Cantor tree induced by these partitions. Each branch of the Cantor set, $f \in 2^{\omega}$, represents a decreasing sequence $\left\langle A_{f \upharpoonright n}: n \in \omega\right\rangle$ of infinite sets of ω such that for any other branch $g \in 2^{\omega}$, we have that $A_{f \upharpoonright k}, A_{g \upharpoonright l}$ are oscillating whenever $k, l>\Delta(f, g)$. Now, for every sequence $\left\langle A_{f \upharpoonright n}: n \in \omega\right\rangle$, consider a pseudointersection P_{f} of $\left\{A_{f \upharpoonright n}: n \in \omega\right\}$. Observe that for any two sequences $\left\langle A_{f \upharpoonright n}: n \in \omega\right\rangle$, $\left\langle A_{g \upharpoonright n}: n \in \omega\right\rangle$, their pseudointersections P_{f}, P_{g} are almost oscillating.

Corollary 11. Let \mathcal{A}, \mathcal{B} be $A D$ families of size κ, with $c f(\kappa)>\omega$, and $h: \mathcal{A} \rightarrow \mathcal{B}$ be a bijection. If $A=$ $\left\{|x \cap y|:\{x, y\} \in[\mathcal{A}]^{2}\right\}$ and $B=\left\{|x \cap y|:\{x, y\} \in[\mathcal{B}]^{2}\right\}$ are almost oscillating, then there is $\mathcal{A}^{\prime} \in[\mathcal{A}]^{\kappa}$ such that $h \upharpoonright \mathcal{A}^{\prime}$ is of dense oscillation.

Proof. Let $n \in \omega$ such that $A \backslash n$ and $B \backslash n$ are oscillating. Iterating $n+1$-many steps Remark 5 , we can find a subfamily $\mathcal{A}_{0} \in[\mathcal{A}]^{\kappa}$ such that for any $\{x, y\} \in\left[\mathcal{A}_{0}\right]^{2},|x \cap y| \geq n+1$. In the same way, we can find a subfamily $\mathcal{B}_{1} \in\left[h\left[\mathcal{A}_{0}\right]\right]^{\kappa}$ such that for any $\{w, z\} \in\left[\mathcal{B}_{1}\right]^{2},|w \cap z| \geq n+1$. Then, $\mathcal{A}_{1}:=h^{-1}\left[\mathcal{B}_{1}\right] \in\left[\mathcal{A}_{0}\right]^{\kappa}$. Notice that for any $\{x, y\} \in\left[\mathcal{A}_{1}\right]^{2}$,

$$
\begin{equation*}
n+1 \leq \min \{|x \cap y|,|h(x) \cap h(y)|\} . \tag{1}
\end{equation*}
$$

We do this to avoid the possibility to obtain an intersection of size at most n in order to reach "an oscillation".
To see that $\mathcal{A}^{\prime}:=\mathcal{A}_{1}$ is the desired family, choose $\mathcal{A}^{\prime \prime} \in\left[\mathcal{A}^{\prime}\right]^{\kappa}$. Apply Lemma 6 to n and $h \upharpoonright \mathcal{A}^{\prime \prime}: \mathcal{A}^{\prime \prime} \rightarrow$ $h\left[\mathcal{A}^{\prime \prime}\right]$, and get $x, y, z \in \mathcal{A}^{\prime \prime}$ such that $x \cap y \subsetneq x \cap z, h(x) \cap h(y) \subsetneq h(x) \cap h(z)$ and $n<\min \{\max \{x \cap$ $y\}, \max \{h(x) \cap h(y)\}\}$ (observe that this last inequality was implied by (1)). Thus, there are $\left\{a_{0}, a_{1}\right\} \in[A \backslash n]^{2}$ and $\left\{b_{0}, b_{1}\right\} \in[B \backslash n]^{2}$ such that $|x \cap z \backslash x \cap y|=a_{0}-a_{1} \neq b_{0}-b_{1}=|h(x) \cap h(z) \backslash h(x) \cap h(y)|$.

Corollary 12. Let \mathcal{A}, \mathcal{B} be $A D$ families of size κ, with $c f(\kappa)>\omega$, and $h: \mathcal{A} \rightarrow \mathcal{B}$ be a bijection. If $\{|x \cap y|$: $\left.\{x, y\} \in[\mathcal{A}]^{2}\right\}$ and $\left\{|x \cap y|:\{x, y\} \in[\mathcal{B}]^{2}\right\}$ are almost oscillating, there is no homeomorphism from $\Psi(\mathcal{A})$ to $\Psi(\mathcal{B})$ that extends h.

Proof. If $H: \Psi(\mathcal{A}) \rightarrow \Psi(\mathcal{B})$ is such homeomorphism, by Corollary 11 there is $\mathcal{A}^{\prime} \in[\mathcal{A}]^{\kappa}$ such that $H \upharpoonright \mathcal{A}^{\prime}$: $\mathcal{A}^{\prime} \rightarrow H\left[\mathcal{A}^{\prime}\right]$ is of dense oscillation. If $W=\bigcup_{A \in \mathcal{A}^{\prime}} A$, then $Z=\mathcal{A}^{\prime} \cup W$ is a subspace of $\Psi(\mathcal{A})$ and $H \upharpoonright Z$ is a homeomorphism contradicting Proposition 8.

3. c many types of Ψ-spaces

Next we construct \mathfrak{c} many AD families of the same size whose Ψ-spaces are pairwise non-homeomorphic for each of the classes of Luzin families and branch families of 2^{ω}.

Theorem 13. There are \mathfrak{c} different Luzin families (of size ω_{1}) with non-homeomorphic Ψ-spaces.
Proof. Given $L=\left\{k_{n}: n \in \omega\right\} \subseteq \omega$ such that $k_{n}>\sum_{i<n} k_{i}$, construct a Luzin family \mathcal{A}_{L} as follows: Choose a partition $\left\{A_{n}: n \in \omega\right\}$ of ω into infinite sets. Suppose constructed $A_{\beta}, \beta<\alpha$, with α an infinite countable ordinal. Let $\left\{B_{n}: n \in \omega\right\}$ be an enumeration with no repetitions of $\left\{A_{\beta}: \beta<\alpha\right\}$ and for each $n \in \omega$, pick $a_{n} \subseteq B_{n} \backslash \bigcup_{i<n} B_{i}$ such that $\left|\left(\bigcup_{i \leq n} a_{i}\right) \cap B_{n}\right|=k_{n}$. Let $A_{\alpha}=\bigcup_{n \in \omega} a_{n}$ and $\mathcal{A}_{L}=\left\{A_{\alpha}: \omega<\alpha<\omega_{1}\right\}$. It is easy to see that \mathcal{A}_{L} is a Luzin family. Observe that

$$
\begin{equation*}
\forall \omega<\alpha, \beta<\omega_{1} \exists n \in \omega\left(\left|A_{\alpha} \cap A_{\beta}\right|=k_{n}\right) . \tag{2}
\end{equation*}
$$

This is how we construct a Luzin family \mathcal{A}_{L} from a given set of natural numbers L. All the Luzin families considered in the next are constructed from a fixed partition $\left\{A_{n}: n \in \omega\right\}$ of ω.

By Proposition 10, let $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ be a pairwise almost oscillating family of sets of ω. For every $\alpha<\mathfrak{c}$, let $Q_{\alpha}=\left\{q_{n}^{\alpha}: n \in \omega\right\} \subseteq P_{\alpha}$ such that for every $n \in \omega, q_{n}^{\alpha}>\sum_{i<n} q_{i}^{\alpha}$. Notice that $\left\{Q_{\alpha}: \alpha<\mathfrak{c}\right\}$ is also a pairwise almost oscillating family of sets of ω. It follows from (2) that for any $\alpha<\mathfrak{c},\left\{|x \cap y|:\{x, y\} \in\left[\mathcal{A}_{Q_{\alpha}}\right]^{2}\right\} \subseteq Q_{\alpha}$. Since "almost oscillating" is a hereditary property, for any $\omega<\beta, \alpha<\mathfrak{c}$, the sets $\left\{|x \cap y|:\{x, y\} \in\left[\mathcal{A}_{Q_{\alpha}}\right]^{2}\right\}$, $\left\{|x \cap y|:\{x, y\} \in\left[\mathcal{A}_{Q_{\beta}}\right]^{2}\right\}$ are almost oscillating. By Corollary $12,\left\{\mathcal{A}_{Q_{\alpha}}: \alpha<\mathfrak{c}\right\}$ is the desired collection of Luzin families.

Theorem 14. Given a cardinal $\kappa \leq \mathfrak{c}$ of uncountable cofinality, there are \mathfrak{c} different homeomorphic subsets of 2^{ω} of size κ with non-homeomorphic Ψ-spaces.

Proof. Given $A \in[\omega]^{\omega}$, consider the tree $S_{A} \subseteq 2^{<\omega}$ defined by $\emptyset \in S_{A}$ and

$$
s \in \operatorname{Lev}_{n}\left(S_{A}\right) \Longrightarrow\left(s \frown 1 \in S_{A}\right) \wedge\left(s \frown 0 \in S_{A} \Longleftrightarrow n \in A\right) .
$$

Let X be any subset of size κ of the set of branches $\left[S_{A}\right] \subseteq 2^{\omega}$. Notice that

$$
\begin{equation*}
\forall x, y \in X(\Delta(x, y)=|\widehat{x} \cap \widehat{y}| \in A) \tag{3}
\end{equation*}
$$

Again, by Proposition 10, let $\left\{P_{\alpha}: \alpha<\mathfrak{c}\right\}$ be a pairwise almost oscillating family of sets of ω. Note that if $A, B \in[\omega]^{\omega}$, then $\left[S_{A}\right] \simeq\left[S_{B}\right] \simeq 2^{\omega}$, and $A \cap B=^{*} \emptyset$ implies that $\left|\left[S_{A}\right] \cap\left[S_{B}\right]\right|<\omega$. Hence, we can choose $X_{\alpha} \in\left[\left[S_{P_{\alpha}}\right]\right]^{\kappa}$ such that the X_{α} 's are all different, but $X_{\alpha} \simeq X_{\beta}$, whenever $\alpha, \beta<\mathfrak{c}$. It follows from (3) that $\left\{|\widehat{x} \cap \widehat{y}|:\{x, y\} \in\left[X_{\alpha}\right]^{2}\right\} \subseteq P_{\alpha}$, for $\alpha<\mathfrak{c}$ and so, the sets $\left\{|\widehat{x} \cap \widehat{y}|:\{x, y\} \in\left[X_{\alpha}\right]^{2}\right\},\left\{|\widehat{x} \cap \widehat{y}|:\{x, y\} \in\left[X_{\beta}\right]^{2}\right\}$ are almost oscillating, for $\beta, \alpha<\mathfrak{c}$. By Corollary 12, $\left\{X_{\alpha}: \alpha<\mathfrak{c}\right\}$ is the desired collection of subsets of 2^{ω}.

Corollary 15. Let \mathcal{A} be an $A D$ family of size κ. If there are $\mathcal{A}_{0}, \mathcal{A}_{1} \in[\mathcal{A}]^{\kappa}$ such that $\left\{|x \cap y|: x, y \in \mathcal{A}_{0}\right\}$ and $\left\{|x \cap y|: x, y \in \mathcal{A}_{1}\right\}$ are almost oscillating, then $\Psi(\mathcal{A}) \not 千 \Psi\left(\mathcal{A}_{0}\right)$.

Proof. If $h: \mathcal{A}_{0} \rightarrow \mathcal{A}$ is a bijection, use Corollary 11 to find $\mathcal{A}_{0}^{\prime} \in\left[h^{-1}\left[\mathcal{A}_{1}\right]\right]^{\kappa}$ such that $h\left\lceil_{\mathcal{A}_{0}^{\prime}}: \mathcal{A}_{0}^{\prime} \rightarrow h\left[\mathcal{A}_{0}^{\prime}\right]\right.$ is of dense oscillation. Now, it follows from Proposition 8 that there can not be a homeomorphism between $\Psi\left(\mathcal{A}_{0}^{\prime}\right)$ and $\Psi\left(h\left[\mathcal{A}_{0}^{\prime}\right]\right)$ that extends $h \upharpoonright_{\mathcal{A}_{0}^{\prime}}$. This implies that it can not be a homeomorphism between $\Psi\left(\mathcal{A}_{0}\right)$ and $\Psi(\mathcal{A})$ which extends h.

Motivated by Corollary 15, we ask the following. A positive answer to it gives raise a negative answer to Question 2. However, we do not even know if CH answers:

Question 16. Let \mathcal{A} be an $A D$ family on ω of size ω_{1}. Are there $\mathcal{A}_{0}, \mathcal{A}_{1} \in[\mathcal{A}]^{\omega_{1}}$ such that $\{|x \cap y|:\{x, y\} \in$ $\left.\left[\mathcal{A}_{0}\right]^{2}\right\}$ and $\left\{|x \cap y|:\{x, y\} \in\left[\mathcal{A}_{1}\right]^{2}\right\}$ are almost oscillating?

The arguments under CH below Question 2 say that if \mathcal{A} is an AD family of size ω_{1}, then there is $\mathcal{A}_{0} \in[\mathcal{A}]^{\omega_{1}}$ such that $\Psi(\mathcal{A}) \not 千 \Psi\left(\mathcal{A}_{0}\right)$. However, the sets $\left\{|x \cap y|:\{x, y\} \in\left[\mathcal{A}_{0}\right]^{2}\right\}$ and $\left\{|x \cap y|:\{x, y\} \in[\mathcal{A}]^{2}\right\}$ are far from being almost oscillating (the first is contained in the second).

Acknowledgements

We appreciate the careful reading of the anonymous referee, that improved the text of this work and fixed some inaccuracies.

References

[1] Fernando Hernández-Hernández, Michael Hrušák, Topology of Mrówka-Isbell spaces, in: Hrušák, Tamariz, Tkachenko (Eds.), Pseudocompact Topological Spaces, Springer International Publishing AG, 2018.
[2] Michael Hrušák, Almost disjoint families and topology, in: Recent Progress in General Topology. III, Atlantis Press, Paris, 2014, pp. 601-638.
[3] Franklin D. Tall, Set-Theoretic Consistency Results and Topological Theorems Concerning The Normal Moore Space Conjecture and Related Problems, Thesis Ph.D., The University of Wisconsin, Madison, 1969.

[^0]: * Corresponding author.

 E-mail addresses: bhector@matmor.unam.mx (H.A. Barriga-Acosta), fhernandez@fismat.umich.mx (F. Hernández-Hernández).
 ${ }^{1}$ The first author's research has been supported by CONACYT, Scholarship 298353.
 ${ }^{2}$ The second author acknowledges support from CONACYT, grant CB2011-169078-F.

