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Cardinal Invariants of Analytic P-Ideals

Fernando Hernández-Hernández and Michael Hrušák

Abstract. We study the cardinal invariants of analytic P-ideals, concentrating on the ideal Zof asymp-

totic density zero. Among other results we prove min{b, cov (N)} ≤ cov∗(Z) ≤ max{b, non(N)}.

Introduction

Analytic P-ideals and their quotients have been extensively studied in recent years.

The first step to better understanding the structure of the quotient forcings P(ω)/I is

to understand the structure of the ideal itself. Significant progress in understanding

the way in which the structure of an ideal affects the structure of its quotient has been

done by I. Farah [Fa1, Fa2, Fa3, Fa4, Fa5].

Typically (but not always) the quotients P(ω)/I, where I is an analytic P-ideal,

are proper and weakly distributive. For some special ideals these quotients have been

identified: P(ω)/Z is as forcing notion equivalent to P(ω)/fin ∗ B(2ω) [Fa5], and

P(ω)/ tr(N) [HZ1] is as forcing notion equivalent to the iteration of B(ω) followed

by an ℵ0-distributive forcing (see the definitions below).

A secondary motivation comes from the problem of which ideals can be destroyed

by a weakly distributive forcing. Even for the class of analytic P-ideals only partial

results are known (see Section 3).

In this note we contribute to this line of research by investigating cardinal invari-

ants of analytic P-ideals, comparing them to other, standard, cardinal invariants of

the continuum.

In the first section we introduce cardinal invariants of ideals on ω, along the lines

of the cardinal invariants contained in the Cichoń’s diagram. We also recall the def-

initions of standard orderings on ideals on ω (Rudin–Keisler, Tukey, Katětov) and

their impact on the cardinal invariants of the ideals. Basic theory of analytic P-ideals

on ω and examples are also reviewed here. Known results on additivity and cofinality

of analytic P-ideals are summarized in the second section.

The main part of the paper is contained in the third section. There we study

the order of Katětov restricted to analytic P-ideals, giving a detailed description of

how the summable and density ideals are placed in the Katětov order. For the rest

of the section, we focus on the ideal of asymptotic density zero and compare its

covering number to standard cardinal invariants of the continuum. We prove that

min{b, cov(N)} ≤ cov∗(Z) ≤ max{b, non(N)} and mention some consistency re-

sults. We introduce the notion of a totally bounded analytic P-ideal and show that
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all analytic P-ideals which are not totally bounded can be destroyed by a weakly dis-

tributive forcing.

In the last section we study the separating number of analytic P-ideals, an invari-

ant closely related to the Laver and Mathias–Prikry type forcings associated with the

ideal.

Two major problems remain open here: (1) Is add∗(I) = add(N) for every tall

analytic P-ideal I? (2) Can every analytic P-ideal be destroyed by a weakly distributive

forcing? What about Z?

We assume knowledge of the method of forcing as well as the basic theory of car-

dinal invariants of the continuum as covered in [BJ]. Our notation is standard and

follows [Ku, Je, BJ]. In particular, c0, ℓ1 and ℓ∞ denote the standard Banach spaces

of sequences of reals. For A,B infinite subsets of ω, we say that A is almost contained

in B (A ⊆∗ B) if A \ B is finite. The symbol A =
∗ B means that A ⊆∗ B and B ⊆∗ A.

For functions f , g ∈ ωω we write f ≤∗ g to mean that there is some m ∈ ω such

that f (n) ≤ g(n) for all n ≥ m. The bounding number b is the least cardinal of an

≤∗-unbounded family of functions in ωω . The dominating number d is the least car-

dinal of a ≤∗-cofinal family of functions in ωω . Recall that a family of subsets of ω
has the strong finite intersection property if any finite subfamily has infinite intersec-

tion. The pseudointersection number p is the minimal size of a family of subsets of ω
with the strong finite intersection property but without an infinite pseudointersec-

tion (i.e., without a common lower bound in the ⊆∗ order). A family S ⊆ P(ω) is a

splitting family if for every infinite A ⊆ ω there is an S ∈ S such that S ∩ A and A \ S

are infinite. The splitting number s is the minimal size of a splitting family in P(ω).

The set 2ω is equipped with the product topology, that is, the topology with basic

open sets of the form [s] = {x ∈ 2ω : s ⊆ x}, where s ∈ 2<ω . The topology of

P(ω) is that obtained via the identification of each subset of ω with its characteristic

function.

An ideal on X is a family of subsets of X closed under taking finite unions and

subsets of its members. We assume throughout the paper that all ideals contain all

singletons {x} for x ∈ X. An ideal I on ω is called P-ideal if for any sequence Xn ∈ I,

n ∈ ω, there exists X ∈ I such that Xn ⊆∗ X for all n ∈ ω. An ideal I on ω is analytic

if it is analytic as a subspace of P(ω) with the above topology. Recall that an ideal

on ω is tall (or dense) if every infinite set of ω contains an infinite set from the ideal.

If I is an ideal on ω and Y ⊆ ω is an infinite set, then we denote by I↾Y the ideal

{I ∩ Y : I ∈ I}; note that the underlying set of the ideal I↾Y is not the underlying

set of I but Y . For an ideal I on ω, I∗ denotes the dual filter, M denotes the ideal of

meager subsets of R, and N the ideal of Lebesgue null subsets of R. Given an ideal I

on a set X, the following are standard cardinal invariants associated with I:

add(I) = min{|A| : A ⊆ I ∧
⋃

A /∈ I},

cov(I) = min{|A| : A ⊆ I ∧
⋃

A = X},

cof(I) = min{|A| : A ⊆ I ∧ (∀I ∈ I)(∃A ∈ A)(I ⊆ A)},

non(I) = min{|Y | : Y ⊆ X ∧Y /∈ I}.

The provable relationships between the cardinal invariants of M and N are
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summed up in the following diagram:

cov(N) // non(M) // cof(M) // cof(N)

b

OO

// d

OO

add(N)

OO

// add(M) //

OO

cov(M) //

OO

non(N)

OO

Cichoń’s Diagram

Regarding our forcing terminology, p ≤ q means that p is a stronger condition

than q. By B(κ) we denote the measure algebra of Maharam type κ (the algebra of

Baire subsets of 2κ modulo the ideal Nκ of Haar measure zero subsets of 2κ). Recall

that a forcing P is weakly distributive (ωω-bounding) if every new function in ωω is

pointwise dominated by a ground model function. A partial order P satisfies Axiom A

if there is a sequence 〈≤n: n ∈ ω〉 of orderings on P such that

(A1) p ≤0 q if p ≤ q for every p, q ∈ P.

(A2) p ≤n+1 q ⇒ p ≤n q for every p, q ∈ P.

(A3) If {pn : n ∈ ω} is such that if pn+1 ≤n pn for every n ∈ ω, then there is a p ∈ P

such that p ≤n pn for every n ∈ ω.

(A4) For every maximal antichain A in P, for every p ∈ P and n ∈ ω, there is a

q ≤n p such that {r ∈ A : r is compatible with q} is countable.

For more on forcing, e.g., the definition of proper forcing, consult [Ku, BJ]. Even

though we do not define properness, we remind the reader that every Axiom A forc-

ing is proper.

1 Analytic P-Ideals and Their Cardinal Invariants

Definition 1.1 Let I be a tall ideal on ω containing the ideal of finite sets. Define

the following cardinals associated with I:

add∗(I) = min{|A| : A ⊆ I ∧ (∀X ∈ I)(∃A ∈ A)(A *∗ X)},

cov∗(I) = min{|A| : A ⊆ I ∧ (∀X ∈ [ω]ℵ0 )(∃A ∈ A)(|A ∩ X| = ℵ0)},

cof∗(I) = min{|A| : A ⊆ I ∧ (∀I ∈ I)(∃A ∈ A)(I ⊆∗ A)},

non∗(I) = min{|A| : A ⊆ [ω]ℵ0 ∧ (∀I ∈ I)(∃A ∈ A)(|A ∩ I| < ℵ0)}.

These cardinals have been studied, some of them not in the context of ideals on

ω, but as cardinals associated to the dual filters.1 The notation for add∗(I) is taken

1Brendle and Shelah [BS] introduced cardinal invariants p(F) and πp(F) associated with an (ul-
tra)filter F. For tall ideal I, add∗(I) = p(I∗), cov∗(I) = πp(I∗ ), non∗(I) = πχ(I∗) and cof∗(I) =

cof(I) = χ(I∗).
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from [Ba], other authors use p(I∗), b(I,⊆∗) or b(I). We justify our preference for

the names chosen here by the next proposition.

For every tall ideal I on ω, there is a natural ideal of Borel subsets of P(ω) asso-

ciated with I defined as Î = {X ⊆ P(ω) : (∃I ∈ I)(X ⊆ Î)}, where Î = {X ⊆ ω :

|X∩I| = ℵ0}. One can easily check that I ⊆∗ J if and only if Î ⊆ Ĵ. Hence, J ⊆ P(ω)

is a P-ideal if and only if Ĵ is a σ-ideal.

Proposition 1.2 The following equalities hold:

add(Î) = add∗(I), cof(Î) = cof∗(I),

non(Î) = non∗(I), cov(Î) = cov∗(I).

Proof The facts that add(Î) = add∗(I) and cof(Î) = cof∗(I) follow directly from

the observation that I ⊆∗ J if and only if Î ⊆ Ĵ. To see cov∗(I) = cov(Î), observe that

if {Iα : α < cov∗(I)} is a family witnessing the definition of cov∗(I) and X ∈ [ω]ω ,

then there is some α < cov∗(I) such that |X ∩ I| = ℵ0, so X ∈ Îα. On the other

hand, if κ < cov∗(I) and {Xα : α < κ} ⊆ Î, for every α < κ choose Iα ∈ I so that

Xα ⊆ Îα. As κ < cov∗(I), there is some X ∈ [ω]ω such that |X ∩ Iα| < ℵ0 for all

α < κ. Thus
⋃
α<κ Xα 6= [ω]ω .

The inequalities holding among these cardinals are summarized in the following

diagram:

non∗(I)

$$IIIIIIIII

ℵ0
// add∗(I)

::ttttttttt

$$JJJJJJJJJ

cof∗(I) // 2ℵ0

cov∗(I)

::uuuuuuuuu

It follows directly from the definition that cov∗(I) ≥ p for any tall ideal I.

The main result about the structure of analytic P-ideals is due to Solecki [Fa1,

Theorem 1.2.5]. Recall that a function ϕ : P(ω) → [0,∞] is a submeasure if ϕ(∅) =

0, ϕ(X) ≤ ϕ(Y ) whenever X ⊆ Y , ϕ(X ∪ Y ) ≤ ϕ(X) + ϕ(Y ) for every X,Y ∈ P(ω),

and ϕ({n}) <∞ for every n ∈ ω. A submeasure on ω is called lower semicontinuous

if ϕ(A) = limn→∞ ϕ(A ∩ n) for every A ⊆ ω. There are two ideals associated with

lower semicontinuous submeasures on ω:

Exh(ϕ) = {X ∈ P(ω) : lim
m→∞

ϕ(X \ m) = 0},

and

Fin(ϕ) = {X ∈ P(ω) : ϕ(X) <∞}.
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Theorem 1.3 Let I be an ideal on ω. Then

(i) (Mazur) I is an Fσ ideal if and only if I = Fin(ϕ) for some lower semicontinuous

submeasure ϕ.

(ii) (Solecki) I is an analytic P-ideal if and only if I = Exh(ϕ) for some lower semi-

continuous submeasure ϕ.

(iii) (Solecki) I is an Fσ P-ideal if and only if I = Fin(ϕ) = Exh(ϕ) for some lower

semicontinuous submeasure ϕ.

We will use the following simple fact several times in the paper.

Lemma 1.4 Let I = Exh(ϕ), where ϕ is lower semicontinuous submeasure. Then I is

a tall ideal if and only if limn→∞ ϕ({n}) = 0.

Proof If limn→∞ ϕ({n}) 6= 0, then the set E = {n ∈ ω : ϕ({n}) ≥ ε} is infinite

for some ε > 0, and limn→∞ ϕ(I \ n) 6= 0 for all infinite I ⊆ E. Thus I is not a tall

ideal.

On the other hand, if limn→∞ ϕ({n}) = 0 and X ⊆ ω is infinite, find an increas-

ing sequence of kn ∈ X such that ϕ({m}) ≤ 1
2n for all m ≥ kn. Then I = {kn :

n ∈ ω} ∈ I since ϕ(I \ km) ≤
∑∞

n=m
1
2n and

∑∞
n=m

1
2n converges to zero.

Orderings on Ideals We shall take advantage of the (pre-)orderings on the family

of ideals. Let I and J be ideals on ω. Recall:

(i) (Rudin–Keisler order) I ≤RK J if there exists a function f : ω → ω such that

I ∈ I if and only if f−1(I) ∈ J for every I ⊆ ω.

(ii) (Rudin–Blass order) I ≤RB J if there exists a finite-to-one function f : ω → ω
such that I ∈ I if and only if f−1(I) ∈ J for every I ⊆ ω.

(iii) (Katětov order) I ≤K J if there exists a function f : ω → ω such that f−1(I) ∈
J for every I ∈ I.

(iv) (Tukey order2) I ≤∗T J if there exists a function f : I → J such that for every

⊆∗-bounded set X ⊆ J, f−1(X) is ⊆∗-bounded in I.

These orderings have a deep impact on the cardinal invariants of related ideals.

Note that if I ⊆ J then I ≤K J, and that if X ∈ I+ then I↾X ≤∗T I while I↾X ≥K I.

Notice also that I ≤RB J ⇒ I ≤RK J ⇒ I ≤K J and for P-ideals I and J, I ≤RK J ⇒
I ≤∗T J.

Any f : ω → ω witnessing I ≤K J is called a Katětov reduction. Also, I and J are

Katětov equivalent if I ≤K J and J ≤K I, which we denote by I ∼=K J. Similarly for

the other orderings. We use I ∼= J to denote that there is a permutation ρ of ω such

that I ∈ I if and only if ρ[I] ∈ J.3

2See Appendix
3According to [Fa1, 1.2.7] two ideals I and J on ω are isomorphic if there is a partial one-to-one

function f : ω → ω such that ω \ ran( f ) ∈ J, ω \ dom( f ) ∈ I and A ∈ I ⇔ f [A] ∈ J for all A ⊆ ω. As
the two definitions are equivalent for tall ideals, we choose the simpler one.
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Some Ideals on ω With one exception, all ideals in which we are interested are tall.

∅ × Fin =
{

A ⊆ ω × ω : (∀n ∈ ω)
(
{m ∈ ω : 〈n,m〉 ∈ A} is finite

)}
.

For A ⊆ 2<ω , let π(A) = { f ∈ 2ω : (∃∞n ∈ ω)( f ↾n ∈ A)}. The trace of the null

ideal is tr(N) = {A ⊆ 2<ω : µ(π(A)) = 0}, where µ denotes the standard product

measure on 2ω. This ideal is, of course, very much related to the null ideal N on the

reals.

The eventually different ideal is defined as

ED =
{

A ⊆ ω × ω : (∃m, n ∈ ω)(∀k > n)
(
|{l : 〈k, l〉 ∈ A}| ≤ m

)}
,

i.e., it is the ideal generated by vertical sections and graphs of functions. Define

EDfin = ED↾∆, where ∆ = {〈m, n〉 ∈ ω × ω : n ≤ m}. The ideals ED and

EDfin are the only ideals mentioned in the paper which are not P-ideals. They are

both Fσ.
The following will be proved in a forthcoming paper.4

Proposition 1.5

cov∗(ED) = non(M) = max{b, cov∗(EDfin)},

non∗(ED) = ω, non∗(EDfin) = cov(M).

Given f : N → R
+ such that

∑
n∈ω f (n) = ∞, the summable ideal corresponding

to f is the ideal

I f = {A ⊆ ω :
∑

n∈A

f (n) <∞}.

The ideal I f is tall if and only if limn→∞ f (n) = 0. The lower semicontinuous sub-

measure on ω corresponding to I f is ϕ f (A) =
∑

n∈A f (n). By definition, I f =

Fin(ϕ f ). So, summable ideals are Fσ . A typical example of a summable ideal is the

ideal

I1/n = {A ⊆ ω :
∑

n∈A

1

n
<∞}.

An Erdős–Ulam ideal is an ideal associated to a function f : N → R. Then EU f is

the ideal of all subsets of f -density zero, i.e., sets A such that

lim
n→∞

∑
i∈A∩(n+1) f (i)
∑n

i=0 f (i)
= 0.

The lower semicontinuous submeasure corresponding to EU f is given by

ϕ f (A) = sup
n∈ω

∑
i∈A∩(n+1) f (i)
∑n

i=0 f (i)
.

A class of analytic P-ideals further extending the class of Erdős–Ulam ideals is the

class of density ideals. For a submeasure ϕ, let supp(ϕ) = {n ∈ ω : ϕ({n}) 6= 0}.

Submeasures ϕ and ψ are orthogonal if they have disjoint supports.
4M. Hrušák, Katětov order. In preparation.
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Definition 1.6 For a sequence ~µ = {µi}i∈ω of orthogonal measures on ω each of

which concentrates on some finite set, define the submeasure ϕ~µ by

ϕ~µ = sup
i∈ω

µi .

Then

Z~µ = Exh(ϕ~µ) = {A ⊆ ω : lim
n→∞

ϕ~µ(A \ n) = 0}

is the density ideal generated by the sequence of measures.

The proof of the following result can be consulted in [Fa1, 1.13.3].

Theorem 1.7 Every Erdős–Ulam ideal is equal to some density ideal Z~µ, where each

µn is a probability measure.

The most common of the density ideals is the ideal Z of subsets of ω of asymptotic

density zero, that is:

Z = {A ⊆ ω : lim
n→∞

|A∩n|
n

= 0}.

Equivalently, A ∈ Z if and only if

lim
n→∞

|A ∩ [2n, 2n+1)|

2n
= 0.

For more on analytic P-ideals and historical notes consult [Fa1].

2 Additivity and Cofinality

In this section we review some known results about additivity and cofinality of an-

alytic P-ideals. The basic tool for studying these cardinal invariants is the Tukey

ordering. This is largely due to the following observation. Although it is well known

[Fr1, 1J(a)], we include its short proof for the sake of completeness.

Proposition 2.1 I ≤∗T J ⇒ add∗(I) ≥ add∗(J) and cof∗(I) ≤ cof∗(J).

Proof Suppose that f : I → J witnesses the definition of ≤∗T. Let A ⊆ I be a family

with |A| < add∗(J). There is a set B ∈ J such that f [A] ⊆∗ B for every A ∈ A. As f

maps unbounded sets to unbounded sets, it follows that A must be bounded.

Let B ⊆ J be cofinal. For every B ∈ B, there is an AB ∈ I such that if f [I] ⊆∗ B

then I ⊆∗ AB. It follows that the family {AB : B ∈ B} is a cofinal subset of I.

The following theorem summarizes the known results.

Theorem 2.2

(i) add∗(I1/n) = add∗(tr(N)) = add(N).
(ii) (Todorčević, [To]) ∅ × Fin ≤T I ≤T I1/n for every analytic P-ideal I. In

particular, add(N) ≤ add∗(I) ≤ b for all analytic P-ideals I.
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(iii) (Fremlin, [Fr2, 526H]) add∗(Z) = add(N) and cof∗(Z) = cof(N).

(iv) (Farah, [Fa1, 1.13.10]) Every tall Erdős–Ulam ideal is Rudin–Blass equivalent

to Z.

(v) Every tall summable ideal is Tukey equivalent to I1/n.

(vi) add∗(I) = add(N) and cof∗(I) = cof(N), for every tall ideal I which is either

summable or a density ideal.

Proof For (v) by Claim 1 in [Fa1, 1.12.14], given two summable ideals I f and Ig ,

there is an X ∈ I+
g such that I f ≤RB Ig↾X. On the other hand, Ig↾X ≤T Ig , hence I f

and Ig are Tukey equivalent. (vi) for summable ideals follows directly from (i) and

(v), and for tall density ideals it follows from (ii), (iii) and the fact that for every tall

density ideal I there is an X ∈ I+ such that I↾X is Erdős–Ulam, [Fa1, 1.13.10].

Louveau and Veličković [LV] showed that there are many ≤T non-equivalent an-

alytic P-ideals. On the other hand, assuming add(N) = cof(N), all tall analytic

P-ideals are ≤∗T-equivalent. It is natural to ask:

Questions 2.3

(a) Are all tall analytic P-ideals ≤∗T-equivalent?

(b) Is at least add∗(I) = add(N) for every tall analytic P-ideal?

3 Covering and Uniformity

The Katětov ordering relates to covering and uniformity of ideals in an analogous

way as the Tukey ordering relates to additivity and cofinality.

Proposition 3.1 I ≤K J ⇒ cov∗(I) ≥ cov∗(J) and non∗(I) ≤ non∗(J).

Proof Let A ⊆ I witness the definition of cov∗(I), and let f : ω → ω be a Katětov

reduction witnessing I ≤K J. Then

B = { f−1(A) : A ∈ A} ∪ { f−1(F) : F ∈ [ω]<ℵ0}

witnesses the definition of cov∗(J). Indeed, if X ⊆ ω is infinite, then either f [X] is

infinite and hence, there is some A ∈ A such that for infinitely many n ∈ X, f (n) ∈
A; therefore |X ∩ f−1(A)| = ℵ0.Or else, f [X] is finite and hence X ⊆ f−1( f [X]). In

either case X has infinite intersection with some member of B.

If A ⊆ [ω]ℵ0 witnesses non∗(J), then { f [A] : A ∈ A} witnesses non∗(I), for if

I ∈ I, then f−1(I) ∈ J and there is some A ∈ A such that A∩ f−1(I) is finite. Hence

f [A] ∩ I must be finite.

First we investigate the behaviour of the Katětov order restricted to analytic

P-ideals. It turns out that the ideal EDfin is a lower bound for all analytic P-ideals

in the Katětov order.

Proposition 3.2 EDfin ≤K I for every tall analytic P-ideal.
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Proof Let ϕ be a lower semicontinuous submeasure such that I = Exh(ϕ). By

Lemma 1.4 there is a strictly increasing sequence 〈an : n ∈ ω〉 such that ϕ({m}) <
2−n for m ≥ an. Let g : ω → ∆ ⊆ ω×ω be a one-to-one function mapping intervals

[an, an+1) into distinct vertical sections of ∆, say {〈bn, i〉 : i ≤ bn}. This function

g is a Katětov reduction. Indeed, let A ∈ EDfin. Then there is a k ∈ ω such that

|A∩{〈bn, i〉 : i ≤ bn}| ≤ k for all n ∈ ω. Now given ε > 0, ϕ(A∩ [an, an+1)) ≤ k2−n

and therefore ϕ(A \ n) ≤ ε for large enough n ∈ ω.

As EDfin is not a P-ideal, the relation EDfin ≤K I cannot be strengthened to

EDfin ≤RK I. In the proof of the next result we use the following lemma, which

is probably folklore, but we could not find any reference for it.

Lemma 3.3 Let ε > 0 and U be an infinite family of clopen subsets of 2ω, each of

measure at least ε. Then

µ
(
{x ∈ 2ω : (∃∞U ∈ U)(x ∈ U )}

)
≥ ε.

Proof Suppose not. Then there is a compact set K ⊆ 2ω disjoint with {x ∈ 2ω :

(∃∞U ∈ U)(x ∈ U )} such that µ(K) > 1 − ε. Let δ = ε + µ(K) − 1 > 0. Then

µ(U ∩ K) ≥ δ for each U ∈ U. Write K =
⋃

n∈ω An, where

An = {x ∈ K : |{U ∈ U : x ∈ U}| = n}.

Then µ(K) =
∑

n∈ω µ(An), so there is an m ∈ ω such that
∑∞

n=m µ(An) < δ
2
. For

each n < m let Cn ⊆ An be compact such that µ(An \ Cn) ≤ δ
2m

. Putting C =⋃
n<m Cn, µ(

⋃
n<m An \C) < δ

2
.

Now it is not hard to see that {U ∈ U : U ∩C 6= ∅} is finite. Since µ(K \C) < δ,

U itself must be finite.

Theorem 3.4 I1/n ≤K tr(N) ≤K Z.

Proof It is easy to see that Z ∼= {A ⊆ 2<ω : limn→∞
|A∩2n|

2n = 0} and I1/n
∼= {A ⊆

2<ω :
∑

n∈ω
|A∩2n|

2n < ∞}. To see the latter, first note that
∑

n∈A
1
n

=
∑

n∈ω

∑
{ 1

m
:

m ∈ A ∩ [2n, 2n+1)} and then the isomorphism can be deduced observing that

1

2

∑

n∈ω

|A ∩ [2n, 2n+1)|

2n
≤

∑

n∈ω

∑

m∈A∩[2n,2n+1)

1

2n+1
≤

∑

n∈ω

∑

m∈A∩[2n,2n+1)

1

m

≤
∑

n∈ω

∑

m∈A∩[2n,2n+1)

1

2n
≤

∑

n∈ω

|A ∩ [2n, 2n+1)|

2n
.

For I1/n ≤K tr(N), just note that if A ⊆ 2<ω is such that
∑

n∈ω
|A∩2n|

2n < ∞, then

π(A) ∈ N. So, {A ⊆ 2<ω :
∑

n∈ω
|A∩2n|

2n <∞} ⊆ tr(N).
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To see that tr(N) ≤K Z, it suffices to prove that

A ∈ tr(N) ⇒ lim
n→∞

|2n ∩ A|

2n
= 0.

If it were not the case, then for some A ∈ tr(N) and for some ε > 0, the set J =

{n ∈ ω :
|2n∩A|

2n ≥ ε} would be infinite. As A ∈ tr(N), π(A) ∈ N, so there is

a compact K ⊆ 2ω such that µ(K) > 1 − ε
3

and K ∩ π(A) = ∅. For n ∈ J,

let Un =
⋃

s∈2n∩A[s]. Then µ(Un ∩ K) ≥ 2ε
3

. By the previous lemma there is an

x ∈ K ∩ π(A), contradicting the choice of K.

Proposition 3.5 I ≤K tr(N) for all summable ideals I.

Proof Let I be a summable ideal. By [Fa1, Lemma 1.12.4], it follows that there is

an X ∈ I+
1/n such that I ≤K I1/n↾X. Fix such X ∈ I+

1/n. It suffices to show that

I1/n↾X ≤K tr(N).

Identify I1/n with {A ⊆ 2<ω :
∑

n∈ω
|A∩2n|

2n < ∞}. So,
∑

n∈ω
|X∩2n|

2n = ∞. It may

happen that X ∈ tr(N). However, this problem is easily fixable. Recursively choose

an increasing sequence of integers 〈ni : i ∈ ω〉 such that
∑

n∈[ni ,ni+1)
|A∩2n|

2n ≥ 1.
There is a bijection g : 2<ω → 2<ω such that

(i) g[2n] = 2n, for every n ∈ ω and

(ii) for each s ∈ 2ni +1 there is an m ∈ [ni , ni+1) such that s↾m ∈ g[X].

Note that for every I ⊆ X, I ∈ I1/n if and only if g[I] ∈ I1/n. So without loss of

generality we can assume that g is the identity function, and hence π[X] = 2ω . In

particular, X /∈ tr(N) and I1/n↾X ⊆ tr(N)↾X.
To prove that tr(N)↾X ≤K tr(N), define a function h : 2<ω → X as follows: for

every s ∈ 2<ω , let ms = max{k ∈ dom(s) : s↾k ∈ X}. This ms is well defined for

almost all s ∈ 2<ω by (ii). Fix t ∈ X and let

h(s) =

{
s↾ms if ms is defined,

t otherwise.

To finish the proof, it suffices to notice that π[A] ⊆ π[h[A]] and hence h is a

Katětov reduction witnessing tr(N)↾X ≤K tr(N).

Proposition 3.6

(i) (Farah) Every Erdős–Ulam ideal is Rudin–Blass equivalent to Z.

(ii) If I is a density ideal then I ≤K Z.

Proof (i) follows directly from [Fa1, p. 46] as any two Erdős–Ulam ideals EU f and

EUg are even Rudin–Blass equivalent.

For (ii), it suffices to note that for every tall density ideal I, there is a positive set X

such that I↾X is Erdős–Ulam.
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From the above propositions, it follows that the density ideal Z is Katětov maximal

among all ideals considered so far. On the other hand, the summable ideals are very

low in the Katětov order. In particular, for any tall analytic P-ideal I, there is an

X ∈ I+
1/n such that I1/n↾X ≤K I. To see this, fix a lower semicontinuous submeasure

ϕ such that I = Exh(ϕ) and note that I f ⊆ I for f defined by f (n) = ϕ({n}) as

ϕ f ≥ ϕ. By [Fa1, p. 36] I f ≤K I1/n↾X for some I1/n-positive set X.

However, the summable ideals are highly non-homogeneous and we conjecture

that they have consistently distinct covering numbers.

Using Proposition 3.1 we can summarize the impact of the Katětov order on ana-

lytic P-ideals as follows.

Theorem 3.7

(i) For every tall analytic P-ideal I, add(N) ≤ cov∗(I) ≤ non(M) and cov(M) ≤
non∗(I) ≤ cof(N).

(ii) For every tall summable ideal I, cov(N) ≤ cov∗(I) and non∗(I) ≤ non(N).

(iii) For every Erdős–Ulam ideal I, cov∗(I) = cov∗(Z) and non∗(I) = non∗(Z).

(iv) For every tall density or summable ideal I, cov∗(Z) ≤ cov∗(I) and non∗(I) ≤
non∗(Z).

The next proposition resembles the well-known characterization of the splitting

number (see [Va])

s = min{|S| : S ⊆ ℓ∞ ∧ (∀X ∈ [ω]ℵ0 )(∃s ∈ S)(s↾X is not convergent)}

and may be of independent interest.

Proposition 3.8

b = min{|S| : S ⊆ c0 ∧ (∀X ∈ [ω]ℵ0 )(∃s ∈ S)(s↾X /∈ ℓ1)}.

Proof Denote by ν the cardinal on the right-hand side of the equation. We first

show that b ≤ ν. In order to do this, assume that κ < b and show that κ < ν. Let

S ∈ [c0]κ. For each s ∈ S define fs : ω → ω by letting

fs(n) = min
{

m ∈ ω : (∀k ≥ m)
(
|s(k)| < 1

2k

)}
.

There is a g ∈ ωω such that (∀s ∈ S)( fs ≤∗ g). We can assume that g is strictly

increasing. Put X = ran(g). If s ∈ S, then there is an m ∈ ω such that fs(k) ≤ g(k)

for all k ≥ m and hence

∑

x∈X\g(m)

|s(x)| =

∞∑

n=m

|s(g(n))| ≤

∞∑

n=m

1

2n
<∞.

Therefore, (∀s ∈ S)(s↾X ∈ ℓ1) and hence κ < ν.
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To see that ν ≤ b, proceed as follows. Consider a ≤∗-unbounded family of strictly

increasing functions, { fα : α < b}, such that fα(0) > 0, for each α < b. For all

α < b and n ∈ ω, let

sα(n) =

{
1

m+1
if fα(m) ≤ n < fα(m + 1),

1 if n < fα(0).

We claim that S = {sα : α < b} witnesses the definition of ν. To see this, let

X ∈ [ω]ℵ0 and let {xn : n ∈ ω} be the increasing enumeration of X. There is an

α < b such that (∃∞n ∈ ω)(xn < fα(n)). Define a sequence of natural numbers

recursively by setting nk+1 = min{m > nk : xm < fα(m)}. To see that sα↾X /∈ ℓ1,

note that

∞∑

n=0

sα(xn) ≥ n0 ·
1

n0

+ (n1 − n0) ·
1

n1

+ · · · + (nk+1 − nk) ·
1

nk

+ · · ·

= 1 +

∞∑

k=1

(
1 −

nk

nk+1

)
.

By the next lemma, the last series never converges, which completes the proof of the

proposition. We thank M. Garaev for supplying a short proof of the lemma.

Lemma 3.9 If 〈xn : n ∈ ω〉 is a strictly increasing sequence of natural numbers, then∑∞
n=0(1 − xn

xn+1
) diverges.

Proof Without loss of generality x0 = 0. For every n ∈ ω, let yn = xn+1 − xn. Then

yn ≥ 1 and xn+1 = y0 + · · · + yn for each n ∈ ω. So, 1 − xn

xn+1
=

yn

y0+···+yn
.

Assume that
∑∞

n=0
yn

y0+···+yn
converges. If 〈yn : n ∈ ω〉 is bounded by some b, then

m∑

n=0

yn

y0 + · · · + yn

≥
1

b

m∑

n=0

1

n + 1
,

which is a contradiction. So, assume that 〈yn : n ∈ ω〉 is unbounded. There is a

c ∈ ω such that
∑∞

n=c+1
yn

y0+···+yn
< 1

10
. Choose N ∈ ω so that yN > y0 + · · · + yc .

Then

1

10
>

N∑

n=c+1

yn

y0 + · · · + yn

>
1
2
(yc+1 + · · · + yN ) + 1

2
yN

y0 + · · · + yN

>
1

2
,

which, too, is a contradiction.

For the rest of this section we will concentrate on cardinal invariants of the density

ideal Z, trying to locate them among the standard cardinal invariants of the contin-

uum.
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Theorem 3.10 The following inequalities hold:

(1) min{cov(N), b} ≤ cov∗(Z) ≤ non(M)

and

(2) cov(M) ≤ non∗(Z) ≤ max{d, non(N)}.

Proof The facts that cov∗(Z) ≤ non(M) and cov(M) ≤ non∗(Z) follow directly

from Theorem 3.7(i).

To show that min{b, cov(N)} ≤ cov∗(Z), let κ < min{b, cov(N)}. We show that

κ < cov∗(Z). Let {Aα : α < κ} ⊆ Z. To each Aα we associate a null set. To

that end, we work on
∏

n∈ω 2n endowed with µ∗, the natural product of probability

measures (each factor has the counting measure multiplied by 1
2n , so that µ(2n) = 1).

Let Aα,n = {m < 2n : 2n + m ∈ Aα}. Then limn→∞
|Aα,n|

2n = 0, for each α < κ, and

since κ < b and by Proposition 3.8 there is an X ∈ [ω]ℵ0 such that

(3) (∀α < κ)
(∑

n∈X

|Aα,n|

2n
< ε

)
.

Then let Nα = {h ∈
∏

n∈X 2n : (∃∞n ∈ ω)(h(n) ∈ Aα,n)}. The relation (3) shows

that µ∗(Nα) = 0, so Nα ∈ N, for every α < κ. Moreover, as κ < cov(N), there is an

h ∈
∏

n∈X 2n \
⋃
{Nα : α < κ}. Let Z be the set {2n + h(n) : n ∈ X}. Then Z ∈ Z

and Z ∩ Aα =
∗ ∅, for every α < κ. So, κ < cov∗(Z).

To conclude the proof, we show that non∗(Z) ≤ max{d, non(N)}. Fix a ≤∗-dom-

inating family {gα : α < d} consisting of strictly increasing functions. For every

α < d, choose non-null sets Yα ⊆
∏

n∈ω 2gα(n) of cardinality non(N) and enumerate

each of them as { fα,β : β < non(N)}. For α < d and β < non(N), let

Lα,β = {2gα(n) + fα,β(n) : n ∈ ω} ∈ Z.

We claim that L = {Lα,β : α < d ∧ β < non(N)} witnesses the definition of

non∗(Z). To see this, fix Z ∈ Z. There is a function fZ : ω → ω such that whenever

g ≥∗ fZ then
∑∞

n=0
|Z∩[2g(n),2g(n+1))|

2g(n) < ∞. Let α < d be such that fZ ≤∗ gα. Then the

set

Nα = { f ∈
∏

n∈ω

2gα(n) : (∃∞m ∈ ω)(2gα(m) + f (m) ∈ Z)}

has measure zero, so there is a β < non(N) such that fα,β /∈ Nα. Therefore,

|Lα,β ∩ Z| < ℵ0

as required.

For A ⊆ ω, the asymptotic density of A is defined as d(A) = limn→∞
|A∩n|

n
,

whenever the limit exists. Define a probability measure on ω by µ({n}) =
1

2n+1 .

Given an infinite set B consider the product measure µB on ωB. For our next result

we will use the following direct consequence of the law of large numbers.
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Proposition 3.11 Let B be any countable set. Then

µB

(
{ f ∈ ωB : (∀n ∈ ω)(d( f−1(n)) =

1
2n+1 )}

)
= 1.

Theorem 3.12

(i) cov∗(Z) ≤ max{b, non(N)},5

(ii) non∗(Z) ≤ min{d, cov(N)}.

Proof For (i), let A = { f ∈ ωω : (∀n ∈ ω)(d( f−1(n)) =
1

2n+1 )}. By Proposition

3.11 µω(A) = 1. Fix a µω-non-null set X ⊆ A and an unbounded family D ⊆ ωω .

For f ∈ D and g ∈ X, let Ig, f =
⋃

n∈ω g−1(n) ∩ f (n).

We claim that Ig, f ∈ Z. To see this, note that {g−1(n) : n ∈ ω} is a partition of

ω such that d(g−1(n)) =
1

2n+1 for each n ∈ ω. The set Ig, f has only finite intersection

with each element of the partition, hence Ig, f ∈ Z.

To finish the proof it suffices to verify that {Ig, f : x ∈ X, f ∈ D} is a covering

family for Z. Indeed, if B ⊆ ω is an infinite set, put

FB = { f ∈ A : (∃n ∈ ω)( f−1(n) ∩ B) = ∅}.

We claim that µω(FB) = 0. By Proposition 3.11,

µB

(
{ f ∈ ωB : (∀n ∈ ω)(d( f−1(n)) =

1
2n+1 )}

)
= 1.

Let π : ωω → ωB be the natural projection. Then

µω
(
π−1

[
{ f ∈ ωB : (∀n ∈ ω)(d( f−1(n)) =

1
2n+1 )}

])
= 1

and FB ∩ { f ∈ ωB : (∀n ∈ ω)(d( f−1(n)) =
1

2n+1 )} = ∅.

Pick g ∈ X \ FB. Then B ∩ g−1(n) 6= ∅ for every n ∈ ω. Define fB : ω → ω by

fB(n) = min(B ∩ g−1(n)).

There is an f ∈ D such that fB <
∗ f . Then |Ix, f ∩ B| = ℵ0, and the proof is done.

For (ii) dualize the argument for (i). Let κ < min{d, cov(N)} and fix {Xα : α <
κ} ⊆ [ω]ℵ0 . As each FXα is null, there is a g ∈ A \

⋃
α<κ FXα . That is, each Xα

intersects g−1(n) for all n ∈ ω. For α < κ, let fα(n) = min(g−1(n) ∩ Xα) + 1. As

κ < d, there is an f ∈ ωω not dominated by any fα. Let Z =
⋃

n∈ω g−1(n) ∩ f (n).

Then Z ∈ Z, and Z ∩ Xα is infinite for each α < κ. So, κ < non∗(Z).

Next we mention some consistency results.

Theorem 3.13 The following are consistent with ZFC:

(i) cov(N) < cov∗(I) for all tall analytic P-ideals,

(ii) cov∗(I) < add(M) for all tall analytic P-ideals.

5Hrušák and Zapletal [HZ1] proved a general fact from which it follows that cov(N) ≤ cov∗(tr(N)) ≤
max{cov(N), d}. In particular, cov∗(Z) ≤ max{cov(N), d}.



Cardinal Invariants of Analytic P-Ideals 589

Proof (i) holds in any model where cov(N) < p (see [BJ]).

(ii) holds in the Hechler model. To see this, it suffices to note that under CH every

tall P-ideal has a cofinal family which forms a strictly increasing tower. By a result of

Baumgartner and Dordal [BD], the iteration of Hechler forcing preserves towers and

hence the cofinal family from V still witnesses cov∗(Z) = ω1 in the extension. It is

well known that add(M) = c in the Hechler model (see [BJ]).

A forcing P destroys (diagonalizes) an ideal I if it introduces a set A ⊆ ω such that

|A∩ I| < ℵ0 for every I ∈ I∩V . The covering number of an ideal can be viewed as a

measure of how difficult it is to diagonalize it. In particular, it is of interest to identify

those ideals which can be diagonalized by an ωω-bounding forcing. The results of the

previous section together with the following result of Brendle and Yatabe [BY] tell us

which (analytic P-)ideals are destroyed by the random forcing (see also [HZ1]).

Theorem 3.14 (Brendle-Yatabe) Let I be a tall ideal on ω. Then the random forcing

destroys I if and only if I ≤K tr(N).

Theorem 3.15 It is relatively consistent with ZFC that

cov∗(Z) < cov(N) = cov∗(tr(N)) = cov(I)

for all summable ideals I.

Proof The model for this is the random real model. In this model, d = non(N) =

ω1 < cov(N) = c (see [BJ]). By Theorem 3.7, cov(N) = cov(I) for all summable

ideals I and by Theorem 3.12 cov∗(Z) = ω1.

Definition 3.16 An analytic ideal I on ω is said to be totally bounded if whenever ϕ
is a lower semicontinuous submeasure on P(ω) for which I = Exh(ϕ), then ϕ(ω) <
∞.

The following lemma provides an easy criterion for checking that an ideal is totally

bounded. Recall that the splitting number s(B) of a Boolean algebra is defined as the

minimal size of a family S of non-zero elements of B such that for every non-zero

b ∈ B there is an s ∈ S such that b ∧ s 6= 0 6= b − s.

Lemma 3.17 If I is an analytic P-ideal such than s(P(ω)/I) = ω, then I is totally

bounded.

Proof Consider a submeasure ϕ on P(ω) such that I = Exh(ϕ) and ϕ(ω) = ∞.

Fix any family {An : n ∈ ω} of I-positive sets. To show that this family is not a

splitting family, note that either A0 or else ω \ A0 has infinite submeasure. Without

loss of generality assume A0 has. Choose then a finite F0 ⊆ A0 with ϕ(F0) ≥ 1.

Now, either (A0 \ F0) ∩ A1 or else (A0 \ F0) \ A1 has infinite submeasure. Once

again, without loss of generality, assume (A0 \ F0) ∩ A1 has infinite submeasure and
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choose some finite F1 ⊆ (A0 \ F0) ∩ A1 such that ϕ(F1) ≥ 1. Now proceed alike with

(A0 ∪ A1 \ (F0 ∪ F1)) ∩ A2 and (A0 ∪ A1 \ (F0 ∪ F1)) \ A2 and so on.

Let B =
⋃

n∈ω Fn. Then B /∈ I and it is clear that B is not split by any element of

the family {An}n∈ω.

Proposition 3.18 The ideals Z and tr(N) are totally bounded.

Proof By the previous lemma, it suffices to show that there are countable splitting

families in the respective algebras. For n > 0 and k < n, let Sn,k = {k + mn : m ∈ ω}.

It is easily seen that S = {[Sn,k] : n, k ∈ ω} is a splitting family in P(ω)/Z. For

s ∈ 2<ω , let 〈s〉 = {t ∈ 2<ω : s ⊆ t}. It is just as easy to see that S = {[〈s〉] : s ∈ 2<ω}
is a splitting family for P(2<ω)/ tr(N).

If an analytic P-ideal is not totally bounded, then it is contained in a proper

Fσ-ideal by Theorem 1.3. An ωω-bounding forcing for diagonalizing Fσ-ideals was

discovered by C. Laflamme [La]. We briefly review an incarnation of Laflamme’s

forcing. Let I be an Fσ-ideal. Then I = Fin(ϕ) for some lower semicontinuous sub-

measure ϕ by Theorem 1.3. Define the poset Pϕ as the set of all trees T ⊆ ω<ω with

stem s and such that:

(i) succT(t) = {n ∈ ω : t⌢n ∈ T} is finite for every t ∈ T, and

(ii) limt∈T ϕ(succT(t)) = ∞.

ordered by inclusion.

Call a tree T ∈ Pϕ a k-tree with stem s if

(i) (∀t ∈ T)(t ⊆ s or t ⊇ s) and

(ii) (∀t ∈ T)(s ⊆ t ⇒ φ(succT(t)) ≥ k).

If n ∈ ω and T,T ′ ∈ Pϕ, we say that T ≤n T ′ if

(∀t ∈ T) ϕ(succT ′(t)) ≤ n ⇒ succT(t) = succT ′(t),

ϕ(succT ′(t)) ≥ n ⇒ ϕ(succT(t)) ≥ n.

Lemma 3.19 The forcing Pϕ is proper and ωω-bounding.

Proof We actually show that Pϕ together with the sequence 〈≤n: n ∈ ω〉 satisfies

Axiom A. (A1)–(A3) are easy to verify. To show (A4) and the fact that Pϕ is ωω-

bounding, it suffices to prove [BJ, Lemma 7.2.10]:

Claim 3.20 If n ∈ ω,T ∈ Pϕ and ȧ is a Pϕ-name for an ordinal, then there exist

S ≤n T and a finite set of ordinals F such that S  ȧ ∈ F.

Fix T, n and ȧ. Define a rank function on the nodes of T ∈ Pϕ by

(i) rk(t) = 0, if there is an n-tree T ′ with stem t which decides ȧ, and

(ii) rk(t) ≤ i + 1, if rk(t) � i and ϕ({t ′ ∈ succT(t) : rk(t ′) ≤ i}) ≥ 1
2
ϕ(succT(t)).
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Note that, for every t ∈ T, there is an i ∈ ω such that rk(t) = i. For if not, then

there is a t ∈ T with undefined rank and one can recursively construct a tree T ′ ⊆ T

with stem t such that for every s ∈ T ′, if s ≥ t , then

succT ′(s) = {s ′ ∈ succT(s) : rk(s ′) is undefined}

and

ϕ(succT ′(s)) ≥ 1
2
ϕ(succT(s)).

Then T ′ ∈ Pϕ and no extension of T ′ decides ȧ, which is a contradiction.

Now, E = {t ∈ T : rk(t) > 0} is finite as T is finitely branching and rk is strictly

decreasing on T. So, there is a k ∈ ω such that E ⊆ {t ∈ T : |t| < k}. In particular,

for every t ∈ T with |t| = k, there is an n-tree St with stem t and an ordinal αt such

that St  ȧ = αt . Let

S =

⋃

t∈ωk∩T

St and F = {αt : t ∈ ωk ∩ T}.

Then S ≤n T and S  ȧ ∈ F.

Lemma 3.21 Pϕ destroys I.

Proof Let Ȧgen be the canonical name for the subset of ω coded by a generic filter

in Pϕ. We show that if I ∈ I and T ∈ Pϕ, there exist S ≤ T and m ∈ ω such that

S  Ȧgen ∩ (I \ m) = ∅. Fix I ∈ I and T ∈ Pϕ. As I = Fin(ϕ), there is an n ∈ ω
such that ϕ(I) < n. Let T ′ ≤ T be a 2n-tree with stem s. Then for every t ∈ T ′ such

that s ⊆ t , ϕ(succT ′(t) \ I) ≥ ϕ(succT ′(t)) − n. Define S ≤ T ′ recursively by:

(i) t ⊆ s ⇒ t ∈ S,
(ii) t ∈ S and t ⊇ s ⇒ succS(t) = succT ′(t) \ I.

Let m = max(ran(s)) + 1. Then S ∈ Pϕ and S ≤ T and S  Ȧgen ∩ (I \ m) = ∅.

Theorem 3.22 It is relatively consistent with ZFC that ω1 = d < cov∗(I) for all ana-

lytic P-ideals which are not totally bounded.

Proof Start with a model of CH and iterate forcings of the type Pϕ with countable

support of length ω2, where each Pϕ appears cofinally. Then cov∗(I) = c = ω2

as Pϕ destroys I = Fin(ϕ), and hence also Exh(ϕ). On the other hand, d = ω1 in

the resulting model as countable support iteration of ωω-bounding forcings is ωω-

bounding [Sh].

The advantage of our forcings over those of Laflamme is the simplicity of their def-

inition. On the other hand, it seems to be more difficult to decide stronger properties

of the forcings Pϕ. We do not even know whether a forcing Pϕ can add random reals.

Forcings of the type Pϕ are still not quite well understood and deserve further inves-

tigation. For instance, it would be nice to know if or when they preserve P-points
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and if or when they preserve positive outer measure. As the forcings of the type Pϕ

are in general not homogeneous, it is reasonable to expect that the answers to these

questions may differ depending on the choice of the generic filter.

There are several natural open problems concerning cardinal invariants of analytic

P-ideals. We explicitly mention at least four.

Questions 3.23

(a) Is cov∗(Z) ≤ d (or even cov∗(Z) ≤ b)? 6

(b) Is cov∗(Z) minimal among the covering numbers of analytic P-ideals?

(c) Is cov∗(I) = cov∗(I1/n) for all tall summable ideals I?

(d) Is cov∗(I) = cov∗(J) for all density ideals I and J which are not Erdős–Ulam?

4 The Separating Number

Let I be an ideal on ω and let G ⊆ I, H ⊆ I
+ and A ⊆ ω. The set A separates G from

H if |A ∩ I| < ℵ0 for every I ∈ G, and |A ∩ X| = ℵ0 for every X ∈ H.

A forcing P separates an ideal I if it introduces a set A ⊆ ω such that A separates

I ∩ V from I+ ∩ V . That is, I ∩ V is contained in {B ⊆ ω : A ∩ B is finite} while

I+∩V∩{B ⊆ ω : A∩B is finite} is empty. So, P separates I and I+ (as subsets of P(ω))

by a very simple Fσ-set. In other words, separation is a strong kind of diagonalization

(see [HZ1]).

Definition 4.1 For an ideal I on ω, the separating number of I is

sep(I) = min
{
|G| + |H| : G ⊆ I,H ⊆ I

+

and (∀A ⊆ ω)(A does not separate G from H)
}
.

Just like cov∗(I) measures destructibility of the ideal I, the separating number

measures how difficult it is to separate I. It is easily seen that

add∗(I) ≤ sep(I) ≤ cov∗(I)

for every tall ideal I. For maximal ideals I, sep(I) = cov∗(I).

The Rudin–Keisler order relates to sep in the same way that the Tukey order relates

to add∗ and the Katětov order relates to cov∗ .

Proposition 4.2 I ≤RK J ⇒ sep(J) ≤ sep(I).

Proof Fix f : ω → ω witnessing that I ≤RK J. Let G ⊆ I and H ⊆ I+, each of

cardinality less than κ ≤ sep(J). Without loss of generality assume that f−1(G) ∈ G

for every finite G ⊆ ω. Then for G← = { f−1(G) : G ∈ G} and H← = { f−1(H) :

H ∈ H} there is an A ⊆ ω such that |A∩G| < ℵ0 for every G ∈ G← and |A∩H| = ℵ0

6By Theorem 3.12 and the result of [HZ1] cov∗(Z) ≤ max{b, non(N)} as well as cov∗(Z) ≤
max{d, cov(N)}. Consequently, if Z can be destroyed by an ωω-bounding forcing P, then P must add
random reals as well as make the ground model reals of measure zero.



Cardinal Invariants of Analytic P-Ideals 593

for every H ∈ H←. Then f [A] ∩ G is finite for every G ∈ G and f [A] ∩ H is

infinite for every H ∈ H. Indeed, if f [A] ∩ H were finite for some H ∈ H, then

f−1( f [A]∩H) ∈ G−1 and thus A∩ f−1(H) is also finite, contradicting the choice of

A. Therefore κ ≤ sep(I).

To highlight the importance of the separating number we mention the follow-

ing theorem. Recall that LI∗ is the standard Laver type forcing for diagonalizing (in

fact, separating) of the ideal I. Let m(P) denote the minimum cardinal κ for which

MAκ(P) fails. Recall also that a free ultrafilter U on ω is nowhere dense (nwd) if for

every f : ω → R there is U ∈ U such that f [U ] is nowhere dense in R.

The following will appear in a forthcoming paper.7

Theorem 4.3 Let I be an ideal on ω. Then

m(LI∗) =

{
min{b, sep(I)} if I∗ is an nwd-ultrafilter,

min{add(M), sep(I)} otherwise.

The forcing LI∗ always adds a dominating real. Another standard forcing for di-

agonalizing an ideal I is the Mathias–Prikry forcing MI∗ defined as follows: MI∗ =

{〈s, F〉 : s ∈ [ω]<ω and F ∈ I∗} ordered by 〈s, F〉 ≤ 〈t,G〉 if and only if s ⊇ t , F ⊆ G

and s \ t ⊆ G. A straightforward density argument shows that (just like LI∗) the

forcing MI∗ not only diagonalizes I, it separates I. It is not known in general when

MI∗ adds a dominating real, however, if I is Fσ , then MI∗ does not add dominating

reals even when iterated (see [Br, 3.2 Case 1] for a proof).

Proposition 4.4

(i) If I is a Erdős–Ulam ideal, then sep(I) = sep(Z).

(ii) If I is a tall density ideal, then sep(I) ≤ sep(Z).

(iii) If I f and Ig are tall summable ideals, then sep(I f ) = sep(Ig).

Proof First note that sep(I) ≤ sep(I↾X) for every ideal I and X ∈ I+. (i) follows

directly from Proposition 4.2 and [Fa1, 1.13.10]. (ii) follows from (i) and the fact for

every tall density I there is a X ∈ I+ such that I↾X is Erdős–Ulam.

Using the observation at the beginning of the proof, (iii) follows from Proposition

4.2 and [Fa1, Claim 1 of Lemma 1.12.4].

Theorem 4.5

(i) sep(I) ≤ b for all analytic P-ideals I which are not Fσ .

(ii) It is consistent with ZFC that sep(I) > b for all Fσ P-ideals I .

7F. Hernández and M. Hrušák, Covering separable spaces by nowhere dense sets. In preparaton.
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Proof Let I be an analytic P-ideal which is not Fσ . By a result of Solecki [So, The-

orem 3.4], there is a partition 〈An : n ∈ ω〉 of ω into I-positive sets such that every

I ⊆ ω intersecting each An in a finite set is in I. Let κ < sep(I) and fix a family of

functions { fα ∈ ωω : α < κ}. Enumerate each An as {an
i : i ∈ ω} and let

Bα = {an
m : m ≤ fα(n)}.

As κ < sep(I), there is an X ⊆ ω which intersects every An in an infinite set and

contains only finitely many elements of each Bα, α < κ. Define f : ω → ω by

f (n) = min{k ∈ An : (An \ k) ∩ X = ∅}.

Then f dominates fα for every α < κ.

To prove (ii), start with a model of CH and iterate forcings of the type MI∗ , where

I is an Fσ P-ideal, with finite support of length ω2, where each MI∗ appears cofinally.

Then sep(I) = c = ω2 as MI∗ separates I. On the other hand, b = ω1 in the resulting

model as finite support iteration of forcings of type MI∗ , for I Fσ , does not add

dominating reals.

A Appendix

The classical definition of Tukey order for partially ordered sets is as follows:

Definition A.1 ([Fr1]) Let P and Q be partially ordered sets. Then

(i) P ≤T Q if there is a function f : P → Q such that {p ∈ P : f (p) ≤ q} is

bounded for every q ∈ Q.

(ii) P ≤ω Q if there is a function f : P → Q such that {p ∈ P : f (p) ≤ q} is

countably dominated for every q ∈ Q.

When restricted to ideals, most authors, e.g. [LV, Fr1, Fa1], define the Tukey order

using (I,⊆) rather than (I,⊆∗). Following them we denote by ≤T the standard Tukey

order on ideals. Even though there does not seem to be any relation between ≤T and

≤∗T for ideals in general, for P-ideals ≤T is finer than ≤∗T.

Proposition A.2 Let I and J be P-ideals. Then

(i) I ≤ω J if and only if I ≤∗T J,

(ii) I ≤T J implies I ≤∗T J.

Proof (i) For the forward implication, first observe that I ≤∗TJ if and only if there

is a function g : I → J such that for every J ∈ J there is an I ∈ I such that A ⊆∗ I

whenever A ∈ I and g(A) ⊆∗ J.

Take an f witnessing I ≤ω J and fix J ∈ J. Consider the family { Jn : n ∈ ω} of all

finite modifications of J. Then {A ∈ I : f (A) ⊆∗ J} =
⋃

n∈ω{A ∈ I : f (A) ⊆ Jn}.

Since f witnesses I ≤ω J, there are families {In,m : m ∈ ω} ⊆ I, for every n ∈ ω,

such that whenever f (A) ⊆ Jn there is an m ∈ ω such that A ⊆ In,m. As I is a P-ideal



Cardinal Invariants of Analytic P-Ideals 595

there is an I ∈ I such that In,m ⊆∗ I for every m, n ∈ ω. Then A ⊆∗ I whenever

f (A) ⊆∗ J, that is, f witnesses I ≤∗T J.

For the reverse implications let f : I → J be a witness to I ≤∗T J. That is, given

J ∈ J, there is an I ∈ I such that f (A) ⊆∗ J implies A ⊆∗ I. Then all finite

modifications of I countably dominate {A ∈ I : f (A) ⊆ J}.

(ii) follows from (i) and the trivial fact that I ≤T J implies I ≤ω J.

References
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[HZ1] M. Hrušák and J. Zapletal, Forcing with quotients. To appear in Arch. Math. Logic.
[Je] T. Jech, Set theory. Second edition. Perspectives in Mathematical Logic, Springer-Verlag, Berlin,

1997.
[Ku] K. Kunen, Set Theory. An Introduction to Independence Proofs. Studies in Logic and the

Foundations of Mathematics 102, North-Holland, Amsterdam, 1980.
[La] C. Laflamme, Zapping small filters. Proc. Amer. Math. Soc. 114(1992), no. 2, 535–544.
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