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Combinatorics of dense subsets of the rationals

by

B. Balcar (Praha), F. Hernández-Hernández (Morelia) and
M. Hrušák (Morelia)

Abstract. We study combinatorial properties of the partial order (Dense(Q),⊆).
To do that we introduce cardinal invariants pQ, tQ, hQ, sQ, rQ, iQ describing properties of
Dense(Q). These invariants satisfy pQ ≤ tQ ≤ hQ ≤ sQ ≤ rQ ≤ iQ. We compare them with
their analogues in the well studied Boolean algebra P(ω)/fin. We show that pQ = p, tQ = t

and iQ = i, whereas hQ > h and rQ > r are both shown to be relatively consistent with
ZFC. We also investigate combinatorics of the ideal nwd of nowhere dense subsets of Q. In
particular, we show that non(M) = min{|D| : D ⊆ Dense(R) ∧ (∀I ∈ nwd(R))(∃D ∈ D)
(I ∩D = ∅)} and cof(M) = min{|D| : D ⊆ Dense(Q)∧ (∀I ∈ nwd)(∃D ∈ D)(I ∩D = ∅)}.
We use these facts to show that cof(M) ≤ i, which improves a result of S. Shelah.

0. Introduction. The aim of this paper is to point out the similarities
and differences between the structure of P(ω)/fin and the structure of the
collection of dense subsets of the rationals. Such research was suggested by
A. Blass in [Bl] and initiated by J. Cichoń in [Ci]. The basic object studied
here is the set

Dense(Q) = {D ⊆ Q : D is dense}
ordered by inclusion, in comparison with the structure ([ω]ω,⊆). Neither one
of them is a separative partial order. The separative quotient of ([ω]ω,⊆)
augmented with the least element 0 is the well known Boolean algebra
P(ω)/fin. The separative quotient of (Dense(Q),⊆) with added least ele-
ment is not a Boolean algebra, but just a lattice, with two dense sets being
in the same equivalence class if and only if their symmetric difference is a

2000 Mathematics Subject Classification: 03E17, 03E35, 06E15.
Key words and phrases: rational numbers, nowhere dense ideal, distributivity of Bool-

ean algebras, cardinal invariants of the continuum.
The research of the first and third authors was partially supported by grant GAČR
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nowhere dense subset of Q. It is convenient not to study the quotients di-
rectly but rather to use a pre-order ⊆∗ in the case of P(ω)/fin and ⊆nwd in
the case of Dense(Q), where nwd denotes the ideal of nowhere dense subsets
of Q.

Whereas the structure of P(ω)/fin and related cardinal invariants seem
to be now fairly well understood and certainly well studied, the same can
hardly be said about the next natural step—the study of combinatorial prop-
erties of subsets of the rational numbers Q. The hope is that having at least
a basic theory at hand (which this note humbly presents) new applications
will arise.

We consider some cardinal invariants of (Dense(Q),⊆nwd) and compare
them with their P(ω)/fin analogues. Our aim was not to introduce more
cardinal invariants, however, introducing them seemed necessary for under-
standing the similarities and differences between the structural properties
of P(ω)/fin and Dense(Q) (1).

1. Basic facts and definitions. The rationals Q were characterized
by W. Sierpiński (see [Kr]) as the unique (up to homeomorphism) countable
first countable regular space without isolated points. Consider the set 2<ω

of all finite sequences of 0’s and 1’s. The set 2<ω ordered by extension
(reverse inclusion) is a partially ordered set known as Cohen forcing. For
our purposes it will be useful to give 2<ω the structure of Q in the following
way: For s, t ∈ 2<ω define s < t if and only if (t ⊂ s and s(|t|) = 0) or (s ⊂ t
and t(|s|) = 1) or (k = min{n ∈ dom(s) ∩ dom(t) : s(n) 6= t(n)} exists and
s(k) = 0). This ordering is a linear ordering on 2<ω which induces a topology
on 2<ω homeomorphic to Q. We will identify Q with the set 2<ω endowed
with this topology. Given s ∈ 2<ω denote by Bs the set {t ∈ 2<ω : s ⊆ t}.

We will compare the topological structure of Q = (2<ω, <) with the
usual partial order structure (2<ω,⊇). Any mention of antichains in 2<ω

refers to antichains in (2<ω,⊇).

Fact 1.1. (i) The family {Bs : s ∈ 2<ω} forms a π-base in Q = (2<ω, <).
(ii) D ⊆ 2<ω is dense in Q if and only if D is dense in the partial order

(2<ω,⊇), i.e. for every s ∈ 2<ω there is a t ∈ D with s ⊆ t.
(iii) D ⊆ 2<ω is dense in Q if and only if D =

⋃
n∈ω An, where each An is

a maximal antichain in (2<ω,⊇) such that |{t ∈ An+1 : s ⊆ t}| ≥ 2
for every s ∈ An.

(iv) H ⊆ 2<ω is open dense in Q then H contains a subset H ′ which
is open dense in the partial order (2<ω,⊇), i.e. H ′ is dense and

(1) “People know what they do. They generally know why they do what they do.
What they don’t know is what what they do does” (M. Foucault, Dreyfuss and Rabinow).
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Bs ⊆ H ′ for every s ∈ H ′. On the other hand, if H is open dense
in (2<ω,⊇) then H is open dense in Q.

(v) N ⊆ 2<ω is nowhere dense in Q if and only if (∀s ∈ 2<ω)(∃t ⊇ s)
(Bt ∩N = ∅).

Note that N ⊆ 2<ω is nowhere dense if and only if there is a maximal
antichainA ⊆ 2<ω such that (∀s ∈ N)(∃t ∈ A)(s ⊆ t). Moreover, ifN ⊆ 2<ω

is nowhere dense then the closure of N under initial segments, i.e. the set
{t ∈ 2<ω : (∃s ∈ N)(t ⊆ s)}, is a closed nowhere dense set containing N .

There is a natural correspondence between the structure of 2<ω and
the topology of the Cantor space 2ω. For s ∈ 2<ω we denote by 〈s〉 the
basic clopen set {f ∈ 2ω : s ⊆ f} of 2ω. Given a subset X of 2<ω let
X̂ = {f ∈ 2ω : (∃∞n ∈ ω)(f�n ∈ X)}. This is a Gδ subset of 2ω. For
K ⊆ 2ω let K̃ = {f�n : f ∈ K and n ∈ ω}.

Fact 1.2. (i) X ⊆ 2<ω is dense if and only if X̂ is dense Gδ in 2ω.
(ii) If X ⊆ 2<ω is dense open then X̂ is dense open in 2ω.
(iii) Let X ⊆ 2<ω be closed under initial segments. If , moreover , X

is nowhere dense in 2<ω then X̂ is closed nowhere dense in 2ω.
Moreover , X is an infinite closed nowhere dense subset of Q if and
only if X̂ is a non-empty closed nowhere dense set.

(iv) If Y is a dense Gδ subset of 2ω then there is a (non-unique) dense
X ⊆ 2<ω such that Y = X̂.

(v) If K is a closed nowhere dense subset of 2ω then N = K̃ is closed
nowhere dense in Q and K = N̂ .

Proof. All but (iv) are completely straightforward. To prove (iv) write
Y as the intersection of a decreasing sequence of Vn, n ∈ ω, where each Vn is
open dense. By zero-dimensionality of 2ω each Vn can be written as a disjoint
union of clopen sets, i.e. Vn =

⋃{〈si〉 : i ∈ In}, where An = {si : i ∈ In}
is a maximal antichain in 2<ω. Without loss of generality An+1 refines An.
Put X =

⋃{An : n ∈ ω}.
Recall the definitions and basic facts about the relevant cardinal invari-

ants of the continuum (see e.g. [BJ]). The symbol b denotes the unbounding
number of (ωω,≤∗) and d denotes the dominating number of (ωω,≤∗).

cov(M) is the minimal size of a family of meager subsets of 2ω that
cover 2ω, and add(M) stands for the additivity of the meager ideal, i.e. the
minimal size of a family of meager subsets of 2ω whose union is not meager.
non(M) is the minimal size of a non-meager subset of 2ω, and cof(M) is
the minimal size of a cofinal family of meager subsets of 2ω. It is easy to see
that add(M) and cof(M) are uncountable regular cardinals. The cardinal
invariants p, t and h are defined later on in the text.
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The following proposition sums up provable relationships between these
cardinal invariants:

Proposition 1.3. (i) p ≤ t ≤ h ≤ b ≤ d and b ≤ non(M),
(ii) (Piotrowski, Szymański) t ≤ add(M),

(iii) (Truss, Miller) add(M) = min{b, cov(M)},
(iv) (Fremlin) cof(M) = max{d,non(M)}.
The invariants h and add(M) as well as b and cov(M) are not prov-

ably comparable in ZFC. For proofs and additional information consult
[BJ] and [BS]; see also [Va]. The following reformulation of a result of
K. Keremedis ([Ke]) is the key to the study of the structure of the rationals.
For the sake of completeness and also since the published proofs ([Ke], [BJ])
are quite technical and (at least in our opinion) hard to follow, we present
a direct proof here.

Theorem 1.4 (Keremedis). (i) cov(M) is equal to the minimal size of a
family F of nowhere dense subsets of Q such that for every Y ∈ [Q]ω there
is an F ∈ F intersecting Y in an infinite set.

(ii) add(M) is equal to the minimal size of a family F of nowhere dense
subsets of Q such that for every D ∈ Dense(Q) there is an F ∈ F intersect-
ing D in an infinite set.

Proof. (i) For the purposes of this proof we denote by µ the minimal size
of a family F of nowhere dense subsets of Q such that for every Y ∈ [Q]ω

there is an F ∈ F intersecting Y in an infinite set. We divide the proof into
three parts:

(1) cov(M) ≤ µ,
(2) µ ≤ d,
(3) µ ≤ cov(M).

For (1) fix κ < cov(M) and let {Fα : α < κ} be a family of nowhere
dense subsets of 2<ω, closed under initial segments. As κ < cov(M), there
is an r ∈ 2ω \⋃{F̂α : α < κ}. Recall that F̂α was introduced in Section 1.
Put Y = {r�n : n ∈ ω}. Then Y ∩ Fα is finite for all α < κ.

In order to prove (2), fix three disjoint countable dense subsets Q, D1,
D2 of 2ω and a strictly (not mod fin) dominating family {fα : α < d}
in ωω consisting of functions with non-zero values. Enumerate each Di as
{din : n ∈ ω}. For α < d put

Oα =
⋃

n∈ω
B(d1

n, 1/fα(n)) ∩
⋃

n∈ω
B(d2

n, 1/fα(n)),

where B(x, 1/n) denotes the ball in 2ω of radius 1/n centred at x. Note that
each Oα is a dense open subset of 2ω; hence Nα = Q\Oα is a nowhere dense
subset of Q. Aiming toward a contradiction assume that there is Y ∈ [Q]ω
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intersecting each Nα in a finite set. Then, obviously, any infinite subset of Y
has the same property. Pick an infinite subset Y0 of Y converging to some
r ∈ 2ω. Then either r 6∈ D1 or r 6∈ D2, say r 6∈ D1. The set Y1 = Y0 ∪ {r}
is then a compact subset of 2ω disjoint from D1. Consider the distances of
points d1

n to Y1. Obviously all are positive, so there is an α < d such that
dist(d1

n, Y1) ≥ 1/fα(n) for all n ∈ ω. This, however, means that Y0 ⊆ Nα,
which is a contradiction.

For (3), fix κ < µ and let {Fα : α < κ} be a family of closed nowhere
dense subsets of 2ω. By Fact 1.2, {F̃α : α < κ} is then a family closed
nowhere dense subsets of Q = (2<ω, <). As κ < µ, there is a set Y ∈ [2<ω]ω

having finite intersection with all F̃α. To finish the proof it suffices to prove
the following.

Claim. There is a Y forming a decreasing chain in (2<ω,⊇).

If there were such Y , then the real r =
⋃{s : s ∈ Y } ∈ 2ω would not be

covered by
⋃{Fα : α < κ}.

We prove the Claim by contradiction. First notice that if Y is infinite
and does not contain an infinite chain it contains an infinite antichain. Re-
cursively construct an infinite sequence of antichains An in 2<ω so that:

(a) An intersects each F̃α in a finite set,
(b) An+1 refines An,
(c) for every s ∈ An there are infinitely many t ∈ An+1 such that s ⊂ t.
To start, let A0 be an arbitrary infinite antichain satisfying (a). Having

constructed An, look at Bs for s ∈ An. It is an open subset of (2<ω, <)
homeomorphic to Q, so by the hypothesis, there is an infinite antichain
As ⊆ Bs intersecting each F̃α in a finite set. Set

An+1 =
⋃
{As : s ∈ An}.

Note that, as F̃α is upward closed, F̃α ∩ An is finite for every n ∈ ω. Enu-
merate each An as {sni : i ∈ ω} and let, for α < κ,

gα(n) = min{k ∈ ω : (∀m ≥ k)(snm 6∈ F̃α)}.
As κ < µ ≤ d there is a function g which is not ≤∗-dominated by any gα,
α < κ. Now, recursively construct a decreasing sequence {tn : n ∈ ω} ⊆ 2<ω

so that:

(d) tn ∈ An,
(e) tn = sni for some i > g(n).

Now, for each α < κ there is an n ∈ ω such that tn 6∈ F̃α. However, as F̃α
is upward closed, this means that tm 6∈ F̃α for all m ≥ n. So Y = {tn : i ∈ ω}
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is a decreasing chain in 2<ω intersecting each F̃α in a finite set, which is a
contradiction and the proof of the Claim is finished.

(ii) Denote by µD the minimal size of a family F of nowhere dense subsets
of Q such that for every D ∈ Dense(Q) there is an F ∈ F intersecting D in
an infinite set.

To see that add(M) ≤ µD, fix κ < add(M) and let {Fα : α < κ} be a
family of nowhere dense subsets of Q. Fix also an enumeration {Wn : n ∈ ω}
of a basis for the topology on Q. By part (i) of the theorem and the fact that
κ<add(M)≤cov(M), for every Wn there is an infinite set Yn = {yni : i∈ω}
⊆Wn intersecting each Fα in a finite set. Put

gα(n) = min{k ∈ ω : (∀m ≥ k)(ynm 6∈ Fα)}.
As κ < add(M) ≤ b there is a function g dominating all gα, α < κ. Set
D = {ynm : n ∈ ω and m ≥ g(n)}. This is obviously a dense set as it
intersects each Wn in an infinite set. Moreover, as g dominates gα, {ynm :
m ≥ g(n)}∩Fα = ∅ for all but finitely many n; hence D∩Fα is finite, being
a finite union of finite sets.

For the other direction, fix κ < µD and let {Nα : α < κ} be a family of
closed nowhere dense subsets of 2ω. The sets Ñα are then nowhere dense in
Q = (2<ω, <), so there is a dense set D ⊆ 2<ω such that D ∩ Ñα is finite
for every α < κ. Then D̂ is a dense Gδ subset of 2ω disjoint from all Nα.
Therefore

⋃
α<κNα is a meager set, thus κ < add(M).

Now we establish results in some sense dual to Keremedis’ Theorem. The
equality cof(M) = cof(nwd) was already proven by Fremlin in [Fr]; we give
a new and simpler proof. First, we make a simple observation.

Fact 1.5. If X is a separable metric space without isolated points, then

cof(nwd(X)) = cof(nwd).

Indeed, if X is a separable metric space without isolated points and D is
a countable dense subset of X, it is a classical fact that D is homeomorphic
to Q. Now, it will suffice to show that given any closed F ∈ nwd(X), there
is N ∈ nwd(D) so that F ⊆ N. Write F =

⋂
n∈ω Un with Un open and

Un ⊃ Un+1 for each n ∈ ω. Choosing a maximal subset of D ∩ (Un \ Un+1)
such that any two of its elements are at distance at least 1/(n+ 1), for each
n ∈ ω, and taking as N the union of those subsets will do the job.

Theorem 1.6. (i) cof(M) = cof(nwd) and they are equal to the minimal
size of a family D of dense subsets of Q such that for every nowhere dense
I ⊆ Q there is D ∈ D disjoint from I.

(ii) non(M) is equal to the minimal size of a family D of dense subsets of
R such that for every nowhere dense I ⊆ R there is D ∈ D disjoint from I.
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We will prove both clauses of the theorem almost simultaneously using
the following lemmas. For the purpose of the proof let

µQ = min{|D| : D ⊆ Dense(Q) ∧ (∀I ∈ nwd)(∃D ∈ D)(I ∩D = ∅)},
µR = min{|D| : D ⊆ Dense(R) ∧ (∀I ∈ nwd(R))(∃D ∈ D)(I ∩D = ∅)}.
Lemma 1.7. Let M be a meager set , let κ < d, and for each α < κ, let

Dα ⊆ R be such that Dα∩M is dense in R. Then there exists N ⊆M which
is nowhere dense and such that Dα ∩N 6= ∅ for every α < κ.

Proof. Let Um, m ∈ ω, be a family of pairwise disjoint non-empty inter-
vals in R. Note that Dα ∩M is dense in Um for every α < κ and m ∈ ω.
Now, for every m ∈ ω, there are nowhere dense sets {Fmn : n ∈ ω} such that
M ∩ Um =

⋃
n∈ω F

m
n . Put Fn =

⋃
m∈ω F

m
n . The sets Fn are also nowhere

dense, and moreover Fn ∩Um 6= ∅ for every m,n ∈ ω. For each α < κ define
fα : ω → ω by

fα(n) = min{k ∈ ω : Dα ∩ Un ∩ Fk 6= ∅}+ 1.

As κ < d, there is a g : ω → ω such that g �∗ fα for every α < κ. Then
define

N =
⋃

n∈ω
{Fk ∩ Un : k < g(n)}.

Clearly N is nowhere dense and given α < κ, there is an n ∈ ω such that
fα(n) < g(n). Therefore Dα ∩ Un ∩ Ffα(n) 6= ∅, and so Dα ∩N 6= ∅.

Lemma 1.8. Let M ⊆ 2ω be a meager set. Then there exists a nowhere
dense N such that N∗ ⊇M , where N∗ = {f ∈ 2ω : (∃g ∈ N)(f =∗ g)}.

Proof. Let M =
⋃
n∈ω Fn, where Fn is a nowhere dense subset of 2ω. For

each n ∈ ω, consider the sequence sn starting with n zeros followed by one 1.
Then define F ′n by: t ∈ F ′n if and only if sn ⊆ t∧ (∃u ∈ 2n+1)(u_t�[n+ 1, ω)
∈ Fn). Then, clearly, F ′n is nowhere dense and if N =

⋃
n∈ω F

′
n, then N is

nowhere dense and M ⊆ N∗.
Lemma 1.9. cof(M) ≤ max{d, µR}.
Proof. Let {Dα : α < µR} be a family of dense subsets of R witnessing

the definition of µR, and let {fβ : β < d} be a ≤-dominating family. Without
loss of generality we can assume that all Dα are countable. Denote by B(x, ε)
the ball with centre at x and radius ε > 0. Fix an enumeration {dα,n : n ∈ ω}
of Dα for each α < µR. Then, for α < µR and β < d, define nowhere dense
sets Nα,β by

Nα,β = R \
⋃

n∈ω
B

(
dα,n,

1
fβ(n) + 1

)
.

We claim that the family of all N∗α,β is cofinal in M. Indeed, if M ⊆ R is a
meager set, then by Lemma 1.8, there exists a nowhere dense subset N such
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that M ⊆ N∗. Thus it suffices to show that N ⊆ Nα,β for some α < µR and
some β < d, as we will then have N∗ ⊆ N∗α,β .

As N is nowhere dense, there is an α < µR such that Dα∩N = ∅. Define
g : ω → ω by

g(n) = min
{
k ∈ ω : B

(
dα,n,

1
k + 1

)
∩N = ∅

}
.

As {fβ : β < d} is dominating, there is β < d such that (∀n ∈ ω)(g(n) ≤
fβ(n)). Thus R \Nα,β ⊆ R \N.

We can now prove the theorem:

Proof of Theorem 1.6. First we prove that d ≤ µQ. Fix κ < d. Let {Dα :
α < κ} be a family of dense subsets of Q. Take M = Q and apply Lemma 1.7
with this family of dense subsets to infer the existence of a nowhere dense
N ⊆ Q such that Dα ∩N 6= ∅ for each α < κ. Therefore κ < µQ.

It is trivial that cof(nwd) ≥ µQ. To see that cof(nwd) ≤ µQ proceed as
follows. Let {Dα : α < µQ} be a family of dense subsets of Q witnessing
the definition of µQ, each Dα enumerated as {dα,n : n ∈ ω}, and consider a
≤-dominating family {gβ : β < d}; then define

Nα,β = Q \
⋃

n∈ω
B

(
dα,n,

1
gβ(n) + 1

)
.

This is a nowhere dense subset of Q and since we already know that d ≤ µQ
we have µQ such subsets. Moreover, if N is any nowhere dense subset of Q,
there is some α < µQ such that Dα ∩N = ∅. Then define g : ω → ω by

g(n) = min
{
k ∈ ω : B

(
dα,n,

1
k + 1

)
∩N = ∅

}
.

There must exist β < d such that g ≤ gβ and it follows that N ⊆ Nα,β .
Hence, {Nα,β : α < µQ ∧ β < d} is a cofinal family in nwd.

Now, by Fact 1.5 together with Lemma 1.8, it follows that cof(M) ≤
cof(nwd). Likewise, Lemma 1.9 shows that cof(M) ≤ µQ since trivially
µR ≤ µQ. This completes the proof of the first part of the theorem.

To prove the second part, first notice that

min{d,non(M)} ≤ µR.
This follows from Lemma 1.7. Indeed, assume κ < min{d,non(M)} and let
{Dα : α < κ} be a family of countable dense subsets of R. Then M =⋃
α<κDα is meager and by Lemma 1.7 there exists a nowhere dense N ⊆M

such that N ∩Dα 6= ∅ for every α < κ. Thus κ < µR.
Secondly, µR ≤ non(M). For suppose κ < µR and consider X ⊆ R

of cardinality κ. Define Dx = x + Q. The family {Dx : x ∈ X} cannot
witness the definition of µR, therefore there must exist F ∈ nwd(R) such
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that F ∩Dx 6= ∅ for each x ∈ X. Notice that F +Q ⊇ X. Thus X is meager,
and hence κ < non(M).

To finish the proof, consider two cases. If non(M) ≤ d, then it follows
that non(M) ≤ µR ≤ non(M). If it is not the case that non(M) ≤ d, then
part (iii) of Proposition 1.3 implies that cof(M) = non(M) and Lemma 1.9
now reads non(M) ≤ max{d,µR}, which together with µR ≤ non(M) shows
again that non(M) = µR.

2. Dense(Q) and P(ω)/fin seem similar. In this section we point out
the similarities between the structures P(ω)/fin and Dense(Q). In particular
we show that some of their natural cardinal characteristics have the same
value. First recall the following proposition mentioned in the introduction.
For the rest of the paper {Un : n ∈ ω} denotes a fixed enumeration of a
basis for the topology on Q.

Proposition 2.1. The separative modification of the order (Dense(Q),
⊆) is the pre-order (Dense(Q),⊆nwd).

Proof. Note that C,D ∈ Dense(Q) are incompatible in (Dense(Q),⊆) if
and only if there is n ∈ ω such that C ∩D∩Un = ∅. It suffices to show that
C ⊆nwd D if and only if for every X ∈ Dense(Q), X ∩C ∈ Dense(Q) implies
that X ∩D ∈ Dense(Q), as the condition on the right hand side defines the
separative modification. Let N = C \D be nowhere dense in Q. If X ∩C is
dense then X ∩D ⊇ (X ∩C) \ (X ∩N) is also dense. On the other hand, if
C \D is not nowhere dense then there is n ∈ ω such that (C \D) ∩ Un is
dense in Un. Put X = (Un ∩ (C \D)) ∪ (C \ Un). Then X is dense, X ⊆ C
and X is incompatible to D.

Proposition 2.2. The pre-order (Dense(Q),⊆nwd) has the following
properties:

(i) It is homogeneous, i.e. for every D ∈ Dense(Q), Dense(Q)�D is
isomorphic to Dense(Q).

(ii) (Dense(Q),⊆nwd) is σ-closed.
(iii) (Dense(Q),⊆nwd) satisfies c+-c.c and fails c-cc.

Proof. (i) It follows from Sierpiński’s characterization that D is hom-
eomorphic to Q for every D ∈ Dense(Q). Moreover, every nowhere dense
subset of D is nowhere dense in Q.

For (ii) let 〈Di : i ∈ ω〉 be a sequence of elements of Dense(Q) such that
Di+1 ⊆nwd Di for every i ∈ ω. Recursively pick dn ∈ Un ∩

⋂
i≤nDi and let

D = {di : i ∈ ω}. Then D ∈ Dense(Q) and D ⊆∗ Di for every i ∈ ω.
To prove (iii), for every s ∈ 2<ω choose a set Ds ∈ Dense(Q) so that

D∅ = Q and Ds is a disjoint union of Dsa0 and Dsa1. Then use (ii) to
find for every f ∈ 2ω a set Df ∈ Dense(Q) such that Df ⊆∗ Df�n for every
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n ∈ ω. Let A = {Df : f ∈ 2ω}. Obviously, a family of incompatible elements
cannot have cardinality larger than c = |Dense(Q)|.

Corollary 2.3. The partial order (Dense(Q),⊆nwd) is equivalent , as a
forcing notion, to (Dense(X),⊆nwd) for any separable metric space without
isolated points.

Proof. Every separable metric space without isolated points has ex-
actly c countable dense sets. There is therefore a maximal antichain A in
(Dense(X),⊆nwd) of size c consisting of countable dense subsets of X. The
set H = {C ∈ Dense(X) : (∃D ∈ A)(C ⊆ D)} is a dense set in the pre-order
(Dense(X),⊆nwd) and by Proposition 2.2 it is isomorphic to a dense subset
of the pre-order (Dense(Q),⊆nwd).

Given a partial (pre-)order P without minimal elements one can be in-
terested in a “measure” of closedness of P. The cardinal characteristic t(P)
is defined as the minimal κ such that P is not κ-closed, i.e. there is a de-
creasing chain in P of size κ without a lower bound in P. A related cardinal
invariant is p(P) which denotes the minimal size of a downward directed sub-
set of P without a lower bound in P. The invariant t(P) is always a regular
infinite cardinal. For the partial order ([ω]ω,⊆∗) these cardinal invariants
are usually denoted simply by t and p.

It is an open problem whether t and p can be consistently different. As
far as we know there is even no known example of a σ-closed separative
homogeneous partial order P with t(P) and p(P) distinct.

J. Cichoń [Ci] studied the (non-separative) partial order (Dense(Q),⊆∗)
and showed that t = t(Dense(Q),⊆∗) and p = p(Dense(Q),⊆∗). We will
show that the same holds for the separative modification (Dense(Q),⊆nwd).
We denote by tQ the cardinal invariant t(Dense(Q),⊆nwd) and, similarly,
pQ = p(Dense(Q),⊆nwd).

There is a natural embedding φ : [ω]ω → Dense(Q), due to Sierpiński,
defined by φ(X) = {s ∈ 2<ω : |s| ∈ X}. This embedding preserves ordering
and orthogonality but it is not a regular embedding since it does not preserve
maximality of antichains. It will turn out useful nonetheless.

Theorem 2.4. t = tQ and p = pQ.

Proof. The basic fact that pQ ≤ tQ ≤ add(M) follows directly from
Theorem 3.2. We apologize for committing the crime of forward referencing.

First we prove that tQ ≤ t. Fix κ < tQ and let {Tα : α < κ} be a ⊆∗-
decreasing chain in [ω]ω. Then {φ(Tα) : α < κ} form a ⊆∗-decreasing chain
in Dense(Q). As κ < tQ, there is a D ∈ Dense(Q) such that D ⊆nwd φ(Tα)
for all α < κ. Treat the set D as the rationals, and note that φ(Tα) ∩ D
contains a dense open subset of D for every α < κ. As κ < tQ ≤ add(M)
an application of Theorem 1.4(ii) produces a dense set D′ ⊆ D such that
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D′ ⊆∗ φ(Tα). Put T = {|s| : s ∈ D′}. Then T is an infinite subset of ω and
T ⊆∗ Tα for all α < κ.

To prove that t ≤ tQ fix κ < t and let {Dα : α < κ} be a ⊆nwd-decreasing
chain in Dense(Q). As, by Proposition 1.3(ii), κ < t ≤ add(M), there is a
dense Gδ set Y ⊆ 2ω such that

(1) Y ⊆ D̂α for all α < κ,
(2) Y ∩ N̂α,β = ∅, where Nα,β = Dα \Dβ , for all β < α < κ.

For f ∈ Y and α < κ let Afα = {k ∈ ω : f�k ∈ Dα}. Note that the set Afα
is infinite for every f ∈ Y and α < κ. Also, for every f in Y , the family
{Afα : α < κ} is a ⊆∗-decreasing chain in [ω]ω. As κ < t, there is a set Lf
which is a ⊆∗-lower bound for {Afα : α < κ}. Let C = {cn : n ∈ ω} ⊆ 2ω be
a countable dense subset of Y and put En = {cn�m : m ∈ Lcn}. For α < κ
let

gα(n) = min{k ∈ ω : (∀m > k)(cn�m ∈ En ⇒ cn�m ∈ Dα)}.
As t ≤ b there is a function g dominating all gα, α < κ. Put

D =
⋃

n∈ω
{cn�m ∈ En : m ≥ g(n)}.

Since C is a dense subset of 2ω, D is in Dense(Q). It is clear that D ⊆∗ Dα

for every α < κ. So, we have proved that κ < tQ.
The proof that p = pQ is analogous, only simpler.

Another cardinal invariant studied by J. Cichoń in [Ci] is defined as
follows: Given a family S ⊆ [ω]ω we say that a function ψ : ω → Q is
a dense embedding of S if ψ is one-to-one and ψ[S] ∈ Dense(Q) for every
S ∈ S. The cardinal invariant deq denotes the minimal cardinality of a
family S ⊆ [ω]ω for which there is no dense embedding. Recall that the
reaping number r denotes the minimal size of a family R ⊆ [ω]ω such that
for every A ∈ [ω]ω there is an R ∈ R such that R ⊆∗ A or R ∩ A is finite.
Cichoń showed that deq ≤ r and found some lower bounds for deq. The
next proposition shows that the two numbers actually coincide. Let A,B be
infinite subsets of ω. We say that A splits B if both A ∩ B and B \ A are
infinite.

Proposition 2.5. deq = r.

Proof. Let R ⊆ [ω]ω be a reaping family of size r. Aiming for contradic-
tion suppose that ψ is a dense embedding of R. Split Q into two disjoint
open sets U, V . Let A = ψ−1[U ]. It is easily seen that A splits every element
of R, which contradicts the assumption that R was a reaping family.

For the other direction, let S ⊆ [ω]ω be of size strictly less than r. We
need to show that there is a dense embedding of S. Rather then constructing
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an embedding we show that there is a topology on ω homeomorphic to Q in
which all sets in S are dense. Recursively construct sets In, n ∈ ω, so that

(1) I0 splits all elements of S,
(2) In+1 splits all infinite intersections of finitely many elements of the

family S ∪ {Im : m ≤ n} ∪ {ω \ Im : m ≤ n},
(3) for every pair i 6= j ∈ ω there is an n ∈ ω such that |In ∩ {i, j}| = 1,

i.e. In separates i and j.

To do this is easy: existence of In+1 follows directly from the fact that the
family of all intersections of finitely many elements of the family S ∪ {Im :
m ≤ n} has size strictly less than r. Note that declaring the family {In :
n ∈ ω} to be a clopen subbase defines a Hausdorff, regular, zero-dimensional
second countable topology on ω in which all elements of S are dense.

A family I ⊆ [ω]ω is independent provided that
⋂F \⋃G 6= ∅ for any

non-empty and disjoint F ,G ∈ [I]<ω. Similarly a family I ⊆ Dense(Q) is
said to be dense-independent if

⋂F \⋃G ∈ Dense(Q) for any disjoint finite
subsets F ,G of I. The cardinal invariant i denotes the minimal cardinality
of a maximal independent family. Similarly, iQ denotes the minimal cardi-
nality of a maximal dense-independent family. Next we show that these two
cardinal numbers actually coincide.

Proposition 2.6. i = iQ.

Proof. To prove that i ≤ iQ, identify Q with the set {q ∈ 2ω : (∀∞i ∈ ω)
(q(i) = 0)} with the topology inherited from 2ω. Let I be a maximal dense-
independent family of size iQ. For n ∈ ω let In = {q ∈ Q : q(n) = 1}. Note
that the sets In and their complements form a subbase for the topology
on Q. Moreover, the family I ′ = I ∪ {In : n ∈ ω} is an independent family
of subsets of Q. We will show that it is in fact maximal. Aiming for a con-
tradiction suppose that I is a subset of Q such that I ′ ∪{I} is independent.
Then I ∈ Dense(Q) because {I} ∪ {In : n ∈ ω} is an independent family
and the Boolean combinations of the elements of {In : n ∈ ω} form a base
for the topology on Q. Similar reasoning shows that the family I ∪ {I} is
then dense-independent, contradicting the maximality of I. As |I| = |I ′| we
are done.

For the other direction let I be a maximal independent family. Let {Jn :
n ∈ ω} be a sequence of distinct elements of I. By changing them by a finite
set if necessary, we can assume that they separate points, i.e. for every pair
i 6= j ∈ ω there is an n ∈ ω such that |Jn∩{i, j}| = 1. The sets {Jn : n ∈ ω}
then form a clopen subbase of a Hausdorff, regular, zero-dimensional second
countable topology on ω in which all elements of I \ {Jn : n ∈ ω} are dense.
Identify Q with ω equipped with this topology. It is again routine to verify
that the family I \ {Jn : n ∈ ω} is a maximal dense-independent family.
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3. Dense(Q) as a forcing notion: P(ω)/fin and Dense(Q) are not
quite the same. A basic fact about P(ω)/fin is that the partial order
([ω]ω,⊆∗) is not isomorphic to its product ([ω]ω,⊆∗)× ([ω]ω,⊆∗), as βω \ω
is not homeomorphic to βω \ ω× βω \ω. The situation is quite different for
Dense(Q).

Proposition 3.1. The partial order (Dense(Q),⊆nwd) is isomorphic to
(Dense(Q),⊆nwd)ω.

Proof. Partition Q into pairwise disjoint non-empty open sets Vn, n ∈ ω.
Note that (Dense(Vn),⊆nwd) is isomorphic to (Dense(Q),⊆nwd). Define

Ψ : Dense(Q)→
∏
{Dense(Vn) : n ∈ ω}

by Ψ(D) = 〈D ∩ Vn : n ∈ ω〉. It is easily seen that this map induces the
desired isomorphism.

The distributivity number of a separative partial pre-order P without
minimal elements, denoted by h(P), is defined as the minimal size of a family
of maximal antichains in P without common refinement. For P homogeneous,
h(P) is equal to the minimal size of a collection of dense downward closed
subsets of P whose intersection is empty. The number h(P) is equal to h(B),
where B is the complete Boolean algebra determined by P. Note that t(P) ≤
h(P) for every separative partial pre-order P. Again, h([ω]ω,⊆∗) is denoted
simply by h and we denote h(Dense(Q),⊆nwd) by hQ. It was shown in [SS]
that the distributivity number of the free product P(ω)/fin ⊗ P(ω)/fin is
consistently strictly smaller than h. By Proposition 3.1 this does not happen
in the case of Dense(Q).

The following theorem shows that unlike in the case of P(ω)/fin the
properties of the partial order Dense(Q) depend on the topological properties
of the real line.

Theorem 3.2. hQ ≤ add(M).

Proof. Let {Vn : n ∈ ω} be an enumeration of all non-empty clopen
subsets of the Cantor set 2ω. For each n ∈ ω fix a family {Kn

α : α < add(M)}
of meager subsets of Vn such that

⋃{Kn
α : α < add(M)} is not meager in Vn.

Put Mα =
⋃{Kn

β : β < α and n ∈ ω}. Note that each Mα is meager in 2ω

and that they form an increasing chain. For α < add(M) put

Hα = {D ∈ Dense(Q) : D̂ ∩Mα is nowhere dense in 2ω}.
Note that:

(a) Hα is downward closed in (Dense(Q),⊆nwd), i.e. if D ∈ Hα and
C ⊆nwd D then C ∈ Hα.

This follows directly from Fact 1.2.
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(b) Hα is dense in Dense(Q).

To see this, letD∈Dense(Q). As Mα is meager, there is a dense Gδ set Y ⊆D̂
disjoint from Mα. Write Y as the intersection of a decreasing sequence of
Wn, n ∈ ω, where each Wn is open dense in 2ω. For every n ∈ ω let An be
a maximal antichain in D such that 〈s〉 ⊆ Wn for every s ∈ An and An+1

refines An. Note that
⋃{〈s〉 : s ∈ An} ⊆ Wn. Let C =

⋃{An : n ∈ ω}.
Obviously, C ⊆ D is dense. It is also easy to see that Ĉ ⊆ Y .

To finish the proof it suffices to check that:

(c)
⋂{Hα : α < add(M)} = ∅.

To that end take D ∈ Dense(Q). As
⋃{Kn

α : α < add(M)} is not meager in
Vn and D̂ is dense Gδ in 2ω, for every n ∈ ω there is an αn < add(M) such
that D̂∩Vn∩Kn

αn 6= ∅. Pick cn ∈ D̂∩Vn∩Kn
αn . The set {cn : n ∈ ω} is dense

in 2ω. As add(M) is a regular uncountable cardinal, there is an α < add(M)
such that αn < α for every n ∈ ω. Then, however, {cn : n ∈ ω} ⊆ Mα ∩ D̂,
which means that D 6∈ Hα.

Let us remark that the equality in 3.2 is not provable (see 3.5(i)).

Theorem 3.3 (Base tree). There is a family T ⊆ Dense(Q) such that

(1) T is a tree, ordered by ⊃∗, of height hQ,
(2) each level of T is a maximal antichain in Dense(Q),
(3) each D ∈ T has c immediate successors,
(4) for every D ∈ Dense(Q) there is a C ∈ T such that C ⊆ D.

Proof. It follows directly from Theorem 1.13 of [BS] that there is a family
T ′ ⊆ Dense(Q) such that

(1) T ′ is a dense subset of Dense(Q),
(2) T ′ is a tree (ordered by ⊃nwd) of height hQ,
(3) each level of T ′ is a maximal antichain in Dense(Q),
(4) each D ∈ T ′ has c immediate successors.

Enumerate all nowhere dense subsets of Q as {Mξ : ξ < c}. We will construct
a tree T by induction on levels. For α = β+ 1 let A be a maximal antichain
in Dense(Q) refining both Tβ and T ′α such that for every D ∈ Tβ there
are c elements of A below D. For every D ∈ Tβ enumerate all immediate
successors of D (in A) as {CDξ : ξ < c} and let Tα = {CDξ \Mξ : D ∈ Tβ
and ξ < c}.

For α < hQ limit, let A be a maximal antichain in Dense(Q) refining all
Tβ , β < α, and let H be the downward closure of A. For every D ∈ H and
every β < α there is a unique Cβ ∈ Tβ such that Nβ = D \ Cβ is nowhere
dense in D. As D is homeomorphic to Q and as α < hQ ≤ add(M), by
Theorem 1.4, there is a dense subset CD ⊆ D such that CD ∩ Nβ is finite,
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or equivalently, CD ⊆∗ Cβ for every β < α. Let Tα be a maximal antichain
contained in {CD : D ∈ H}.

The tree T =
⋃{Tα : α < hQ} is dense as, by construction, Tα+1 refines

T ′α and T is ordered by ⊇∗. To see that for every D ∈ Dense(Q) there is a
C ∈ T such that C ⊆ D, fix D. There is an E in T such that E ⊂nwd D.
There is a ξ < c such that Mξ = E \D. Then C = CEξ ⊆ D.

Cichoń [Ci] also investigated a cardinal invariant sQ which is defined as
the minimal size of a family S ⊆ Dense(Q) such that for every D ∈ Dense(Q)
there is an S ∈ S such that both S ∩ D and D \ S are dense. He showed
that sQ is less than or equal to the cardinal invariant ℵ0 − s introduced by
Malykhin and studied in [KW]. The cardinal invariant ℵ0 − s is defined as
the minimal cardinality of a family S ⊆ [ω]ω such that for any countable
B ⊆ [ω]ω there is a set S ∈ S which splits all elements of B. Obviously,
s ≤ ℵ0 − s and also ℵ0 − s ≤ d. It is an open problem whether s < ℵ0 − s is
consistent.

Proposition 3.4. hQ ≤ sQ.

Proof. The proof is quite analogous to the proof that h ≤ s. Fix a family
S ⊆ Dense(Q) such that for every D ∈ Dense(Q) there is an S ∈ S such
that both S ∩D and D \ S are dense. For every S ∈ S let

HS = {D ∈ Dense(Q) : D ∩ S ∈ nwd or D \ S ∈ nwd}.
This works.

Theorem 3.5. The following are all relatively consistent with ZFC:

(i) hQ < add(M),
(ii) hQ < h,
(iii) t < hQ.

Proof. (i) holds in the Hechler model, i.e. the model obtained from a
model of CH by forcing with finite support iteration of length ω2 of Hechler
forcing. As Hechler forcing adds both a Cohen real and a dominating real,
add(M) = ω2 in the Hechler model. On the other hand, Hechler forcing
preserves splitting families; hence s = ω1 in the Hechler model (see e.g.
[BJ]). In [KW] it is shown that if s < cov(M) then ℵ0 − s = s. Using
Cichoń’s result we conclude that sQ = ω1 and by Proposition 3.4, hQ = ω1.

(ii) holds in the iterated Mathias model. It was probably first observed in
[Do] that h = c = ω2 in the Mathias model. The fact that add(M) = ω1 in
the Mathias model (see e.g. [BJ]) follows from the fact that Mathias forcing
has the Laver property and hence in the Mathias model there are no reals
Cohen generic over the ground model. By Theorem 3.2, the result follows.

(iii) holds for example in a model obtained from a model of CH by
forcing with the free product B⊗Fn(ω1, 2, ω1), where B denotes the Solovay–
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Tennenbaum algebra for forcing Martin’s Axiom and failure of CH. The
argument is similar to the one in [BPS]).

The reaping number r was mentioned before Proposition 2.5. Next we
deal with its analogue in the context of Dense(Q). Call a family R ⊆
Dense(Q) dense-reaping if no dense set D splits all elements of R into dense
pieces, i.e. for every D ∈ Dense(Q) there is an R ∈ R such that R \ D 6∈
Dense(Q) or R ∩ D 6∈ Dense(Q), or equivalently, for every D ∈ Dense(Q)
there are R ∈ R and U ⊆ Q open such that D∩R∩U = ∅ or R∩U ⊆ D. The
cardinal invariant rQ denotes the minimal size of a dense-reaping family. In
[MHD] it is shown that ♦(rQ) implies i = ω1.

Theorem 3.6. max{r, cof(M)} ≤ rQ ≤ i.

Proof. The fact that rQ ≤ i follows directly from Proposition 2.6 and the
simple observation that rQ ≤ iQ.

To see that r ≤ rQ fix κ < r and a family R = {Dα : α < κ} ⊆ Dense(Q).
Consider R′ = {Dα ∩Un : α < κ and n ∈ ω}. It has also size κ and as κ < r
it is not a reaping family; hence there is a set D ⊆ Q which splits all elements
of R′ into infinite pieces. It follows that D is dense and splits each Dα into
two dense sets and hence κ < rQ.

We will use Theorem 1.6 and prove that κ < µQ ⇒ κ < rQ. To that end,
assume κ < µQ and consider a base {Un : n ∈ ω} for the topology of Q
and a family R = {Rα : α < κ} of dense subsets of Q. Build sequences of
disjoint nwd subsets F 0

n , F
1
n ⊆ Q, n ∈ ω, such that

(1) (∀n ∈ ω)(F 0
n ∪ F 1

n ⊆ Un),
(2) (∀m,n ∈ ω)(∀i, j ∈ {0, 1})(m 6= n⇒ F im ∩ F jn = ∅).
By induction, assume F ik have been chosen for i ∈ {0, 1} and k < n.

Then F =
⋃
k<n(F 0

k ∪F 1
k ) is nowhere dense and hence Un \F is non-empty;

furthermore, it is homeomorphic to Q. Thus, since κ < µQ, there is some
F 0
n ⊆ Un \F such that F 0

n ∩Rα 6= ∅ for every α < κ, and repeating the same
argument find F 1

n ⊆ Un \ (F ∪ F 0
n) such that also F 1

n ∩ Rα 6= ∅ for every
α < κ. This completes the construction of the sequences.

Now let D =
⋃
n∈ω F

0
n . By construction D is dense and D does not get

reaped by the family R. Therefore κ < rQ.

Note that it follows that sQ ≤ rQ while r and s are not provably compa-
rable.

Theorem 3.7. It is relatively consistent with ZFC that r < rQ.

Proof. By Theorem 3.6 this holds in any model where r < d; in particu-
lar, it holds in the iterated Miller model (see [Mi] or [Bl]).

It is worth noting that Theorem 3.6 gives cof(M) ≤ i, which improves
the best known result placing i among other cardinal invariants: Shelah’s
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result that d ≤ i (see [Va]). The analogous claim for measure does not hold.

Theorem 3.8. It is consistent with ZFC that i < non(N ).

Proof. Start with a model of non(N ) > ω1. It is shown in [BJ, Lemma
6.5.27 and Theorem 6.5.31] that a finite support iteration of σ-centred forc-
ings does not decrease non(N ), thus all we need to do is find a forcing
iteration of σ-centred forcings which forces i to be small.

If I is a countable independent family, find a maximal filter F with the
property

(∀F ∈ F)(∀H ∈ [I]<ℵ0)(∀ξ : H → 2)(|F ∩ Iξ| = ℵ0),

where Iξ =
⋂{I : ξ(I) = 1} ∩⋂{ω \ I : ξ(I) = 0}. Let

MF = {〈s, F 〉 : s ∈ [ω]<ℵ0 ∧ F ∈ F}
with the ordering 〈s, F 〉 ≤ 〈t, F ′〉 if and only if s ⊆ t ∪ F ′ ∧ F ⊆ F ′.
This forcing is sometimes called the Mathias forcing with respect to F . The
MF -generic real I will be a subset of ω which can be added to the countable
family I without affecting its independence. It is also clear that MF is a
σ-centred forcing.

Consequently, all we need is to iterate the forcings MF to produce a
maximal independent family on ω. So, let P = 〈Pα; Q̇α : α < ω1〉 be the finite
support iteration inductively defined as follows: Assuming Pα is defined and
that İα is a Pα-name for a countable independent family on ω, let Gα any
Pα-generic filter over V . In V [Gα], take a maximal filter F satisfying the
above mentioned property with Iα in place of I. Then let Qα be the forcing
MF , as defined in V [Gα]. Thus Pα+1 is defined; İα+1 will be a Pα+1-name
for Iα augmented by the generic subset of ω coded by the Qα-generic filter
over V [Gα], and for α limit, Iα =

⋃
β<α Iβ .

Let G be P-generic over the ground model, V , and let Iα be the αth
generic real added with this iteration. A simple reflection argument in V [G]
shows that I = {Iα : α < ω1} is a maximal independent family. Thus
V [G] |= i = ℵ1.

The cardinal invariant rQ is a Borel invariant dual to sQ. However, from
the point of view of the partial order Dense(Q), a more natural notion is the
following: Call a family R ⊆ Dense(Q) strongly dense-reaping if for every
D ∈ Dense(Q) there is an R ∈ R such that R\D is nowhere dense or R∩D
is nowhere dense.

Theorem 3.9. Every strongly dense-reaping family has size c.

Proof. Let R ⊆ Dense(Q) be of size less than c. We will show that R
is not strongly dense-reaping. To that end split Q into two open sets U, V ,
let {Aα : α < c} be an almost disjoint family of dense subsets of U and let
{Bα : α < c} be an almost disjoint family of dense subsets of V . As |R| < c,
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there are α, β < c such that R ∩ U 6⊆nwd Aα and R ∩ V 6⊆nwd Bα for every
R ∈ R. Set D = Aα ∪ (V \Bβ). This is clearly a dense subset of Q which is
not strongly reaped by any element of R.

Next, we mention some elementary properties of the generic extension
obtained by forcing with Dense(Q). Let U be a Dense(Q)-generic filter
over V . In V [U ], c = hVQ and P(κ) = P(κ)V for all κ < hQ; in particular
Dense(Q) does not add any new subsets of Q. This follows from homogeneity
of Dense(Q) and standard reformulation of distributivity. Just as P(ω)/fin
generically adds a selective ultrafilter on ω, the forcing Dense(Q) adds a free
filter on Q. Recall that a free filter on a countable set is a simple Pκ-filter
if it is generated by a ⊆∗-decreasing chain of length κ. A filter F on ω is
a Q-filter if for every partition 〈In : n ∈ ω〉 of ω into finite sets there is an
X ∈ F such that |X ∩ In| ≤ 1 for every n ∈ ω.

Proposition 3.10. In V [U ], U is a simple Pc-filter on Q which is also
a Q-filter. In particular , it is non-measurable and does not have the Baire
property and has the following selection property : Given a partition 〈In :
n ∈ ω〉 of Q into nowhere dense sets there is an X ∈ U such that |X∩In| ≤ 1
for every n ∈ ω.

Proof. The generic filter U introduces a branch through the base tree
constructed in Theorem 3.3. Condition (1) of the theorem guarantees that
the branch forms a ⊆∗-decreasing chain of length hQ. As no new subsets of
Q are added, genericity of U and condition (4) of the theorem ensure that
this branch forms a base of U . As hVQ = c in V [U ], the proof that U is a
simple Pc-filter is finished.

Next we prove that U has the selection property and in particular is a
Q-filter. As Dense(Q) does not add any new reals, all that needs to be shown
is that given a partition 〈In : n ∈ ω〉 of Q into nowhere dense sets, the set
D = {D ∈ Dense(Q) : (∀n ∈ ω)(|D ∩ In| ≤ 1)} is dense in the partial order
Dense(Q). To see this fix C ∈ Dense(Q) and recursively choose qn ∈ Un ∩C
so that no two distinct qn are in the same part of the partition. It is easily
verified that D = {qn : n ∈ ω} ⊆ C is an element of D.

We conclude this section with the list of problems which are still open.

Questions 3.11. Are the following relatively consistent with ZFC?

(1) h < hQ,
(2) s < sQ,
(3) sQ < s,
(4) hQ < sQ,
(5) rQ < i,
(6) max{cof(M), r} < rQ.
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4. The algebra P(Q)/nwd and its relation to Dense(Q). The Bool-
ean algebra P(Q)/nwd has been recently considered in the literature (see for
example [St] and [FS]) and fits into the extensive study of analytic quotients
by I. Farah [Fa]. We will show that it is closely related to both Dense(Q)
and the Cohen forcing. Cohen forcing C will be viewed as the partial order
(2<ω,⊇). The algebra P(Q)/nwd is equivalent, as a forcing notion, to the
pre-order (P(Q) \nwd,⊆nwd). Just like Dense(Q), the algebra P(Q)/nwd is
homogeneous and has c+-cc but not c-cc. Unlike Dense(Q), P(Q)/nwd does
not contain a dense σ-closed part; in fact, it adds new reals. We will show
that all reals added by P(Q)/nwd are Cohen over the ground model.

Theorem 4.1. The forcing P(Q)/nwd is proper and adds only Cohen
reals.

Proof. To see that P(Q)/nwd is proper, fix a countable elementary sub-
model M of some large enough H(θ) and let C ∈ P(Q)/nwd ∩M . Without
loss of generality we can assume that M is the union of an increasing ∈-chain
of elementary submodels Mn. Fix an enumeration {An : n ∈ ω} of all max-
imal antichains in M such that An ∈Mn. Recursively construct a sequence
{Dn : n ∈ ω} in P(Q)\ nwd so that

(1) D0 = C,
(2) Dn+1 is a dense subset of Dn,
(3) Dn ∈Mn,
(4) {A ∩Dn+1 : A ∈ An ∩Mn and A ∩Dn+1 is somewhere dense} is a

maximal pairwise disjoint family of subsets of Dn which differ from
an open set by a nowhere dense set.

Having constructed Dn, construct Dn+1 as follows: Enumerate (in Mn+1)
An ∩Mn as {Ai : i ∈ ω}. Let

Dn+1 =
⋃

k∈ω
Bk,

where

B0 = int(Dn ∩ A0) ∩ (Dn ∩ A0),

Bk = int(Dn ∩ Ak) ∩Dn ∩ Ak \
⋃

j<k

Bj .

Note that Dn+1 ∈ Mn+1, as its definition only uses elements of Mn+1. As
Dn and An are both elements of Mn and since Mn |= “An is a maximal
antichain”, for every Un ⊆ Dn there is an A ∈ An∩Mn such that Dn∩A∩Un
is not nowhere dense in Un. So Dn+1 is a dense subset of Dn and {A∩Dn+1 :
A ∈ An ∩Mn and A ∩ Dn+1 is somewhere dense} is a maximal pairwise
disjoint family of subsets of Dn which differ from an open set (in Dn+1) by
a nowhere dense set.
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Having constructed the sequence {Dn : n ∈ ω} use Proposition 2.2(ii)
to find a set D dense in C which is ⊆∗-included in all Dn. The fact that D
(viewed as a condition in P(Q)/nwd) is (C,M)-generic follows from condi-
tion (4). Much more is actually true. Not only are all antichains An∩M pre-
dense below D but also any maximal antichain of elements of

⋃
n∈ωAn∩M

is “really” a maximal antichain below D, which translates directly into the
fact that every real in the extension is contained in a smaller extension by
Cohen forcing.

One of the cardinal invariants of the Boolean algebra P(Q)/nwd was
considered by J. Steprāns. In [St] he showed that it is relatively consistent
with ZFC that there is an uncountable maximal antichain in P(Q)/nwd
of cardinality strictly less than b. Other cardinal invariants (p(P(Q)/nwd),
t(P(Q)/nwd), h(P(Q)/nwd) and s(P(Q)/nwd)) are equal to ω, due to the
fact that the Cohen algebra regularly embeds into P(Q)/nwd. On the other
hand, the cardinal invariants r(P(Q)/nwd) and i(P(Q)/nwd) are of interest
and are, in fact, equal to their Dense(Q) analogues. In some sense this
justifies calling rQ a reaping number.

Proposition 4.2. r(P(Q)/nwd) = rQ and i(P(Q)/nwd) = iQ.

Proof. To see that r(P(Q)/nwd) ≤ rQ note that if R is a dense-reaping
family then {R ∩ Un : R ∈ R and n ∈ ω} is a reaping family in P(Q)/nwd,
for if X ∈ P(Q) \ nwd is not dense, then there is an n ∈ ω such that
Un ∩X = ∅, and if it is dense then, as R is dense-reaping, there are R ∈ R
and n ∈ ω such that X ∩R ∩ Un = ∅ or R ∩ Un ⊆ D.

For the other direction, fix κ < rQ and a family R ⊆ P(Q) \ nwd. For
R ∈ R put DR = R ∪ (Q \ R). As κ < rQ, the family {DR : R ∈ R} is not
dense-reaping; hence there is a D ∈ Dense(Q) which splits all DR into two
dense sets and in particular it splits each R into two somewhere dense sets.
So R is not reaping in P(Q)/nwd and therefore κ < r(P(Q)/nwd).

The proof of i(P(Q)/nwd) ≤ iQ (= i) is virtually identical to the proof
of Proposition 2.6. Identify Q with a countable dense subset of 2ω and let
Jn = {f ∈ Q : f(n) = 1}. The family {Jn : n ∈ ω} forms a subbase of the
topology of Q. Let I be a maximal dense-independent family of size iQ. Then
J = I ∪ {Jn : n ∈ ω} is an independent family in P(Q)/nwd. Maximality
of J follows easily from dense-maximality of I and the fact that any set
independent of all Jn is dense. So i(P(Q)/nwd) ≤ iQ.

Put κ = i(P(Q)/nwd). In order to show that κ ≥ i, let I ={[Iα] : α < κ}
be a maximal independent family in P(Q)/nwd and consider a cofinal family
in nwd indexed as {Cα : α < κ}, where each element appears infinitely
often. There exists such a cofinal family because cof(nwd) = cof(M) ≤ rQ
and rQ ≤ i(P(Q)/nwd).
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For each α < κ, let Jα = Iα \Cα. Then J ={Jα : α < κ} is an indepen-
dent family of subsets of Q since I is an independent family in P(Q)/nwd.
Moreover, if A is any subset of Q, there exist finite sets F,G ⊆ κ such that
A ∩ (

⋂{Iα : α ∈ F} \⋃{Iα : α ∈ G}) is a nowhere dense subset of Q and
therefore is contained in Cβ for some β ∈ κ \ (F ∪ G) (as each C appears
infinitely often). Thus

A ∩
(⋂
{Jα : α ∈ F ∪ {β}} \

⋃
{Jα : α ∈ G}

)
= ∅,

and hence J is maximal independent.

A natural question concerning P(Q)/nwd is the following:

Question 4.3. Does P(Q)/nwd collapse c to hQ?
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