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A space Z is weakly pseudocompact if Z is Gδ-dense in at least one of its 
compactifications. In 1996 F.W. Eckertson [3] proposed the following problem: 
Find examples of Baire non Lindelöf spaces which are not weakly pseudocompact. 
Eckertson proposed a list of natural candidates. In this article we show that part 
of this list produces examples of this type by providing examples of product spaces 
which are Baire non-Lindelöf and not weakly pseudocompact.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The notion of weak pseudocompactness, introduced in [5], is a natural generalization of a well known 
characterization of pseudocompactness. A space X is weakly pseudocompact if it is Gδ-dense in some of its 
compactifications.

On the one hand, every pseudocompact space is weakly pseudocompact and weak pseudocompactness 
is a productive property which provide us with abundant examples of weakly pseudocompact spaces. On 
the other hand, every weakly pseudocompact space is Baire, and weakly pseudocompact Lindelöf spaces 
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are compact [5]; in other words, non Baire spaces and Lindelöf noncompact spaces are not weakly pseudo-
compact. Following Eckertson [3], we say that a space X is trivially non weakly pseudocompact if either X
is Lindelöf noncompact or X is not Baire. Eckertson proved, for example, that no countable power of the 

Sorgenfrey line is weakly pseudocompact. But, as he pointed out, the knowledge of weakly pseudocompact 
spaces suffers from the scarcity of non trivial examples of non weakly pseudocompact spaces. He provided 

a list of spaces that “obviously” should not be weakly pseudocompact. However, as was mentioned in [10], 
proving weak pseudocompactness or its absence for some individual spaces turns out to be a surprisingly 

difficult task for some very simple spaces.
One of the spaces proposed by Eckertson is the one-point extension Dλ = D∪{∞} of a discrete space D, 

where ω < λ < |D|, topologized as follows: the points of D are isolated and the neighborhoods of ∞ are 

of the form {∞} ∪ A, where A ⊂ D and |D \ A| ≤ λ. Yet, if λω = λ the authors of [10] constructed a 

compactification of Dλ where this space is Gδ-dense. Hence, contrary to Eckertson’s expectations, this kind 

of spaces are in many cases weakly pseudocompact.
Another interesting kind of spaces proposed by Eckertson are the products of uncountably many Baire 

non-Lindelöf spaces; the cases of ωT , RT and ST are particularly intriguing, where S is the Sorgenfrey 

line. We have been not able to answer the case of these particular spaces, but we clarify the situation 

when X =
∏

t∈T Xt is the product of an uncountable family of Lindelöf Σ-spaces with countable π-weight 
and which do not admit a dense Čech-complete subspace, and when G =

∏
t∈T Gt is the product of an 

uncountable family of Lindelöf Σ non Čech-complete topological groups. We show that, in both cases, these 

products and each one of their dense subspaces, whose projections cover all countable faces, are never weakly 

pseudocompact. We apply these results for some particular spaces providing examples of product spaces 
which are non-trivially non weakly pseudocompact spaces, as is the case of uncountable powers of Bernstein 

subsets of the real line. It is worth mentioning that, in the case of topological groups, some of these examples 
also can be obtained applying the results in [2].

After the Introduction this paper is organized as follows: Section 2 below is devoted to prove some 

technical results about the Stone–Čech compactification of some topological products which we use in 

Section 3 to prove our main results. Lastly, Section 4 provides concrete examples of non-trivial non weakly 

pseudocompact spaces.
As usual, the real line with the Euclidean topology is denoted by R, and its subspace of the natural 

numbers will be denoted by N. The symbol ω denotes the first infinite cardinal number. The first uncountable 

cardinal number is ω1. For a space X and a subset A of X, clX A (intX A) will mean the closure (interior) 
of A in the space X. If there is no doubt as to what space X we are considering, we will simply write clA
(intA) instead of clX A (intX A). The statement “X ⊂ Y is Gδ-dense in Y ” means that each nonempty 

Gδ-set in Y contains at least one point in X. For a set Y , [Y ]≤ω and [Y ]<ω signify the collection of all 
countable subsets and of all finite subsets of Y , respectively. A compactification of a space X is a compact 
space K containing a copy of X as a dense subspace. βX denotes the Stone–Čech compactification of X. 
A subset N of X is nowhere dense in X if each nonempty open subset of X contains a nonempty open 

subset which misses N . A subset of X is meager in X if it is a countable union of nowhere dense subsets 
of X. A space X is Baire if every countable family of open dense subsets of X has a dense intersection. A 

collection B of open sets (sets with nonempty interior) in X is said to be a π-base (π-pseudobase) for X if 
each nonempty open subset of X contains a member of B. A space X is Oxtoby-complete (Todd-complete) if 
there is a sequence {Bn}n<ω of π-bases (π-pseudobases) in X such that for any sequence {Un}n<ω satisfying 

Un ∈ Bn and clX Un+1 ⊂ intX Un, for all n < ω, we have that 
⋂

n<ω Un �= ∅.
Throughout this article all topological spaces are considered Tychonoff.
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2. The Stone–Čech compactification of an uncountable ccc product

Along this section we will consider an uncountable ccc product space X =
∏

t∈T Xt and its Stone–Čech 
compactification βX.

Let us fix some notations. Assume that A ⊂ T . We set XA =
∏

t∈A Xt. If B ⊂ A, then pB,A will denote 
the projection from XA onto XB , and πB,A : βXA → βXB will be the continuous extension of pB,A. Instead 
of pA,T and πA,T we will simply write pA and πA. Finally, consider the set Σ = [T ]≤ω.

Theorem 2.1. If Y is a subspace of X and pA(Y ) = XA for each A ∈ Σ, then βY = βX.

Proof. It is sufficient to show that Y is C-embedded in X. Let f : Y → R be a continuous function. Because 
of a Factorization Theorem by Tkachenko [1, Problem 1.7.B], there exist A ∈ Σ and a continuous map 
fA : XA → R such that f = fA ◦ pA �Y . It happens that fA ◦ pA : X → R is the continuous extension 
of f . �
Lemma 2.2. The family BΣ consisting of all sets of the form π−1

A (U), where A ∈ Σ and U is open in βXA, 
is a base for βX.

Proof. Let C = φ−1(R \ {0}) be an arbitrary cozero set in the space βX. Another application of [1, 
Problem 1.7.B] shows that there exists A ∈ Σ and fA : XA → R such that φ �X= fA◦pA. Let φA : βXA → R

be the continuous extension of fA. Then φ = φA ◦ πA. It follows that C = π−1
A (φ−1

A (R \ {0})) ∈ BΣ. Since 
the famiy of all cozero sets in βX is a base for βX, the family BΣ is also a base for βX. �

The family of all nowhere dense subsets of βX will be denoted by N . We are going to obtain some 
technical results concerning the family N .

Lemma 2.3. Let φ : K → L be a continuous onto map and let Y be a dense subspace of K such that φ �Y is 
an embedding. Then the following hold:

(1) If B is a π-base for L, then φ−1(B) is a π-base for K.
(2) A set N ⊂ K is nowhere dense in K if and only if φ(N) is nowhere dense in L.

Proof. (1) Let U be a nonempty open set in K. Select a nonempty open set O in K such that clK O ⊂ U . 
Since φ �Y is an embedding, we can find an open set V in L such that V ∩ φ(Y ) = φ(O ∩ Y ). Select 
an element W ∈ B such that W ⊂ V . We assert that φ−1(W ) ⊂ clK O. Indeed, otherwise we can pick 
y ∈ Y ∩ (φ−1(W ) \ clY O) and conclude that φ(y) ∈ (V ∩φ(Y )) \φ(O∩Y ), which is not possible. Therefore, 
we have that φ−1(W ) ⊂ clK O ⊂ U .

(2) Let BL be a π-base for L. First, assume that N is nowhere dense in K. Because of (1), the family 
φ−1(BL) is a π-base in K. It follows that BK = {U ∈ φ−1(BL) : U ∩ N = ∅} is a π-base in K. Now, note 
that 

⋃
φ(BK) is a dense open subset of L and φ(N) ∩

⋃
φ(BK) = ∅. In this way, the set φ(N) is nowhere 

dense in L. Suppose now that φ(N) is nowhere dense in L. Then the family BN = {U ∈ BL : U ∩φ(N) = ∅}
is a π-base in L. Clause (1) implies that the family φ−1(BN ) is a π-base in K. It follows that 

⋃
φ−1(BN )

is open and dense in K. Moreover, note that N ∩
⋃

φ−1(BN ) = ∅. Therefore, the set N is nowhere dense 
in K. �
Lemma 2.4. Suppose that φ : K → L is a continuous onto map and Y is a dense subspace of K such that 
φ �Y is an embedding. If C is closed in K, then there exists a nowhere dense set N in K such that C ∪N

is closed and φ-saturated in K.
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Proof. Denote by NK the family of all nowhere dense sets in K. Consider the open set U = intC and the 
closed set F := C \U ∈ NK . Choose a π-base BL for L. By applying Lemma 2.3, we can see that the family 
of φ-saturated sets φ−1(BL) is a π-base in K. Consider the family BU = {V ∈ φ−1(BL) : V ∩ U = ∅}, and 
note that U ∪

⋃
BU is open and dense in K. It follows that NU = K \ (U ∪

⋃
BU ) ∈ NK . The equality 

U ∪NU = K \
⋃
BU implies that U ∪NU is closed and φ-saturated in K. Since F ∈ NK , from Lemma 2.3(2) 

we deduce that NF := φ−1(φ(F )) ∈ NK . As a consequence, we obtain that N = NU ∪NF ∈ NK and C ∪N

is closed and φ-saturated in K. �
Lemma 2.5. If C ∈ Σ and N ∈ N , then we can find B ∈ Σ such that C ⊂ B and πA(N) is nowhere dense 
in βXA whenever B ⊂ A ∈ Σ.

Proof. Choose a maximal disjoint subfamily BN of BΣ satisfying 
⋃

BN ⊂ βX \N . The maximality of BN , 
the fact that BΣ is a base for βX, and the fact that N ∈ N , imply that 

⋃
BN is dense in βX. Since X is 

dense in βX and X is ccc, the space βX also is ccc. It follows that the family BN must be countable. From 
the definition of BΣ we deduce that there exists B ∈ Σ such that BN is a family of πB-saturated subsets 
of βX. We can assume that C ⊂ B. Now, choose A ∈ Σ such that B ⊂ A. Observe that BN is a family 
of πA-saturated subsets of βX. It follows that 

⋃
πA(BN ) is an open dense subspace of βXA which misses 

πA(N). Hence, πA(N) is nowhere dense in βXA. �
From this moment until the end of this section we will assume, in addition, that X =

∏
t∈T Xt is a 

product of Lindelöf Σ-spaces, and we will deal with the following objects: given t ∈ T , fix a countable family 
Ct of closed subsets of βXt which separates points in X from points in the remainder βXt \Xt, in the sense 
that: for each x ∈ Xt and y ∈ βXt \Xt, we can find C ∈ Ct such that x ∈ C and y ∈ βXt \ C. For every 
A ∈ Σ, consider the countable family CA =

⋃
t∈A π−1

t (Ct). Finally, select CΣ =
⋃

A∈Σ CA.

Lemma 2.6. If A ∈ Σ, z ∈ βX and πA(z) ∈ βXA \ XA, then we can find C ⊂ CA such that X ⊂
⋃

C and 
z ∈ βX \

⋃
C.

Proof. Consider the diagonal map δA = Δt∈Aπt,A : βXA →
∏

t∈A βXt. Since δA extends the identity on XA, 
we can apply Lemma 3.5.6 in [4] to see that δA(πA(z)) ∈

∏
t∈A βXt \XA. It follows that π′

s,A(δA(πA(z))) ∈
βXs \Xs for some s ∈ A, where π′

s,A :
∏

t∈A βXt → βXs denotes the projection. Note that the following 
diagram is commutative:

∏
t∈A βXt

π′
s,A

βX
πA

βXA

δA

πs,A

βXs

So, πs(z) = πs,A(πA(z)) = π′
s,A(δA(πA(z))) ∈ βXs \Xs. Then we can apply the fact that Cs separates points 

in Xs from points in βXs \Xs to find a subfamily C′
s ⊂ Cs such that Xs ⊂

⋃
C′
s and πs(z) ∈ βXs \

⋃
C′
s. 

Setting C = π−1
s (C′

s) ⊂ CA, we obtain that X ⊂
⋃
C and z ∈ βX \

⋃
C. �

Lemma 2.7. If we fix NC ∈ N for each C ∈ CΣ, then for each t ∈ T we can find A ∈ Σ such that t ∈ A and 
πA(NC) is nowhere dense in βXA for each C ∈ CA.

Proof. Construct, inductively, an increasing sequence {An}n∈ω ⊂ Σ as follows. Set A0 = {t} ∈ Σ. Assume 
that An has been constructed. By applying Lemma 2.5, we can find An+1 ∈ Σ such that An ⊂ An+1 and 
πB(NC) is nowhere dense in βXB whenever An+1 ⊂ B ∈ Σ and C ∈ CAn

. To finish our construction, set 
A =

⋃
An. We shall verify that A is as required. Indeed, given C ∈ CA, the equality CA =

⋃
CAn
n∈ω n∈ω
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implies that C ∈ CAn
for some n ∈ ω. Since An+1 ⊂ A, our construction implies that πA(NC) is nowhere 

dense in βXA. �
3. Not weakly pseudocompact subspaces of some ccc products

In this section we prove the main results by providing a method to generate Baire non Lindelöf subspaces 
of X which are not weakly pseudocompact. Throughout this section we will assume that X =

∏
t∈T Xt is 

a product of Lindelöf Σ-spaces, and Y will denote an arbitrary subspace of X satisfying pA(Y ) = XA for 
each A ∈ Σ. Moreover, we will use the constructions and notations from Section 2.

Theorem 3.1. If X is ccc and there exists t ∈ T such that the remainder βXA \XA is not meager in βXA

whenever t ∈ A ∈ Σ, then Y is not weakly pseudocompact.

Proof. Let L be an arbitrary compactification of Y . By applying Theorem 2.1, we can find a continuous 
map φ : βX → L such that φ �Y is an embedding. We must show that φ(Y ) is not Gδ-dense in L. According 
to Lemma 2.4, for each C ∈ CΣ, we can fix a nowhere dense subset NC of βX such that C∪NC is closed and 
φ-saturated in βX. Because of Lemma 2.7, we can find A ∈ Σ such that t ∈ A and, if NA = {NC : C ∈ CA}, 
then πA(NA) is a countable family of nowhere dense subsets of βXA. Since βXA \XA is not meager in βXA

and the map πA is onto, we can fix a point z ∈ βX such that πA(z) ∈ βXA \ (XA ∪
⋃

πA(NA)). Note that 
z ∈ βX \

⋃
NA. By Lemma 2.6, we can find C ⊂ CA such that X ⊂

⋃
C and z ∈ βX \

⋃
C. We are ready to 

show that φ(Y ) is not Gδ-dense in L. Observe that

F = {C ∪NC : C ∈ C}

is a countable family of closed and φ-saturated subsets of K such that Y ⊂
⋃
F and z ∈ βX \

⋃
F . As 

a consequence, φ(F) is a countable family of closed subsets of L such that φ(Y ) ⊂
⋃

φ(F) and φ(z) ∈
L \

⋃
φ(F). Therefore, L \

⋃
φ(F) is a nonempty Gδ-subset of L which misses φ(Y ). �

Theorem 3.2. Suppose that Xt has countable π-weight for each t ∈ T . If Y is weakly pseudocompact, then 
each Xt contains a dense Čech-complete subspace.

Proof. Assume that there exists t ∈ T such that Xt does not contain a dense Čech-complete subspace. 
We will verify that X satisfies the conditions in Theorem 3.1, contradicting the fact that Y is weakly 
pseudocompact. Observe that a topological space has a meager remainder if and only if it contains a dense 
Čech-complete subspace. Thus, βXt \Xt is not meager in βXt. Assume that t ∈ A ∈ Σ. Set B = A \ {t}
and note that XB has a countable π-base. Then we can use Theorem 3.9(c) in [6] to see that βXB has a 
countable π-base. Now, we can apply Theorem 1 in [11] to see that (βXt \ Xt) × βXB is not meager in 
βXt×βXB . Since (βXt \Xt) ×βXB ⊂ (βXt×βXB) \XA, the remainder (βXt×βXB) \XA is not meager 
in βXt×βXB . From Lemma 2.3(2) and Lemma 3.5.6 in [4], we can deduce that βXA \XA is not meager in 
βXA. Finally, the space X, being a product of spaces with a countable π-base, has the ccc property (see (2.7) 
in [11]). Theorem 3.1 implies that Y is not weakly pseudocompact, contradicting our initial assumption. 
Therefore, each Xt contains a dense Čech-complete subspace. �
Theorem 3.3. Suppose that Xt is Baire, non-compact, and has countable π-weight for each t ∈ T . Then Y
is a Baire space which is not Lindelöf.

Proof. First we are going to verify that Y is a Baire space. We know that each Xt is a Baire space with a 
countable π-base, so we can apply Theorem 3 from [11] to see that X has the Baire property. Observe that 
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Y is Gδ-dense in X. Since the Baire property is inherited by Gδ-dense subspaces, we conclude that Y has 
the Baire property.

Recall that T is uncountable. Fix an uncountable collection A = {tα : α < ω1} ⊂ T and set Aα = {tβ :
β < α} for each α ≤ ω1. To see that Y is not Lindelöf, it is enough to show that pA(Y ) ⊂ XA is not 
Lindelöf. Given t ∈ T , since Xt is Lindelöf and not compact, it is not pseudocompact. So, if pA(Y ) = XA, 
then pA(Y ) contains a closed copy of Nω1 and hence it is not Lindelöf. Assume now, on the other hand, that 
there exists a point x ∈ XA \ pA(Y ). For each α < ω1, since pAα

(Y ) = XAα
, we can select yα ∈ pA(Y ) such 

that pAα,A(yα) = pAα,A(x). Let D = {yα}α<ω1 . Choose y ∈ pA(Y ) arbitrarily. Then y �= x and, because of 
this, we can find t ∈ A such that y(t) �= x(t). Note that the neighborhood Uy = {z ∈ XA : z(t) �= x(t)} of y
contains at most countably many elements of D. Therefore, D is an uncountable subset of pA(Y ) without 
complete accumulation points in pA(Y ). Hence, pA(Y ) is not a Lindelöf space. �

As we mentioned before, given a space Z, the space Z does not contain a dense Čech-complete sub-
space if and only if it has a non meager remainder in some compactification. Besides, if Z has countable 
pseudocharacter, then the following conditions on a subset Y of ZT are equivalent:

(i) Y is Gδ-dense in ZT .
(ii) pA(Y ) = ZA for each A ∈ Σ.

So, we arrive to the following corollary of the previous theorems:

Corollary 3.4. Let Z be a separable metrizable space with a non meager remainder in some compactification. 
If T is uncountable and Y is a Gδ-dense subspace of ZT , then Y is a Baire space which is neither Lindelöf 
nor weakly pseudocompact.

Every Oxtoby-complete space is Todd-complete, and every weakly pseudocompact space is Todd-
complete [12]. It is still unknown whether every Todd-complete space is Oxtoby-complete, and whether 
every weakly pseudocompact space is Oxtoby-complete. It is worth mentioning, with respect to Theorem 3.2
above, that if Gt is a topological group with countable base for each t ∈ T , and H is an Oxtoby-complete 
Gδ-dense subgroup of 

∏
t∈T Gt, then each Gt has to be Čech-complete (see Theorem 10.1 in [2]).

Theorem 3.5. Let G =
∏

t∈T Gt be a product of Lindelöf Σ topological groups. If Y is a weakly pseudocompact 
subspace of G such that pA(Y ) =

∏
t∈A Gt for each A ∈ Σ, then Gt is Čech-complete for all t ∈ T .

Proof. Let GA =
∏

t∈A Gt for each A ∈ Σ. Assume that Gt is not Čech-complete for some t ∈ T . Proceeding 
as in the proof of Theorem 3.2, we will verify that X satisfies the conditions in Theorem 3.1, contradicting 
the fact that Y is weakly pseudocompact. Assume that t ∈ A ∈ Σ. Since Čech-completeness is invariant 
under continuous open images in the class of topological groups [8, Lemma 4.5], we deduce that GA is not 
Čech-complete. It follows from [8, Corollary 4.4] that GA does not contain any Čech-complete subspace. 
In an equivalent way, the remainder βGA \ GA is not meager in βGA. Finally, given a set F ∈ [T ]<ω, the 
topological group GF is Lindelöf Σ. So, we can apply a Theorem by Uspenskii in [13], to see that GF has 
the ccc property. It follows from a well known result that the product G also has the ccc property. Because 
of Theorem 3.1, the space Y is not weakly pseudocompact, contradicting our initial assumption. Therefore, 
the topological group Gt is Čech-complete for all t ∈ T . �
4. Examples

We conclude this work by presenting some examples.
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Example 4.1. Let X be a Bernstein subset of the real line R; that is, a subset of the real line which intersects 
P and R \ P for every perfect subset P of R. Bernstein subsets of the real line can be constructed in a 
standard way using the Axiom of Choice. From the definition it is clear that R \X also is a Bernstein set. 
Since every countable intersection of open dense subspaces of R contains a perfect set, both X and R \X
have the Baire property. Consider the one point compactification S of R. Note that the compactification 
S witnesses that X satisfies the hypotheses from Corollary 3.4. So, we conclude that, if Y is a Gδ-dense 
subspace of XT , then Y is a Baire space which is neither Lindelöf nor weakly pseudocompact.

Example 4.2. Let φ be an ultrafilter in βN \ N. Let us denote by Nφ the subspace N ∪ {φ} of βN. It was 
proved in [9] that the space of all continuous real valued functions X = Cp(Nφ) on Nφ is a Baire space. Since 
X is contained in RNφ and Nφ is not discrete, we can fix a map f ∈ R

Nφ \X. Let us observe that f + X is 
a dense subset of RNφ \X with the Baire property. Besides (f + X) ∩X = ∅. Hence, both X and RNφ \X
have the Baire property. Consider the one point compactification S of R. Note that the compactification 
SNφ of X witnesses that X satisfies the hypotheses from Corollary 3.4. As before, we conclude that: if Y is 
a Gδ-dense subspace of XT , then Y is a Baire space which is neither Lindelöf nor weakly pseudocompact. 
Note that in many cases Y is a topological group.

Example 4.3. Let E be an infinite dimensional second countable Baire topological vector space. Choose a 
Hamel basis B for E and let {Bn}n∈ω be a partition of B in infinite sets. Denote by Xn the linear subspace 
of E generated by 

⋃
m≤n Bm. We know that E =

⋃
n∈ω Xn. Since E has the Baire property, there exists 

n ∈ ω such that X = Xn is not meager. By applying Proposition 2.1 in [7], we can see that X actually has 
the Baire property. Besides, it follows from Proposition 2.3 in [7] that X is a dense subspace of E. On the 
other hand, by taking a point e ∈ Xn+1 \X, we can see that e +X is a Baire dense subspace of E contained 
in E \ X. Hence E \ X is also a Baire space. Therefore every second countable compactification M of E
witnesses that X satisfies the hypotheses from Corollary 3.4. Again, we conclude that: if Y is a Gδ-dense 
subspace of XT , then Y is a Baire space which is neither Lindelöf nor weakly pseudocompact. As before, 
in many cases Y is a topological group.

Remark 4.4. Example 4.2 produces a Cp-space which is a non-trivial non weakly pseudocompact space. 
Indeed, Cp(Nφ)ω1 ∼= Cp(⊕ξ<ω1Nφ) is such an example.

The following question arises naturally.

Question 4.5. Let X be a Lindelöf Σ-space with countable π-weight and containing a dense Čech-complete 
subspace. Can an uncountable power of X be weakly pseudocompact?
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