
Topology and its Applications 210 (2016) 1–7
Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

On discretely generated box products

Hector Alonzo Barriga-Acosta ∗,1, Fernando Hernández-Hernández 2

Posgrado Conjunto en Ciencias Matemáticas, UNAM-UMSNH, Morelia, Mich, Mexico

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 April 2016
Received in revised form 30 June 
2016
Accepted 6 July 2016
Available online 12 July 2016

MSC:
primary 54B10, 54A20
secondary 54C25

Keywords:
Discretely generated
Discrete subsets
First countable
Embedding
Box product
Monotonically normal

A topological space X is called discretely generated if for any A ⊆ X and x ∈ A
there exists a discrete set D ⊆ A such that x ∈ D. We solve the Problems 3.19 
and 3.3 in [2]. Problem 3.19: Does the space {ξ} ∪ ω embed into a box product of 
real lines when ξ ∈ βω\ω? For any ξ ∈ βω\ω, we answer negatively. Problem 3.3: Is 
any box product of first countable spaces discretely generated? We answer positively 
by assuming that the spaces are regular.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many results concerning to discretely generated spaces have been shown in [1] and [2]. Theorem 2.6 [2] by 
V. Tkachuk and R. Wilson says that if Xt is a monotonically normal space, then the box product �t∈TXt

is discretely generated. Hence, the spaces �Rκ, �(ω+1)κ and �({ξ} ∪ω)κ are discretely generated, for any 
cardinal κ.

Let V be the countable regular maximal space due to Eric van Douwen [3]. It was shown in [1] that V
is not discretely generated. Since �Rκ is discretely generated and this property is hereditary, there is no 
embedding from V to �Rκ. The authors of [2] then wondered if there were more countable regular spaces 
that do not embed into a box product of real lines, that is the motivation of Problem 3.19 in [2]. We 
generalize their Example 2.10, part b).
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A space X is called monotonically normal if for every U ∈ τ(X) and x ∈ U there is a set O(x, U) ∈ τ(x, X)
such that O(x, U) ∩ O(y, V ) = ∅ implies x ∈ V or y ∈ U . Of course, being monotonically normal implies 
normality. Every metric space is monotonically normal. However, there is no relation between being first 
countable and monotonically normal. For example, {ξ} ∪ ω is a monotonically normal non first countable 
space. On the other hand, it is well known that the square of the Sorgenfrey line R2

l is a regular first 
countable non normal space, and thus, non monotonically normal. However, the space �Rω

l is discretely 
generated by our result.

2. Strategy, notation and terminology

We use standard terminology and follow Engelking [4]. All spaces we consider are assumed to be Hausdorff. 
If X is a space then τ(X) is its topology. If Xt is a topological space for every t ∈ T , then the box product
�t∈TXt is the set-theoretic product 

∏
t∈T Xt with the topology generated by the family {

∏
t∈T Ut : Ut ∈

τ(Xt)}. The set of natural numbers is denoted by ω and we use the symbol R for the real line with its usual 
topology.

A space X is discretely generated at a point x ∈ X if for any A ⊆ X with x ∈ A there exists a discrete 
set D ⊆ A such that x ∈ D. The space X is discretely generated if it is discretely generated at every point 
x ∈ X.

Let X be a set, A ⊆ Xκ, κ a cardinal, S ⊆ κ and b ∈ Xκ. We denote the support of a ∈ Xκ respect 
to b by suppb(a) = {α ∈ κ : a(α) �= b(α)}. The restriction of a to S is the element a � S ∈ XS defined as 
(a � S)(s) = a(s), as well as AS,b = {a ∈ A : suppb(a) = S} and A � S = {a � S ∈ XS : a ∈ A}. We denote 
by −→ω the element in �(ω + 1)ω such that for every n ∈ ω, −→ω (n) = ω. When we talk about the “support” 
in �(ω + 1)ω, we use supp(a) instead of supp−→ω (a) and AS instead of AS,−→ω .

Also, given a function h ∈ ωω and an element a ∈ �(ω + 1)ω, we define the neighborhood of a by h to be 
the set of the form

Nh(a) = �{{a(n)} : n ∈ supp(a)} ×�{(h(n), ω] : n ∈ ω \ supp(a)}.

Finally, we recall the following definitions on ωω: For f, g ∈ ωω, define f ≤∗ g iff ∃n ∈ ω ∀m ≥ n (f(m) ≤
g(m)). A family F ⊆ ωω is ≤∗-bounded if ∃g ∈ ωω ∀f ∈ F (f ≤∗ g). A family F ⊆ ωω is ≤∗-dominant if 
∀g ∈ ωω ∃f ∈ F (g ≤∗ f).

• b = min{|F| : F ⊆ ωω is not ≤∗-bounded}
• d = min{|F| : F ⊆ ωω is ≤∗-dominant}

3. Facts and some definitions

Let βω denote the Stone–Čech compactification of ω. If ξ ∈ βω \ ω, then {ξ} ∪ ω inherits the subspace 
topology of βω.

Remark 1. Let ξ ∈ βω \ ω, then we have the following for the space {ξ} ∪ ω:

1. U ∈ ξ if and only if ξ ∈ U .
2. If ξ ∈ U ∩ V , then U ∩ V �= ∅.

Lemma 2. If a set A ⊆ �(ω + 1)ω satisfies ∀a ∈ A (|supp(a)| = ω) and has size less than b, then −→ω /∈ A.
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Proof. Let

A0 = {g ∈ ωω : ∃f ∈ A ((g � supp(f)) = (f � supp(f)) ∧ (g � ω \ supp(f)) = 0)}.

Note that |A0| = |A| < b. Since A0 ⊆ ωω is ≤∗-bounded, there exists h ∈ ωω such that ∀g ∈ A0 (g ≤∗ h). 
Now is immediate that Nh(−→ω ) ∩A = ∅. �

Lemma 2 will help us to isolate a set of those elements with infinity support as long as the size of the set 
be less than b. We can also isolate sets consisting of elements with finite support under certain conditions 
which we will establish in the next lemma.

Lemma 3. Suppose that A ⊆ �(ω+1)ω and ∀a ∈ A (|supp(a)| < ω). Let F = {F ∈ [ω]<ω : |AF | < ω}. Then 
exists h ∈ ωω such that Nh(−→ω ) ∩ (

⋃
F∈F AF ) = ∅.

Proof. Consider an enumeration for 
⋃

F = {nk : k ∈ ω}. Observe that for each k ∈ ω, the set Bk =
{F ∈ F : F ⊆ {n0, . . . , nk}} is finite and so is 

⋃
F∈Bk

AF . Hence, for each nk ∈
⋃
F , choose h(nk) >

max{πnk
[
⋃

F∈Bk
AF ]}. Now, if n /∈

⋃
F let h(n) = 0. Then h ∈ ωω works as required. �

The lemmas above try to “ward off” from −→ω certain kind of elements in a set with a small size. However, 
the role of the support type in the elements is important even for small sets. The next example provides a 
countable set whose elements have finite support and it has −→ω in its closure.

Example 4. There exists a countable set A ⊆ �(ω + 1)ω of elements with finite support such that ∀F ∈
[ω]<ω(−→ω /∈ AF ), but −→ω ∈ A.

Proof. The condition ∀F ∈ [ω]<ω(−→ω /∈ AF ) only avoids the trivial case when −→ω ∈ AF , for some F ∈ [ω]<ω.
For every n ∈ ω, consider the set

An = {a ∈ �(ω + 1)ω : a(0) = n ∧ supp(a) = n}.

We will see that A =
⋃

n∈ω An works. It is clear that each element of A has finite support. Now, note 
that AF = An if and only if F = n, for every n ∈ ω. Moreover, −→ω /∈ An because a(0) = n, for a ∈ An.

Claim 4.1. −→ω ∈ A.

Consider a function h ∈ ωω. Let k ∈ ω such that k > h(0). So, there is a ∈ Ak such that ∀i ≤
k((a � k)(i) > h(i)) and ∀i > k((a � k)(i) = ω). That is, a ∈ Nh(−→ω ). �

Let X be a space. Given A ⊆ X and x ∈ A′ = A \ A, we say that X has the property P at (x, A) if 
∃B, C ⊆ A (B ∩ C = ∅ ∧ x ∈ B′ ∩ C ′). Also, X has the property P+ if ∀A ⊆ X ∃B, C ⊆ A (B ∩ C =
∅ ∧A′ = B′ = C ′). It is clear that property P+ is stronger than property P and both of them are topological 
properties. It is worth to mention that the space {ξ} ∪ ω does not satisfy the property P at any (ξ, U), 
with U ∈ ξ. This implies the fact that if the space {ξ} ∪ ω embeds in X via ϕ, then X does not satisfy the 
property P at (ϕ(ξ), ϕ[ω]). In the next lemma we will use this properties.

Remark 5. Any second countable space has the property P+.

Lemma 6. Suppose A ⊆ �(ω + 1)ω satisfies that ∀a ∈ A (|supp(a)| < ω). If −→ω ∈ A′, then the property P is 
satisfied at (−→ω , A). Moreover, it is satisfied P at (x, A), for any x ∈ A′.
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Proof. By Lemma 3, we may assume without loss of generality that ∀F ∈ [ω]<ω, AF is infinite. So, if F
and F ′ are two “different” finite sets of naturals, then AF ∩AF ′ = ∅.

Case 1: If −→ω ∈ AF for some finite set F ⊆ ω, then there is a sequence in AF converging to −→ω , because 
(ω + 1)F is a metric space. If B consists of the even terms of that sequence and C of the odd terms, we get 
the required.

Case 2: For each finite set F , −→ω /∈ AF . Look at AF as a subset of ωF and note that AF is an infinite 
discrete set. Moreover, (�(ω + 1)ω)F is homeomorphic to (ω + 1)F and so it is a compact metric space. 
Then A′

F is not empty and by the remark above, it is possible to get BF , CF ⊆ AF such that these sets are 
pairwise disjoint and A′

F = B′
F = C ′

F .
Since A = �F∈[ω]<ω AF , it follows that B := �F∈[ω]<ω BF and C := �F∈[ω]<ω CF are subsets of A. 

Furthermore, B ∩ C = ∅.

Claim 6.1. −→ω ∈ B′ ∩ C ′.

Consider h ∈ ωω. Apply Lemma 3 to get a finite set F of naturals such that Nh(−→ω ) ∩AF is infinite. As 
before, Nh(−→ω ) ∩AF ⊆ (�(ω + 1)ω)F � (ω + 1)F , and so, (Nh(−→ω ) ∩AF )′ �= ∅. By construction,

(Nh(−→ω ) ∩AF )′ = (Nh(−→ω ) ∩BF )′ = (Nh(−→ω ) ∩ CF )′.

Necessarily there exists b ∈ BF ⊆ B and c ∈ CF ⊆ C such that b, c ∈ Nh(−→ω ).
Finally, suppose that x ∈ A′ and let S = supp(x). If S is coinfinite, we can assume that A � S = {x � S}

and apply the case when the space �(ω + 1)ω\S has the property P at (x � (ω \ S), A � (ω \ S)), because 
x � (ω\S) = −→ω � (ω\S). Now, if S is cofinite, then (�(ω+1)ω)ω\S � (ω+1)ω\S , which is second countable. 
By remark above the property P is satisfied. �

The next step is to involve the box product of real lines since the original question refers to it. The 
lemmas proved before must be true also for the countable box product of real lines. In the following, we will 
relate in a “natural way” both spaces �(ω + 1)ω and �Rω.

Consider p ∈ �Rω. For each n ∈ ω, define Wn
k = (p(n) − 1

k , p(n) + 1
k ) and Wn

0 = R. Note that 
{�n∈ω Wn

h(n) : h ∈ ωω} is a local basis for p. For every n ∈ ω, define fn : R → ω + 1 as

fn(a) =
{

k, if a ∈ Wn
k \Wn

k+1;
ω, if a = p(n).

Let Φp : �Rω → �(ω + 1)ω be the diagonalization map for p given by Φp(a) = 〈fn(a(n)) : n ∈ ω〉. It is 
clear that Φp(p) = −→ω .

Note that Φ−1
p [�(ω+1)ω] induce a relation of equivalence (or partition induced by p) over the space �Rω. 

That is, for a, b ∈ �Rω, we have that a ∼p b if and only if

∀n ∈ ω (fn(a(n)) = fn(b(n))).

Given A ⊆ �Rω, let RA ⊆ A be a set of ∼p-representative elements for the partition induced by p. We 
have the following properties.

Remark 7.

1. If A ⊆ �Rω and p ∈ A, then p ∈ RA.
2. If A ⊆ �Rω and RA is a set of ∼p-representative elements of A, then Φp � RA is a one-to-one mapping.
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3. The mapping Φp induces an assignment between neighborhood systems for p and for −→ω . That is, for 
every h ∈ ωω, it follows that Φp[�n∈ωW

n
h(n)] = Nh(−→ω ) and also �n∈ωW

n
h(n) = Φ−1

p [Nh(−→ω )].

Note that Lemmas 2 and 3 are purely combinatorial. Once we have a subset A ⊆ �Rω, we can always 
consider a set RA of ∼p-representative elements of A to work with it. Hence, by Remark 7, the same 
combinatorial properties holds for the space �Rω or rather R�Rω . So, Lemmas 2 and 3 are also true if we 
change �(ω+1)ω for �Rω and −→ω for a fixed p ∈ �Rω. In the next we answer partially the original question, 
but this is the key step to generalize the result.

Theorem 8. There is no embedding ϕ : {ξ} ∪ ω → �Rω.

Proof. Suppose there is such embedding ϕ. Let A = ϕ[ω] ⊆ �Rω, p = ϕ(ξ) and consider the partition 
induced by p on �Rω. Since A is countable, by Lemmas 2 and 3, we may assume that for every a ∈ A the 
support suppp(a) is finite. Also, suppose that A consists of ∼p-representative elements.

Claim 8.1. −→ω ∈ Φp[A].

In fact, given h ∈ ωω, let W = �n∈ωW
n
h(n). Then, there is a ∈ W ∩A. So, Φp(a) ∈ Nh(−→ω ).

Now, apply Lemma 6 to get B0, C0 ⊆ Φp[A] such that B0∩C0 = ∅ and −→ω ∈ B0∩C0. Let B = Φ−1
p [B0] ∩A

and C = Φ−1
p [C0] ∩A. It is clear that B ∩ C = ∅.

Claim 8.2. p ∈ B ∩ C.

Again, let W = �n∈ωW
n
h(n) be a neighborhood of p. There are b0 ∈ Nh(−→ω ) ∩ B0 and c0 ∈ Nh(−→ω ) ∩ C0. 

Finally, there are b, c ∈ Φ−1
p [{b0, c0}] such that b ∈ B ∩W and c ∈ C ∩W .

In other words, property P is satisfied at (p, A). Now, consider the subsets U = ϕ−1[B] and V = ϕ−1[C]
of {ξ} ∪ ω. These sets satisfied that U ∩ V = ∅ and ξ ∈ U ∩ V , but this contradicts Remark 1. �

Corollary 9. For any cardinal κ, there is no embedding from {ξ} ∪ ω to �Rκ.

Proof. Suppose again that ϕ : {ξ} ∪ ω → �Rκ is an embedding. Let p = ϕ(ξ) and A = ϕ[ω]. We partition 
A = A∗ �A∞, where

A∗ = {a ∈ A : |suppp(a)| < ω} and A∞ = {a ∈ A : |suppp(a)| ≥ ω}.

For every a ∈ A∞, consider any fixed countable set Sa ⊆ suppp(a). Since A∞ is countable, so is S =⋃
a∈A∞

Sa ⊆ κ. Then, note that A∞ � S ⊆ �RS is countable. We can apply the same method of the proof in 
Lemma 2 to find h ∈ ωS such that (A∞ � S) ∩�s∈SW

s
h(s) = ∅. Now, consider the function H ∈ ωκ defined 

as H(s) = h(s) if s ∈ S, and H(s) = 0 otherwise. It is clear now that A∞ ∩�s∈κW
s
H(s) = ∅.

Thus, without loss of generality, assume that every element in A has finite support respect of p. Note 
that S =

⋃
a∈A∗ suppp(a) is countable and A∗ ∼= A∗ �S⊆ �RS ∼= �Rω. We already reflected the problem to 

the partial case of ω factors. The proof is done by following the same method as the proof of Theorem 8. �

Note that the method to solve Problem 3.19 uses only combinatorial and topological properties of �(ω+
1)ω as well as some trivial properties of ultrafilters. Therefore, Corollary 9 can be generalized as the following 
sentence: If X is a topological space with |X| < b and p ∈ βX \X an ultrafilter, then there is no embedding 
from {p} ∪X to �Rκ, for any cardinal κ.

In [2], Example 2.10 part b) they mention that the space {p} ∪Q is not discretely generated when p is a 
remote point, and so, it can not be embedded into a box product of real lines. The remark above generalizes 
the fact for all ultrafilters p ∈ βQ \Q.
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4. Box products of regular first countable spaces are discretely generated

The diagonalization map Φ was defined over �Rω. We need the metric of R to define it, but we can 
weaken the definition of Φ only to the property of being first countable. Suppose {Xt : t ∈ T} is a family of 
regular first countable spaces and fix p ∈ �t∈TXt. For each t ∈ T , let {W t

k : k ∈ ω} be a countable base for 
p(t) such that W t

0 = Xt and W t
k+1 ⊆ W t

k, for each k ∈ ω. For every t ∈ T , define ft : Xt → ω + 1 as

ft(x) =
{

k, if x ∈ W t
k \W t

k+1;
ω, if x = p(t).

Just like before, −→ω ∈ �(ω+1)T is the constant element equal ω in each coordinate. Then, Φp : �t∈TXt →
�(ω + 1)T and Φp(p) = −→ω . Also, we will use the relation of equivalence ∼p defined in the previous section 
with the obvious generalization for the space �t∈TXt (a ∼p b iff ∀t ∈ T ft(a(t)) = ft(b(t))). From now, we 
will write Nh for Nh(−→ω ), the neighborhoods of −→ω .

Definition 10. If κ is a cardinal, we define ≤∗ on ωκ such that for f, g ∈ ωκ, then f ≤∗ g if and only if 
{α ∈ κ : f(α) > g(α)} is finite. We say that D ⊆ ωκ is a ≤∗-dominant family if ∀f ∈ ωκ ∃g ∈ D (f ≤∗ g). 
Recall that

d(κ) = min{|D| : D ⊆ ωκ is a ≤∗ -dominant family}.

If D = {gα ∈ ωκ : α < d(κ)} is a ≤∗-dominant family, then D∗ = {h ∈ ωκ : |{β ∈ κ : h(β) �=
gα(β)}| < ω ∧ gα ∈ D} is a ≤-dominant family, with |D∗| = κd(κ) and {Nh : h ∈ D∗} is a local basis 
of −→ω . By Lemma 2.1 in [5], d(κ) = κ · d(κ). Thus, enumerating D∗ = {hα ∈ ωκ : α ∈ d(κ)} we have that 
{Nhα

: α < d(κ)} is a local basis of −→ω .

Theorem 11. Suppose {Xt : t ∈ T} is a family of regular first countable spaces. Then �t∈TXt is discretely 
generated.

Proof. Let A ⊆ �t∈TXt and p ∈ A \A. We may assume that A consists only of ∼p-representative elements. 
Let E = Φp[A]. Note that Φp(p) = −→ω ∈ E. As �(ω + 1)T is discretely generated, there is D ⊆ E discrete 
such that −→ω ∈ D. Consider a local basis {Nhα

: α < d(κ)} of −→ω . Recursively construct a set {dα : α < d(κ)}
as follows. Take d0 ∈ Nh0 ∩D.

• Successor case: Suppose constructed Dα = {dβ : β ≤ α} and let γ = α + 1. If −→ω ∈ Dα, we are done. If 
not, there is eγ ∈ ωκ such that Neγ ∩Dα = ∅. Since −→ω ∈ D, there is dγ ∈ N(eγ)+2 ∩Nhγ

∩D.
• Limit case: Suppose constructed D<α = {dβ : β < α}. If −→ω ∈ D<α, we are done. If not, there is eα ∈ ωκ

such that Neα ∩D<α = ∅. Since −→ω ∈ D, there is dα ∈ Neα+2 ∩Nhα
∩D.

The reason to add 2 to the functions eα is to choose the elements dα sufficiently far away from each other 
just to be sure their preimages are still enough apart from each other, that will allow us to find a discrete 
subset of A.

We may assume that the process ends until −→ω ∈ Dd(κ). Note that Dd(κ) is discrete because it is contained 
in D. Now, let G = Φ−1

p [Dd(κ)] ∩ A. From the construction of Dd(κ), we have the following property for 
β < α < d(κ):

• ∃t ∈ supp−→ω (dβ) (dβ(t) + 2 < dα(t)).

Claim 11.1. The set G ⊆ A is discrete and p ∈ G.
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By the Remark 7, it is clear that p ∈ G. To see that G is discrete, fix g ∈ G. There is α < d(κ)
such that dα = Φp(g). For every t ∈ suppp(g), there is a unique kt ∈ ω such that g(t) ∈ W t

kt
\ W t

kt+1. If 
t ∈ suppp(g), let Wt = W t

kt
\ W t

kt+2; otherwise let Wt = Xt. By regularity, for every t ∈ T , we have that 
g(t) ∈ W t

kt
\W t

kt+1 ⊆ Wt and Wt is open. Then,

W = (�t∈TWt) ∩ (�t∈TW
t
eα(t)+2)

is a neighborhood of g.
Now, suppose for a contradiction there is f ∈ W ∩G. There is β < d(κ) such that dβ = Φp(f). Observe 

that suppp(g) = supp−→ω (dα) and for all t ∈ suppp(g) (dα(t) = kt).

• If α < β, then the property above gives us t ∈ supp−→ω (dα) such that dα(t) + 2 < dβ(t). That is, 
f(t) /∈ W t

kt
\W t

kt+2 = Wt, this contradicts f ∈ W .
• If β < α, then we had that Neα ∩Dα = ∅. Since dβ is an element of Dα, exists t ∈ supp−→ω (dβ) such that 

eα(t) > dβ(t). Thus, dβ(t) < eα(t) + 2. It follows that f(t) /∈ W t
eα(t)+2 and also contradicts that f ∈ W .

This concludes the proof. �

By Theorem 11, box products of regular first countable spaces are discretely generated. However, it is still 
unknown the result if we weaken the property for Fréchet–Urysohn or sequential spaces. If box products of 
regular first countable spaces are discretely generated, are the box products of Fréchet–Urysohn or sequential 
spaces discretely generated?
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