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Preface

This book was written to present to a reader having only a modest
mathematical background the chief results in the modern theory of
integration which was .initiated by Lebesgue in 1902. Lebesgue’s
integral has now become one of the cornerstones of mathematical
analysis. This book developed from my lectures in a course at the
University of Illinois and should be accessible to advanced under-
graduate and beginning graduate students; its prerequisites are an
understanding of the elementary theory of real analysis and the ability
to comprehend “c — & arguments.” Although it is likely that a reader
would have some familiarity with the Riemann integral, I do not
presuppose that he has mastered its theoretical details, for the presenta-
tion given here does not depend on the Riemann integral. A solid
course in “advanced calculus,” or familiarity with the first third of my
book, The Elements of Real Analysis, should provide adequate back-
ground for reading this book.

It has been my experience, both as student and teacher, that most
students have difficulty in seeing the subject as a whole, and that
surprisingly many have troubles with some of its major parts. I
suspect that this is partly attributable to the different approaches to
integration theory, but I think that it may also be due to the character
of the current texts. Most authors who treat abstract measure spaces
start with fairly extensive and detailed discussions of measure theory;
only later do they turn to integration. This tends to give the impression
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vi The Elements of Integration

that an elaborate theory of measure is required for an understanding
of integration. I feel that this is no more true than that a detailed
study of set theory is required for an understanding of topology.

Other authors prefer to get to the integral and its properties quickly.
Such books often start with some type of ‘“elementary integral” and
extend it to a larger class of functions, after which they obtain whatever
measure theory they wish. Their point of departure varies widely.
It may be the Riemann integral on the continuous functions on an
interval or a rectangle; it may be a linear functional on a collection of
continuous functions; it may be an abstractly defined integral on a
class of functions. Usually, these treatments inject topological notions
at an early stage where, in my judgment, topology is neither needed nor
desired.

Although I also wish to develop the integral as soon as it can be
conveniently done, I prefer to discuss abstract measure spaces. [
regard the convergence theorems as the raison d’étre for the theory and
consider set theory, measure theory, and topology to be largely
irrelevant—they cannot be completely disregarded, but they should
not be given undue prominence at the outset, for they only complicate
the situation. However, once the initial steps have been taken and the
integral has been established, the reader should try to connect the integral
with other parts of mathematics.

Integration theory is much like point set topology: it is a basic
subject, but it is not an end in itself. My purpose has been to strike
directly toward the main results; I have not attempted to follow all
the avenues which have been opened. Thus, a reader who completes
this book is not through; instead, I hope that he will delve into the
many questions that I have purposely laid aside. I put them aside be-
cause I feel that these questions are not truly relevant to an introductory
development of the basic ideas of integration; this does not mean that
they are trivial or uninteresting. There is much that is yet to be done
for the reader, but if this book helps speed him on his way, it has accom-
plished its purpose.

Since this is intended as an introduction, I shall deal with real-valued
functions and with countably additive measures. Until recently it was
thought that countable additivity was a necessary ingredient of any
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“decent” theory of integration, but I believe this has been fully
exploded by Chapter III of the treatise of Dunford and Schwartz [5].
Although various theories of vector-valued integration are available,
1 do not touch upon this subject, but refer the reader to References [2]
and [5], and the papers cited there. For treatments of the “abstract”
theory of integration, I recommend References [3, 5, 7, 10, 12, 13].
For the “elementary integral” approach, I suggest that the reader first
consult [14] for orientation, and then sample References [4, 6, 8, 9, 11,
15]. In [16, 18] both approaches are developed and related to each
other. '

In writing this book, I have benefited greatly from my teachers,
colleagues, and students. Most of what I present is derived from what
I learned from some member of one of these three groups of people.
1am particularly indebted to my colleague A. L. Peressini, who read an
earlier draft of this manuscript. Professor George Orland made several
suggestions, enabling me to strengthen certain theorems and to correct
other proofs; Professor N. T. Hamilton proposed an example (now
Exercise 10.S) one Saturday afternoon over coffee. Mrs, Carolyn
Bloemker ably typed the final version of the manuscript, and the galley
proofs were checked by Mr. Charles W. Mullins, who caught a number
of errors. To all of these people, I am deeply indebted. In addition,
1 greatly appreciate the cooperation of the staff at John Wiley and Sons
for their help and consideration.

ROBERT G. BARTLE
Champaign-Urbana, lllinois

April 1, 1966
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CHAPTER |

Introduction

The theory of integration has its ancient and honorable roots in the
“method of exhaustion” that was invented by Eudoxos and greatly
developed by Archimedes for the purpose of calculating the areas and
volumes of geometric figures. The later work of Newton and Leibniz
enabled this method to grow into a systematic tool for such calculations.

As this theory developed, it has become less concerned with applica-
tions to geometry and elementary mechanics, for which it is entirely
adequate, and more concerned with purely analytic questions, for
which the classical theory of integration js not always sufficient.
Thus a present-day mathematician is apt to be interested in the con-
vergence of orthogonal expansions, or in applications to differential
equations or probability. For him the classical theory of integration
" which culminated in the Riemann integral has been largely replaced
by the theory which has grown from the pioneering work of Henri
Lebesgue at the beginning of this century. The reason for this is
very simple: the powerful convergence theorems associated with the
Lebesgue theory of integration lead to more general, more complete,
and more elegant results than the Riemann integral admits.

Lebesgue’s definition of the integral enlarges the collection of
functions for which the integral is defined. Although this enlargement
is useful in itself, its main virtue is that the theorems relating to the
interchange of the limit-and the integral are valid under less stringent
assumptions than are required for the Riemann integral. Since one
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2 The Elements of Integration

frequently needs to make such interchanges, the Lebesgue integral is
more convenient to deal with than the Riemann integral. To exemplify
these remarks, let the sequence (f,) of functions be defined for x > 0
by fu(x) = e~™/V/'x. It is readily seen that the (improper) Riemann
integrals

+we nx

I =
=) EH

exist and that lim f,(x) = Ofor all x > 0. However, since lim f,(x)
n— o x—0

=400 for each n, the convergence of the sequence is certainly not
uniform for x > 0. Although it is hoped that the reader can supply
the estimates required to show that lim 7, = 0, we prefer to obtain
this conclusion as an immediate consequence of the Lebesgue Dominated
Convergence Theorem which will be proved later. Asanother example,
consider the function F defined for ¢ > 0 by the (improper) Riemann
integral

+ o
F() =f x?e~t* dx,
JO -

With a little effort one can show that F is continuous and that its
. derivative exists and is given by

+
F'(t) = ——f x% e~ dx,
1}

which is obtained by differentiating under the integral sign. Once
again, this inference follows easily from the Lebesgue Dominated
Convergence Theorem.

At the risk of oversimplification, we shall try to indicate the crucial
difference between the Riemann and the Lebesgue definitions of the
integral. Recall that an interval in the set R of real numbers is a set
which has one of the following four forms:

[a,b] ={xeR:a < x < b}, (a,b) ={xeR:a< x < b},
[a,b) ={xeR:a< x < b}, (a,b] ={xeR:a < x < b}.

In each of these cases we refer to a and b as the endpoints and prescribe
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b — a as the length of the interval. Recall further that if E is a set,
then the characteristic function of E is the function y; defined by

xe(x) =1, ifxekE,
=0, ifx¢E.

A step function is a function ¢ which is a finite linear combination of
characteristic functions of intervals; thus

n
P = Z c.‘fXEj'
i=1

If the endpoints of the interval E; are a;, b;, we define the integral

of p to be
f‘P = Z cfb; —~ a;).
j=1

If f is a bounded function defined on an interval [a, 5] and if fis not
too discontinuous, then the Riemann integral of f is defined to be the
limit (in an appropriate sense) of the integrals of step functions which
approximate f. In particular, the lower Riemann integral of f may be
defined to be the supremum of the integrals of ail step functions ¢
such that ¢(x) < f(x) for all x in {a, b], and ¢(x) = O for x not in [a, 5].
The Lebesgue integral can be obtained by a similar process, except
_ that the-collection of step functions is replaced by a larger class of .-
functions. In somewhat more detail, the notion of length is generalized
to a suitable collection X of subsets of R. Once this is done, the step
functions are replaced by simple functions, which are finite linear
combinations of characteristic functions of sets belonging to X. If

n
P = z chEj
j=1

is such a simple function and if u(E) denotes the “measure” or
“generalized length” of the set Ein X, we define the integral of ¢ to be

fqo = 2 ¢; (EY).

If fis a nonnegative function defined on R which is suitably restricted,
we shall define the (Lebesgue) integral of f to be the supremum of the
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integrals of all simple functions ¢ such that ¢(x) < f(x) for all x in R.
The integral can then be extended to certain functions that take both
signs.

Although the generalization of the notion of length to certain sets in
R which are not necessarily intervals has great interest, it was observed
in 1915 by Maurice Fréchet that the convergence properties of the
Lebesgue integral are valid in considerable generality. Indeed, let X
be any set in which there is a collection X of subsets containing the
empty set § and X and closed under complementation and countable
unions. Suppose that there is a nonnegative measure function p
defined on X such that x(@) = 0 and which is countably additive in
the sense that

WU &) =z W(E)

for each sequence (E;) of sets in X which are mutually disjoint. In
this case an integral can be defined for a suitable class of real-valued
functions on X, and this integral possesses strong convergence
properties.

As we have stressed, we are particularly interested in these con-
vergence theorems. Therefore we wish to advance directly toward
them in this abstract setting, since it is more general and, we believe,
conceptually simpler than the special cases of integration on the line
orin R*. However, it does require that the reader temporarily accept
the fact that interesting special cases are subsumed by the general
theory. Specifically, it requires that he accept the assertion that there
exists a countably additive measure function that extends the notion
of the length of an interval. The proof of this assertion is in Chapter 9
and can be read after completing Chapter 3 by those for whom the
suspense is too great.

In this introductory chapter we have attempted to provide motivation
and to set the stage for the detailed discussion which follows. Some
of our remarks here have been a bit vague and none of them has been
proved. These defects will be remedied. However, since we shall
have occasion to refer to the system of extended real numbers, we now
append a brief description of this system. -
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In integration theory it is frequently convenient to adjoin the two
symbols —co, 00 to the real number system R. (It is stressed that
these symbols are not real numbers.) We also introduce the convention
that —o0 < x < +oo for any x € R. The collection R consisting of
the set R U {—o0, +o0o} is called the extended real number system.

One reason we wish to consider R is that it is convenient to say that
the length of the real line is equal to +00. Another reason is that we
will frequently be taking the supremum (= least upper bound) of a
set of real numbers. We know that a nonempty set 4 of real numbers
which has an upper bound also has a supremum (in R). If we define
the supremum of a nonempty set which does not have an upper bound
to be +oo, then every nonempty subset of R (or R) has a unique
supremum in R. Similarly, every nonempty subset of R (or R) has a
unique infimum (= greatest lower bound) in R. (Some authors
introduce the conventions that inf® = +oo, sup@® = —oo, but we
shall not employ them.)

If (x,) is a sequence of extended real numbers, we define the limit
superior and the limit inferior of this sequence by

lim sup x,, = inf ( sup x,,),

m nzm
lim inf x, ='sup (inf x,,).
m nzm
If the limit inferior and the limit superior are equal, then their value is
called the limit of the sequence. It is clear that this agrees with the
conventional definition when the sequence and the limit belong to R.
Finally, we introduce the following algebraic operations between
the symbols +co and elements x € R:

(£0) + (£™) = x + (+0) = (+®) + x = +oo,

(20)(10) = +00, (+0)(F0) = —o0,
x(+0) = (+o0)x = £o0 ifx >0,
=0 ifx=0,

= Foo ifx <0.

It should be noticed that we do not define (+o0) + (—o0) or (—o0) +
(+0), nor do we define quotients when the denominator is +o0.



CHAPTER 2

Measurable Functions

In developing the Lebesgue integral we shall be concerned with
classes of real-valued functions defined on a set X. In various applica- .
tions the set X may be the unit interval I = [0, 1] consisting of all real
numbers x satisfying 0 < x < 1; it may be the set N = {1,2,3,...}
of natural numbers; it may be the entire real line R; it.may be all of
the plane; or it may be some other set. Since the development of the
integral does not depend on the character of the underlying space X,
we shall make no assumptions about its specific nature.

Given the set X, we single out a family X of subsets of X which are
“well-behaved” in a certain technical sense. To be precise, we shall
assume that this family contains the empty set @ and the entire set X,
and that X is closed under complementation and countable unions.

2.1 DerNITION. A family X of subsets of a set X is said to be a
o-algebra (or a o-field) in case:

(1) 0, X belong to X.
(ii) If A4 belongs to X, then the complement %(A) X'\ 4 belongs
to X. ’

(iii) If (A4,) is a sequence of sets in X, then the union U,, 1 A be-
longs to X.

An ordered pair (X, X) consisting of a set X and a o-algebra X of '
subsets of X is called a measurable space. Any set in X is called an

6



Measurable Functions 7

X-measurable set, but when the o-algebra X is fixed (as is generally the
* case), the set will usually be said to be measurable.
The reader will recall the rules of De Morgan:

@) #Ud)=NeU), (N 4) = e,

It follows from these that the intersection of a sequence of sets in X
also belongs to X.

We shall now give some examples of o-algebras of subsets.

2.2 ExaMpPLES. (a) Let X be any set and let X be the family of all
subsets of X.

(b) Let X be the family consisting of precisely two subsets, of X,
namely @ and X.

(c) Let X = {1, 2,3,...} be the set IV of natural numbers and let
- X consist of the subsets

9, {1,3,5,...}, {2,4,6,...}, X.

(d) Let X be an uncountable set and X be the collection of subsets
which are either countable or have countable complements.

(e) If X; and X, are o-algebras of subsets of X, let X; be the inter-
section of X; and X,; that is, X; consists of all subsets of X which
belong to both X; and X,. Itis readily checked that Xj is a o-algebra. .

(f) Let 4 be a nonempty collection of subsets of X. We observe
that there is a smallest o-algebra of subsets of X containing 4. To see
this, observe that the family of all subsets of X'is a &-algebra containing
A4 and the intersection of all the a—algebras containing- 4 is also a
o-algebra containing A. This smallest a—algebra is sometimes called
the o-algebra generated by 4.

(2) Let X be the set R of real numbers. The Borel algebra is the
g-algebra B generated by all open intervals (@, b) in R. Observe that
the Borel algebra Bis also the o-algebra generated by all closed intervals
[a,b)in R. Any setin B is called a Borel set.

(h) Let X be the set R of extended real numbers. If E is a Borel
subset of R, let

(2‘2) E, = EU{~®}, E; = EU{+°O}’ E; = EU{—@, +GD},
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and let B be the collection of all sets E, E,, E,, E, as E varies over B.
It is readily seen that B is a o-algebra and it will be called the extended
Borel algebra. :

In the following, we shall consider a fixed measurable space (X, X).

2.3 DEerFINITION. A function f'on X to R is said to be X-measurable
(or simply measurable) if for every real number « the set

2.3) {xeX:f(x) > o}
belongs to X.

The next lemma shows that we could have modiﬁed/the form of the
sets in defining measurability.

2.4 LemMMA. The following statements are equivalent for a function
fon X toR: ‘

(a) For every a€ R, the set A, = {xe€ X : f(x) > o} belongs to X.
(b) For every o€ R, the set B, = {x€ X : f(x) < «} belongs to X.
(c) For every « € R, the set C, = {xe X : f(x) = «} belongs to X.
(d) For every a € R, the set D, = {xe X : f(x) < o} belongs to X.

PROOF. Since B, and A, are complements of each other, statement
(a) is equivalent to statement (b). Similarly, statements (c) and (d)
are equivalent. If (a) holds, then 4,_,,, belongs to X for each »# and
since

D}

Cat = Aa—l/na

2
1]
s

it follows that C, € X. Hence (a) implies (¢). Since

s

A, =

Ca+lln,

n=1

it follows that (c) implies (a). ) Q.E.D.

2.5 ExamMpPLES. (a) Any constant function is measurable. For,
if f(x) = ¢ for all xe X and if ¢ > ¢, then

{xeX:f(x) >a} =0,
whereas if « < ¢, then
{xeX:f(x) > o} = X.
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(b) If E € X, then the characteristic function x;, defined by

xe(x) =1, x€kE,
=0, x¢E,
is measurable. 1In fact, {x € X : xg(x) > «} is either X, E, or 0.

(c) If X is the set R of real numbers, and X is the Borel algebra B,
then any continuous function f on R to R is Borel measurable (that is,
B-measurable). In fact, if f is continuous, then {x € R : f(x) > «} is
an open set in R and hence is the union of a sequence of open intervals.
Therefore, it belongs to B.

(d) If X =R and X = B, then any monotone function is Borel
measurable. For, suppose that f is monotone increasing in the sense
that x < x’ implies f(x) < f(x). Then {x € R : f(x) > «} consists of
a half-line which is either of the form {xe R : x > a} or the form
{xeR: x > a}. (Show that both cases can occur.)

Certain simple algebraic combinations of measurable functions are
measurable, as we shall now show.

2.6 LEMMA. Let f and g be measurable real-valued functions and let
¢ be a real number. Then the functions

o, f% f+g f& If],

are also measurable.
PROOF. (a) If ¢ = O,Ithe statement is trivial. If ¢ > 0, then
xeX:of(x) >} ={xeX: f(x) > ¢/c}eX.
The case ¢ < 0 is handled similarly.
(b) If « < 0, then {xe X : (f(x))? > o} = X;if « > 0, then
fxe X : (f(0)? > «
={xeX:f(x) > VadU{xeX: f(x) < —Va}.
(c) By hypotbhesis, if r is a rational number, then
S,={xeX: f(x)>rn{xeX:gx)>a—r}
belongs to X. Since it is readily seen that
{xeX:(f+ ) > o} =J{S, : rrational},

it follows that f + g is measurable.



10 The Elements of Integration

(d) Since fg = H(f + 2)% — (f — g)7, it follows from parts (a), (b),
and (c) that fg is measurable.
(e) If « < 0, then {x e X : | f(x)] > «} = X, whereas if « > 0, then

xeX:|f(x)| > o = {xeX:f(x) >apU{xe X: f(x) < —a}.
Thus the function | f| is measurable. Q.E.D.

If fis any function on X to R, let f* and f~ be the nonnegative
functions defined on X by

2.4) S+ = sup {f(x),0}, f~(x) = sup {—f(x), 0}.

The function f* is called the positive part of f and f~ is called the
negative part of f. It is clear that

(2.5 f=f*—=f" and |[fl=f*+f"
and it follows from these identities that
(2.6) =3+, =31 -5

In view of the preceding lemma we infer that f is measurable if and
only if f* and f~ are measurable.

The preceding discussion pertained to real-valued functions defined
on a measurable space. However, in dealing with sequences of
measurable functions we often wish to form suprema, limits, etc., and
it is technically convenient to allow the extended real numbers —o0, +00
to be taken as values. Hence we wish to define measurability for
extended real-valued functions and we do this exactlytas in Definition 2.3,

2.7 DeFINITION. An extended real-valued function on X is X-
measurable in case the set {x € X : f(x) > «} belongs to X for each real
number «.. The collection of all extended real-valued X-measurable
functions on X is denoted by M (X, X).

Observe that if fe M(X, X), then

{xe X:f(x) = +oo) =n(31{xeX:f(x) > n},

(xe X : f(x) = —o0) = %[Ql eX:f(x)> —n,

so that both of these sets belong to X.
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The following lemma is often useful in treating extended real-valued
functions.

2.8 LEMMA. An extended real-valued function f is measurable if and
only if the sets
A={xeX:f() = +w}, B={xeX:f(x) = —0}
belong to X and the real-valued function f, defined by
fi(x) = f(x), ifx¢AUB,
=0, ifxed VB,
is measurable.

PROOF. If fis in M (X, X), it has already been noted that 4 and B
belongto X. Let ce R and o > 0, then

xeX:filx) >a}={xeX:f(x) > o} \ 4.
If « < 0, then
{xeX:fi(x) > e} ={xeX:f(x) > e} UB.

Hence f; is measurable.
Conversely, if 4, Be X and f; is measurable, then

xeX: f()>a}={xeX:fi(x) >} UA
when ¢ > 0, and
(xeX:f(x) >} ={xeX:fi(x) > }\B
when « <_0. Therefore f is measurable. ‘ Q.E.D.

It is a consequence of Lemmas 2.6 and 2.8 that if fis in M(X, X),

then the functions
o, 2 \fl, f* f°
also belong to M (X, X).

The only comment that need be made is that we adopt the convention
that 0( +o00) = 0 so that ¢f vanishes identically when ¢ = 0. If fand g
belong to M(X, X), then the sum f + g is not well-defined by the
formula (f + g)(x) = f(x) + g(x) on the sets

E ={xeX:f(x) = -0 and g(x) = +o0},
E;={xeX:f(x) =+ and g(x) = —o0},
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both of which belong to X. However, if we define f + g to be zero
on E, U E,, the resulting function on X is measurable. We shall
return to the measurability of the product fg after the next result.

2.9 LemMA. Let (f,) be a sequence in M(X,X) and define the
Sfunctions

S(x) =inf fi(x), F(x) = sup fu(x),
S*(x) = liminf f,(x), F*(x) = lim sup f,(x).

Then f, F, f*, and F* belong to M(X, X).

PROOF. Observe that
XeX:f(X) > a) = ﬁl XxeX:fi(x) > o)
(xeX:F(x) > o =n@1 xeX:fix) > o;},
so that fand F aré measurable when all the f, are. Since
769 = sup { inf 29},

F*@) = inf { sup fu(x)},
nzlimzn
the measurability of f* and F* is also established. Q.E.D.

2.10 CorOLLARY. If (f,) is a sequence in M(X, X) which converges
tofon X, then fis in M(X, X).

PROOF. In this case f(x) = lim f,(x) = lim inf f,(x). Q.E.D.

We now return to the measurability of the product f g when f, g
belong to M(X, X). Ifne N,letf, be the “truncation of f defined by

X)) =fx), if |f(¥)] <n
=n, if f(x) > n,
= —n, if f(x) < —n.
Let g, be defined similarly. It is readily seen that f, and g, are

measurable (see Exercise 2.K). It follows from Lemma 2.6 that the
product f, g, is measurable. Since

F6) gul) = lim /() gn(x), x€ X,
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it follows from Corollary 2.10 that fg, belongs to M(X, X). Since
(f&)x) = f(x) g(x) = im f(x) gn(x), x€ X,

another application of Corollary 2.10 shows that f'g belongs to M (X, X).
"It has been seen that the limit of a sequence of functions in M (X, X)
* belongs to M (X, X). We shall now prove that a nonnegative function
fin M(X, X) is the limit of a monotone increasing sequence (g,) in
M(X, X). Moreover, each ¢, can be chosen to be nonnegative and to
assume only a finite number of real values.

2.11 LemmA. If f is a nonnegative function in M(X, X), then there
exists a sequence (¢,) in M (X, X) such that

(@ 0 < @u(x) < Prra(x) for xe X, neN.
(b) f(x) = lim ¢, (x) for each x € X.
(c) Each o, has only a finite number of real values.

PROOF. Let nbe a fixed natural number. Ifk =0,1,...,n2" — 1,
let E,, be the set

E,={xeX k27" < f(x) < (k + 1)277},

and if k = n2", let E;, be the set {x € X : f(x) > n}. We observe that
the sets {E,, : kK = 0, 1,..., n2"} are disjoint, belong to X, and have
union equal to X. If we define ¢, to be equal to k2~" on E,,, then ¢,
belongs to M(X, X). It is readily established that the properties (a),
(b), (¢) hold. Q.E.D.

COMPLEX-VALUED FUNCTIONS

It is frequently important to consider complex-valued functions
defined on X and to have a notion of measurability for such functions.
We observe that if fis a complex-valued function defined on X, then
there exist two uniquely determined real-valued functions f;, f; such
that

f=A+ifs.

(Indeed, fi(x) = Re f(x), fofx) = Im f(x), for xe X.) We define the
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complex-valued function f to be measurable if and only if its real and
imaginary parts f; and f;, respectively, are measurable. It is easy to
see that sums, producfs, and limits of complex-valued measurable
functions are also measurable.

FUNCTIONS BETWEEN MEASURABLE SPACES

In the sequel we shall require the notion of measurability only for
real- and complex-valued functions. In some work, however, one
wishes to define measurability for a function f from one measurable
space (X, X) into another measurable space (Y, ¥). In this case one
says that f is measurable in case the set :

fUE) = we X f)eE}

belongs to X for every set E belonging to ¥. Although this definition
of measurability appears to differ from Definition 2.3, it is not difficult
to show (see Exercise 2.P) that Definition 2.3 is equivalent to this
definition in the case that Y = Rand Y = B.

This definition of measurability shows very clearly the close analogy
between the measurable functions on a measurable space and continuous
functions on a topological space.

EXERCISES

2.A. Show that [a,b] =(\=1(@ — 1/n,b + 1/n). Hence any o-
algebra of subsets of R which contains all open intervals also contains
all closed intervals. Similarly, (a,b) = Us-1la + l/n, b — 1/n], so
that any o-algebra containing all closed intervals also contains open
intervals.

2.B. Show that the Borel algebra B is also generated by the collection
of all half-open intervals (@, ] = {xeR:a < x < b}. Also show
that B 's generated by the collection of all half-rays {xe R : x > a},
acR.

2.C. Let (4,) be a sequence of subsets of a set X. Let E; = @ and
forneN, let .

E, = kL-—-Jl A4, F,= An\En—l-
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Show that (E,) is a monotone increasing sequence of sets and that (Fy)
is a disjoint sequence of sets (that is, F, N F,, = 0 if n # m) such that

U&=-0n-04

2.D. Let (4,) be a sequence of subsets of a set X. If 4 consists of
all x € X which belong to infinitely many of the sets 4,, show that

- QL0 4]
The set A4 is often called the limit superior of the sets (4,) and denoted
by lim sup 4,.
2.E. Let (4,) be a sequence of subsets of a set X. If B consists of

all x € X which belong to all but a finite number of the sets 4,, show
that

5= [04]

n

The set B is often called the limit inferior of the sets (4,) and denoted
by linvinf 4,,.

2.F. If (E,) is a sequence of subsets of a set X which is monotone
increasing (that is, E, < E;, < E; < - --), show that

limsup E, = 01 E, = liminf E,.
n=

2.G. If (F,) is a sequence of subsets of a set X which is monotone
decreasing (that is, F, 2 F, = F3; 2---), show that

lim sup F, = ﬁ F, = lim inf F,.
n=1

2.H. If (4,) is a sequence of subsets of X, show that
0 < liminf 4, < limsup 4, < X.
Give an example of a sequence (4,) such that
liminf 4, = 0, lim sup 4, = X.

Give an example of a sequence (4,) which is neither monotone
increasing or decreasing, but is such that

lim inf A, = lim sup A4,.
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When this equality holds, the common value is called the limit of (4,)
and is denoted by lim 4,,.

2.1. Give an example of a function f on X to R which is not X-
measurable, but is such that the functions | f| and /2 are X-measurable.

2.J. If a, b, c are real numbers, let mid (a, b, ¢) denote the ‘““value in
the middle.” Show that

mid (a, b, ¢) = inf {sup {a, b}, sup {a, c}, sup {b, c}}.

If f1, /2, fs are X-measurable functions on X to R and if g is defined
for x € X by .

g = mid (L), £, f®),
then g is X-measurable.

2.K. Show directly (without using the preceding exercise) that if f
is measurable and 4 > 0, then the truncation f, defined by

flx) =f), if |f)] < 4,
= A, if f(x)> 4,

= -4, if f(x) < —4,
is measurable.

2.L. Let f be a nonnegative X-measurable function on X which is
bounded (that is, there exists a constant K such that 0 < f(x) < K for
all xin X). Show that the sequence (¢,) constructed in Lemma 2.11
converges uniformly on X to f.

2.M. Let f be a function defined on a set X with values in a set Y.
If F is any subset of ¥, let

SHYE) = {xe X : f(x) e E}.
Show that /(@) =@, f~*(Y) = X. If E and F are subsets of Y,

then
STHENF) = fFUE)\ f7HF).
If {E,} is any nonempty collection of subsets of Y, then
FHUE) =UrE, 170 E) = 0FED.

In particular it follows that if ¥ is a o-algebra of subsets of Y, then
{f~YE) : E€ Y}is a o-algebra of subsets of X.
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2.N. Let f be a function defined on a set X with values in a set Y.
Let X be a o-algebra of subsets of Xandlet Y = {E < Y : f~Y(E) e X}.
Show that Y is a o-algebra.

2.0. Let (X, X) be a measurable space and f be defined on X to Y.
Let 4 be a collection of subsets of Y such that f~(F) € X for every
EeA. Show that f~1(F)e X for any set F which belongs to the
o-algebra generated by 4. (Hint: Use the preceding exercise.)

2.P. Let (X, X) be a measurable space and f be a real-valued function
defined on X. Show that fis X-measurable if and only if f~}(E)e X
for every Borel set E.

2.Q. Let (X, X) be a measurable space, f be an X-measurable function
on X to R and let ¢ be a continuous function on R to R. Show that
the composition ¢ o f, defined by (¢ o )(x) = ¢[f(x)], is X-measurable.
_ (Hint: If ¢ is continuous, then ¢ ~(E) € B for each E€ B.) '

2.R. Let f be as in the preceding exercise and let ¢ be a Borel
measurable function. Show that ¢ o fis X-measurable.

2.8. Let f be a complex-valued function defined on a measurable
space (X, X). Show that fis X-measurable if and only if

(xeX:a< Ref(;é)<b, ¢ < Imflx) < d}

belongs to X for all real numbers a, b, c,d. More generally, f is
X-measurable if and only if f~}(G) € X for every open set G in the
complex plane C.

'2.T. Show that sums, products, and limits of complex-valued
measurable functions are measurable.

2.U. Show that a function f on X to R (or to R) is X-measurable if
and only if the set 4, in Lemma 2.4(a) belongs to X for each rational
number o; or, if and only if the set B, in Lemma 2.4(b) belongs to X
for each rational number «; etc.

2.V. A nonempty collection M of subsets of a set X is called a
monotone class if, for each monotone increasing sequence (E,) in M
and each monotone decreasing sequence (F,) in M, the sets

O E., (O F
n=1 n=1
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belong to M. Show that a o-algebra is a monotone class. Also, if
A is a nonempty collection of subsets of X, then there is a smallest
monotone class containing 4. (This smallest monotone class is called
the monotone class generated by A4.)

2.W. If A is a nonempty collection of subsets of X, then the o-algebra
S generated by A contains the monotone class M generated by A.
Show that the inclusion 4 < M < § may be proper.



CHAPTER 3

Measures

We have introduced the notion of a measurable space (X, X) con-
sisting of a set X and a o-algebra X of subsets of X. We now consider
certain functions which are defined on X and have real, or extended
real values. These functions, which will be called “measures,” are
suggested by our idea of length, area, mass, and so forth. Thus it is
natural that they should attach the value O to the empty set ¢ and that
they should be additive over disjoint sets in X. (Actually we shall
require that they be countably additive in the sense to be described
below.) It is also desirable to permit the measures to take on the
extended real number +oo.

3.1 DEFINITION. A measure is an extended real-valued function p
defined on a o-algebra X of subsets of X such that (i) (@) = 0, (ii)
w(E) > 0 for all E€ X; and (iii) u is countably. additive in the sense
that if (E,) is any disjoint sequence* of sets in X, then

a1 WO B) = 3, e,

Since we permit x to take on +oco, we remark that the appearance of
the value +oco on the right side of the equation (3.1) means either that
w(E,) = +co for some n or that the series of nonnegative terms on the
right side of (3.1) is divergent. If a measure does not take on +oo0,

* This means that E, N E, = 0if n # m.
19
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we say that it is finite. More generally, if there exists a sequence (E,)
of sets in X with X = | E, and such that u(E,) < +oo for all #, then
we say that p is o-finite.

3.2 ExaMpLEs. (a) Let X be any nonempty set and let X be the
o-algebra of all subsets of X. Let u, be defined on X by

m(E) =0, for all E€ X;;
and let u, be defined by
pa0) =0, po(E) = +o0  if E#0.

Both p; and p, are measures, although neither one is very interesting.
Note that u, is neither finite nor o-finite.

(b) Let (X, X) be as in (a) and let pbea ﬁxed element of X. Letp
be defined for F € X by

ME) =0, if p¢E,
=1, if pekE.

It is readily seen that p is a finite measure; it is called the unit measure
concentrated at p.

(c) Let X=N={1,2,3,...} and let X be the o-algebra of all
subsets of N. If Ee X, define u(E) to be equal to the number of
elements in E if E is a finite set and equal to +oo if E is an infinite set.
Then p is a measure and is called the counting measure on N. Note

_ that u is not finite, but it is o-finite.

(d) If X = R and X = B, the Borel algebra then it will be shown
in Chapter 9 that there exists a unique measure A defined on B which
coincides with length on open intervals. [By this we mean that if E
is the nonempty interval (a, b), then ME) = b — a.] This unique
measure is usually called Lebesgue (or Borel) measure. It is not a
finite measure, but it is o-finite.

() If X =R, X = B, and f is a continuous monotone increasing
function, then it will be shown in Chapter 9 that there exists a unique
measure A; defined on B such that if E = (a, b), then A (E) = f(b) —
f(a@). This measure A, is called the Borel-Stieltjes measure generated
by f.

We shall now derive a few simple results that will be needed later.
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3.3 LeMMA. Let p be a measure defined on a o-algebra X. If E and
F belong to X and E < F, then y(E) < (F). If W(E) < 400, then
p(F\ E) = p(F) — w(E). '

PROOF. Since F = EVU (F\ E)and En (F\ E) = 0, it follows that
wF) = W(E) + p(F\ E).

Since uw(F\ E) = 0, it follows that u(F) > p(E). If w(E) < +o0,
then we can subtract it from both sides of this equation. Q.E.D.

3.4 LEMMA. Let u be a measure defined on a o-algebra X.

(a) If (E,) is an increasing sequence in X, then
G2 w(0 £) = tim u(E.

(b) If (F,) is a décreasing sequence in X and if W(Fy).< +%, then
(3.3) | o ﬁl Fn) — lim u(F,).

PROOF. (a) If u(E,) = +oo for some n, then both sides of equation
(3.2) are +oo.. Hence we can suppose that u(E,) < +oo for all n. A
Let 4, = E;and A, = E,\ E,_,forn > 1. Then (4,) is a disjoint
sequence of sets in X such that

n © o
E, =1 4, U E. = U 4,.
i=1 n=1 n=1
Since p is countably additivé,
@ @ . m
WU E) = 3wl = lim > w(dy),
n= n=1 n=1

By Lemma 3.3 (4,) = w(E,) — w(E,_,) for n > 1, so the finite series
on the right side telescopes and :

£

. l"’(An) = ,"'(Em)'

n

Hence equation (3.2) is proved.
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(b) Let E, = F, \ F,, so that (E,,) is an increasing sequence of sets
in X. If we apply part (a) and Lemma 3.3, we infer that

#( U Br) = lim p(Ex) = lim [w(FD) — n(F)]
= w(Fy) — lim p(F,).
Since (-1 E,, = F;\(Nw=1 F,, it follows that

I"’( nL=J1En) = :U'(Fl) - l"’( 7D1 Fn)'
Combining these two equations, we obtain (3.3). Q.E.D.

3.5 DEFINITION. A measure space is a triple (X, X, n) consisting
of a set X, a o-algebra X of subsets of X', and a measure p defined on X.

There is a terminological matter that needs to be mentioned and
which shall be employed in the following. We shall say that a certain
proposition holds u-almost everywhere if there exists a subset Ne X
with p(N) = 0 such that the proposition holds on the complement
of N. Thus we say that two functions f, g are equal u-almost every-
where or that they are equal for p-almost all x in case f(x) = g(x) when
x¢ N, for some Ne X with w(N) = 0. In this case we will often
write

: f=g, wpae.
In like manner, we say that a sequence (f,) of functions on X converges
u-almost everywhere (or converges for u-almost all x) if there exists a
set N € X with p(N) = 0 such that f(x) = lim f,(x) for x ¢ N. In this
case we often write
f=1lmf,, p-ae.

Of course, if the measure u is understood, we shall say “almost every-
where” instead of *“ u-almost everywhere.”

There are some instances (suggested by the notion of electrical
charge, for example) in which it is desirable to discuss functions which
behave like measures except that they take both positive and negative
values. In this case, it is not so convenient to permit the extended real
numbers 400, —o0 to be values since we wish to avoid expressions of
the form (+00) + (—o0). Although it is possible to handle “signed
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‘measures” which take on only one of the values +oo0, —oo, we shall
restrict our attention to the case where neither of these symbols is
permitted. To indicate this restriction, we shall introduce the term
“charge,” which is not entirely standard.

3.6 DEfINITION. If X is a o-algebra of subsets of a set X, then a
real-valued function A defined on X is said to be a charge in case
M@) = 0 and A is countably additive in the sense that if (E,) is a disjoint
sequence of sets in X, then

A Ql E) = 2 XE,).

[Since the left-hand side is independent of the order and this equality
is required for all such sequences, the series on the right-hand side
must be unconditionally convergent for all disjoint sequences of
measurable sets.]

It is clear that the sum and difference of two charges is a charge.
More generally, any finite linear combination of charges is a charge.
It will be seen in Chapter 5 that functions which are integrable over a
measure space (X, X, p) give rise to charges. Later, in Chapter 8§,
we will characterize those charges which are generated by integrable
functions.

EXERCISES

3JA.If p.v is a measure on X and A is a fixed set in X, then the
function A, defined for E € X by ME) = u(4 N E), is a measure on X.

3.B. If u,, ..., p, are measures on X and a,, .. ., a, are nonnegative
real numbers, then the function A, defined for E € X by

NE) = jz 4, uAE),

is a measure on X.

3.C. If (u,) is a sequence of measures on X with u,(X) = 1 and if A
is defined by '

ME) = > 2°"u(E), EeX,
n=1
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then A is a measure on X and A(X )
“3.D. Let X = N and let X be the a-algebra of all subsets of N. If

(a,) is a sequence of nonnegative real numbers and if we define x by

b® = 0; WE) = an, E#0;

nek

then p is a measure on X. Conversely, every measure on X is obtained
in this way for some sequence (a,) in R.

3.E. Let X be an uncountable set and let X be the family of all
subsets of X. Define ¢ on E in X by requiring that u(F) = 0, if E is
countable, and p(F) = +oo, if F is uncountable. Show that u is a
measure on X. :

3.F. Let X = N and let X be the family of all subsets of N. - If E'is
finite, let u(E) = 0;.if E is mﬁmte let w(F) = +oo. Is 4 a measure
on X?

3.G. If X and X are as in Exercise 3.F, let A(E) = +ooforall Ee X.
Is A a measure?

3.H. Show that Lemma 3.4(b) may fail if the finiteness condition
u(Fy) < +oo is dropped.

3.I. Let (X, X, p) be a measure space and let (E,) be a sequence in
X. Show that

' p(lim inf E,) < lim mf w(E,).
[See Exercise 2.E.]
3.J. Using the notation of Exercise 2.D, show that

lim sup p(E,) < p(lim sup E,)

when u(l_J E,) < +o0. Show that this inequality may failif u(|_J E,) =
+c0.

3.K. Let (X, X, p) be a measure space and let Z = {E€ X : w(F) =
0}. Is Zao-algebra? Showthatif Ee Zand FeX,thenEN Fe Z,
Also, if E, belongs to Z forne N, then|J E, € Z.

3.L. Let X, X, u, Z be as in Exercise 3.K and let X’ be the family of
all subsets of X of the form

(EUZI)\ZZ’ EEX,
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where Z, and Z, are arbitrary subsets of sets belonging to Z. Show
that a set is in X" if and only if it has the form £ U Z where E€ Xand Z
isa subset of asetin Z. Show that the collection X’ forms a o-algebra
of sets in X. The o-algebra X’ is called the completion of X (with
respect to p). _

3.M. With the notation of Exercise 3.L, let x’ be defined on X’ by

W(EVZ) = u(E),

when E€ X and Z is a subset of a set in Z. Show that p' is well-
defined and is a measure on X’ which agrees with p on X The
measure u’ is called the completion of ..

3.N. Let (X, X, ) be a measure space and let (X, X', u) be its
complétion in the sense of Exercise 3.M. Suppose that fis an X'-
measurable function on XtoR. Showthatthere exists an X-measurable
function g on X to R which is u-almost everywhere equal to f. (Hint:
For each rational number r, let 4, = {x : f(x) > r} and write 4, =
E, U Z, where E, € Xand Z, is a subset of a setin Z. Let Z be a set
in Z containing | J Z, and define g(x) = f(x) for x ¢ Z, and g(x) = 0
for xe Z. To show that g is X-measurable, use Exercise 2.U.)

3.0. Show that Lemma 3.4 holds if n is a charge on X.

3.P. If pis a charge on X, let 7 be defined for Ee X by

m(E) =sup{u(d) : A € E, A€ X}.
Show that  is a measure on X. (Hint: If w(E,) < wand e > 0, let

F, € X be such that F, < F, and #(E,) < w(F,) + 27 "¢.)
3.Q. If pis a charge on X, let v be defined for E e X by

WE) = supj_il (4,

where the supremum is taken over all finite disjoint collections {4}
in Xwith E =\ J?_; 4;,. Show that »is a measure on X. (It is called
the variation of ...)

_3.R. Let A denote Lebesgue measure defined on the Borel algebra B
of R [see Example 3.2(d)]. (a) If E consists of a single point, then
Ee Band ME) = 0. (b) If E is countable, then E € B and A(E) = 0.
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(¢) The open interval (a, b), the half-open intervals (a, 5], [a, b), and
the closed interval [a, b] all have Lebesgue measure b — a.

3.S. If A denotes Lebesgue measure and F is an open subset of R,
then A(E) > 0. Use the Heine-Borel Theorem (see Reference [1], p.
85) to show that if K is a compact subset of R, then A(K) < +o0.

3.T. Show that the Lebesgue measure of the Cantor set (see Reference
{11, p. 52) is zero.

3.U. By varying the construction of the Cantor set, obtain a set of
positive Lebesgue measure which contains no nonvoid open interval.

3.V. Suppose that E is a subset of a set N € X with u(N) = 0 but
that E¢ X. The sequence (f), f, = 0, converges u-almost everywhere
to xz. Hence the almost everywhere limit of a sequence of measurable
functions may not be measurable.



CHAPTER 4

The Integral

In this chapter we shall introduce the integral first for nonnegative
simple measurable functions and then for -arbitrary nonnegative
extended. real-valued measurable functions. The principal result is -
the celebrated Monotone Convergence Theorem, which is a basic
tool for everything that follows. :

Throughout this chapter we shall consider a fixed measure space
(X, X, ). We shall denote the collection of all X-measurable
functions on-X to R by M = M(X, X) and the collection of all non-
negative X-measurable functions on*X to R by M+ = M*(X, X).
We shall define the integral of any function in M * with respect to the
measure . In order to do so we shall find it convenient to introduce
the notion of a simple function. It is convenient to require that simple
functions have values in R rather than in R.

4.1 DEFINITION. A real-valued function is simple if it has only a
finite number of values.

A simple measurable function ¢ can be represented in the form

.1 P = D axg,
. =1

where a; € R and yg, is the characteristic function of a set E; in X.
Among these representations for ¢ there is a unique standard repre-
sentation characterized by the fact that the ag; are distinct and the E,

27
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are disjoint. Indeed, if a,, a3, . . ., a, are the distinct values of ¢ and
if E; = {xe X : o(x) = a;}, then the E; are disjoint and X = |}, E;.
(Of course, if we do not require the a; to be distinct, or the sets E, to
be disjoint, then a simple function has many representations as a linear

combination of characteristic functions.)

4.2 DerFINITION. ' If ¢ is a simple function in M *(X, X) with the
standard representation (4.1), we define the integral of ¢ with respect to
p to be the extended real number

42 [oau=3 aue.
j=1

In the expression (4.2) we employ the convention that 0(+o0) = 0
so the integral of the function identically O is equal to 0 whether the
space has finite or infinite measure. It should be noted that the value
of the integral of a simple function in M * is well-defined (although it
may be +00) since all the a; are nonnegative, and so we do not encounter
meaningless expressions such as (+00) — (400).

We shall need the following elementary properties of the integral.

4.3 LemMA. (a) If ¢ and ¢ are simple functions in M *(X, X) and
¢ = 0, then '

fcv’d# = 6f¢dn,
[ +9 du= [pau + [pan.
(b) If X is defined for E in X by
AE) = [oxdi,

then A is a measure on X.

PROOF. If ¢ = 0, then cp vanishes identically and the equality
holds. If ¢ > 0, then ce is in M * with standard representation

n
cp = z caij;;
i=1
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when ¢ has standard representation (4.1). Therefore

Jerdn- Zlcam(Ej)=Cjzlam(Ej)=6f<Pd#-
j= =

Let ¢ and ¢ have standard representations
n m

P = Za/XE,, */’? Zkap,c,
i=1 k=1

then ¢ + ¥ has a representation

n m
= Z z (@; + b)xs;nr, -
f=1k=1

However, this representation of ¢ + ¢ as a linear combination of
characteristic functions of the disjoint sets E; N F,, is not necessarily
the standard representation for ¢ + ¥, since the values a, + b, may
not be distinct. Letc¢,, A =1,...,p, be the distinct numbers in the
set {a; + b :j=1,...,nk=1,...,m} and let G, be the union
of all those sets E; N F, such that a¢; + b, = ¢;,. Thus

WGy = > WE N FY,;

[

where the notation designates summation over all j, k& such that
a, + b, = ¢,. Since the standard representation of ¢ + ¢ is given by

»
P + ¢ = :2 Cthu
h=1

we find that

GuG) = 3> o ulE 0 F)

h=1 (b

Il
N

[o+na

=
[}
it

I
M

Z (a; + b)) W(E; N Fy)

(h

>
)
[
-
<

m

z (@; + b)) E; N Fy)

I
-
[ 3
1M
b
-

S S auBNE) + 3 5 buEOE).

k=1 . j=1k=1

I
TN=

"
[



30 The Elements of Integration

Since X is the union of both of the disjoint families {E;} and {F;}, then

m

WE) = 5 wE NF), wF)= Z WE; 0 Fy.

k=1
We employ this observation (and change the order of summation in
the second term) to obtain the desired relation

f @+ ) du = Z a W(E)) + Z by w(Fy)
= f(p dp + ft/l dp.

To establish part (b), we observe that

n
PXs = 2, @ X5;-
j=1

Hence, it follows by induction from what we have proved that

NE) = f?’ Xe dp = Z a; fXE,nE dp = Z a; wW(E; NV E).
i=1 i=1

Since the mapping E — u(E; N E) is a measure (see Exercise 3.A) we
have expressed A as a linear combination of measures on X. It follows
(see Exercise 3.B) that A is also a measure on X. Q.E.D.

We are now prepared to introduce the integral of an arbitrary
function in M*. Observe that we do not require the value of the
integral to be finite.

4.4 DEFINITION, If f belongs to M *(X, X), we define the integral
of f with respect to u to be the extended real number

@3) [ 7au = sup (o,

where the supremum is extended over all simple functions ¢ in
M*(X, X) satisfying 0 < ¢(x) < f(x) for all xe X. If f belongs to
M *(X, X)and E belongs to X, then fy; belongs to M *(X, X) and we
define the integral of f over E with respect to u to be the extended real
number

.4) [ raw= [ 7xsdu.
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We shall first show that the integral is monotone both with respect
to the integrand and the set over which the integral is extended.

4.5 LemMA. (a) If fand g belong to M* (X, X) and f < g, then

t4-5) ffdy- < fg du.

~ (b) If f belongs to M* (X, X), if E, F belong to X, and if E < F, then
f fdu < f fa.
E F

PROOF. (a) If ¢ is a simple function in M * such that 0 < ¢ < f,
then 0 < ¢ < g. Therefore (4.5) holds. .
(b) Since fxz < fxr, part (b) follows from (a). Q.E.D.

We are now prepared to establish an important result due to B. Levi.
This theorem provides the key to the fundamental convergence
properties of the Lebesgue integral.

4.6 MONOTONE CONVERGENCE THEOREM. If (f,) is a monotone
increasing sequence of functions in M *(X, X) which converges to f, then

(4.6) f fdu = lim f £, du.

PROOF. According to Corollary 2.10, the function f is measurable.
Since f, € fa+1 < f, it follows from Lemma 4.5(a) that

ffndn < ff;n-l-ldl" < ffd,»

for al ne N. Therefore we have

ﬁmfﬁdps ffd,u.

To establish the opposite inequality, let « be a real number satisfying
0<a< 1 and let-p be a simple measurable function satisfying
0<e<f Let _

4, = {xe X : fux) > ap(x)}
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sothat 4, X, 4, € 4,,1,and X ={J 4,. Accordingto Lemma4.5,

@7 [ wdu<| fides[rid
. 4n

Since the sequence (A4,) is monotone increasing and has union X, it
follows from Lemmas 4.3(b) and 3.4(a) that

f<pdp,=limf o du.
Ap

Therefore, on taking the limit in (4.7) with respect to n, we obtain

af¢dy<1imfﬂdy.

Since this holds for all « with 0 < « < 1, we infer, that

f¢dﬂ<1imffnd#

and since ¢ is an arbitrary simple function in M * satisfying 0 € ¢ < f,
we conclude that

ffdy - supfcpdp. < limff,,d,u.

If we combine this with the opposite inequality, we obtain (4.6). Q.E.D.

ReEMARK. It should be observed that it is not being assumed that
either side of (4.6) is finite. Indeed, the sequence ( f Jfn dp) is a2 mono-

tone increasing sequence of extended real numbers and so always has
a limit in R, but perhaps not in R.

We shall now derive some consequences of the Monotone Con-
vergence Theorem.

4.7 CorOLLARY. (a) If f belongs to M+ and ¢ > 0, then cf belongs
to M™* and

fcfd,u. - cffd,u.

(b) Iff, g belong to M ™, then f + g belongs to M * and

Jo+odu=[riu+ [gan.
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PROOF. (a) If ¢ = O the result is immediate. If ¢ > 0, let (p,) be
a monotone increasing sequence of simple functions in M * converging
to f on X (see Lemma 2.11). Then (cp,) is a monotone sequence
converging to ¢f. If we apply Lemma 4.3(a) and the Monotone
Convergence Theorem, we obtain

fcfdp = lim fc @n du
= climftpnd,u. = cffd,u..

(b) If (p,) and () are monotone increasing sequences of simple
functions converging to f and g, respectively, then (p, + ¢,) is a
monotone increasing sequence converging to f + g. It follows from
Lemma 4.3(a) and the Monotone Convergence Theorem that

[0+ @ du = tim [ + 4o d
=1imf<p,,d;¢ +limfx/1,,dp.
= ffdp. + fg du. Q.E.D.

The next result, a consequence of the Monotone Convergence
Theorem, is very important for it enables us to handle sequences of
functions that are not monotone.

4.8 Fatou’s LeMMA. If (f,) belongs to M *(X, X), then
(4.8) f (tim inf £) du < lim inf f £ d.

PROOF. Let gn = Inf{f, frn+1,...} so that g, < f, whenever
m < n. Therefore

[gndu< [frdu, m<n,
so that

fgm dy < lim infff,, du.

Since the sequence (g,) is increasing and converges to lim inf f,,, the
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Monotone Convergence Theorem implies that
f (tim inf £) d = lim f g du
< lim inf f Jodp. Q.E.D.

It will be seen in an exercise that Fatou’s Lemma may fail if it is not
assumed that £, > 0.

4.9 CoROLLARY. Iff belongs to M* and if X is defined on X by
49) XE) = [ rdn,

then A is a measure.

PROOF. Since f > 0 it follows that A(E) > 0. If E = 0, then fxg
vanishes everywhere so that A(@) = 0. To see that A is countably
additive, let (E,) be a disjoint sequence of sets in X with union E and .
let £, be defined to be

f n = 2 f XE, -
} k=1
It follows from Corollary 4.7(b) and induction that

[rau=3 [ rrode= 3 a8

Since (f,) is an increasing sequence in M * converging to fyz, the
Monotone Convergence Theorem implies that

NE) = f fxedu = lim f fodu = IZ ME).  QED.

4.10 COROLLARY. Suppose that f belongs to M*. Then f(x) =0
pu-almost everywhere on X if and only if

(4.10) ffd,L —o.

PROOF. If equation (4.10) holds, let

E,,={xeX:f(x) > %},
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so that f > (1/n) xg, , from which

0= ffd,u > e > 0.
It follows that u(E,) = 0; hence the set

(xeX:fx) >0 =) E
n=1
also has measure 0.
Conversely, let f(x) = 0 p-almost everywhere. If

E={xeX:f(x)>0},

then u(E) = 0. Letf, = nyxz. Since f < liminff,, it follows from
Fatou’s Lemma that

0< f fdu < liminf f fodu = 0. QED.

4.11 COROLLARY. Suppose that f belongs to M *, and define A on X
by equation (4.9). Then the measure X is absolutely continuous with
respect to p in the sense that if E € X and p(E) = 0, then \E) = 0.

PROOF. If u(E) = 0 for some E e X, then fyz vanishes p-almost
everywhere. By Corollary 4.10, we have

ME) = ffXE dp = 0. Q.E.D.

We shall now show that the Monotone Convergence Theorem holds
if convergence on X is replaced by almost everywhere convergence.

4.12 CoroLLARY. If (f,) is a monotone increasing sequence of
Junctions in M *(X, X) which converges p-almost everywhere on X to
a function fin M *, then

ffd;L:umff,,d,L.

PROOF. Let N e X be such that u(N) = 0 and (f,) converges to f
at every point of M = X'\ N. Then (f, xi) converges to fx, on X,
so the Monotone Convergence Theorem implies that

jfo dy = lim ff,.xM du.
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Since u(N) = 0, the functions fyy and f, yy vanish p-almost every-
where. It follows from Corollary 4.10 that

[fxvdu=0,  [fixwdu=o0.
Since f = fxu + fxny and £, = fr xu + fuxn, it follows that
f fdu = J' Fxw du = lim f £ xw du = lim f fids.  QED.

4.13 CorOLLARY. Let (g,) be a sequence in M *, then

J(28)a=2 (o)

PROOF. Let f, =g, +---+ g,, and apply the Monotone Con-
vergence Theorem. Q.E.D.

EXERCISES

4.A. If the simple function ¢ in M *(X, X) has the (not necessarily
standard) representation

m
¢ = 2 b Xz,
k=1

where b, € R and F, € X, show that

f‘P dp = kil by, u(Fy).

4.B. The sum, scalar multiple, and product of simple functions are
simple functions. [In other words, the simple functions in M (X, X)
form a vector subspace of M (X, X).]

4.C. If ¢, and ¢, are simple functions in M (X, X), then
Y =sup{p, @), o =inflp:, 9o}

are also simple functions in M (X, X).

4D. If feM* and ¢ > 0, then the mapping ¢ > ¢ = cp is a
one-one correspondence between simple function ¢ in M * with ¢ < f
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and simple functions ¢ in M * with ¢ < ¢f. Use this observation to
give a different proof of Corollary 4.7(a).

4.E. Let f, g belong to M *, let ¢ be a simple function in M * with
¢ < f, and let w be a simple function in M* with o < f+ g. Put
0, = inf{w, ¢} and 6, = sup{w — ¢,0}. Show that w = 6, + 0,
and that 8, < fand 6, < g.

4.F. Employ Exercise 4.E to establish Corollary 4.7(b) without
using the Monotone Convergence Theorem.

4.G. Let X = N, let X be all subsets of IV, and let u be the counting
measure on X. Iffis a nonnegative function on N, then fe M *(X, X)
and

[ rau =3 100,

4H. Let X = R, X = B, and let A be the Lebesgue measure on B.
If f, = xmw0.n1, then the sequence is monotone increasing to f = yo, + )
Although the functions are uniformly bounded by 1 and the integrals
of the f,, are all finite, we have

ffd)\ — too.

Does the Monotone Convergence Theorem apply ?

41 Let X =R, X = B, and A be Lebesgue measure on X. If
Jo = (1/1) xin. + =), then the sequence (f,) is monotone decreasing and
converges uniformly to f = 0, but

O=ffd)\;élimff,,d)«= +o.

(Hence there is no theorem corresponding to the Monotone Con-
vergence Theorem for a decreasing sequence in M *.)

4.J.(a) Let f, = (1/n) x0.m3» £ = 0. Show that the sequence (f})
converges uniformly to f, but that '

ffdA £ lim ff,,d)\.

Why does this not contradict the Monotone Convergence Theorem ?
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Does Fatou’s Lemma apply ?
(b) Letg, = n Xtin,2m»> & = 0. Show that

fgdaaélimfg,,dA.

Does the sequence (g,) converge uniformly to g? Does the Monotone
Convergence Theorem apply? Does Fatou’s Lemma apply?

4K. If (X, X, p) is a finite measure space, and if (f,) is a real-valued
sequence in M *(X, X) which converges uniformly to a function f,
then f belongs to M *(X, X), and

ffd,u — lim ff,,dp..

4.L. Let X be a finite closed interval [a, b]in R, let X be the collection
of Borel sets in X, and let A be Lebesgue measure on X. If fis a
nonnegative continuous function on X, show that

[ran= [ reyax,

where the right side denotes the Riemann integral of f. (Hint: First
establish this equality for a nonnegative step function, that is, a linear
combination of characteristic functions of intervals.)

4 M. Let X = [0, +00), let X be the Borel subsets of X, and let A
be Lebesgue measure on X. If fis a nonnegative continuous function
on X, show that ’

ffd)\ = lm f: £(%) dx.

Hence, if fis a nonnegative continuous function, the Lebesgue and the
improper Riemann integrals coincide.

[The next three exercises deal with the integration of functions which
do not belong to M *. They can be omitted until the next chapter has
been read. However, we include them here because they illustrate the
restrictions required by Fatou’s Lemma.]



The Integral 39

4N. Iff, = (—1/n) x10. 1, then the sequence (f,,) converges uniformly

to f = 0 on [0,00). However, ff,, d\x = —1 whereas _[fd)\ =0, so
1iminfff,,dA= ~1<0= J-fd/\.

Hence Fatou’s Lemma 4.8 may not hold unless f, > 0, even in the
presence of uniform convergence.

4.0. Fatou’s Lemma has an extension to a case where the f, take
on negative values. Let A be in M *(X, X), and suppose that

fh du < +oo. If (f,)is a sequence in M(X, X) and if —h < f,, then

f (tim inf £) die < lim inf J' £ du.

4.P. Why doesn’t Exercise 4.0 apply to Exercise 4.N?
4.Q. If fe M*(X, X) and

[faw < +oo,

thenpu{xe X : f(x) = 400} =0. [Hint: HE, ={xe X: f(x) > n},
then nyg, < f.]

4R. If fe M*(X, X) and
J"fdp. < +0o0,

then the set N = {x € X : f(x) > 0} is o-finite (that is, there exists a
sequence (F,) in X such that N < {J F, and w(F,) < +0). -

48. If fe M*(X, X) and
ffdu < +o,
then for any € > O there exists a'set £ € X such that u(E) < +oo and
ffd,qu fdu + €.
E

4.T. Suppose that (f;,) C M *(X, X), that (f,) converges to f, and
that

jfdp=limfﬁ,d;¢ < +00.
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Prove that

[ fau=tim | fuau
E B
for each Ec X.

4.U. Show that the conclusion of Exercise 4.T may fail if the
condition

lim f Jadp < 40
is dropped.



CHAPTER 5

Integrable Functions

In Definition 4.4 we defined the integral of each function in
M* = M*(X, X) with respect to a measure p and permitted this
integral to be +oco. In this chapter we shall discuss the integration
of measurable functions which may take on both positive and negative
real values. Here it is more convenient to require the values of the
functions and the integral to be finite real numbers.

5.1 DerINITION. The collection L = L(X, X, ) of integrable (or
summable) functions consists of all real-valued X-measurable functions
fdefined on X, such that both the positive and negative parts f*+, -,
of f have finite integrals with respect to . In this case, we define the
integral of f with respect to u to be

6.1) [rau=[r+au- [1-au
If E belongs to X, we define
[rau=[ 1+ au=] 1 au.
E E E
Although the integral of f is defined to be the difference of the

integrals of f+, f~, it is easy to see that if f = f; — f; where f}, f; are
any nonnegative measurable functions with finite integrals, then

[rau=[fidu~ [ fadn.

41
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In fact, since f* — f~ = f = f1 — fa, it follows that f* + f, = f; +
f~. 1If we apply Corollary 4.7(b), we infer that

[rrau+[fde=[fidu+ 1= au.
Since all these terms are finite, we obtain
[raw=[rrau—[1du=[frdu=[frdu.
52 LemMa. Iff belongs to L and A is defined on X to R by

5.2) NE) = [ fdu,

then A is a charge.

PROOF. Since f* and /- belong to M *, Corollary 4.9 implies that
the functions A* and A~, defined by

V@) = [ 1 des x® = [ faw,

are measures on X; they are finite because fe L. Since A = AT — A~
it follows that A is a charge. Q.E.D.

The function A defined in (5.2) is frequently called the indefinite
integral of / (with respect to »). Since A is a charge, if (E,) is a disjoint
sequence in X with union E, then

We refer to this relation by saying that the indefinite integral of a function
in L is countably additive.

The next result is sometimes referred to as the property of absolute
integrability of the Lebesgue integral. The reader will recall that,
although the absolute value of a (proper) Riemann integrable function
is Riemann integrable, this may no longer be the case for a function
which has an improper Riemann integral (for example, consider
S(x) = x~sin x on the infinite interval 1 € x < +00).
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5.3 THEOREM. A measurable function f belongs to L if and only if
|f| belongs to L. In this case

(53) [ [rau| < [111 .

PROOF. By definition f belongs to L if and only if f+ and f‘ belong
to M* and have finite integrals. Since |f|* = |f| =f* + f~ and
|f]~ =0, the assertion follows from Lemma 4.5(a) and Corollary
"~ 4.7(b). Moreover,

fraf-Ijrefra
< ff+ du + ff- du = fm du. QE.D.

5.4 COROLLARY. If f is measurable, g is integrable, and |f| < |g|,
then f is integrable, and

[1714s < [181 do.

PROOF. This follows from Lemma 4.5(a) and Theorem 5.3. Q.E.D.

We shall now show that the integral is linear on the space L in the
following sense. :

5.5 THEOREM. A constant multiple of and a sum f + g of functions
in L belongs to L and

[efdu=a[ran, [+u=[rdu+ [edu
PROOF. If o = 0, then of = 0 everywhere so that
focfdp, 0= ocffd,u..
Ife > 0, then (¢f)* = «f* and (¢f)~ = «f~, whence
fafd,u. =faf+ du — faf- du

=a{jf+dp—ff‘dy}=affd,u..

The case « < 0 is handled similarly.
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If f and g belong to L, then |f| and |g| belong to L. Since
|f + g| < |f] + |g]| it follows from Corollaries 4.7 and 5.4 that f + g
belongs to L. To establish the desired relation, we observe that

f+reg=0U"+g") -0 +g).

Since f* + g* and f~ + g~ are nonnegative integrable functions, it
follows from the observation made after Definition 5.1 that

Jo+od=[¢ +erdu= [0+
If we apply Corollary‘4.7(b) aﬁd rearrange the terms, we obtain
Jo+ord=[r1du=[r-au+ [gdu— 5o
- ffdy + fgd,L. . QED.

We shall now establish the most important convergence theorem
for integrable functions.

5.6 LEBESGUE DOMINATED CONVERGENCE THEOREM. Let (f,) be a
sequence of integrable functions which converges almost everywhere to a
real-valued measurable function f. If there exists an integrable function
g such that | f,| < g for all n, then f is integrable and

(5.4) f fdu = lim f 1. du.
PROOF. By redefining the functions f,, f on a set of measure 0 we
may assume that the convergence takes place on all of X. It follows

from Corollary 5.4 that f is integrable.. Since g + f, = 0, we can
apply Fatou’s Lemma 4.8 and Theorem 5.5 to obtain

Jedu+ [fau = [+ du < timint [(g + £ do
=liminf(fgdy+ff,,dp’)

= fgdp+liminfffndy.
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Therefore, it follows that

55 f fdu < lim inf f . du.

Since g — f, = 0, another application of Fatou’s Lemma and Theorem
5.5 yields

[gdu~ [ 1au = [(g ) au < timint (g - 7 d
= [gdu — timsup [ 1, du,

from which it follows that

(5.6) lim sup ff,. < ffdp.

Combine (5.5) and (5.6) to infer that

f fdu = lim f £, du. QE.D.

DEPENDENCE ON A PARAMETER

Frequently one needs to consider integrals where the integrand
depends on a real parameter. We shall show how the Lebesgue
Dominated Convergence Theorem can be used in this connection.

"For the remainder of this chapter we shall let f denote a function
defined on X x [a, b] to R and shall assume that the function x —
f(x, t) is X-measurable for each ¢ e[a, b]. Additional hypotheses will
be stated explicitly.

5.7 CorROLLARY. Suppose that for some t, in [a, b]
(57 S, t9) = lim f(x, )
nd]

Jfor each x € X, and that there exists an integrable function g on X such
that | f(x,1)| < g(x). Then

[ 16,10 dut) = lim [ 6,0y duc).
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PROOF. Let (¢,) be a sequence in [a, b] which converges to #,, and
apply the Dominated Convergence Theorem to the sequence (f})
defined by f.(x) = f(x, t,) for x e X. Q.E:D.

5.8 COROLLARY. If the function t — f(x,t) is continuous on [a, b]
Jfor each x € X, and if there is an integrable function g on X such that
[f(x, t)| < g(x), then the function F defined by

(5.8) F) = [ £6,1) dute)

is continuous for t in [a, b].
PROOF. This is an immediate consequence of Corollary 5.7. Q.E.D.

5.9 COROLLARY. Suppose that for_some t,€ [a,b]l, the function
x — f(x, to) is integrable on X, that of/ot exists on X x [a, b], and that
there exists an integrable function g on X such that

Z )| < 809.

Then the function F defined fn Corollary 5.8 is differentiable on [a, b] and

Lo =2 100 a0 = [Zx, 1) duto).

PROOF. Let ¢ be any point of [a, b]. If (¢,) is a sequence in [a, b]
converging to ¢ with ¢, # ¢, then

g—{(x, f) = fim [ 1) =/, 1) t:?, :{(x, D xex.

Therefore, the function x — (8f/t)(x, t) is measurable.

If x e X and ¢ €[a, b), we can apply the Mean Value Theorem (see
Reference [1], page 210) to infer the existence of a s, between #, and ¢
such that

F, 1) = f, ) = (¢ = 1) L (5, 5.
Therefore we have

|fGx, D] < [f(x, )] + |2 — %] &(x),
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which shows that the function x — f(x, ¢) is integrable for each ¢ in
[a,b]. Hence, if ¢, # ¢, then

F(tn — F(t) — ff(x’ tn) —f(x9 t) d[-b(X)
' t, —t )

t, — ¢

Since this integrand is dominated by g(x), we may apply the Dominated
Convergence Theorem to obtain the stated conclusion. Q.E.D.

5.10 CorOLLARY. Under the hypotheses of Corollary 5.8,

fu " F(t)dt = f ’ [ f f(x, 1) dp,(x)] dt

= f “.: fx, 0 dt] du(x),

where the integrals with respect to t are Riemann integrals.

PROOF. Recall that if ¢ is continuous on [a, 5] then

. .
%f o5y ds = o), a<t<b.
Let h be defined on X x [a, b] by
t
h(x, £) = f fx, ) ds.
It follows that (0h/ot)(x,t) = f(x,?). Since this Riemann integral
exists, it is the limit of a sequence of Riemann sums; hence the map
x — h(x, t) is measurable for each r. Moreover, since | f(x, )| < g(x),

we infer that [h(x, t)] < g(x)(b — a), so that the function x — A(x, ¢)
is integrable for each ¢ € [a, b]. Let H be defined on [a, b] by

H) = [hx, ) dua);

it follows from Corollary 5.9 that

T O = [0 = (16 0du) = Fo).
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Therefore we have
b
f F(t)dt = H(b) — H(a)

- f [h(x, ) — h(x, @)) du(x)

- f [ f: fx, ) dt] du(x).

The interchange of the order of (Lebesgue) integrals will be considered
in Chapter 10.

Q.E.D.

EXERCISES

5.A. If fe L(X, X, p) and a > 0, show that the set {x € X : | f(x)| >
a} has finite measure. In addition, the set {x e X : f(x) # 0} has
o-finite measure (that is, the union of a sequence of measurable sets
with finite measure). '

5.B. If fis an X-measurable real-valued function and if f(x) = O for
p-almost all x in X, then fe L(X, X, u) and

J.fd,u.=0.

5.C. If fe L(X, X, p) and g is an X-measurable real-valued function
such that f(x) = g(x) almost everywhere on X, then g € L(X, X, p) and

ffdﬂ = fgd#-

5D. If fe L(X, X, p) and .e > 0, then there exists a measurable
simple function ¢ such that

f!f—wl dp < e.

5E. If feL and g is a bounded measurable function, then the
product fg also belongs to L.

5.F. If f belongs to L, then it does not follow that fZ belongs to L.
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5.G. Suppose that fis in L(X, X, u) and that its indefinite integral is

/\(E)=Lfdp,, EeX.

Show that A(E) > O for all Ee X if and only if f(x) > 0 for almost all
x€ X. Moreover, A(E) = 0for all Eif and only if f(x) = O for almost
all xe X.

5.H. Suppose that f; and f; are in L(X, X, i) and let A\, and A, be
their indefinite integrals. Show that A, (E) = Ay(E) for all E€ X if
and only if f(x) = fy(x) for almost all x in X.

5.1. If fis a complex-valued function on X such that Re fand Im f
belong to L(X, X, n), we say that fis integrable and define

ffd,u,: fRefd;z + ifImfdp..

Let f be a complex-valued measurable function. Show that f is
integrable if and only if | f] is integrable, in which case

|[rae] < [1714.

[Hint: If [fdu = r €® with r, 6 real, consider g(x) = e~* f(x).]

5.J. Let (f,) be a sequence of complex-valued measurable functions
which converges to f. If there exists an integrable function g such
that | f,| < g, show that

ffd,L = lim fﬁ.d/.z.

5.K. Let X = N, let X be all subsets of N, and let u be the counting
measure on X. Show that f belongs to L(X, X, p) if and only if the
series 2. f(n) is absolutely convergent, in which case

[rau=3, ro0.

5.L. If (f,) is a sequence in L(X, X, ) which converges uniformly
on X to a function f, and if u(X) < +co, then

J.fdp=limff,,dp..
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5.M. Show that the conclusion in the Exercise 5.L may fail if the
hypothesis u(X) < +oo is dropped.

5.N. Let f, = n x10,1m1» Where X = R, X = B, and p is a Lebesgue
measure. Show that the condition |f;| < g cannot be dropped in the
Lebesgue Dominated Convergence Theorem.

5.0. If f, e L(X, X, pn), and if

> 15l de < oo,

then the series > f,(x) converges almost evérywhere to a function f in
L(X, X, u). Moreover,

o [ra= 3 [na

5.P. Let f,eL(X, X, p), and suppose that (f,) converges to a
function f. Show that if

lim'flf,,—f|d,L=O, then f|f|dp=limf|f,,|dp.

5.Q. If £ > 0, then
+ ® 1
-ix P
fo e ¥dx = 7

Moreover, if t > a > 0, then e ** < e~%*. Use this and Exercise
4.M to justify differentiating under the integral sign and to obtain
the formula

+ ©
f x"e *dx = n!
0

S.R. Suppose that f is defined on X x [a, b] to R and that the
function x — f(¢, x) is X-measurable for each te[a, b]. Suppose
that for some ¢, and ¢, in [a, b] the function x — f(x, ¢,) is integrable
on X, that (9f/ot)(x, t;) exists, and that there exists an integrable
function g on X such that
fx, 1) = f(x, 1)

t - t]_ v
forxe X,and tela, b]l,t # t,. Then

[;‘}’; f 1) df*(x)],=,1 = f Y (x, 1) dux).

< g(x)
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5.S. Suppose the function x — f(x,t) is X-measurable for each
te R, and the function ¢ — f(x, t) is continuous on R for each x € X.
In addition, suppose that there are integrable functions g, 2 on X such
that | f(x, ¢)| < g(x) and such that the improper Riemann integral

+ o
[T 1re 0l ar < .
Show that

f: [ f f(x,0) d,u(x)] dt = f [ fj:_ fx, 1) dt] du(),

where the integrals with respect to ¢ are improper Riemann integrals.

5.T. Let f be an X-measurable function on X to R. Forne N, let
(f» be the sequence of truncates of f (see Exercise 2.K). If f is
integrable with respect to u, then

ffd,u. — lim ff,, d.
Conversely, if

sup flfnl dp < 40,
then f is integrable.



CHAPTER 6

The Lebesgue Spaces L,

It is often useful to impose the structure of a Banach space on the
set of all integrable functions on a measure space (X, X,y). In
addition, we shall introduce the L,, 1 < p < o, spaces which occur
frequently in analysis. Aside from the intrinsic importance of these
spaces, we examine them here partly to indicate applications of some
of the results in the earlier sections.

6.1 DEFINITION. If V is a real linear (= vector) space, then a real-
valued function N on V is said to be a norm for V in case it satisfies

i) N@ zO0forallveV;

(ii) N(v) = 0if and only if v = 0;

(iii) N(ov) = |«|N(v) for all v € V and real «;

(ivv Nu+v)< Nu) + N@)forallu,veV.
If condition (ii) is dropped, the function N is said to be a semi-norm or a
pseudo-norm for V. A normed linear space is a linear space ¥ together
with a norm for V. '

6.2 ExampLEs. (a) The absolute value function yields a norm for
the real numbers.
(b) The linear space R of n-tuples of real numbers can be normed
by defining
Ny, ..oy tty) = |t] +-- -+ |unl,
Np(ub e un) = {lullp +--+ lunlp}”p’ p=zl,
Ny, ..., u) =sup{|uy],..., |ul}.
52
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It is easy to check that N, and N, are norms and that N, satisfies (i),
(i), @ii). It is a consequence of Minkowski’s Inequality, which will
be proved subsequently, that N, satisfies (iv).

(c) The linear space /; of all real-valued sequences # = (u,) such
that Ny(u) = X ju,| < +o0 is a normed linear space under N;.
Similarly, if 1 < p < o0, the collection /, of all sequences such that
Ny(w) = {5 |u,|"}*"* < +o0 is normed by N,.

(d) The collection of all real-valued functions defined on an infinite
set X cannot be normed, but the collection B(X) of all bounded real-
valued functions on X is normed by

N(f) = sup{|f(x)| : xe X}.
In particular, the linear space of continuous functions on X = [a, b} is
normed.
All the preceding examples have been proper norms on a linear

space. There are also semi-norms on a linear space that are of interest.
The following are some examples.

6.3 ExampLES. (a) On the space R", consider the semi-norm
No(ul, cees un) = sup {Iu2|a cens ]unl}'
Here Ny(uy,...,u,) = 0ifand only if uy =---=u, = 0.

{b) On the linear space C[0, 1] of continuous functions on [0, 1] to
R, define the semi-norm

No(f) = sup{[f(x)] : 0 < x < }}.
Here Nyo(f) = 0if and only if f(x) vanishes for 0 < x < 4.

(c) On the linear space of functions on [a, b] to R which have con-
tinuous derivatives, consider the semi-norm

No(f) = sup{|f'(x)] : @ < x < b}.
Here No(f) = 0 if and only if fis constant on [a, ].

6.4 DEFINITION. Let (X, X, 1) be a measure space. If f belongs to
L(X, X, n), we define

N = [If] d.

It will be shown that N, is a semi-norm on the space L(X, X, p).
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6.5 LEMMA. The space L(X,X,p) is a linear space under the
operations defined by

(f+8)x) =fx) + g(x), () =ef(x), xeX,
and N, is a semi-norm on L(X, X, p). Moreover, N,(f) =0 if and
only if f(x) = O for p-almost all x in X.

PROOF. It was seen in Theorem 5.5 that L = L(X, X, u) is a linear
space under the indicated operations. It is clear that N,(f) > O for
feL, and that

Nuof) = [lofl du = lol [1f1 d = led¥,().
Moreover, it follows from the Triangle Inequality that

s+ = [If + gldu < [Uf] + I du
= [if1du + [1gl du = N0 + Nuto).

Hence N, is a semi-norm on L, and it follows from Corollary 4.10 that
N(f) = 0if and only if f(x) = O for almost all x. Q.E.D.

In order to make L(X, X, u) into a normed linear space, we shall
identify two functions that are equal almost everywhere; that is, we use
equivalence classes of functions instead of functions.

6.6 DermNITION. Two functions in L = L(X, X, i) are said to be
p-equivalent if they are equal p-almost everywhere. The equivalence
class determined by f in L is sometimes denoted by [f] and consists of
the set of all functions in L which are p-equivalent to f. The Lebesgue
space L, = L,(X, X, p) consists of all u-equivalence classes in L. If
[f] belongs to L,, we define its norm by

©1) I = {111 du.

6.7 TauporReM. The Lebesgue space L,(X, X, p) is a normed linear
space.
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PROOF. It is understood, of course, that the vector operations in L,
are defined by

of] =lf], [f1+ [l =1f+¢l

and that the zero element of L, is [0]. We shall check only that
equation (6.1) gives a norm on L;. Certainly |[f]|, = 0 and |[0]], =
0. Moreover, if |[f]|, = O then

[is1du =0,

$0 f(x) = O for p-almost all x. Hence [f] = [0]. Finally, it is easily
seen that properties (iii) and (iv) of Definition 6.1 are satisfied. There-
fore || ||, yields a norm on L,. Q.E.D.

It should always be remembered that the elements of L, are actually
equivalence classes of functions in L. However, it is both convenient
and customary to regard these elements as being functions, and we
shall subsequently do so. Thus we shall make reference to the
equivalence class [f] by referring to “the element f of L,,” and we shall

write | f]; in place of |[f1-

THE SPACES L,,1 < p< 4w

We now wish to consider a family of related normed linear spaces of
equivalence classes of measurable functions.

6.8 DeFINITION. If 1 < p < o0, the space L, = L, (X, X, u) con-
sists of all u-equivalence classes of X-measurable real-valued functions
f for which |f|® has finite integral with respect to u over X. Two
functions are p-equivalent if they are equal u-almost everywhere. We
set

) 171 = { [iste au} ™.

If p =1, this reduces to the norm introduced previously on the
space L, of equivalence classes of integrable functions. We shall show
subsequently that if 1 < p < oo, then L, is a normed linear space
under (6.3), and is complete under this norm; thus L, is a Banach
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space. It is understood that the vector operations between the
equivalence classes in L, are defined pointwise: the sum of the equiv-
alence classes containing f and g is the equivalence class containing
f + g and similarly for the product ¢f.

In the special case where u is the counting measure on all subsets of
N, the L,-spaces can be identified with the sequence spaces /, of
Example 6.2(c). In this case, each equivalence class contains one
element. It is frequently enlightening to interpret assertions about
general L,-spaces by considering the somewhat simpler /,-spaces.

In order to establish that (6.3) yields a norm on L,, we shall need
the following basic inequality.

6.9 HOLDER’s INEQUALITY. Let feL, and ge L, where p > 1 and

(1/p) + (1/g) = 1. ThenfgeL, and | fgl. < | flslgl.-
PROOF. Let « be a real number satisfying 0 < « < 1, and consider

the function ¢ defined for # > 0 by
o(t) = ot — 1%,

It is easy to check that (1) < Ofor0 < ¢t < land ¢'(¢#) > Ofor¢ > 1.
It follows from the Mean Value Theorem of calculus that ¢(z) > ¢(1)
and that ¢(¢) = ¢(1), if and only if £ = 1. Therefore we have

rr<at+ (1 —a, t=0.

If a, b are nonnegative, and if we let ¢ = a/b and multiply by b, we
obtain the inequality
a®h*"* < aa + (1 — )b,

where equality holds if and only if 2 = b.
Now let p and ¢ satisfy 1 <. p < co and (1/p) + (1/q) = 1 and take
« = 1/p. Tt follows that if 4, B are any nonnegative real numbers,

then

P q
(6.4) AB < 4 + B;
p q

and that the equality holds if and only if 4* = B9.
Suppose that fe L, and ge L,, and that ||f||, # 0 and |gf, # 0.
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The product fg is measurable and (6.4) with 4 = |f(x)|/|f|, and
= |g()|/l gll, implies that

/e  [/@IE | el
7T, Tele < 217717 * ialgle

Since both of the terms on the right are integrable, it follows from
Corollary 5.4 and Theorem 5.5 that fg is integrable. Moreover, on
integrating we obtain

el 1
Trllel. < 7

which is Holder’s Inequality. Q.E.D.

+2=1

1
q

Hoélder’s Inequality implies that the product of a function in L, and
a function in L, is integrable when p > 1 and ¢ satisfies the relation
(1/p) + (1/g) = 1 or, equivalently, when p + ¢ = pg. Two numbers
satisfying this relation are said to be conjugate indices. It will be noted
that p = 2 is the only self-conjugate index. Thus the product of two
functions in L, is integrable.

6.10 CAUCHY-BUNYAKOVSKII-SCHWARZ INEQUALITY. If f and g
belong to L, then fg is integrable and

6.5

[foau| < [1fel e < 111 Ll

6.11 MINKOWSKI's INEQUALITY. If f and h belong to L,, p = 1,
then f + h belongs to L, and

(6.6) If + Ao < 1f0 + .

" PROOF. The case p = 1 has already been treated, so we suppose
p > 1. The sum f + his evidently measurable. Since

|/ + RIP < R2sup {|/].|RB1 < 2|11” + |A[7}

it follows from Corollary 5.4 and Theorem 5.5 that f + he L,. More-
over,

DS+ P = |F+ B Lf + hP=* < IFLLf+ AP + AL [f + B,
Since f + heL,, then |f + h|? € L,; since p = (p — 1)q it follows that
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If + h|P~*eL,. Hence we can apply Hélder’s Inequality to infer that -

flfl |f + APt du < IIfllp{f|f+ hj®~ba dﬂ}m
= |l fls |.f + Al

If we treat the second term on the right in (6.7) similarly, we obtain

If + k> < 11, If + Bl,79 + [B], |f + 4],
= {71> + WAls} S+ AL,

If A =|f+ hll, =0, then equation (6.6) is trivial. If 4 % 0, we
can divide the above inequality by 4*/¢; since p — p/g = 1, we obtain
Minkowski’s Inequality, Q.E.D.

It is readily seen that the space L, is a linear space and that formula
(6.3) defines a norm on L,. The only nontrivial thing to be checked
here is the inequality 6.1(iv) and this is Minkowski’s Inequality. We
shall now show that L, is complete under this norm in the following
sense.

6.12 DEFINITION. A sequence (f,) in L, is a -Cauchy sequence in
L, if for every positive number ¢ there exists an M(e) such that if
m,n > M(e), then ||f, — ful» <. A sequence (f,) in L, is con-
vergent to f in L, if for every positive number ¢ there exists an N(g)
such that if n > N(e), then |f — f,], < . A normed linear space is
complete if every Cauchy sequence converges to some element of the
space.

6.13 LEMMA. If the sequence (f,) converges to f in L,, then it is a
Cauchy sequence. '

PROOF. If m,n > N(g/2), then

. 14 g
If = fals <5 1= fulo <5
Hence we have )
"fm _'fn”p < "fm _f"p + ”f_f;t"p <e. QE.D.

We shall now show that every Cauchy sequence in L, converges in
L, to an element. This result is sometimes called the Riesz—Fischer
Theorem,



The Lebesgue Spaces L, A 59

6.14 COMPLETENESS THEOREM. If1 < p < o0, then the space L, is a
complete normed linear space under the norm

171 = { f1r1 au} ™

PROOF. It has been stated that L, is a normed linear space. To
establish the completeness of L,, let (f,) be a Cauchy sequence relative
to the norm | |,. Hence, if ¢ > O there exists an M(e) such that if
m,n = M(g), then

69 [V =t = 115 = 2 < .

There exists a subsequence (g;) of (f,) such that || g..; — gul, < 2%
for ke N. Define g by

69 () = |g()] + Z 26109 — £,

so that g is in M *(X, X). By Fatou’s Lemma, we have

- . . L »
. f|g|" dp < llmmff{{gﬂ + z lges1 — gk|} du.
n© k=1

Take the pth root of both sides and apply Minkowski’s Inequality to
obtain

1/p n
{ f lgl”d#} < 1iminf{ng1||,, + 3 g -,gkup}
o k=1
< ”glllp + 1.

Hence, if E = {xe X : g(x) < +oo}, then Ec X and (X \E) = 0.
Therefore, the series in (6.9) converges almost everywhere and g yg
belongs to L,.

We now define fon X by

F0) = &) + i (8ear() — 2}, x€E,
=0, x¢E.

Since |gx| < 3%k |gs+: — & < g and the sequence (g;) converges
almost everywhere to f, the Dominated Convergence Theorem 5.6
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implies that fel,. Since |f— gu|® < 2°g?, we infer from the
Dominated Convergence Theorem that 0 = lim [|f — g,[,, so that
(gx) converges in L, to f.

In view of (6.8), if m > M (¢) and k is sufficiently large, then

[i7u- g du < 2.

Apply Fatou’s Lemma to conclude that
flfm —flPdp < liininff[fm — glPdp < €,

whenever m > M(c). This proves that the sequence (f,) converges to
fin the norm of L,,. Q.E.D.

A complete normed linear space is usually called a Banach space
Thus the preceding theorem could be formulated: the space L, is a
Banach space under the norm given in (6.3).

THE SPACE L,

We shall now introduce a space which is related to the L,-spaces.

6.15 DeriNITION. The space L, = Lo(X, X, u) consists of all the
equivalence classes ‘of X-measurable real-valued functions which are
almost everywhere bounded, two functions being equivalent when they
are equal p-almost everywhere. If fe L, and N € X with w(N¥) = 0,
we define

S(V) = sup {|f(x)] : x ¢ N}
and

(6.10) Ifle = inf {SV) : Ne X, u(N) = 0}.
An element of L, is called an essentially bounded function.

1t follows (see Exercise 6.T) that if fe L, then |f(x)] € ||f|« for
almost all x. Moreover, if 4 < | f|., then there exists a set E with
positive measure such that |f(x)| = 4 for xe E, It is also clear that
the norm in (6.10) is well-defined on L,,.
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6.16 THEOREM. The space L., is a complete normed linear space
under the norm given by formula (6.10).

PROOF. It is clear that L, is a linear space and that ||f|. > O,
[0f =0, and [of | = || [|fllw. If | flle = O, then there exists a
set N, € X with u(V,) = O such that | f(x)| < 1/kforxe N,. If we put
N =1 Ny, then NeX, u(N) =0, and |f(x)] =0 for x¢ N.
Therefore, f(x) = O for almost all x.

If f,geL,, there exist sets Ny, N, in X with u(N,) = w(Nz) =0
such that

/@] < [fle for x¢N,
g < gl for x¢Na.

Therefore |f(x) + g(x)| < |[flo + |g]e for x¢ (N, U N,), from
which it follows that || f + gllo < [fle + l&s- :

It remains to prove that L, is complete. Let (f,) be a Cauchy
sequence in L, and let M be a set in X with u(M) = 0, such that
[ < | fallw for x¢ M, n=1,2,..., and also such that | f,(x) —
S| € 1fo = fulo for all x¢ M, n, m=1,2,.... Then the
sequence (f;,) is uniformly convergent on X'\ M, and we let

f(x) =limfi(x), x¢M,

=0, xeM.
It follows that f'is measurable, and it is easily seen that | f, — fl, — 0.
Hence L, is complete. Q.E.D.
EXERCISES

6.A. Let C[0, 1] be the linear space of continuous functions on
[0, 1]to R. Define N, for fin C[0, 1] by No(f) = |f(0)]. Show that
N, is a semi-norm on C[0, 1].

6.B. Let C[0, 1] be as before and define N, for fin C[0, 1] to be the
Riemann integral of | f| over [0, 1]. Show that N, is a semi-norm on
C[0,1]. If f, is defined for n > 1 to be equal to 0 for 0 < x €
(1 — 1/n)/2, to be equal to 1 for 4 < x < 1, and to be linear for
(1 — 1/n)/2 € x < %, show that (f)) is a Cauchy sequence, but that it
does not converge relative to N; to an element of C[0, 1].
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6.C. Let N be a norm on a linear space V and let d be defined for
u,ve Vbyd(u,v) = Nlu— v). Show that d is a metric on N; that
is, (i) d(u,v) 2 O for all u, ve V; (ii) d(u, v) = 0 if and only if u = v;
(iii) d(u, v) = d(v, w); (iv) d(u,v) < d(u, w) + d(w, v).

‘6D. If feL,(X, X, ) and ¢ > 0, then there exists a simple X-
measurable function ¢ such that |f — ¢||; < . Extend this to L,,
1 £ p < . Is this true for L, ?

. &E. If feL,, 1 £ p <o, and if E = {xe X : |f(x)] # 0}, then
E is o-finite.

BF. If feL, and if E, = {xe X : |f(x)| > n}, then u(E,)— 0 as
n—oo.

6.G. Let X = N, and let p be the counting measure on N. If fis
defined on N by f(n) = 1/n, then f does not belong to L,, but it does
belong to L, for 1 < p < co. [Alternatively, let X = R, X = B, and
let 1 be Lebesgue measure and define g(x) = 0 for x < 1 and g(x) =
1/x forx > 1.]

6.H. Let X = N, and let A be the measure on NV which has measure
1/n? at the point n. (More precisely A(E) = > {1/n%? : ne E}.) Show
that M(X) < +co. Let f be defined on X by f(n) = Vn. Show that
feL,ifandonlyif 1 < p < 2. [For a similar example, let X = (0, 1)
with Lebesgue measure, and consider g(x) = 1 /Vx.]

6.1. Modify the Exercise 6.H to obtain a function on a finite measure
space which belongs to L, if and only if 1 £ p < p,.

6.J. Let (X, X, p) be a finite measure space. If fis X-measurable,
let E,={xeX:(n—1)<|f(x)] <n}. Show that feL, if and
only if

Z nu(E,) < +o0.
n=1
More generally, fe L, for 1 < p < o0, if and only if
Z n® (E,) < +oo.
n=1

“6.K. If (X, X, p) is a finite measure space and feL,, then felL,
for1 < r < p. (Hint: Use Exercise 6.J or the inequality |[f]" < 1 +
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_|fI?.) Apply Holder’s Inequality to |f|" in L,, and g = 1 to obtain
the inequality
1A < 1 fls (X,

where s = (1/r) — (1/p). Therefore, if u(X) = 1, then |f|, < | fl,-

6.L. Suppose that X = N and p is the counting measure on N. If
feL,, then feL;with1 < p < s < oo,and |f|s < | fl5.

6.M. Let X = (0, o0), let p be Lebesgue measure on X, and let
f(x) = x"Y%(1 + |log x|)~. Then feL, if and only if p = 2.

6.N. Let (X, X, 1) be any measure space and let f belong to both
L, and L,,, with 1 < p; < p, < . Prove that fe L, for any value
of p such that p; < p < p,.

6.0. Let 1 < p < o0, and let (1/p) + (1/g) = 1. It follows from
Hoélder’s Inequality that if fe L,, then

|[ reae| <1,

forall ge L, such that | g|, < 1. Iff % 0, define g, on X by go(x) =
c[signum f(x)] f(x)*~t, where ¢ = (||f],)"*. Show that g,eL,,
that || go|; = 1, and that

|[reods| = 111,.

6.P. Let feL(X,X,n), 1 <p <o, and let € > 0. Show that
there exists a set E; € X with u(E,) < +oo such that if Fe X and
FNE, =0, then | fxsll, < =.

6.Q. Let f,eL(X, X, 1), | <p < o, and let B, be defined for

Ee X by
Bu®) = {[ 15 au} "

Show that |B.(E) — BuAE)| < |fu — fulls- Hence, if (f,) is a Cauchy
sequence in L,, then lim B8,(F) exists for each E € X.

6.R. Let f,, B, be as in Exercise 6.Q. If (f,) is a Cauchy sequence
and £ > 0, then there exists a set E; € X with uw(E;) < +co such that if
FeXand FN E, = @, then 8,(F) < eforallne N.
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6.S. Let f,, B, be as in the Exercise 6.R, and suppose that (f,) is a
Cauchy sequence. If ¢ > 0, then there exists a 8(¢) > O such that if
Ee X and w(E) < 8(e), then B(E) < ¢ for all ne N. (Hint: Use
. Corollary 4.11.)

6.T. If fe Lo(X, X, u), then | f(x)| < |f|» for almost all x. More-
over, if 4 < | f|«, then there exists a set Ee X with u(E) > 0 such
that | f(x)] > Aforall xe E. .

6.U. IffelL,,1 < p < o, and g € L, then the product fg € L, and
172> < 11l gl

6.V. The space L.(X, X, p) is contained in L,(X, X, u) if and only
if (X)) < 00. If w(X)=1and feL,, then

7le = lim |],.



CHAPTER 7

Modes of Convergence

We have already had occasion to mention four types of convergence
of a sequence of measurable functions: pointwise convérgence, almost
everywhere convergence, uniform convergence, and convergence in
L,. There are two other notions of convergence that are of importance
in dealing with measurable functions. We shall introduce these in this-
chapter and give interrelations between the various modes.

For convenience, we shall restate the definitions. In this chapter we
shall consider only real-valued functions defined on a fixed measure space
(X, X, ). In some applications it is necessary to consider extended
real-valued functions, but this can usually be done by modifying the
present discussion. In addition we shall limit our attention to L, for
1 < p < o0, since the convergence L., requires a special examination
which is usually quite direct. Thus it will be understood that p is
limited to these values.

The sequence (f,) converges uniformly to f if for every ¢ > O there
exists a natural number N(e) such that if » > N(c) and x € X, then
1) = f@)] <e.

The sequence (f,) converges pointwise to f if for every € > 0 and
x € X there is a natural number N(e, x), such thatif n > N(e, x), then
1) = f) <ce.

The sequence (f,) converges almost everywhere to f if there exists a
set M in X with p(M) = O such that for every ¢ > 0 and xe X\ M

65
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there exists a natural number N(g, x), such that if n > N(e, x), then
1) — f)] < e

It is obvious that uniform convergence implies pointwise convergence,
that pointwise convergence implies almost everywhere convergence, and
it is easily seen that the reverse implications do not hold. (Of course,
if X consists of only a finite number of points, then pointwise con-
vergence implies uniform convergence; if the only set with measure
zero is the empty set, then almost everywhere convergence implies
pointwise convergence.)

CONVERGENCE IN L,

We now recall the notion of convergence in L,,, which was introduced
in Chapter 6. We remark that an element in L, is an equivalence class
of functions which are real-valued and whose pth powers are integrable.
However, by exercising some caution, we may regard an element of L,
as being a real-valued measurable function.

A sequence (f;) in L, = L,(X, X, ) converges in L, to fe L,,, if for
every ¢ > O there exists a natural number N(e) such that if n > N(e),
then

=1 = {1 = 17} < <.

In this case, we sometimes say that the sequence (f,) converges to f in
mean (of order p).

A sequence (f,) in L, is said to be Cauchy in L,, if for every € > 0
there exists a natural number N(e) such that if m, n > N(g), then

1 = fuko = { [V = S s} <.

We have seen in Theorem 6.14 that if (f;) is Cauchy in L,, then there
exists an fe L, such that (f,) converges in L, to f.

The relationship between convergernce in L, and the other modes of
convergence that we have introduced is not so close. It is possible
(see Exercise 7.A) for a sequence (f,) in L, to converge uniformly on X
(and therefore pointwise and almost everywhere) to a function fin L,,
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but not converge in L,. However, if u(X) < 400, this cannot be
the case.

7.1 THEOREM. Suppose that u(X) < +0oo and that (f,) is a sequence
in L, which converges uniformly on X to f. Then f belongs to L, and the
sequence (f,) converges in L, to f.

Proor. Let € > 0 and let N(g) be such that [f,(x) — f(%)] <=
whenever n > N(g) and xe X. Ifn > N(e), then

a. 1 = £ = { 1) - 1P e}
<{fea}” = awoom,
so that (f,) converges in L, to f. ’ : " QE.D.

It is possible (see Exercise 7.B) for a sequence (f;) in L, to converge
pointwise (and therefore almost everywhere) to a function fin L,, but
not converge in L, even when pu(X) < +oo. However, if the sequence
is dominated by a function in L,, then the L, convergence does take
place.

7.2 THEOREM. Let (f,) be a sequence in L, which converges almost
everywhere to a measurable function f. If there exists a g in L, such that

(7.2) |fai®)] < g(x), xeX, neN,
then f belongs to L, and (f,) converges in L, to f.

PROOF. In view of inequality (7.2), it follows that |f(x)] < g(x)
almost everywhere. Since geL,, it follows from Corollary 5.4 that
feL,. Now »
| /() = fx)” < 280, ae.,

and since lim |fy(x) — f(x)|? = 0, a.e., and 2°g” belongs to L, it
follows from the Lebesgue Dominated Convergence Theorem 5.6 that

limflf,,—f]”d,u=0‘.

Therefore (f,) converges in L, to f. Q.E.D.
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7.3 COROLLARY. Let u(X) < +00, and let (f,) be a sequence in L,
which converges almost everywhere to a measurable function f. If there
exists a constant K such that

(7.3) |fi(¥) <K, xeX, neN,
then f belongs to L, and (f,) converges in L, to f.
PROOF. If w(X) < +o0, the constant functions belong to L,. Q.E.D.

It might be suspected that convergence in L, implies almost every-
where convergence, but this is not the case. In fact, we shall give an
example of sequence (f,) which converges in L, to a function f, but
such that (f,(x)) does not converge to f(x) for any x in X(!)

7.4 ExampLE. Let X =[0,1], X = B, and let A be Lebesgue
measure. We shall consider the intervals [0, 1], [0, 11, [4, 1], [0, 4],
3,%,03,1L,00,4, [3,4), 3, 31, 3, 1), [0, 4], [3, 41, . ...

Let f, be the characteristic function of the nth interval on this list and
let f be identically zero. If n > mim + 1)/2(=1+2 +---+ m),
then f, is a characteristic function of an interval whose measure is at
most 1/m. Hence

s =112 = [1fs = 17 dx
- jf,, dr < 1m.

Therefore (f,) converges in L, to f. However, if x is any point of
[0, 1], then the sequence (f,(x)) has a subsequence consisting only of
I's and another subsequence consisting only of 0’s. Therefore, the
sequence (f,) does not converge at any point of [0,1]. (It may be
observed, however, that one can select a subsequence of (f;) which
converges to f.) :

CONVERGENCE IN MEASURE

Although convergence in L, does not imply almost everywhere
convergence, it does imply another type of convergence that is often of
interest.
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7.5 DEFINITION. A sequence (f,) of measurable real-valued functions
is said to converge in measure to a measurable real-valued function f
in case

(7.4) lim pfxe X1 |fu() ~ f(x)] 2 o}) =0

for each « > 0. The sequence (f,) is said to be Cauchy in measure
in case

(7.5) im e X 10) = )] > o) = 0
for each o > 0.

If (f,) converges uniformly to f, then the set
{xeX:|fi(®) = f(D)| >«

is empty for sufficiently large n. Hence, uniform convergence implies
convergence in measure. It is not difficult to show (see Exercise 7.D)
that pointwise convergence (and therefore almost everywhere con-
vergence) need not imply convergence in measure, unless the space X
has finite measure (see Theorem 7.12). We observe, however, that
convergence in L, does imply convergence in measure. Indeed if
Efe) ={xe X :|fu(x) = f(xX)| = «}, then

[lr=spd> [ 1f=1Pdu > o u(E@).

Eq(a)

Since « > 0, it follows that | f, — f|, — O implies that ,u,(E,l(ot)) -0
as n—» o0, ‘

The reader can readily verify that Example 7.4 also shows that a
sequence can converge in measure to a function but not converge at
any point. Despite that fact, we shall now prove a result due to
F. Riesz that implies that if a sequence (f,) converges in measure to f,
then some subsequence converges almost everywhere to f. Actually
we shall prove somewhat more than that.

7.6 THEOREM. Let (f,) be a sequence of measurable real-valued
functions which is Cauchy in measure. Then there is a subsequence
which converges almost everywhere and in measure to a measurable
real-valued function f.
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PROOF. Select a subsequence (g,) of (f,) such that the set E, =
{xeX:|gi1(x) — g(®)| 2 27%} is such that w(E,) < 27%. Let
Fk = U;cv:k Ej so that FkEX and ,Uv(Fk) < 2_(k_1). Ifi >j 2 k and
x ¢ F,, then
(7.6) |gx) — g®)] < |gx) — g-1(X)| +- - + [g5+1(x) — 84|

1 1 1
< -1 +eoo 4+ 53 < -1+

Let F = (N¥-1 F; so that Fe X and i(F) = 0. From the argument
just given it follows that (g,) converges on X'\ F. If we define f by

f&x) =limg(x), x¢F,
=0, xeF,

then (g;) converges almost everywhere to the measurable real-valued
,function f. Passing to the limit in (7.6) as i — oo, we infer that if
j = k and x ¢ F, then

lf(x) “>g1(x)| < 211—1 < 2k1—1 .

This shows that the sequence (g,) converges uniformly to f on the
complement of each set F,.

To see that (g;) converges in measure to f, let «, ¢ be positive real
numbers and choose k so large that u(F,) < 2~%~? < inf(a,e). If
Jj = k, the above estimate shows that

{rex: If(x) —g®)| 2o S {xeX:|f(x) — g{x)| >27% "1}

< F.

Therefore, p({xe X : |f(x) — g(x)| > o}) < u(F,) < ¢ for all j > k,
so that (g,) converges in measure to f. Q.E.D.

7.7 CorROLLARY. Let (f,) be a sequence of measurable real-valued
Sunctions which is Cauchy in measure. Then there is a measurable real-
valued function f to which the sequence converges in measure. This
limit function f is uniquely determined almost everywhere.
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PROOF. We have seen that there is a subsequence (f,,) which con-
verges in measure to a function f. To see that the entire sequence
converges in measure to f, observe that since

[f(x) = fu®)] < [f) ~ fo )] + [fo,(x) — fuD)],
it follows that

xeX:|f(x) - fux)| =2 ¢ < {xe X |f(x) = fr. ()] 2 g}
U {xe X: |fnk(x) —fn(x)l = g}

The convergence in measure of (f,) to f follows from this relation.
Suppose that the sequence (f,) converges in measure to both fand g.
Since

[f(x) — g < [fG) = ()] + |falx) — g,
it follows that

e X 1AW - g0 > o < {xe X: 1/ — 0] > 3}

U{rex: 15 - 0l > 5},
_so that
‘ pllxe X |f(x) — g)| > &) =0
forall « > 0. Taking « = 1/n, n € N, we infer that f = g, a.e. QE.D.

It has been remarked that convergence in L, implies convergence in
measure. In general, convergence in measure does not imply con-
vergence in L, (see Exercise 7.E). However, this implication does hold
when the convergence is dominated.

7.8 THEOREM. Let (f,) be a sequence of functions in L, which con-
verges in measure to f and let g € L, be such that

()] < g(x), ae.
Then fe L, and (f,) converges in L, to f.

PROOF. If (f;) does not converge in L, to f, there exist a subsequence
(g:) of (f,) and an ¢ > 0 such that

a7 lge —fl, >  for keN.



72 The Elements of Integration

Since (g) is a subsequence of (f}), it follows (see Exercise 7.G) that it
converges in measure to f. By Theorem 7.6 there is a subsequence
(h,) of (g.) which converges almost everywhere and in measure to a
function #. From the uniqueness part of Corollary 7.7 it follows that
h = fa.e. Since (k) converges almost everywhere to fand is dominated
by g, Theorem 7.2 implies that |h, — f||,-—+0. However, this
contradicts the relation (7.7). Q.E.D.

ALMOST UNIFORM CONVERGENCE

In the proof of Theorem 7.6 we constructed a sequence (g;) of
measurable real-valued functions which was uniformly convergent on
the complement of sets which have arbitrarily small measure. At first
mention this sounds equivalent to uniform convergence outside a set of
zero measure, but it is not equivalent (see Exercise 7.J).

7.9 DEFINITION. A sequence (f;) of measurable functions is said to
be almost uniformly convergent to a measurable function f if for each
8 > 0 there is a set E; in X with u(E;) < & such that (f;) converges
uniformly to f on X'\ E;. The sequence (f;) is said to be an almost
uniformly Cauchy sequence if for-every & > 0 there exists a set E; in X
with u(E;) < 8 such that (f;) is uniformly convergent on X'\ E;.

The reader is warned that the terminology-(in addition to being
unpleasant) is slightly at variance with the earlier use of the modifier
“almost.” It is clear that almost uniform convergence is implied by
uniform convergence, but it is not hard to see that almost uniform
convergence does not imply this stronger mode.

7.10 LemMAa. Let (f,) be an almost uniformly Cauchy sequence.
Then there exists a measurable function f such that (f,) converges almost
uniformly and almost everywhere to f.

PROOF. If ke N, let E, € X be such that u(E,) < 27* and (f,) is
uniformly convergent on X\ E,. Let F, =, E;, so that F,e X
and p(F,) < 2-%-D_ Note that (f,) converges uniformly on X\ F, <
X\ E; and define g, by

&(x) = limfi(x), x¢F,,
=0, x€eF,.
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We observe that the sequence (F,) is decreasing and that if F = (" Fy,
then Fe Xand u(F) = 0. Ifh < k, then g,(x) = g(x) for all x e F,.
Therefore, the sequence (g,) converges on all of X to a measurable
limit function which we shall denote by f. If x ¢ F,, then f(x) =
g:(x) = lim f,(x). It follows that (f;) converges to fon X'\ F, so that
(f,) converges to f almost everywhere on X.

To see that the convergence is almost uniform, let ¢ > 0, and let X
be so large that 2%~V < ¢, Then u(Fx) < ¢, and (f;) converges
uniformly to gx = fon X\ Fy. Q.E.D.

The next result relates convergence in measure and almost uniform
convergence.

7.11 THEOREM. If a sequence (f,) converges almost uniformly to f,
then it converges in measure. Conversely, if a sequence (h,) converges in
measure to h, then some subsequence converges almost uniformly to h.

PROOF. Suppose that (f,) converges almost uniformly to f, and let
o and ¢ be positive numbers. Then there exists a set E, in X with
w(E;) < € such that (f;) converges to f uniformly on X'\ E,. There-
fore, if n is sufficiently large, then the set {x € X : |fo{x) — f(X)| = «}
must be contained in E,. This shows that (f,) converges in measure

to f.

Conversely, suppose that (h,) converges in measure to 4. It follows
from Theorem 7.6 that there is a subsequence (g;) of (h,) which con-
verges in measure to a function g and the proof of Theorem 7.6 actually
shows that the convergence is almost uniform. Since (g,) converges
in measure to both A and g, it follows from Corollary 7.7 that h = ga.e.
Therefore the subsequence (g;) of (k,) converges almost uniformly to 4.

Q.E.D.

It follows from the Theorem 7.11 that if a sequence converges in L,,
then it has a subsequence which converges almost uniformly. Con-
versely, it may be seen (see Exercise 7.K) that almost uniform con-
vergence does not imply convergence in L, in general, although it does
if the convergence is dominated by a function in L, (apply Theorem 7.8).

One of the consequences of Lemma 7.10 is that almost uniform
convergence implies almost everywhere convergence. In general, the
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converse is false (see Exercise 7.L). However, it is a remarkable and
important fact that if the functions are real-valued and if u(X) < +o0,
then almost everywhere convergence does imply almost uniform
convergence.

7.12 EGOROFF’S THEOREM. Suppose that u(X) < +oo and that (f,)
is a sequence of measurable real-valued functions which converges almost
everywhere on X to a measurable real-valued function f. Then the
sequence (f,) converges almost uniformly and in measure to f.

PROOF. We suppose without loss of generality that (f,) converges at
every pointof Xtof. Ifm,neN, let

Em) = O {xe X1 1609 - 1091 > o},

so that E,(m) belongs to X and E, ,,(m) < E,(m). Since f,(x) — f(x)
for all x € X, it follows that

nfjl En(m) = @,

Since u(X) < +00, we infer that p.(E,,(m)) —0 as n— +o0. If
8 > 0, let k,, be such that u(E,, (m)) < 8/2" and let E, = \ Jz2_ 1 Ey,(m),
so that E; € X and u(E;) < 8. Observe thatif x ¢ E;, then x ¢ E,_(m),
so that

A0 — F@] < -

for all k > k,. Therefore (f;) is uniformly convergent on the
complement of E;. Q.E.D.

It is convenient to have a table indicating the relations between the
various modes of convergence we have been discussing. Modifying
the idea in Reference [10], we present three diagrams relating almost
everywhere convergence (denoted by AF), almost uniform con-
vergence (denoted by AU), convergence in L, (denoted by L,), and
convergence in measure (denoted by M). It is understood that in
discussing L, convergence, it is assumed that the functions belong to
L,. Diagram 7.1 pertains to the case of a general measure space. A
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AE AU
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Diagram 7.1 General case

solid arrow signifies implication; a dashed arrow signifies that a sub-

sequence converges in the indicated mode.

The absence of an arrow

indicates that a counterexample can be constructed. Diagram 7.2

relates to the case of a finite measure space.

In view of Egoroff’s
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A
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Diagram 7.2 Finite measure space

Theorem two implications are added.

implications are added.

In Diagram 7.3, we assume
that the sequence (f,) is dominated by a function g in L,.

Here three

We leave it as an exercise to verify that all the implications indicated
in these diagrams hold, and that no other ones are valid without

additional hypotheses.

&

b
(o

———————

_—

T ——

)

Diagram 7.3 Dominated convergence



76 The Elements of Integration

We conclude this chapter with a set of necessary and sufficient
conditions for L, convergence. The reader will observe that the
second and third conditions are automatically fulfilled when the
sequence is dominated by a function in L,,.

7.13 VitALt CONVERGENCE THEOREM. Let (f,) be a sequence in
L(X,X,p), 1 £ p <. Then the following three conditions are
necessary and sufficient for the L, convergence of (f;) to [

(1) (f,) converges to f in measure.

(i) For each e > O there is a set E.e€ X with W(E;) < +00 such that
ifFeXand FN E;= 0, then

f [ fulPdu < e?  forallneN.
F

(iii) For each € > 0 there is a 8(e) > 0, such that if Ec X and
WE) < ), then
f |ful?du < forallneN.
E

PROOF. It was seen after Definition 7.5 that L, convergence implies
convergence in measure. The fact that L, convergence of the (f)
implies (ii) and (iii) is not difficult and is left to the reader (see Exercises
6.R and 6.S).

We shall now show that these three conditions imply that (f,)
converges in L,to f. If ¢ > 0, let E, be as in (ii) and let F = X\ E,
If the Minkowski Inequality is applied to f, — f = (/s — fo)xe, +

fn XFr — fm Xrs WE obtain
1/p
Vo = Fulls < { f \f, — f,,,|"dp.} + 2%

forn,meN. Now let « = [u(E,)]" Y and let H,, = {x € E, : | fu(x)
— fu(®)| = «}. In view of (i), there exists a K(g) such that if n,m >.
K(e), then w(H,.) < 8(). Another application of the Minkowski
Inequality together with (iii), gives

L e+, e

< of(EJ” + ¢ + & = 3¢,
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when n,m > K(). On combining this with the earlier inequality,
we infer that the sequence (f;) is Cauchy and hence convergent in L,,.
Since we already know that (f,) is convergent in measure to f, it
follows from the uniqueness in Corollary 7.7 that (f,) converges to
fin L,. _ Q.E.D.

EXERCISES

In these exercises (R, B, ) denotes the real line with Lebesgue
measure defined on the Borel subsets of R. Moreover, 1 < p < .
7.A. Let f, = n~*"x,.- Show that the sequence (f,) converges
uniformly to the O-function, but that it does not converge in L,(R, B, A).
7.B. Let f, = n xumom- Show that the sequence (f,) converges
everywhere to the O-function but that it does notconvergein L, (R, B, }A).

7.C. Show that both of the sequences in Exercises 7.A and 7.B
converge in measure to their limits.

7.D. Let f, = Xma+1- Show that the sequence (f,) converges
everywhere to the O-function, but that it does not converge in measure.

7.E. The sequence in 7.B shows that convergence in measure does
not imply L,-convergence, even for a finite measure space.

7.F. Write down a subsequence of the sequence in Example 7.4
which converges almost everywhere to the O-function. Can you find
one which converges everywhere ?

7.G. If a sequence (f,) converges in measure to a function f, then
every subsequence of (f,) converges in measure to f. More generally,
if (f;) is Cauchy in measure, then every subsequence is Cauchy in

_measure.
. 1.H. If a sequence (f,) converges in L, to a function f, and a sub-
sequence of (f,) converges in L, to g, then f = g a.e.

7.1. If (f,) is a sequence of characteristic functions of sets in X, and
if (f,) converges to fin L,, show that f'is (almost everywhere equal to)
the characteristic function of a set in X.

7.J. Show that the sequence (f,) in Exercise 7.B has the property
that if 8 > O, then it is uniformly convergent on the complement of
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the set [0, 8]. However, show that there does not exist a set of measure
zero, on the complement of which (/) is uniformly convergent.

7.K. Show that the sequence in Exercise 7.B converges almost
uniformly but not in L,,.

7.L. Show that the sequence in Exercise 7.D converges everywhere,
but not almost uniformly.

7M. Let f, = n xp0.1;- Show that the hypothesis that the limit
function be finite (at least almost everywhere) cannot be dropped in
Egoroff’s Theorem.

7.N. Show that Fatou’s Lemma holds if almost everywhere con-
vergence is replaced by convergence in measure.

7.0. Show that the Lebesgue Dominated Convergence Theorem
holds if almost everywhere convergence is replaced by convergence in
measure.

7P. IfgeL, and |f,| < g, show that conditions (ii) and (111) of the
Vitali Convergence Theorem 7.13 are satisfied.

7.Q. Let (X, X, p) be a finite measure space. Iffis an X-measurable

function, let
_ (IS
) = f T+ 7] %

Show that a sequence (f,) of X-measurable functions converges in
measure to fif and only if r(f, — /) — 0.

7.R. If the sequence (f;) of measurable functions converges almost
everywhere to a measurable function f and ¢ is continuous on R to R,
then the sequence (g o f,) converges almost everywhere to ¢ o f. Con-
versely, if g is not continuous at every point, then there exists a sequence
(f.) which converges almost everywhere to f but such that (g o f,) does
not converge almost everywhere to ¢ o f.

7.8. If ¢ is uniformly continuous on R to R, and if (f;) converges
uniformly (respectively, almost uniformly, in measure) to f, then
(p  f,,) converges uniformly (respectively, almost uniformly, in measure)
to pof. Conversely, if ¢ is not uniformly continuous, there exists a
measure space and a sequence (f,) converging uniformly (and hence
almost uniformly and in measure) to f but such that (¢ - f,) does not
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converge in measure (and hence not uniformly or almost uniformly)
topof.

7.T. Let (X, X, 1) be a finite measure space and let 1 < p < o0,
Let ¢ be continuous on R to R and satisfy the condition: (*) there exists
K > 0 such that |p(f)] < K|t| for |¢t| > K. Show that ¢ o f belongs to
L, foreach fe L,. Conversely, if ¢ does not satisfy (x), then there is a
function fin L, on a finite measure space such that ¢ o f does not belong
toL,.

7.U. If (f,) converges to fin L, on a finite measure space, and if ¢
is continuous and satisfies condition (*) of Exercise 7.T, then (p o f;)
converges in L, to ¢ o f. Conversely, if condition (x) is not satisfied,
there exists a finite measure space and a sequence (f;) which converges
in L, to f but such that (¢ - f,) does not converge in L, to ¢ o f.

7.V. Let (X, X, 1) be an arbitrary measure space. Let ¢ be con-
tinuous on R to R and satisfy: (x*) there exists K > O such that
()} < K|¢| forall te R. If feL,, then ¢ o f belongs to L,. Con-
versely, if ¢ does not satisy (*+),%there exists a measure space and a
function f'e L, such that ¢ o f does not belong to L,.

7.W. If (f,) converges to fin L, on an arbitrary measure space, and
if @ is continuous and satisfies (xx), then (¢ o f;) converges to g o fin L,.
Conversely, if ¢ does not satisfy (), there exists a measure space and a
sequence (f,) which converges in L, to f, but such that (¢ o f;) does not
converge in L, to ¢ o f,



CHAPTER 8

Decomposition of Measures

In this chapter we shall consider the possibility of decomposing
measures and charges in various ways and shall obtain some very
useful results. First we shall consider charges and show that a charge
can be written as the difference of two finite measures.

We recall from Definition 3.6 that a charge on a measurable space
(X, X) is a real-valued function A defined on the o-algebra X such that
A(@) = 0 and which is countably additive in the sense that

(O8] - 5 e

for any disjoint sequence (E,) of sets in X. The reader can easily check
the proofs of Lemmas 3.3 and 3.4 to show that if (E,) is an increasing
sequence of sets in X, then

8.1) A O E,) = lim X(E,),

n=1
and if (F,) is a decreasing sequence of sets in X, then
(8.2) A A F,) = lim XF,).

n=1

8.1 DeFINITION. If A is a charge on X, then a set P in X is said to be
positive with respect to Aif A(EN P) > 0 forany Ein X. A set Nin
X is said to be negative with respect to A if A(E N N) < O for any E in
X. A set Min X is said to be a null set for A if (EN M) = 0 for
any Ein X.

80
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It is an exercise to show that a measurable subset of a positive set is
positive and that the union of two positive sets is a positive set.

8.2 HAHN DECOMPOSITION THEOREM. If A is a charge on X, then
there exist sets P and N in X with X = PUN, PN N = 0, and such
that P is positive and N is negative with respect to A.

PrROOF. The class P of all positive sets is not empty since it must
contain @, at least. Let « = sup {AM4) : 4 € P}, let (4,) be a sequence
in P such that lim A(4,) = «, and let P = | J.; 4,. Since the union
of two positive sets is positive, the sequence (4,) can be chosen to be
monotone increasing, and we shall assume that this has been done.
Clearly P is a positive set for A, since

NENP) = )\(Enngjl 4,) = A(ﬁ@l (BN 4p) = lim NE N 4,) > 0.

Moreover, o = lim A(4,) = A(P) < .

We shall now show that the set N = X'\ P is a negative set. If not,
there is a measurable subset E of N with A(E) > 0. The set E cannot
be a positive set, for then P U E would be a positive set with A(P U E) >
«, contrary to the definition of «. Hence E contains sets with negative
charge; let n, be the smallest natural number such that E contains a set
E, in X, such that A(E,) € —1/n;. Now

ME\ E;) = NE) — MEy) > NE) > 0;

however, E\ E; cannot be a positive set, for then P, = PU (E\ E,)
would be a positive set with A(P;) > «. Therefore E\ E; contains
sets with negative charge. Let n, be the smallest natural number such
that E \ E, contains a set E, in X such that M(E;) < —1/n,.  As before
E\ (E, U E,) is not a positive set, and we let n; be the smallest natural
number such that E\ (E,; U E,) contains a set E; in X such that
ME;) € —1/ng. Repeating this argument, we obtain a disjoint
sequence (E,) of sets of X such that M(E,) < —1/n,. Let F =\JZ.1 E;
- so that

PO o 1
MF)= 3 ME) < — 2 — <0,
k=1 k=1 "k

which shows that 1/n, — 0. If G is a measurable subset of E\ F and
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AG) < 0, then XG) < — 1/(n, — 1) for sufficiently large k, con-
tradicting the fact that #n, is the smallest natural number such that
E\(E, U---U E,) contains a set with charge less than —1/n,. Hence,
every measurable subset G of E\ F must have M(G) = 0, so that E\ F
is a positive set for A. Since ME\ F) = NE) — MF) > 0, we infer
that P U (E\ F) is a positive set with charge exceeding «, which is a
contradiction.

Therefore, it follows that the set N = X'\ P is a negative set for A,
and the desired decomposition of X is obtained. Q.E.D.

A pair P, N of measurable sets satisfying the conclusions of the
preceding theorem is said to form a Hahn decomposition of X with
respect to A. In general, there will be no unique Hahn decomposition.
In fact, if P, N is a Hahn decomposition for A, and if M is a null set
for A, then PU M, N\ M and P\ M, NU M are also Hahn decom-
positions for A. - This lack of uniqueness is not an important matter
for most purposes, however.

8.3 LemmA. If P,, N, and P,, N, are Hahn decompositions for A,
and E belongs to X, then

MENP)=XNENP), MENN)=XNENN,).

PROOF. Since E N (P, \ Py) is contained in the positive set P; and in
the negative set Ny, then A(E N (P, \ Py)) = 0 so that

MENP) = MENP, NPy).
Similarly,
MENP) = MENP, NPy,

from which it follows that
MENP) =NENPy). Q.E.D.

8.4 DEFINITION. Let A be a charge on X and let P, N be a Hahn
decomposition for A. The positive and the negative variations of A are
the finite measures A*, A~ defined for E in X by

(8.3) M(E) = NENP), A (E)= —MENN).
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The total variation of A is the measure |A| defined for E in X by
[AI(E) = A*(E) + A~(E).

It is a consequence of Lemma 8.3 that the positive and negative
variations are well-defined and do not depend on the Hahn decomposi-
tion. It is also clear that

8.4) ME) =MENP)+ MENN) = A*(E) — A (E).
We shall state this result formally.

8.5 JORDAN DECOMPOSITION THEOREM. If A is a charge on X, it is
the difference of two finite measures on X. In particular, X is the
difference of A* and X~. Moreover, if A = u — v where p,v are
finite measures on X, then

(8.5) wE) = AY(E), wWE) = A (E)
forall Ein X.

PROOF. The representation A = A* — A~ has already been estab-
lished. Since p and v have nonnegative values, then

A*(E) = XENP) = (ENP) — (EN P)
< WE N P) < (E).

Similarly, A~(E) < »(E) for any E in X. Q.E.D.

We have seen, in Lemrﬁa 5.2, that if a function f is integrable with
respect to a measure p on X, and if A is defined for E in X by

8.6) XE) = f fdu,

then A is a charge. We now identify the positive and negative
variations of A.

8.6 THEOREM. If fbelongs to L(X, X, p), and X is defined by equation
'(8.6), then A*, X, and |A| are given for E in X by

V@ = [ frdu, @)= [ 1 d,
NE) = [ 111 du.
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PROOF. Let P, ={xe X :f(x) >0} and N, ={xe X : f(x) < 0}.
Then X = P, U N; and P, " N; = 0. If E€ X, then it is clear that
MENP;) > 0and MEN N, < 0. Hence P,, N; is a Hahn decom-
position for A. The statement now follows. Q.E.D.

It was seen in Corollary 4.9 that if fis a nonnegative extended real-
valued measurable function and p is a measure on X, then the function
A defined by equation (8.6) is a measure on X. There is a very
important converse to this which gives- conditions under which one
can express a measure A as an integral with respect to p of a non-
negative extended real-valued measurable function. It was seen in
Corollary 4.11 that a necessary condition for this representation is
that A(E) = O for any set E in X for which uw(E) = 0. It turns out
this condition is also sufficient in the important case where A and u are
o-finite.

8.7 DEFINITION. A measure A on X is said to be absolutely continuous
with respect to a measure p on X if Ee X and u(E) = 0 imply that
ME) = 0. In this case we write A< . A charge A is absolutely
continuous with respect to a charge p in case the total variation |A| of
A is absolutely continuous with respect to |u|.

The following lemma is useful and adds to our intuitive under-
standing of absolute continuity.

8.8 LEMMA. Let A and p be finite measures on X. Then A < p if
and only if for every e > 0 there exists a 8(c) > 0 such that Ec X and
w(E) < 8(e) imply that NE) < «.

PROOF. If this condition is satisfied and u(E) = 0, then AE) < ¢
for all ¢ > 0, from which it follows that A(E) = 0.

Conversely, suppose that there exist an ¢ > 0 and sets E, € X with
WE,) < 27" and ME,) 2. Let F, =2, E, so that u(F,) <
2-"+land M(F,) > . Since (F,)is a decreasing sequence of measurable
sets,

w( (O Fa) = lim u(F) =0,
A nfjl F,) = lim A(F,) > «.

Hence A is not absolutely continuous with respect to p. Q.E.D.
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8.9 RADON-NIKODYM THEOREM. Let A and p be o-finite measures
defined on X and suppose that X is absolutely continuous with respect to .
Then there exists a function f in M *(X, X) such that

(8.6) NE) = L fdu, Ee€X.

Moreover, the function f is uniquely determined p-almost everywhere.

PROOF. We shall first prove Theorem 8.9 under the hypothesis that
MX) and p(X) are finite.

If ¢ > 0, let P(c), N(c) be a Hahn decomposition of X for the charge
A — cu. If k € N, consider the measurable sets

k
Ay = N(c), Agsr = N((k + 1)0)\jL=.)1 4.
It is clear that the sets A4, k € N, are disjoint and that

k k
,L=)1 N(jo) = jL=JlA,.
It follows that

Ay = N(kc)\koi N(jc) = N(ke) n ' P(jo).
i= i=1
Hence if E is a measurable subset of 4,, then E = N(kc) and E <
P((k — 1)c) so that
8.7 (k — De(E) < ME) € ke(E).
Define B by

s

B=x\{J 4,= (\ PUO),

so that B < P(kc) for all k € N. This implies that
0 < kep(B) € A(B) € MX) < 4+

for all k € NV, so that u(B) = 0. Since A « p, we infer that A(B) = 0.
Let f, be defined by f.(x) = (k — 1)c for x € A and f(x) = O for

x € B. If E is an arbitrary measurable set, then E is the union of the

disjoint sets EN B, EN A, k€ N, so it follows from (8.7) that

)

1

[ o <@ < [ Gt ode< [ foan+ a0,
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We employ the preceding construction for ¢ = 2-", n € N, to obtain
a sequence of functions we now denote by f,. Hence

8.8) [ fa<i® < [ fudu+ 27u0).

forallne N. Let m > n, and observe that

[ Ade<x® < [ fudu+2mu0),

[ udw < 2®) < [ fadu+ 27700,
E E
from which it is seen that

< 27" (X)),

[ -ty aw

for all Ein X. If we let E be the sets where the integrand is positive
and negative and combine, we deduce that

[18 = ful do < 27702 )

whenever m > n. Thus the sequence (f,) converges in mean to a
function f. Since the f, belong to M *, it is clear from Theorem 7.6
that we may require that fe M *. Moreover,

[ [ o

so that we conclude from (8.8) that

<Lm—ﬂw%fm-ﬂ@,

NE) = tim [ fudu= [ fdu

for all Ec X. This completes the proof of the existence assertion of
the theorem in the case where both A and p are finite measures. '

We claim that f is uniquely determined up to sets of u-measure zero.
Indeed, suppose that f, he M* and that

XE) = [ sau= [ hau
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forall EinX. LetE, = {x: f(x) > h(x)}and E; = {x : f(x) < h(x)},
and apply Corollary 4.10 to infer that f(x) = A(x) p-almost everywhere.

We shall now suppose that A and u are o-finite and let (X,) be an
increasing sequence of sets in X such that

MX) < o, X, < .

Apply the preceding argument to obtain a function 4, in M * which
vanishes for x ¢ X, such that if E is a measurable subset of X, then

NE) = fE by du.

If n € m, then X, < X, and it follows that

fm@=fmw
E E

for any measurable subset E of X,. From the uniqueness of 4,, it
follows that A,(x) = h,(x) for u-almost all x in X, whenever m > n.
Letf, = sup {h., ..., h,} so that (f,) is a monotone increasing sequence
inM*andletf =limf,. If EcX, then

NE N X, =ffnd,L.
E

Since (E N X,) is an increasing sequence of sets with union E, it follows
from Lemma 3.3 and the Monotone Convergence Theorem 4.6 that

XE) = lim XE N X,) = lim fE 1, du

=Lf@.

The p-uniqueness of fis established as before. Q.E.D.

The function f whose existence we have established is often called
the Radon-Nikodym derivative of A with respect to u, and is denoted by
dMdu. It will be seen in the exercises to have properties closely related
to the derivative. The reader should observe that this function is not
necessarily integrable; in fact, f is (u-equivalent to) an integrable
function if and only if A is a finite measure.
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In intuitive terms, a measure A is absolutely continuous with respect
to a measure w in case sets which have small u-measure also have small
A-measure. At the opposite extreme, there is the notion of singular
measures, which we now introduce.

8.10 DEFINITION. Two measures A, p on X are said to be mutually
singular if there are disjoint sets A, B in X such that X = 4 U B and
AMA) = uw(B) = 0. In this case we write A |_pu.

Although the relation of singularity is symmetric in A and p, we shall
sometimes say that A is singular with respect to ..

8.11 LEBESGUE DECOMPOSITION THEOREM. Let A and p be o-finite
measures defined on a o-algebra X. Then there exists a measure A
which is singular with respect to p and a measure X, which is absolutely
continuous with respect to p such that A = A, + A\y. Moreover, the
measures A, and X, are unique.

PROOF. Letv = A + uso thatvis a o-finite measure. Since Aand u
are both absolutely continuous with respect to v, the Radon-Nikodym
Theorem implies that there exist functions f, g in M *(X, X) such that

e = [ s, w) = [ ga

for all Ein X. Let 4 = {x: g(x) = 0}, and let B = {x : g(x) > 0},
sothat ANB=0,and X = AU B.
Define A, and A, for E in X by

ME) = NEN A), M(E) = XE N B).

Since u(A4) = 0, it follows that A; | u. To see that A; « p, observe
that if u(E) = 0, then '
f gdv =0,

E

so that g(x) = 0 for v-almost all x in E. Hence v(E N B) = 0; since
AL,
A(E) = MEN B) = 0.
Clearly A = A; + A,, so the existence of this decomposition is affirmed.
To establish the uniqueness of the decomposition, use the observation
that if « is a measure such that « < p, and « | u, then e = 0. Q.E.D.
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RIESZ REPRESENTATION THEOREM

As another application of the Radon—-Nikodym Theorem, we shall
present theorems concerning the representation of bounded linear
functionals on the spaces L,, 1 < p < .

8.12 DEFINITION. A linear functional on L, = L(X,X,p) is a
mapping G of L, into R such that

G(af + bg) = aG(f) + bG(g)

forall a,bin R and f, g in L,. The linear functional G is bounded if
there exists a constant M such that

1G] < M| S,
for all fin L,. In this case, the bound or the norm of G is defined to be
8.9 1G]l = sup{|G(N)| : fe Ly, |l < 1.

It is a consequence of the linearity of the integral and Holder’s
Inequality that if g e L, (where ¢ = oo whenp = landg = p/(p — 1)
otherwise) and if we define G on L, by

(8.10) G(f) = ffg dp,

then G is a linear functional with norm at most equal to | g||,(and it is
an exercise to prove that |G| = | g|l). The Riesz Theorem yields a
converse to this observation.

Before we prove this theorem it is convenient to observe that any
bounded linear functional on L, can be written as the difference of two
positive linear functionals (that is, functionals G such that G(f) > 0
for all fe L, for which f > 0).

8.13 LeMMA. Let G be a bounded linear functional on L,. Then
there exist two positive bounded linear functionals G*, G~ such that

GH=G*(f) -~ G(f)forallfeL,.

PROOF. If f > O define G*(f) = sup{G(g): geL,, 0 <
Itis clear that G*(¢f) = ¢ G*(f)forc > Oand f > 0. IfO < g, < f),
then
G(g1) + G(g2) = G(g1 + g2) < G*(f1 + f2).
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Taking the suprema over all such g; in L, we obtain G*(f}) + G*(fy) <
G*(fi + f2). Conversely, if 0 < A < f1 + fo, let g, = sup(h — £5,0)
and g, = inf (4, f;). Itfollowsthatg, + g, = handthatO < g, < f;.
Therefore G(h) = G(g,) + G(g2) < G*(f1) + G*(f2); since this holds
for all such h € L,, we infer that

G*(fi +f) = G*(f) + G*(f)

for all £, in L, such that f, > 0.
If fis an arbitrary element of L,, define

G*(f)=G*(f*) - G*(f).
It is an elementary exercise to show that G* is a bounded linear
functional on L,. Further, we define G~ for f€ L, by

G=(f) = G*(f) — G(/),
so that G~ is evidently a bounded linear functional. From the defini-
tion of G* it is readily seen that G~ is a positive linear functional, and
it is obvious that G = G* - G~. | , Q.E.D.

8.14 RIESZ REPRESENTATION THEOREM. If (X, X, un) is a o-finite
measure space and G is a bounded linear functional on L,(X, X, p), then
there exists a g in L, (X, X, p) such that equation (8.10) holds for all f in
L,. Moreover, |G| = | g|~ and g > 0if G is a positive linear functional.

PROOF. We shall first suppose that u(X) < oo and that G is positive.
Define A on X to R by AME) = G(xz); clearly \(@) = 0. If (E,) is an
increasing sequence in X and E =) E,, then (xg,) converges pointwise
toyg. Sincepu(X) < 00, it follows from Corollary 7.3 that this sequence
converges in L, to xz. Since

0 < XME) — ME,) = G(xz) — G(xz,)
= G(xz — Xz,) < 1G] llxz — XE,.”la
it follows that A is a measure. Moreover, if M€ X and p(M) =0,
then A(M) = 0, so that A « u.

On applying the Radon-Nikodym Theorem we obtain a nonnegative
measurable function on X to R such that

G(xe) = XE) = [xe g du
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for all E€ X. It follows by linearity that

G(p) = fqvgdﬂ

for all X-measurable simple functions ¢.

If fis a nonnegative function in L,, let (¢,) be a monotone increasing
sequence of simple functions converging almost everywhere and in L,
to f. From the boundedness of G it is seen that G(f) = lim G(g,).
Moreover, it follows from the Monotone Convergence Theorem that

G(f) = lim [engdu = [frd.

This relation holds for arbitrary f'€ L, by linearity.

We now turn to the o-finite case. If X =|J F,, where (F,) is an
increasing sequence of sets in X with finite measure, the preceding
argument yields the existence of nonnegative functions g, such that

G(fXF,.)v = ffXF,.gn du

for all finL,. Ifm < nitis readily seen that g,(x) = g,(x) for almost
all x in F,,. In this way we obtain a function g which represents G.

If G is an arbitrary bounded linear functional on L,, Lemma 8.13
shows that we can write G = G* — G~, where G* and G~ are bounded
positive linear functionals. If we apply the preceding considerations to
G* and G-, we obtain nonnegative measurable functions g*, g~
which represent G*,G~. If we set g =g* — g, we obtain the
representation

(8.10) G(f) = ffgd,,,

forall feL,. It will be left as an exercise to show that |G| = | gll«.
QE.D.

8.15 Riesz REPRESENTATION THEOREM. If (X, X, ) is an arbitrary
measure space and G is a bounded linear functional on L, (X, X, p),
1 < p < o0, then there exists a g in L(X, X, n), whereq = p/(p — 1),
such that equation (8.10) holds for all f in L,. Moreover, |G| = | gl,-
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PROOF. If u(X) < o0, the proof of the preceding theorem requires
only minor changes to show that there exists a g in L, with |G| = |g|.
and such that

6 = [ redu

for all fin L,. In addition, the procedure used before applies to
extend the result to the case where (X, X, p) is o-finite.

We now complete the proof by observing that a bounded linear
functional “vanishes off of a o-finite set.” More precisely, let (f;,) be
a sequence in L, such that [ f,| = 1 and

6t > I61(1 - ).

There exists a o-finite set X, in-X outside of which all the f, vanish.
Let E€ X with EN X, = 0, then |[f, + ¢ xg|, = (1 + #* w(E))V* for
t 2 0. Moreover, since

G(fy) — G(£ txs) < |G(fa £ tx5)|,
it follows that

|G(txa)| < [|G||{(1 + 17 W(E)"” - (1 _ ;11.)}

for all nin N. First let n — 0o, and then divide by ¢ > 0, to get

|G(xp)| < ||G|] a4z ,,,(IE))up —1 .

If we apply L’Hospital’s Rule as ¢t — 04, we infer that G(xg) = 0, for
any E e X in the complement of the o-finite set X,. Therefore, if f
is any function in L, such that X, N {x e X : f(x) # 0} = 0, it follows
that G(f) = 0.

Hence we can apply the preceding argument to obtain a function
g on X, which represents G, and extend g to all of X by requiring that
it vanish on the complement of X,. In this way we obtain the desired
function. Q.E.D.
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EXERCISES

8.A. If P is a positive set with respect to a charge A, and if Eec X
and E < P, then E is positive with respect to A.

8.B. If P, and P, are positive sets for a charge A, then P, U P, is
positive for A.

8.C. Aset Min Xis a null set for a charge Aif and only if |A|(M) = 0.

8.D. If A is a charge on X, then the values of A are bounded and

AY(E) =sup{MF): F< E,Fe X},
A(E) = —inf{MF) : F< E, Fe X}.

8.E. Let uy, pg, and pg be measures on (X, X). Show that p; « py
and that p; « pg and py < pg imply that p; < uz.  Give an example
to show that pu; <« p, does not imply that gy < p,.

8.F. If (u,)is a sequence of measures on (X, X) with g (X) < 1, let
A be defined for E in X by

NE) = 22-"%@).

Show that X is a measure and that u, < A for all n.

8.G. Let A be a charge and let u be a measure on (X, X). If A< g,
then A*, A~, and |A| are absolutely continuous with respect to .

8.H. Show that Lemma 8.8 is true even if u is allowed to be an
infinite measure. However, it may fail if A is an infinite measure.
[Hint: Let A be the counting measure on N, and let

WE) = > 27"]
nekE
8.I1. Let p be defined as in Exercise 8.H and if E < N, let A be

defined by
MNE) =0, if E=0;
= 400, if E#0.

Show that p is a finite measure on the o-algebra X of all subsets of N,
and that A is an infinite measure on X. Moreover, A < pu and p « A.

8.J. If A and p are o-infinite and A « p, then the function f in the
Radon-Nikodym Theorem can be taken to be finite-valued on X.
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8.K. Let p be a finite measure, let A < u, and let P,, N, be a Hahn
decomposition for A — nu. Let P=(\P,, N =\J N,. Show that
N is o-finite for A and that if E < P, E € X, then either A(E) = 0 or
ME) = +o0.

8.L. Use Exercise 8.K to extend the Radon-Nikodym Theorem to the
case where p is o-finite and A is an arbitrary measure with A « p. Here
fis not necessarily finite-valued.

8.M. (a) Let X be an uncountable set and X be the family of all
subsets E of X such that either E or X'\ Eis countable. Let u(E) equal
the number of elements in E if E is finite and equal +co otherwise, and
let A(E) = 0if Eis countable and equal +oo if Eis uncountable. Then
A < ., but the Radon-Nikodym Theorem fails.

(b) Let X = [0, 1] and let X be the Borel subsets of X. If u is the
counting measure on X and A is Lebesgue measure on X, then A is a
finite measure and A « u, but the Radon-Nikodym Theorem fails.

8.N. Let A, n be o-finite measures on (X, X), let A « u, and let
f=dMdp. If g belongs to M*(X, X), then

fgd)t=fgfdp.

(Hint: First consider simple functions and apply the Monotone
Convergence Theorem.)

8.0. Let A, u, v be o-finite measures on (X, X). Use Exercise 8.N
to show that if v « A and A < p, then

dv _ ddi -almost everywhere
- ddp P ywhere.
Also, if A\ « pforj = 1,2, then
d _dA | d)
m (AL + Ay = m + e p-almost everywhere.

8.P. If A and p are o-finite, A « p, and p < A, then

dA 1

% = pmE almost everywhere.

8.Q. If X and u are measures, with A< pand A | p, then A = 0.
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8.R. If A is a charge and p is a measure, then A | u implies that
A*, A7, |A| are singular with respect to .

8.S. The collection of all charges on (X, X) is a Banach space under
the vector operations

(eu)E) = cu(E), (X + p)(E) = ME) + (E)
and the norm [u| = |u[(X).

8.T. Suppose g satisfies equation (8.10) for all fin L, and that ¢ > 1.
Let E. = {x:|g(x)| = ¢|G|}, and define f.(x) to be +1 when
+g(x) > ¢|G| and to be 0 when x ¢ E,. Then

c|GIE) < G(fo) < |Gllu(ED),
which is a contradiction unless u(E,) = 0. Infer that |g(x)| < |G|
for p-almost all x.

8.U. If g satisfies (8.10) for all feL,, show that ge L, and that

1G] = l 2l

8.V. The Riesz Representation Theorem for p = 2 can be proved by
some elementary Hilbert space geometry (see [5], pp. 249-50). We now
show that this result can be used to prove the Radon-Nikodym
Theorem. We shall limit our attention to finite measures A, p with
A& p. Letv = A+ pand show that

Gm=ﬁﬁ

defines a positive linear functional on Ly(X, X, ») with norm at most 1.
If g e Ly(X, X, v) is such that

G = [fad,  feLiX,X,n,

then we see by taking f = xz, E€ X, that 0 < g(x) < 1 for v-almost
all x. Moreover, u{x : g(x) = 1} = 0. Sincev = A 4+ p, we have

ﬁu—@ﬁ=ﬁg@

for all nonnegative he Ly (X, X,v) and hence for all nonnegative
measurable 2. Now take & = xz/(1 — g) to infer that

- | (i)



CHAPTER 9

Generation of Measures

In the preceding chapters we have given a few examples of measures,
but they are of a rather special form, and it is time to demonstrate how
measures can be constructed. In particular, we wish to show how to
construct Lebesgue measure on the real line R from the length of an
interval.

It is natural to define the length of the half-open interval (a, b] to be
the real number b — a and the length of the sets (—o0, ] = {x e R :
x € b}, and (@, +0) = {xe R :a < x}, and (—o0, +o) to be the
extended real number +o00. We define the length of the union of a
finite number of disjoint sets of these forms to be the sum of the
corresponding lengths. Thus, the length of

U@l s 3 e-a)

provided the intervals do not intersect.

At first glance one might think that we have defined a measure on
the family F of all sets which are finite unions of sets of the form
(9'1) (aa b]’ (—w, b], (aa +(D), (_w’ -I—CX))

However, this is not the case since the countable union of sets in F is
not necessarily in F, so that F is not a -algebra in the sense of Definition
2.1.

9.1 DERINITION. A family 4 of subsets of a set X is said to be an
algebra or a field in case:

96
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i 0, Xbelongto 4.

(i) If E belongs to A4, then its complement X \ £ also belongs to 4.

(i) If Ey,..., E, belong to A, then their union | J7.; E; also
belongs to A.

It is convenient to define the notion of a measure on an algebra.
In doing so, we require the set function to be countably additive over
sequences whose union belongs to the algebra.

9.2 DerINITION.  If A4 is an algebra of subsets of a set X, then a
measure on A is an extended real-valued function u defined on 4 such
that (i) w(P) = 0, (ii) n(E) = O for all E€ 4, and (iii) if (£,) is any
disjoint sequence of sets in A such that| >, E, belongs to A, then

u(nc_)l En) = 721 ME,).

It seems reasonably clear, but not entirely obvious, that length gives
a measure. We now prove this fact. '

9.3 LEMMA. The collection F of all finite unions of sets of the form
(9.1) is an algebra of subsets of R and length is a measure on F.

PROOF. Itis readily seen that Fis an algebra. If /denotes the length
function, then conditions 9.2(i) and (ii) are“triyial. To prove (iii) it is
enough to show that if one of the sets of the form (9.1) is the union of a
countable collection of sets of this form, then the length adds up
correctly. We shall treat an interval of the form (a, 5], leaving the
other possibilities as exercises. Suppose, then, that

(92) (a’ b] = jL=Jl (a]’ b]]’

where the intervals (a,, b;] are disjoint. Let (@, b1], ..., (@, b,] be

any finite collection of such intervals and suppose. that
a<a1<b1<az<"'<bn_1<an<bn<b.

(This may require a renumbering of the indices, but it can always be
arranged.) Now

Z (@@, b)) = jz ® - a)
<b—a, <b-a=1a,b]).
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Since # is arbitrary, we infer that

©.3) 2 K@, b)) < i(a, b]).

Conversely, let ¢ > 0 be arbitrary, and let (¢;) be a sequence of
positive numbers with > e, < ¢. By renumbering, if necessary, we
may suppose that a; = a. Now consider the open intervals

11 = (a]_ — &1, b]_ + 51),

Ij = (a,, bj + Ej), j > 2.
In view of (9.2) it follows that the open sets {I; : j € N} form a covering
of the compact interval [a, b]. Therefore, this interval is covered by

a finite number of the intervals, say by the intervals I, I, . . . ,I.. By
renumbering and discarding some extra intervals we may assume that

a=01Saz<b1+el<~-<am§bm_1+sm_1<b<b,,,+€m.

It follows from this chain of inequalities that

b—a<(nten)—a < (b +5)—al

i=1

v
Ns

<2 @b -a)+e<

1 7

(b —a) +=.

1

j

Since ¢ is arbitrary, we infer that

(@, B]) < ji K. bj).

Combining this inequality with (9.3), we conclude that the 1ength
function / is countably additive on F. Q.E.D.

THE EXTENSION OF MEASURES

Now that we have given a significant example of a measure defined
on an algebra of sets, we return to the general situation. We shall
show that if 4 is any algebra of subsets of a set X and if x is a measure
defined on A, then there exists a o-algebra 4* containing 4 and a.
measure p* defined on 4* such that p*(E) = u(E) for Ein 4. In
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other words, the measure p can be extended to a measure on a o-algebra
A* of subsets of X which contains 4. The procedure that we employ
is the following: we shall use p to obtain a function defined for all
subsets of X, and then pick out a collection of sets on which a certain
additivity property holds.

9.4 DEerFINITION. If B is an arbitrary subset of X, we define

0.4) w(B) = inf ; W(E).

where the infimum is extended over all sequences (E;) of sets in A
such that

8

9.5) Bc E;.
ji=1

It

It should be remarked that the function u* just defined is usually
called the outer measure generated by . Although this terminology
is unfortunate because u* is not generally a measure, u* does have a few
properties reminiscent of a measure.

9.5 LEMMA. The function p* of Definition 9.4 satisfies the following:
(@ p*®) = 0.

(b) u*(B) = 0, for B< X.

(¢) If A < B, then p*(A) < p*(B).

(d) If Be A, then p*(B) = pn(B).

(e) If (B,) is a sequence of subsets of X, then

(0 B) < i WH(By).

PROOF. Statements (a), (b), and (c) are immediate consequences of
the Definition 9.4,

(d) Since {B;, 0,0, ...} is a countable collection of sets in 4 whose
union contains B, it follows that

p*(B) < j(B) + 0 + 0 +--- = u(B).

Conversely, if (E,) is any sequence from 4 with B < | J E,, then
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B =|J(BNE,). Since uis a measure on 4, then

u(B) < Z WBNE,) < Z W(E,

from which it follows that u(B) < p*(B).
To establish (e), let ¢ > 0 be arbitrary and for each n choose a
sequence (E,;) of sets in A4 such that

B, < \J E, and Z W(Ene) < p*(B,) + 2_sn .
k=1 K=1

Since {E,; : n, k € N} is a countable collection from 4 whose union
contains |_J B,, it follows from the definition of u* that

b (U B) <SS wE) < S urB) +=.
n=1 n=1k=1 n=1

Since ¢ is arbitrary, the desired inequality is obtained. Q.E.D.

Property (e) of Lemma 9.5 is referred to by saying that u* is countably
subadditive. o

Although p* has the advantage that it is defined for arbitrary subsets
of X, it has the defect that it is not necessarily countably (or even
finitely) additive. We are willing. to restrict u* to a smaller o-algebra
provided we can find one containing 4 and over which p* has the
property of countable additivity. There is a remarkable condition
due to Carathéodory which provides the desired restriction of the
domain of u*.

9.6 DEFINITION. A subset E of X is said to be p*-measurable if
9:6) p*(d) = P4 0 E) + p*(4\ E)

for all subsets 4 of X. The collection of all p*-measurable sets is
denoted by A*.

Condition (9.6) indicates an additivity property on p*. In loose
terms, a set E is p*-measurable in case it and its complement are
sufficiently separated that they divide an arbitrary set 4 additively.
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9.7 CARATHEODORY EXTENSION THEOREM. The collection A* of all
w*-measurable sets is a o-algebra containing A. Moreover, if (E,) is a
disjoint sequence in A*, then

©.7) w(0,B) = 3w,

PROOF. It is clear that @ and X are p*-measurable, and that if
E € A*, then its complement X \ E belongs to A*. _

Next we shall show that 4* is closed under intersections. Indeed,
suppose that E and F are p*-measurable. Then for any 4 € X and
E € A*, we have

WA O F) = y*(4 A FAE) + u*((4 1 F)\ E)

Since F e A*, then
p*(d) = p*(ANF) + p*(4\ F).

Let B = A\ (E N F), then it is readily seen that BN F = (AN F)\ E
and B\ F = A\ F; since Fe A* it follows that

p*(A\(E N ) = p*(4 N F)\ E) + u*(4\ F).
Combining these three relations, we obtain

p¥(4) = p*(A N ENF) + p*(4\(ENF)),

which shows that E N F belongs to A*. Since 4* is closed under
intersection and complementation, it follows that 4* is an algebra.

Suppose that E, Fe A* and that EN F = 0. If we take 4 to be
AN (E VY F)in (9.6), we obtain

(A N (EU F)) = (A N E) + p*(4 N F).

For A = X, this relation implies that u* is additive on A4*.

We shall now show that A* is a o-algebra and that p* is countably
additive on A*. Let (E,) be a disjoint sequence in A* andlet E = | JE,.
From the preceding paragraph, we know that F, = (_}., E, belongs
to A*, and that if A4 is any subset of X, then

pHA) = p* (AN F) + p* 4\ F) = kil AN E) + p*(4\ F).
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Since F,, < E, then A\ E < A\ F, and letting n— oo the above
relations yields

D AN E) + p*(4\ E) < p*4).
k=1
On the other hand, it follows from Lemma 9.5(¢) that

PANE) < S wHANE),
WH(A) < WA N E) + w4\ E).

On combining the last three inequalities we infer that
p*(A) = p*(A N E) + p*(A\E) = 3 p*A N E) + p*4\ E).
k=1

In particular, this shows that £ = (2., E, is u*-measurable. On
taking 4 = FE, we obtain (9.7).

It remains to prove that 4 < 4*. It was proved in Lemma 9.5(d)
that if E€ 4, then u*(E) = w(E), but we need to show that E is
p*-measurable. Let 4 be an arbitrary subset of X; it follows from
Lemma 9.5(¢e) that

p*(A) < w4 N E) + p*(A4\ E).

To establish the opposite inequality, let € > 0 be arbitrary and let (F,)
be a sequence in A such that 4 < | ) F, and

Z W(ED) < uH(A) + <.

Since ANE S J(F,NE)and A4\ E <\ J (F,\E), it follows from
Lemma 9.5(e) that

BANE) < S WENE), w4\ E) < i w(Fy \ E).

Hence we have

]

p*ANE) + p*(A\E) < 1 {W(Fo 0 E) + p(Fu\ E)}

n=

= 3 HE) < () + <.
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Since ¢ is arbitrary, the desired inequality is established and the set E
belongs to A*. Q.E.D.

The Carathéodory Extension Theorem shows that a measure p on
an algebra A can always be extended to a measure u* on a s-algebra
A* containing 4. The o-algebra A* obtained in this way is auto-
matically complete in the sense that if E e A* with p*(E) = 0, and if
B c E, then Be A* and p*(B) = 0. To prove this, let 4 be an
arbitrary subset of X and employ Lemma 9.5(c) to observe that

p¥(A) = p¥E) + p¥(A4) = p*(4 N B) + p*(4 )\ B);
and, as before, the inequality
p¥(4) < p¥(A N B) + p¥(4\ B)
follows from Lemma 9.5(¢). Hence B is u*-measurable and
0 < p*(B) < p*(E) < 0.

We shall now show that in the case that p is a o-finite measure, it has
a unique extension to a measure on A*.

9.8 HAHN EXTENSION THEOREM. Suppose that p is a o-finite measure

on an algebra A. Then there exists a unique extension of p to a measure
on A*.

PROOF. The fact that u* gives a measure on A* was proved in
Theorem 9.7 even without the o-finiteness assumption. To establish
the uniqueness, let » be a measure on 4* which agrees with x on A.

First suppose that x and therefore both p* and v are finite measures.
Let E be any set in A* and let (E,) be a sequence in 4 such that
E c|JE,. Sincevisa measure and agrees with u on 4 we have

WE) < v(g En) < ; WE,) = 2 W(E,).

Therefore v(E) < p*(E) for any E€ A*. Since u* and v are additive,
p¥E)Y + p*(X\E) = w(E) + X'\ E). Since the terms on the right-
hand side are finite and not greater than the corresponding terms on
the left side, we infer that u*(E) = »(E) forall E€ A*. This establishes
the uniqueness when y is a finite measure.
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Suppose that u is o-finite and let (F,) be an increasing sequence of
sets in 4 with u(F,) < +c0 and X =|J F,. From the preceding
paragraph, u*(E N F,) = W(E N F,) for each E in A*. Therefore

p*(E) = lim p®(E N F,)
= lim W(E N F,) = o(E),

so that u* and » agree on 4*. Q.E.D.

LEBESGUE MEASURE

We now return to the considerations that prompted the foregoing
extension procedure, namely, to the generation of a méasure on the
real line R. In Lemma 9.3 we saw that the set F of all finite unions of
sets of the form '

(aab]’ (_w’b]’ (as +°O)’ (-—(X), +w)a

was an algebra of subsets of R and that the length function / gives a
measure on this algebra F. If we apply the extension procedure to /.
and F, we generate a measure space_ (R, F* ,1%). The o-algebra F*
obtained in this construction is called t_he collection of Lebesgue
measurable sets and the measure /* on F* is called Lebesgue measure.}

Although we sometimes wish to work with (R, F*,[*), it is often
more convenient to deal with the smallest o-algebra containing F than
with all of F*. It is readily seen that this smallest o-algebra is exactly
the collection of Borel sets. The restriction of Lebesgue measure to
the Borel sets is called either Borel or Lebesgue measure. Lest the
reader feel that restricting to B weakens the theory by substantially
lessening the collection of measurable sets and functions, we call
attention to Exercise 9.K where it is seen that every Lebesgue measurable
set is contained in a Borel measurable set with the same measure, and
every Lebesgue measurable function is almost everywhere equal toa
Borel measurable function.

1 It might be thought that every subset of the real line is Lebesgue measurable,
but this is not the case. For the construction of sets which are not Lebesgue
measurable, consult Reference [7], pp. 67-70.
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Sometimes it is more convenient to use a notion of the magnitude
of an interval other than length. This can be treated as follows. Let
g be a monotone increasing function on R to R so that x < y implies
that g(x) < g(»). In addition, we shall assume that g is continuous
on the right at every point, so that

g(c) = lim g(c + h).
=0+
Since g is monotone, it also follows that
lim g(x), lim g(x)
X— —® X~ + 00

both exist, although they may be —oco or +oo.
For such a function we define

rd(a, B]) = g(b) - g(a),
uo((—o0, b]) = 2(b) — lim g(x),

uo((@, +0)) = lim g(x) - g(a),
pol(—0,)) = lim g(x) — lim g(x).

We further define p, on the algébra F of finite disjoint unions of such
sets to be the corresponding sums. If the reader will check the details
of the proof of Lemma 9.3, he will see that it can be easily modified
to show that u, gives a o-finite measure on the algebra F. Therefore,
this measure has a unique extension, which we also denote by p, to the
algebra of all Borel subsets of R. This extension is often referred to
as the Borel-Stieltjes measure generated by g. (Of course, by applying
Theorem 9.7, u, has an extension to a complete ¢-algebra which
contains the Borel sets. This extension is called the Lebesgue-Stieltjes
measure generated by g.)

LINEAR FUNCTIONALS ON C

We shall conclude this chapter by showing that there is an intimate
correspondence between Borel-Stieltjes measures on a finite closed
interval J = [a, b] and bounded positive linear functionals on the
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Banach space C(J) of all continuous functions on J to R with the norm

9.8 I/ = sup {|f(0)} : xeJ}.

This result, due to F. Riesz, has been considerably extended in many
directions. Indeed, it is taken as the point of departure for the develop-
ment of a theory of integration by many authors who prefer to regard
the integral as a linear functional on spaces of continuous functions.
We choose to take a very concrete approach to this theorem and offer
a proof which is closely parallel to the Riemann-Stieltjes integral
version presented in Reference [1], pp. 290-294.

9.9 Riesz REPRESENTATION THEOREM. If G is a bounded positive
linear functional on C(J), then there exists a measure vy defined on the
Borel subsets of R such that

©9 G(f) = f fdy

SJor all fin C(J). Moreover, the norm |G| of G equals y(J).

PROOF. If ¢ is such that ¢ < t < b and n is a sufficiently large
natural number, let ¢, , be the function in C(J) which equals 1 on [a, 1],
which equals 0 on (¢ + 1/n, b], and which is linear on(t,t+ 1/mn). If
n<mand xeJ, then 0 < ¢, (%) € (%) < 1, so that the real

sequence (G(<p,,n)) is bounded and decreasing. If t €[a, b), we define
g0) = lim G-

Further, set g(t) = 0 for ¢t < a; if ¢t > b, we set g(t) = G(p,) where
ou(x) = lforallx eJ. Itisreadily seen that gis a monotoneincreasing
function on R.

We claim that g is continuous from the right. This is clear if ¢t < a
ort > b. Suppose that t € [a, b) and € > O and let

n > sup {2, |G~}
be so large that
g(1) < Glps,n) < (1) + =.
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If 4, is the function in C(J) which equals 1 on [a, z + rn~2], which
equals 0 on (¢ + n~Y — n~2, b], and which is linear on

(t+n32,t+nt—n?,

then an exercise in analytic geometry shows that |, — ¢, .| < 1/n.
Therefore

G(h) < Glpe) + ( ) 1G] < g(t) + 2,

so that g(¢) < g(t + n™2) < g(f) + 2e.
According to the Hahn Extension Theorem there exists a measure y

on the Borel subsets of R such that y((oc, /3]) =g(B) — g(«). In
particular, this shows that y(E) = 0, if ENJ = §, that

Y([a’ C]) = 7((‘1 - 1: C]) = g(c),

and that |G| = |G(gy)|| = 2(b) = #J).

It remains to show that equation (9.9) holds for fin C(J). Ife > O,
since f is uniformly continuous on J, there is a 8(s) > 0 such that if
|x —yl < 8e) and x,yeJd, then |f(x) —f())| <e. Now Ilet
a=ty, <t <---<t, =>b be such that sup{r, — #,_.} < 18(e) and
choose n so large that 2/n < inf {f, — r,_;} and thatfork = 1,...,m,
then

9.10) 8(te) < Glgy,.a) < g(t) + e(m|| fD~*-

We now consider functions defined on J by
£ = 10 @) + 3 F0un®) = 4,
) = 0 o) + 3, 0 o 9):
Note that f; € C(J) and that f; is a step function on J. It is clear that

sup {| fa(x) — f(x)| : x€J} < € and as an exercise (or see [1], p. 292)
the reader can show that | f; — f| < e. Therefore we have

IG(N) - G| < <]|G].
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In view of (9.10) we see that if 2 < k < m, then
|G(@ten = Pre-ym) — {8(t) — 8t} < e(m | fID7.

Apply G to f; and integrate f; with respect to y. The inequality just
obtained yields

IG(f) — flfzdyl <e.

But since f; lies within ¢ of f, we also have

[ fdy= [ ray| <20,

Combining the inequalities, we arrive at the inequality

6() - [ syl < iG] + D,

and since ¢ is arbitrary, we deduce (9.9). Q.E.D.

If the reader will check the proof of Lemma 8.13, he will see that an
arbitrary bounded linear functional G on C(J) can be written as the
difference G* — G~ of two positive bounded linear functionals.
Making use of this observation, one can extend the Riesz Representa-
tion Theorem given above to represent a bounded linear functional on
C(J) by means of integration with respect to a charge defined on the
Borel subsets of J.

EXERCISES

9.A. Establish that the family F of all finite unions of sets of the
form (9.1) is an algebra of sets in R.
9.B. Show that the family G of all finite unions of sets of the form

(a’b)’ (—-OO,b), (a’ +w)’ (—OO’ +°O)

is not an algebra of sets in R. However, the o-algebra generated by G
is the family of Borel sets.
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9.C. Show that if the set (a, +00) is the union of a disjoint sequence
of sets (a,, b,], then

i l((an,bn]) = +00.

9.D. Let X be the set of all rational numbers r satisfying 0 < r < 1
and let 4 be the family of all finite unions of ““half-open intervals” of
the form {re X:a <r < b}, where 0 <a<b<1 and a,be X.
Show that A is an algebra of subsets of X. Moreover, every non-
empty set in A is infinite. However, the o-algebra generated by 4
cousists of all subsets of X.

9.E. If E is a countable subset of R, then it has Lebesgue measure
zZero.

9F. Let I, =(n,n+ 1], for n =0, £1, £2,.... If a subset E
is contained in the union of a finite number of the {/,}, then /*(E) <
+o0. However, construct a Lebesgue measurable set E with /*(F) <
+o0 such that /*(E N I,) > O for all n. Show that a subset E of R is
Lebesgue measurable if and only if £nN I, is Lebesgue measurable
for each n.

9.G. If A is a Lebesgue measurable subset of R and € > 0, show that
‘there exists an open set G, 2 A4 such that

I*(4) < I%Gy) < I*(4) +=.

9.H. If B is a Lebesgue measurable subset of R, if ¢ > 0, and if
B < I, = (n, n + 1], then there exists a compact set K, < B such that

I*(K) < I*(B) < I*(K,) + «.

(Hint: Apply the Exercise 9.Gto 4 = I, \ B.)

9. If 4 is an arbitrary Lebesgue measurable set in R, apply the
preceding exercises to show that

1*(4) = inf{{*(G) : A < G, G open},
1*(4) = sup {I*(K) : K < 4, K compact}.

9.J. Let A = I* denote Lebesgue measure on R, and let 4 be a
Lebesgue measurable set with A(4) < +oo. If ¢ > 0, there exists an
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open set which is the union of a finite number of open intervals such
that

HXA - XG"l = |)‘(A) - )\(G)| < g.

Moreover, if ¢ > 0 there exists a continuous function f such that

lxa = fl = leA —fldx < e.

9.K. Let 4 be a Lebesgue measurable subset of R. Show that
there exists a Borel measurable subset B of R such that 4 < B and
such that /*(B\ 4) = 0. (Hint: Considerthecasewhere/*(4) < +o©
first.) Show that every Lebesgue measurable set is the union of a
Borel measurable set (with the same measure) and a set of Lebesgue
measure zero. In the terminology of Exercise 3.L, this asserts that
the Lebesgue algebra is the completion of the Borel algebra. As a
consequence of Exercise 3.N, we infer that every Lebesgue measurable
function is almost everywhere equal to a Borel measurable function.

9.L. If g belongs to L(R, B, X) and ¢ > 0, then there exists a con-
tinuous function f such that

lg = fls = [lg—flan<ce.

9.M. If B is the Borel algebra and A is Lebesgue measure on B,
show that (i) M(G) > O for every open set G, (ii) MK) < +oo for every
compact set K, and (iii)) A(x + E) = )\(E) for all Ee€ B. (Here
x+E={x+y:yekE})

9.N. Let X be a set, 4 an algebra of subsets of X, and x a measure
on A. If Bis an arbitrary subset of X, let u'(B) be defined to be

p'(B) = inf{u(4) : B < AecA}.

Show that u'(E) = w(E) for all E € A4 and that u*(B) < p'(B). More-
over, p* = p’ in case X is the countable union of sets with finite
p-measure. Is p’ countably subadditive in the sense of 9.5(e)?

9.0. Let X be an uncountable set and let 4 be the collection of sets
E which are either finite or have finite complement. In the former
case let u(F) = 0; in the latter, let u(E) = +o0o. Show that p is a
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measure on A. Calculate the outer measure u* corresponding to
Definition 9.4. Calculate the set function p’ defined in Exercise 9.N.
Are they the same?

9.P. Let X be a set and let « be defined for arbitrary subsets of X to
R and satisfy

0 < (E) € EVF) € oE) + F),
when E and F are subsets of X. Let S be the collection of all subsets
E of X such that
od) = a(ANE)+ A\ E)

forall4 = X. If S # 0,itis an algebra and « is additive on S.

9.Q. It may happen that the collection S in Exercise 9.P is empty.
For example, let «(E) = 1 for all E < X.

9.R. Let X and A4 be as in Exercise 9.D, and let 4; be the o-algebra
generated by 4. Let u; be the counting measure on A4, and let
o = 2p;. Show that p; = p; on 4 but not on A4;. (Hence the
o-finiteness hypothesis in Theorem 9.8 cannot be dropped.)

9.S. Let g be a monotone increasing and right continuous function
onRtoR. Ifpu,isdefined as at the end of this section, show that uyisa
measure on the algebra F.

9.T. Consider the following functions defined for x € R by:

(@) g1(x) = 2x, (b) go(x) = Arctan x,
(C) g3(x) = O’X < Oa (d) g4(x) = O,X < 0,
=1,x2>20, =x,x=0.

Describe the Borel-Stieltjes measures determined by these functions.
Which of these measures are absolutely continuous with respect to
Borel measure? What are their Radon-Nikodym derivatives?
Which of these measures are singular with respect to Borel measure?
Which of these measures are finite? With respect to which of these
measures is Borel measure absolutely continuous?

9.U. Let u be a finite measure on the Borel sets B of R and let
g(x) = y((—oo, x]) for xe R. Show that g is monotone increasing
and right continuous, and that

w((a, b]) = g(b) — g(a)
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when —o0 < a < b < +00. Show that u(R) = lim g(x).
X = a0

9.V. Let f be Riemann integrable on [a, b] to R. Then there exists
a monotone increasing sequence (¢,) and a monotone decreasing
sequence (,) of step functions such that ¢,(x) < f(x) < ¢(x) for
x €la, b] and

lim fqp,, d\ = lim fl/,,, ar.

(Here A denotes Lebesgue measure.) Show that f = lim ¢, = lim ¢,
almost everywhere, that fis Lebesgue measurable, and that

ffd)\ - f: £ dx.



CHAPTER 10

Product Measures

Let X and Y be two sets; then the Cartesian product Z = X x Y is
the set of all ordered pairs (x, y) with xe Xand ye Y. We shall first
show that the Cartesian product of two measurable spaces (X, X) .
and (Y, Y) can be made into a measurable space in a natural fashion.
Next we shall show that if measures are given on each of the factor
spaces, we can define a measure on the product space. Finally, we
shall relate integration with respect to the product measure and iterated
integration with respect to the measures in the factor spaces. The
model to be kept in mind throughout this discussion is the plane, which
we regard as the product R x R.

10.1 DernrTioN.  If (X, X)and (Y, Y)are measurable spaces, then a
set of the form 4 x B with 4 € X and Be Y is called a measurable
rectangle, or simply a rectangle, in Z = X x Y. We shall denote the
collection of all finite unions of rectangles by Z,.

It is an exercise to show that every set in Z; can be expressed as a
finite disjoint union of rectangles in Z (see Exercise 10.D).

10.2 LeMMA. The collection Z, is an algebra of subsets of Z.

PROOF. It is clear that the union of a finite number of sets in Z,
also belongs to Z,. Similarly, it follows from the first part of Exercise
10.E that the complement of a rectangle in Z belongs to Z,. Apply
De Morgan’s laws to see that the complement of any set in Z, belongs
to Z,. Q.E.D.

113
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10.3 DerFNiTION.  If (X, X) and (Y, Y) are measurable spaces, then
Z = X x Y denotes the o-algebra of subsets of Z = X x Y generated
by rectangles A x B with 4 € Xand Be Y. We shall refer to a set in
Z as a Z-measurable set, or as a measurable subset of Z.

If (X, X, u) and (Y, Y, v) are measure spaces, it is natural to attempt
to define a measure = on the subsets of Z = X x Y which is the
“product” of u and » in the sense that

m(A x B) = p(A)w(B), AeX,BeY,

(Recall the convention that 0(+c0) = 0.) We shall now show that
this can always be done.

10.4 Probuct MEASURE THEOREM. If (X, X, pn) and (Y, Y,v) are
measure spaces, then there exists a measure m defined on Z =X x Y
such that

(10.1) (A4 x B) = w(4) WB)

forallAc Xand Be Y. If these measure spaces are o-finite, then there
is a unique measure = with property (10.1).

PROOF. Suppose that the rectangle 4 x B is the disjoint union of a
sequence (4; x B,) of rectangles; thus

Xaxs(*, ) = xa(x) xs(») = 2 XA,(x) XB,()’)

for all xe X, ye Y. Hold x fixed, integrate with respect to », and
apply the Monotone Convergence Theorem to obtain

KD HB) = 3. x0) B,
A further application of the Monotone Convergence Theorem yields
HAWB) = 3, WA) nB).
Now let E € Z,; without loss of generality we may assume that

E= /L=J1 (4, x By,
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where the sets 4, x B; are mutually disjoint rectangles. If we define
mo(E) by

o(E) = Z u(A;) By,

the argument in the previous paragraph implies that =, is well-defined
and countably additive on Z,. By Theorem 9.7, there is an extension
of m, to a measure = on the o-algebra Z generated by Z,. Since = is
an extension of g, it is clear that (10.1) holds.

If (X, X, ) and (Y, Y, v) are o-finite, then =, is a o-finite measure
on the algebra Z, and the uniqueness of a measure satisfying (10.1)
follows from the uniqueness assertion of the Hahn Extension Theorem
9.8. Q.E.D.

Theorem 10.4 establishes the existence of a measure = on the s-algebra
Z generated by the rectangles {4 x B: A€ X, Be Y} and such that
(10.1) holds. Any such measure will be called a product of p and ».
If © and » are both o-finite, then they have a unique product. In the
general case the extension procedure discussed in the previous section
leads to a uniquely determined product measure. However, it will be
seen in Exercise 10.S that it is possible for two distinct measures on Z
‘to satisfy (10.1) if x and » are not o-finite.

In order to relate integration with respect to a product measure and
iterated integration, the notion of a section is useful.

10.5 DerINITION. If Eis a subset of Z = X x Y and x € X, then
the x-section of E is the set

E.={yeY:(x,y)eE}
Similarly, if y € Y, then the y-section of E is the set
E¥={xe X: (x,y)eE}.

If fis a function defined on Z to R, and x € X, then the x-section of f
is the function £, defined on Y by

f:'c(y) =f(x,y)’ yEY-
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Similarly, if y € ¥, then the y-section of f is the function f¥ defined
on X by

') =fx,y), xelX.

10.6 LEMMA. (a) If E is a measurable subset of Z, then every section
of E is measurable.

(b) If f is @ measurable function on Z to R, then every section of f is
measurable. '

PROOF. (a) If E = 4 x B and x € X, then the x-section of E is B
if x&€A, and is 0 if x ¢ 4. Therefore, the rectangles are contained in
the collection E of sets in Z having the property that each x-section is
measurable. Since it is easily seen that E is a o-algebra (see Exercise
10.1), it follows that E = Z.

(b) Let x € X and « € R, then

eY: () >a={eY flx,y) >}
={(x,»eX x Y:f(x,y) > a},.

If f is Z-measurable, then f, is Y-measurable. Similarly, f“ is X-
measurable. Q.E.D.

We interpolate an important result, which is often useful in measure
and probability theory, and which will be used below. We recall (see
Exercise 2.V) that a monotone class is a nonempty collection M of sets
which contains the union of each increasing sequence in M and the
intersection of each decreasing sequence in M. It is easy (see Exercise
2.W) to show that if 4 is a nonempty collection of subsets of a set S,
then the o-algebra § generated by A contains the monotone class M
generated by 4. We now show that if 4 is an algebra, then S = M.

10.7 MoNOTONE CLASS LEMMA. If A is an algebra of set;v, then the

a-algebra S generated by A coincides with the monotone class M generated
by A.

PROOF. We have remarked that M = §. To obtain the opposite
inclusion it suffices to prove that M is an algebra.

If Ee M, define M(E) to be the collection of Fe M such that
E\F,ENF, F\E all belong to M. Evidently 0, Ee M(E) and it is
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readily seen that M(F) is a monotone class. Moreover, Fe M(E) if
and only if £ e M(F).

If E belongs to the algebra A, then it is clear that 4 < M(E).
But since M is the smallest monotone class containing 4, we must have
M(E) = Mfor Ein A. Therefore,if Ee Aand Fe M, then Fe M(E).
We infer that if F € A and Fe M, then E € M(F) so that A = M(F) for
any Fe M. Using the minimality of M once more we conclude that
M(F) = M for any Fe M. Thus M is closed under intersections and
relative complements. But since X € M it is plain that M is an algebra;
since it is a monotone class, it is indeed a o-algebra. Q.E.D..

It follows from the Monotone Class Lemma that if a monotone class
contains an algebra A, then it contains the o-algebra generated by 4.

10.8 LemMMA. Let (X, X, p) and (Y, Y, v) be o-finite measure spaces.
IfEec Z = X x Y, then the functions defined by

(10.2) Jx) = uE), 8(y) = m(EY)

are measurable, and

(10.3) J'X fdu = n(E) = L g dv.

PROOF. First we shall suppose that the measure spaces are finite
‘and let M be the collection of all E € Z for which the above assertion
is true. We shall show that M = Z by demonstrating that M is a
monotone class containing the algebra Z,. In fact, if E=4 x B
with A € Xand Be Y, then

JX) = xax)u(B),  g(») = xa(y) u(4),
[t =nyu® = [ gav.
X Y
Since an arbitrary element of Z, can be written as a finite disjoint
union of rectangles, it follows that Z, = M.

We now show that M is a monotone class. Indeed, let (E,) be a
monotone increasing sequence in M with union E. Therefore

Jalx) = V((En)x): g.(y) = M((En)y)
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are measurable and
[ frdu=mE) = [ gudv.
X Y

It is clear that the monotone increasing sequences (f;) and (g,) converge
to the functions f and g defined by

J&) =wE),  g(y) = wE).

If we apply the fact that = is a measure and the Monotone Convergence
Theorem, we obtain

[ rau=nE) = [ g,

so that Ee M. Since = is finite measure, it can be proved in the same
way that if (F,,) is a monotone decreasing sequence in M, then F = (| F,
belongs to M. Therefore M is a monotone class, and it follows from
the Monotone Class Lemma that M = Z.

If the measure spaces are o-finite, let Z be the increasing union of a
sequence of rectangles (Z,) with =(Z,) < +oo and apply the previous
argument and the Monotone Convergence Theorem to the sequence
(EnZ,). ' Q.E.D.

10.9 ToNELLI’S THEOREM. Let (X, X, ) and (Y, Y,v) be o-finite
measure spaces and let F be a nonnegative measurable function on
Z =X x YtoR. Then the functions defined on X and Y by

(10.4) 5 = [ B, )= [ Pr,
Y . X
are.measurable and
(10.5) ffd,u=de7r=fgdv.
X zZ Y
In other symbols,

(10.6) L (L de) du = fz Fdn = fy (fx Fd,b) .

PROOF. If Fis the characteristic function of a set in Z, the assertion
follows from the Lemma 10.8. By linearity, the present theorem holds
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for a measurable simple function. If F is an arbitrary nonnegative
measurable function on Z to R, Lemma 2.11 implies that there is a
sequence (®,) of nonnegative measurable simple functions which
converges in a monotone increasing fashionon Zto F. If g, and ¢, are
defined by

107)  gu() = f @)adv,  a(y) = fx (@) du,

then ¢, and ¢, are measurable and monotone in #. By the Monotone
Convergence Theorem, (¢,) converges on X to fand (i,) converges on
Ytog. Another application of the Monotone Convergence Theorem
implies that

ffd,u=limf (pnd,u-=1imf O, dn
X X 4

=1imf ¢ndv=Jgdv.
Y Y

The same theorem also shows that
f Fan = limf O, dr.
zZ V4

from which (10.5) follows. Q.E.D.

It will be seen in the exercises that Tonelli’s Theorem may fail if we
drop the hypothesis that F is nonnegative, or if we drop the hypothesis
that the measures u, v are o-finite.

Tonelli’s Theorem deals with a nonnegative function on Z and
affirms the equality of the integral over Z and the two iterated integrals
whether these integrals are finite or equal 4+o00. The final result
considers the case where the function is allowed to take both positive
and negative values, but is assumed to be integrable.

10.10 FuBINr’sS THEOREM. Let (X, X, p) and (Y, Y,v) be o-finite
spaces and let the measuremon Z = X x Y be the product of pandv. If
the function Fon Z = X x Y to R is integrable with respect to m, then
the extended real-valued functions defined almost everywhere by

(10.8) f) = de g0) = [ Frdu
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have finite integrals and

(10.9) Lfdy - J;Fdw= fygdv.

In other symbols,

(10.10) LUY F;(dv] du = fz Fan = fy UX F);z,L] .

ProoF. Since F is integrable with respect to =, its positive and
negative parts F* and F~ are integrable. Apply Tonelli’s Theorem
to F* and F~ to deduce that the corresponding f'* and /'~ have finite
integrals with respect to p. Hence f* and f~ are finite-valued
p-almost everywhere, so their difference f is defined u-almost every-
where and the first part of (10.9) is clear. The second part is similar.

Q.E.D.

Since we have chosen in Chapter 5 to restrict the use of the word
“integrable” to real-valued functions, we cannot conclude that the
functions f, g defined in (10.8) are integrable. However, they are
almost everywhere equal to integrable functions.

It will be seen in an exercise that Fubini’s Theorem may fail if the
hypothesis that F is integrable is dropped. '

EXERCISES

10A. Let 4 < Xand B< Y. If Aor Bisempty,then4 x B = .
Conversely, if A x B = 0, then either 4 = Q0 or B = 0.

10B. Let 4, < Xand B, Y,j=1,2. If A4, x B, = A, x By,
then A1 = A2 and -Bl = B2. V

10.C. Let 4, < Xand B; < Y,j=1,2. Then

n

(A X By) U (4; X By) = [(41\ 42) X Bi]
U [(4, N 4y) x (By Y By)] L [(4:2\ 4,) x By,

and the sets on the right side are mutually disjoint.
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10.D. Let (X, X) and (Y, Y) be measurable spaces. If 4, X and
B;eYforj=1,...,m, then the set

U 4, x B)

can be written as the disjoint union of a finite number of rectangles in Z.
10.E. Let 4, <« Xand B, < Y,j=1,2. Then

(4 x By)\ (42 x By) = [(4, N 4) x (B;\ By)]
U [(4;\ 45) x By]
(4y X By) N (Az x By) = (4 N A4;) x (B, N By).

10.F. If (R, B) denotes the measurable space consisting of real
numbers together with the Borel sets, show that every open subset of
R x R belongs to B x B. In fact, this o-algebra is the o-algebra
generated by the open subsets of R x R. (In other words, B x B is
the Borel algebra of R x R.)

10.G. Let fand g be real-valued functions on X and Y, respectively;
suppose that f is X-measurable and that g is Y-measurable. If 4 is
defined for (x,y) in X x Y by A(x,y) = f(x) g(»), show that A is
X x Y-measurable.

10.H. If Fisa subset of R, let y(E) = {(x,y»)) e R x R: x — ye E}. -
If E€ B, show that y(E)e B x B. Use this to prove that if fis a
Borel measurable function on R to R, then the function F defined by
F(x, y) = f(x — y) is measurable with respect to B x B.

10.1. Let E and F be subsets of Z = X x Y, and let xe X. Show
that (E\ F), = E_,\ F,. If (E,) are subsets of Z, then

(UEax=U(Eax-

10.J. Let (X, X, ) be the measure space on the natural numbers
X = N with the counting measure defined on all subsets of X = N.
Let (Y, Y,v) be an arbitrary measure space. Show that a set E in
Z = X x Y belongs to Z = X x Yif and only if each section E, of F
belongs to Y. In this case there is a unique product measure =, and

m(E) = i WE,), EecZ.
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A function fon Z = X x Y to R is measurable if and only if each
section f, is Y-measurable. Moreover, fis integrable with respect to =

if and only if the series
> [l
n=1 vY

is convergent, in which case

[ram= S [[, 5nd] = [, [ 2.5]

10.K. Let X and Y be the unit interval [0, 1] and let X and Y be the
Borel subsets of [0, 1]. Let p be Lebesgue measure on X and let v be
the counting measureon ¥. If D = {(x,y) : x = y},showthat Disa
measurable subset of Z = X x Y, but that

[0 duy # [up i,

Hence Lemma 10.8 may fail unless both of the factors are required to
be o-finite.

10.L. If F is the characteristic function of the set D in the Exercise
10.K, show that Tonelli’s Theorem may fail unless both of the factors
are required to be o-finite.

10.M. Show that the example considered in Exercise 10.J demon-
strates that Tonelli’s Theorem holds for arbitrary (Y, ¥Y,») when
(X, X, p) is the set NV of natural numbers with the counting measure on
arbitrary subsets of V.

10.N. If a,,, = 0 for m, ne N, then

335055 s

n=1

d)

10.0. Let a,, be defined for m, n € N by requiring that a,, = +1,

Qpnsr = —l,and ap, = 0if m #norm # n + 1. Show that
2 2 @m=0, D > am=
m=1n=1 n=1m=1

so the hypothesis of integrability in Fubini’s Theorem cannot be
dropped.



Product Measures 123

10.P. Let fbe integrable on (X, X, ), let g be integrableon (Y, Y, v),
and define 4 on Z by A(x, y) = f(x) g(y). If =isa product of pand v,
show that 4 is #-integrable and

Joram =], rae][f 2 ).

10.Q. Suppose that (X, X, u) and (Y, Y,v) are o-finite, and let
E, Fbelongto X x Y. IfwW(E,) = W(F,)forall xe X, then n(E) = n(F).

10.R. Let f and g be Lebesgue integrable functions on (R, B) to R.
From Exercise 10.H it follows that the function mapping (x, y) into
Sf(x — ») g(») is measurable with respect to B x B. If A denotes
Lebesgue measure on B, use Tonelli’s Theorem and the fact that

J 176 = pl v = [ 17691 aa)
R R

to show vthatv the function 4 defined for x € R by

W) = [ 16 = 3 80) )

is finite almost everywhere. Moreover,

f|h|dA< Ulfld)\]Ulg| dA].

The function % defined above is called the convelution of f and g and is
usually denoted by f* g.

10.S. Let X = R, X be the o-algebra of all subsets of R and let x be
defined by u(4) = 0 if 4 is countable, and u(4) = +oo if 4 is un-
countable. We shall construct distinct products of p with itself.

(@) f Ee Z = X x X, define #(E) = 0 in case E can be written as
the union £ = G U H of two sets in Z such that the x-projection of G
is countable and the y-projection of H is countable. Otherwise, define
7(E) = +oo. It is evident that = is a measure on Z. If n(E) = 0,
then FE is contained in the union of a countable set of lines in the plane.
If A, Be X, show that #(4 x B) = u(A4) w(B). Hence = is a product
of p with itself.
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(b) If E€ Z, define p(E) = 0 in case E can be written as the union
E = Gy HUY K of three sets in Z such that the x-projection of G is
countable, the y-projection of H is countable, and the projection of K
on the line with equation y = x is countable.. Otherwise, define
p(E) = +0. Now p is a measure of Z, and if p(E) = 0, then E is
contained in the union of a countable set of lines. Show that
p(4 x B) = u(A) p(B) for all A, Be X; hence p is a product of p with
itself.

(c) Let E={(x,y):x+ y = 0}, show that Ee€Z. However,
p(E) = 0, whereas #n(E) =
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