Ejercicios 2

- 1. Si X un k-espacio, entonces las componentes conexas por trayectorias de C(X,Y) con la topología compacto abierta son las clases de homotopía.
- 2. Si una función continua $f: X \to Y$ tiene una inversa homotópica izquierda g y una inversa homotópica derecha h, entonces f es una equivalencia homotópica.
- 3. Si una de las funciones continuas $f: X \to Y$, $g: Y \to Z$ y su composición $g \circ f: X \to Z$ son equivalencias homotópicas, entonces la otra función también lo es.
- 4. Un espacio *X* es conexo por trayectorias si y sólo si cualesquiera dos funciones constantes de *X* es sí mismo son homotópicas.
- 5. Si X es contraible, entonces cualquier función continua $f: X \to Y$ es homotópica a una función constante; si además Y es conexo por trayectorias, entonces cualesquiera dos funciones de X en Y son homotópicas.
- 6. Si X y Y son contraibles, entonces también $X \times Y$ es contraible.
- 7. La función identidad y la antipodal sobre S^n son homotópicas, para n impar.
- 8. Si $f, g: X \to S^n$ son continuas y $f(x) \neq g(x)$ para cada $x \in X$, entonces f y g son homotópicas. De lo anterior se sigue que las funciones que no son sobreyectivas son homotópicas a una función constante.
- 9. Sean $A \subseteq X$ y $f: X \to A$ continua que es homotópica a la función identidad de A. Si X es contraible, entonces A es contraible. De aquí se deduce que el retracto de un espacio contraible es contraible.
- 10. Un subespacio $A \subseteq X$ es un retracto de deformación de X si y sólo si para cada espacio X y cada función continua $f: A \to Y$ puede ser continuamente extendida a X y cualesquiera dos funciones $g, h: X \to Y$ son homotópicas siempre que lo sean sus restricciones a A.
- 11. Si C(X, Y) está equipado con la topología compacto abierta y $\eta: Y \to C(X, Y)$ es la inyección natural de Y en C(X, Y); o sea. $\eta(y)(x) = y$ para todo $y \in Y$ y todo $x \in X$, entonces $\eta[Y]$ es un retracto de C(X, Y).
- 12. Si X es un espacio Hausdorff y localmente compacto que además es contraible; entonces $\eta[Y]$ es un retracto de deformación fuerte de C(X, Y), con la topología compacto abierta.
- 13. Sea $\Omega(X, x_0)$ el subespacio de C(X, Y), con la topología compacto abierta, consistente de todos los lazos basados en x_0 , entonces $\pi(X, x_0)$ es justamente el conjunto de componentes conexas por trayectorias de $\Omega(X, x_0)$.

- 14. Seam $f,g:I\to X$ dos caminos con punto inicial x_0 y punto final x_1 . Entonces:
 - a) $f \simeq g \text{ rel } \{0, 1\} \text{ si y sólo si } f * g^{-1} \simeq e_{x_0} \text{ rel } \{0, 1\},$
 - b) Si $f = g \text{ rel } \{0, 1\}$, entonces $f^{-1} = g^{-1} \text{ rel } \{0, 1\}$
- 15. ¿Cuál es el grupo fundamental de un espacio indiscreto?
- 16. Si $f, g: X \to Y$ son funciones homotópicos y $f(x_0) = g(x_0)$ para algún $x_0 \in X$; entonces los homomorfismos inducidos f_* y g_* difieren por un automorfismo interno de $\pi(Y, f(x_0))$.
- 17. Sean X y Y espacios, $x_0 \in X$, $y_0 \in Y$. Entonces

$$\pi(X \times Y, \langle x, y \rangle) \cong \pi(X, x_0) \oplus \pi(Y, y_0).$$

- 18. (Teorema del Punto Fijo de Brower) Una función continua $f: \mathbb{D}^n \to \mathbb{D}^n$ tiene al menos un punto fijo; o sea, f(x) = x para algún $x \in \mathbb{D}^n$.
- 19. (El Teorema Fundamental del Álgebra) Cada polinomio no constante con coeficientes complejos tiene al menos una raíz compleja.
- 20. Sea $f: \mathbb{D}^n \to \mathbb{D}^n$ un homeomorfismo. Entonces f transforma S^1 sobre sí mismo.
- 21. $S^1 \times \{x\}$ es un retracto del toro $S^1 \times S^1$; pero no es un retracto de deformación fuerte para ningún $x \in S^1$
- 22. Sea X el producto de un espacio X con un espacio discreto. Entonces la proyección de \widetilde{X} sobre X es una función cubriente.
- 23. La función que a cada $z \in \mathbb{C} \setminus \{0\}$ le asigna z^n , donde $n \neq 0$, es una función cubriente.
- 24. Sea $p: \widetilde{X} \to X$ una función cubriente, siendo X un espacio localmente conexo por trayectorias. Entonces cada punto de X tiene una vecindad abierta y conexa por trayectorias U tal que cada componente conexa por trayectorias de $p^{-1}[U]$ es enviada por p de manera homeomorfa sobre U.
- 25. Sea $p:\widetilde{X}\to X$ una función cubriente, siendo X un espacio conexo. Entonces \widetilde{X} es compacto si y sólo si X es compacto y la multiplicidad de p es finita.
- 26. (Teorema de Borsuk-Ulam) Si $f: S^n \to \mathbb{R}^n$, para $n \ge 1$, es continua, entonces hay un punto $x \in S^n$ tal que f(x) = f(-x).
- 27. No hay una función continua $g: S^{n+1} \to S^n$, n > 0, la cual manda puntos antipodales a puntos antipodales.

- 28. Sea $p: \widetilde{X} \to X$ una función cubriente y $f: I \to X$ un lazo basado en x_0 . Entonces:
 - *a*) Si $f = e_{x_0}$ rel {0,1}, entonces cualquier levantamiento de f a un camino en \widetilde{X} es un lazo y es homotópico a un lazo constante relativo al {0,1}.
 - *b*) Si f se levanta a un lazo en \widetilde{X} que empieza en \widetilde{x}_{x_0} , entonces cualquier lazo homotópico a f relativo a $\{0,1\}$ también se levanta en un lazo en \widetilde{X} que empieza en \widetilde{x}_{x_0} .
- 29. Sea $p: \widetilde{X} \to X$ una función cubriente, donde \widetilde{X} es conexo por trayectorias. Entonces p es un homeomorfismo si y sólo si $p_{\sharp}[\pi(\widetilde{X}, \widetilde{x_0})] = \pi(X, p(\widetilde{x_0}))$.
- 30. Sea $p:\widetilde{X}\to X$ una función cubriente con multiplicidadad n. Si \widetilde{X} es simplemente conexo y n es primo, entonces $\pi(X,x_0)$ es isomorfo a $\mathbb{Z}/n\mathbb{Z}$.
- 31. Dado un espacio conexo y localmente conexo por trayectorias X, una función continua $f: X \to S^1$ puede ser levantada a una función continua $\widetilde{f}: X \to \mathbb{R}$ relativo a la función exponencial si y sólo si f es homotópica a una función constante.
- 32. Ningún subconjunto de \mathbb{R}^n es homeomorfo a S^n .
- 33. No hay ninguna función inyectiva y continua de \mathbb{R}^{n+1} a \mathbb{R} para cualquier $n \ge 1$.
- 34. Un espacio X se llama localmente relativamente simplemente conexo si para cada $x \in X$ hay una vecindad abierta U de x tal que el homomorfismo inducido por la función inclusión de U a X es trivial.
 - Todo espacio *X* que es localmente relativamente simplemente conexo tiene un cubriente universal.
- 35. El producto infinito de S^1 no tiene un cubriente universal.