Ejercicios 13 Topología Marzo - Agosto, 2007.

- 1. Un par de subconjuntos A y B de un espacio X están completamente separados si existe una función continua $f: X \to \mathbb{R}$ tal que $f[A] \subseteq \{0\}$ y $f[B] \subseteq \{1\}$.
 - Todo par de subconjuntos completamente separados de un espacio Tychonoff tienen clausuras ajenas en su compactación de Čech-Stone.
- 2. Todo par de conjuntos cerrados de un espacio normal X tienen clausuras ajenas en βX .
- 3. Si un subespacio M de un espacio de Tychonoff X tiene la propiedad de que cualquier función continua $f:M\to [0,1]$ es continuamente extendible sobre X, entonces la clausura \overline{M} de M en βX es una compactación equivalente a βM .
- 4. Para cualquier espacio de Tychonoff X y cualquier T tal que $X \subseteq T \subseteq \beta X$ se tiene que $\beta T = \beta X$.
- 5. Todo conjunto cerrado e infinito $F \subseteq \beta \omega$ contiene un subespacio homeomorfo a $\beta \omega$; en particular, F tienen cardinalidad $2^{\mathfrak{c}}$.
- 6. El espacio $\beta\omega$ no tiene subespacios homeomorfos a $A(\omega)$; es decir, en $\beta\omega$ no hay sucesiones convergentes no triviales.
- 7. $A(\kappa)$ es la compactación por un punto del espacio discreto de cardinalidad κ , $D(\kappa)$. Entonces $A(\kappa) \times \{0, 1, \dots, n-1\}$ una compactación de $D(\kappa)$, para todo $n \in \omega$.
- 8. El doble círculo de Alexandroff es una compactación del espacio discreto $D(\mathfrak{c})$ y esta compactación es incomparable (en el orden \leq definido entre compactaciones) a la compactación $A(\mathfrak{c}) \times A(\mathfrak{c})$.
- 9. Existe una función continua $f: D(\mathfrak{c}) \to [0,1]$ la cual no es continuamente extendible a las compactaciones de $D(\mathfrak{c})$ del ejercicio anterior.
- 10. La función $f: \omega \times \omega \to [0,1]$ definida por $f(m,n) = \frac{m}{m+n+1}$ para $\langle m,n\rangle \in \omega \times \omega$ no es continuamente extendible a $\beta\omega \times \beta\omega$; deduzca que $\beta\omega \times \beta\omega$ no es la compactación de Čech-Stone de $\omega \times \omega$.
- 11. Para todo espacio Hausdorff, compacto y separable X, el producto cartesiano $X \times (\omega_1 + 1)$ es la compactación de Čech-Stone de $X \times \omega_1$.

- 12. Para cualquier compactación Y de un espacio X se tiene que $|Y| \leq 2^{2^{|D|}}$, donde D es cualquier subespacio denso de X. Existe un conjunto $\mathcal{K}^*(X)$ tal que para cualquier compactación de X se tiene que $\mathcal{K}^*(X)$ contiene un espacio homeomorfo a tal compactación.
- 13. Si en la familia $K^*(X)$ de las compactaciones de un espacio Tychonoff no compacto X existe un espacio Y que es el mínimo en el orden \leq de las compactaciones de X, entonces X es localmente compacto y Y es homeomorfo a la compactación de Alexandroff A(X) de X.