Ejercicios III

April 1, 2005

1. (David) Un cardinal κ se llama de Mahlo si es inaccesible y

$$\{\alpha < \kappa : \alpha \text{ es regular}\}\$$

es estacionario en κ . Demuestre que para un tal κ ,

$$\{\lambda < \kappa : \lambda \text{ es inaccesible}\}\$$

es estacionario en κ .

- 2. (Iván) Demuestre que los siguientes son equivalentes:
 - (a) \Diamond
 - (b) Existen $A_{\alpha} \subseteq \alpha \times \alpha$ para $\alpha < \omega_1$, tales que para todo $A \subseteq \omega_1 \times \omega_1$,

$$\{\alpha \in \omega_1 : A \cap (\alpha \times \alpha) = A_\alpha\}$$

es estacionario.

(c) Existen funciones $f_{\alpha}: \alpha \to \alpha$ para $\alpha < \omega_1$ tales que, para cada $f: \omega_1 \to \omega_1$,

$$(\exists \alpha < \omega_1) (f \upharpoonright \alpha = f_\alpha \& \alpha > 0).$$

(d) Existen funciones $f_\alpha:\alpha\to\alpha$ para $\alpha<\omega_1$ tales que, para cada $f:\omega_1\to\omega_1,$

$$\{\alpha \in \omega_1 : f \upharpoonright \alpha = f_\alpha\}$$

es estacionario.

3. (Pável) Sea $\kappa>\omega$ un cardinal regular. \Diamond_{κ} es la afirmación de existen conjuntos $A_{\alpha}\subseteq\alpha$ para $\alpha<\kappa$ tales que

$$(\forall A \subseteq \kappa) (\{\alpha < \kappa : A \cap \alpha = A_{\alpha}\} \text{ es estacionario}).$$

Demuestre que $\Diamond_{\kappa} \Rightarrow 2^{<\kappa} = \kappa$ y que hay una familia de 2^{κ} conjuntos estacionarios que son casi ajenos por pares.

- 4. (Érica) Demuestre que para κ regular y no numerable, \Diamond_{κ} es equivalente a la siguiente afirmación: Existen familias $\mathcal{A}_{\alpha} \subseteq \mathcal{P}(\alpha)$ para $\alpha < \kappa$, tales que $|\mathcal{A}_{\alpha}| \leq |\alpha|$ y para cada $A \subseteq \kappa$, $\{\alpha < \kappa : A \cap \alpha \in \mathcal{A}_{\alpha}\}$ es estacionario.
- 5. (Osvaldo) Demuestre que lo siguiente es inconsistente: Existen $A_{\alpha} \subseteq \alpha$ para $\alpha < \omega_1$ tales que para todo estacionario $A \subseteq \omega_1$, existe $\alpha \in A$ tal que $A \cap \alpha = A_{\alpha}$.
- 6. (Alejandro) Sea $\kappa > \omega$ un cardinal regular y sea $E \subseteq \kappa$ estacionario. $\Diamond^+(\kappa, E)$ dice que existen $\mathcal{A}_{\alpha} \subseteq \mathcal{P}(\alpha)$ para $\alpha \in E$ tales que $|\mathcal{A}_{\alpha}| \leq |\alpha|$ y para todo $A \subseteq \kappa$, existe un c.u.b. $C \subseteq \kappa$ tal que

$$(\forall \alpha \in C \cap E) (A \cap \alpha \in \mathcal{A}_{\alpha} \& C \cap \alpha \in \mathcal{A}_{\alpha}).$$

 \Diamond_{κ}^{+} es lo mismo que $\Diamond^{+}(\kappa,\kappa)$. Asimismo, $\Diamond(\kappa,E)$ dice que existen conjuntos $A_{\alpha}\subseteq\alpha$ para $\alpha\in E$ tales que

$$(\forall A\subseteq\kappa)\left(\{\alpha\in E:A\cap\alpha=A_\alpha\}\ \text{es estacionario}\right).$$

Demuestre que:

$$\Diamond_{\kappa}^{+} \Rightarrow \Diamond^{+} (\kappa, E) ,$$

mientras que

$$\Diamond (\kappa, E) \Rightarrow \Diamond_{\kappa}.$$