Alejandro Torres Ayala.

II.2. Demostrar que si S es un conjunto estacionario en ω_1 y α un ordinal numerable, entonces S contiene un subconjunto cerrado C con tipo de orden α .

Demostración: Nuestra prueba es por inducción. Obsérvese que es fácil encontrar subconjuntos cerrados C_{β} en S con $otp(C_{\beta}) = \beta$ para todo β finito. Por lo tanto, consideremos la siguiente hipotesis inductiva: Para todo $\gamma \in \omega_1$ y para todo $\beta < \alpha < \omega_1$, existe un subconjunto cerrado $C_{\beta} \subseteq S$ con tipo de orden β y tal que, $\gamma < min(C_{\beta})$. Supongamos que α es límite y encontremos un subconjunto cerrado C de S con tipo de orden α usando la hipótesis inductiva. Como α es límite, tenemos que $\alpha = \sup\{\alpha_n : n \in \omega\}$. Sean $C_i \subseteq S$ cerrados tal que $otp(C_i) = \alpha_i + 1$, para cada $i \in \omega$. Esto implica que para toda $i \in \omega$ existen isomorfismos $f_i : C_i \to \alpha_i + 1$. Por lo tanto, consideremos $D_0 = C_0$ y $D_{i+1} = C_{i+1} - \{\xi \in C_{i+1} : f_{i+1}(\xi) \in (\alpha_i) + 1\}$ para cada $i \in \omega$. Entonces, hacemos $C = \bigcup_{i \in \omega} D_i$. Entonces tenemos que $otp(C) = \alpha$, y además C es cerrado pues en la constrcucción se le agregaron todos sus puntos límite.

El siguiente paso es encontrar un subconjunto cerrado de S con tipo de orden $\alpha+1$, para α límite. Ahora en nuestra hipótesis podemos usar además que existen subconjuntos cerrados de S con tipo de orden α . Consideremos el siguiente subconjunto $A=\{\beta_\gamma:\gamma\in\omega_1\}$, donde β_γ se define como sigue: Para $\gamma\in\omega_1$, sea $B_\gamma\subseteq S$ cerrado con $otp(B_\gamma)=\alpha$, en estas condiciones definimos $\beta_\gamma=sup(\bigcup_{\xi<\gamma}B_\xi)< min(B_\gamma)$. Observemos que por construcción A es un cerrado y por la hipóteis es no acotado en ω_1 , por lo tanto, $A\cap S\neq\emptyset$. Sea $\beta\in A\cap S$ el cual lo podemos suponer límite (pues el conjunto de los puntos límite de A es también un c.u.b.), esto implica que $\beta=sup\{\beta_n:n\in\omega\}$. Entonces ahora procedemos igual que en el caso anterior solo que ahora podemos agregar β , pues este punto pertenece a S, es decir, hacemos $C=\bigcup_{i\in\omega}D_i\cup\{\beta\}$, donde los D_i se definen de igual manera que en el caso anterior

Para ordinales $\alpha+k$ con k>1es fácil proceder usando la hipótesis inductiva.