$f(x)=0$? Show that there is a largest x in $[a, b]$ with $f(x)=0$. (Try to give an easy proof by considering a new function closely related to f.)
(b) The proof of Theorem 1 depended upon consideration of $A=\{x: a \leq$ $x \leq b$ and f is negative on $[a, x]\}$. Give another proof of Theorem 1, which depends upon consideration of $B=\{x: a \leq x \leq b$ and $f(x)<$ $0\}$. Which point x in $[a, b]$ with $f(x)=0$ will this proof locate? Give an example where the sets A and B are not the same.
*4. (a) Suppose that f is continuous on $[a, b]$ and that $f(a)=f(b)=0$. Suppose also that $f\left(x_{0}\right)>0$ for some x_{0} in $[a, b]$. Prove that there are numbers c and d with $a \leq c<x_{0}<d \leq b$ such that $f(c)=f(d)=0$, but $f(x)>0$ for all x in (c, d). Hint: The previous problem can be used to good advantage.
(b) Suppose that f is continuous on $[a, b]$ and that $f(a)<f(b)$. Prove that there are numbers c and d with $a \leq c<d \leq b$ such that $f(c)=f(a)$ and $f(d)=f(b)$ and $f(a)<f(x)<f(d)$ for all x in (c, d).
5. (a) Suppose that $y-x>1$. Prove that there is an integer k such that $x<k<y$. Hint: Let l by the largest integer satisfying $l \leq x$, and consider $l+1$.
(b) Suppose $x<y$. Prove that there is a rational number r such that $x<$ $r<y$. Hint: If $1 / n<y-x$, then $n y-n x>1$. (Query: Why have parts (a) and (b) been postponed until this problem set?)
(c) Suppose that $r<s$ are rational numbers. Prove that there is an irrational number between r and s. Hint: As a start, you know that there is an irrational number between 0 and 1.
(d) Suppose that $x<y$. Prove that there is an irrational number between x and y. Hint: It is unnecessary to do any more work; this follows from (b) and (c).
*6. A set \boldsymbol{A} of real numbers is said to be dense if every open interval contains a point of A. For example, Problem 5 shows that the set of rational numbers and the set of irrational numbers are each dense.
(a) Prove that if f is continuous and $f(x)=0$ for all numbers x in a dense set A, then $f(x)=0$ for all x.
(b) Prove that if f and g are continuous and $f(x)=g(x)$ for all x in a dense set A, then $f(x)=g(x)$ for all x.
(c) If we assume instead that $f(x) \geq g(x)$ for all x in A, show that $f(x) \geq$ $g(x)$ for all x. Can \geq be replaced by $>$ throughout?
7. Prove that if f is continuous and $f(x+y)=f(x)+f(y)$ for all x and y, then there is a number c such that $f(x)=c x$ for all x. (This conclusion can be demonstrated simply by combining the results of two previous problems.) Point of information: There do exist noncontinuous functions f satisfying $f(x+y)=f(x)+f(y)$ for all x and y, but we cannot prove this now; in fact, this simple question involves ideas that are usually never mentioned in any undergraduate course. The Suggested Reading contains references.

