Primer Examen Parcial Cálculo I (Segunda vuelta) (Marzo - Agosto, 2007)

Facultad de Ciencias Físico Matemáticas, UMSNH

Nombre completo:	
1	
Correo electrónico:	

Instrucciones: Este examen consta de cinco problemas. De los seis problemas propuestos Usted deberá escoger cinco de ellos. *En cada ejercicio se pide una demostración completa*, pero no exageradamente detallada. Use su buen juicio para decidir el nivel de detalle requerido. El tiempo para resolver este examen es de dos horas.

(1) Sean A y B dos subconjuntos de números reales que no son vacíos, que B es acotado inferiormente y $A \subseteq B$. Demuestre que A tiene ínfimo y que inf $A \ge \inf B$.

Solución: Como B está acotado inferiormente, entonces, por teorema demostrado en clase, B tiene ínfimo. Pongamos $\beta = \inf B$.

Puesto que β es en particular cota inferior de B, se tiene que $(\forall x \in B)$ $(\beta \le x)$. Por lo tanto, si $x \in A$ entonces $x \in B$ y en consecuencia $\beta \le x$. Por lo tanto, β es una cota inferior de A. Siendo $A \ne \emptyset$, el conjunto A también tiene ínfimo, digamos $\alpha = \inf A$.

Ahora, α es la mayor de todas las cotas inferiores de A. Como β es una cota inferior de A se debe tener que $\beta \leq \alpha$, como se queria demostrar.

(2) Sea $(a_n)_{n\in\mathbb{N}}$ una sucesión de números reales y defina otras dos sucesiones $(x_n)_{n\in\mathbb{N}}$ y $(y_n)_{n\in\mathbb{N}}$ haciendo

$$x_n = a_{2n} \& y_n = a_{2n+1},$$

para todo $n \in \mathbb{N}$. Demuestre que si $\lim_{n\to\infty} x_n = \ell = \lim_{n\to\infty} y_n$, entonces $\lim_{n\to\infty} a_n = \ell$.

Solución: Sea $\varepsilon > 0$. Puesto que $x_n \to \ell$ existe un $n_1 \in \mathbb{N}$ tal que $|x_n - \ell| < \varepsilon$ para todo $n \ge n_1$. Puesto que $y_n \to \ell$ existe un $n_2 \in \mathbb{N}$ tal que $|y_n - \ell| < \varepsilon$ para todo $n \ge n_2$. Pongamos $n_0 = 2 (\max\{n_1, n_2\}) + 1$. Entonces si $n \ge n_0$, tenemos dos casos: (a) $n \in \mathbb{N}$ UN NÚMERO PAR.

En este caso $n=2\left(\frac{n}{2}\right)$. Para mayor claridad, pongamos $m=\frac{n}{2}$. Entonces es fácil ver que $m \geq n_1$ y que $a_n=a_{2m}=x_m$. Puesto que $m \geq n_1$ se debe tener que $|x_m-\ell| < \varepsilon$; es decir, que $|a_n-\ell| < \varepsilon$.

(b) n ES UN NÚMERO IMPAR. En este caso $n=2\left(\frac{n-1}{2}\right)+1$. También, para mayor claridad, pongamos $m=\frac{n-1}{2}$. Es igualmente fácil demostrar que en este caso $m\geq n_2$ y que $a_n=a_{2m+1}=y_m$. Puesto que $m\geq n_2$ se

tiene entonces que $|y_m - \ell| < \varepsilon$; es decir, que $|a_n - \ell| < \varepsilon$. Es decir, en cualquier caso, $|a_n - \ell| < \varepsilon$ para todo $n \ge n_0$ y así $a_n \to \ell$, como se queria demostrar.

(3) Considere la sucesión $(x_n)_{n\in\mathbb{N}}$ dada por $x_n = \sqrt[3]{n+1} - \sqrt[3]{n}$, para cada $n\in\mathbb{N}$. ¿Tendrá límite esta sucesión? ¿Cuál es?

Solución: Obsérvese que para toda $n \in \mathbb{N}$ se tiene que

$$0 \le \sqrt[3]{n+1} - \sqrt[3]{n} = \frac{(n+1) - n}{\sqrt[2]{(n+1)^2 + \sqrt[3]{n+1}} \sqrt[3]{n} + \sqrt[3]{n^2}} \le \frac{1}{\sqrt[3]{n^2}}.$$

Puesto que $\lim_{n\to\infty} \frac{1}{\sqrt[3]{n^2}} = 0$, se sigue que la sucesión $(x_n)_{n\in\mathbb{N}}$ tiene límite, por un teorema demostrado en clase, y además

$$\lim_{n \to \infty} \sqrt[3]{n+1} - \sqrt[3]{n} = 0.$$

(4) Sea $A = \left\{ \sum_{k=0}^{n} \frac{1}{2^k} : n \in \mathbb{N} \right\}$. Demuestre que A es un subconjunto acotado de números reales y encuentre su supremo.

Solución: Empecemos por notar que A es el conjunto de términos de la sucesión $(a_n)_{n\in\mathbb{N}}$, donde $a_n = \sum_{k=0}^n \frac{1}{2^k}$, para cada $n\in\mathbb{N}$. Es fácil ver que dicha sucesión es monótona creciente.

Por otra parte, por ejemplo hecho (dos veces) en clase, las sucesiones $(b_n)_{n\in\mathbb{N}}$ de la forma $b_n=1+x+x^2+\cdots+x^n$, para |x|<1, son convergentes y

$$\lim_{n \to \infty} b_n = \frac{1}{1 - x}.$$

Puesto que la sucesión $(a_n)_{n\in\mathbb{N}}$ es de esa forma para $x=\frac{1}{2}$, se tiene que $(a_n)_{n\in\mathbb{N}}$ es convergente y por lo tanto acotada. Así, el conjunto A no es vacío y es acotado superiormente; en consecuencia A tiene supremo.

También es un resultado demostrado en clase que una sucesión creciente y acotada converge al supremo del conjunto de sus términos. Por lo tanto,

$$\sup A = \lim_{n \to \infty} a_n = \frac{1}{1 - \frac{1}{2}} = 2.$$

(5) Demustre que $\lim_{n\to\infty} a_n = 0$ si y sólo si $\lim_{n\to\infty} |a_n| = 0$ y que un teorema similar para un límite $\ell \neq 0$ no es cierto; es decir, muestre que si $\ell \neq 0$, entonces no es cierto que: $\lim_{n\to\infty} a_n = \ell$ si y sólo si $\lim_{n\to\infty} |a_n| = \ell$.

Solución: Supongamos primero que $\lim_{n\to\infty} a_n = 0$ y veamos que entonces $\lim_{n\to\infty} |a_n| = 0$. Para tal efecto, fijemos $\varepsilon > 0$ arbitrario. Nuestra suposición implica que existe $n_0 \in \mathbb{N}$ tal que $|a_n - 0| < \varepsilon$ para $n \ge n_0$. Pero $||a_n| - 0| = |a_n - 0|$; por lo tanto, si $n \ge n_0$, entonces $||a_n| - 0| < \varepsilon$ y en consecuencia se tiene que $\lim_{n\to\infty} |a_n| = 0$.

Ahora supongamos que $\lim_{n\to\infty} |a_n| = 0$ y veamos que entonces $\lim_{n\to\infty} a_n = 0$. Nuevamente fijemos $\varepsilon > 0$. Para este ε existe $n_0 \in \mathbb{N}$ tal que $||a_n| - 0| < \varepsilon$, para toda $n \ge n_0$; es decir, $|a_n - 0| < \varepsilon$ para $n \ge n_0$. Comprobamos así que $\lim_{n\to\infty} a_n = 0$.

Finalmente, para demostrar que no es cierto que: $\lim_{n\to\infty} a_n = \ell$ si y sólo si $\lim_{n\to\infty} |a_n| = \ell$, cuando $\ell \neq 0$, basta con considerar la sucesión $((-1)^n)_{n\in\mathbb{N}}$. Esta sucesión no converge pero la sucesión de los valores absolutos de sus términos sí converge.

(6) Encuentre $\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^n$. Sugerencia: las igualdades

$$1 + \frac{2}{n} = \left(1 + \frac{1}{n+1}\right)\left(1 + \frac{1}{n}\right) \quad \text{y} \quad 1 + \frac{3}{n} = \left(1 + \frac{2}{n+1}\right)\left(1 + \frac{1}{n}\right)$$
 pueden ser de utilidad.

Solución: Usando las igualdades sugeridas podemos observar que:

$$1 + \frac{3}{n} = \left(1 + \frac{2}{n+1}\right)\left(1 + \frac{1}{n}\right)$$
$$= \left(1 + \frac{1}{n+2}\right)\left(1 + \frac{1}{n+1}\right)\left(1 + \frac{1}{n}\right)$$

v por lo tanto

$$\left(1 + \frac{3}{n}\right)^n = \left(1 + \frac{1}{n+2}\right)^n \left(1 + \frac{1}{n+1}\right)^n \left(1 + \frac{1}{n}\right)^n.$$

Sabemos que

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e,$$

veamos que los otros dos factores tienden al mismo límite. En efecto:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^n = \lim_{n \to \infty} \left[\left(1 + \frac{1}{n+1} \right)^{n+1} \cdot \frac{1}{\left(1 + \frac{1}{n+1} \right)} \right]$$

$$= \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n+1} \cdot \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n+1} \right)}$$

$$= e \cdot \frac{1}{1 + \lim_{n \to \infty} \frac{1}{n+1}}$$

$$= e \cdot 1$$

$$= e$$

$$\lim_{n \to \infty} \left(1 + \frac{1}{n+2} \right)^n = \lim_{n \to \infty} \left[\left(1 + \frac{1}{n+2} \right)^{n+2} \cdot \frac{1}{\left(1 + \frac{1}{n+1} \right)^2} \right]$$
$$= \lim_{n \to \infty} \left(1 + \frac{1}{n+1} \right)^{n+1} \cdot \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n+1} \right)^2}$$
$$= e$$

Con todo

$$\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^n = \lim_{n\to\infty} \left(1+\frac{1}{n+2}\right)^n \cdot \lim_{n\to\infty} \left(1+\frac{1}{n+1}\right)^n \cdot \lim_{n\to\infty} \left(1+\frac{1}{n}\right)^n = e^3.$$